KR102624240B1 - 로봇 축 움직임 예측 모델을 통한 로봇 상태 진단 장치및 방법 - Google Patents
로봇 축 움직임 예측 모델을 통한 로봇 상태 진단 장치및 방법 Download PDFInfo
- Publication number
- KR102624240B1 KR102624240B1 KR1020230098128A KR20230098128A KR102624240B1 KR 102624240 B1 KR102624240 B1 KR 102624240B1 KR 1020230098128 A KR1020230098128 A KR 1020230098128A KR 20230098128 A KR20230098128 A KR 20230098128A KR 102624240 B1 KR102624240 B1 KR 102624240B1
- Authority
- KR
- South Korea
- Prior art keywords
- robot
- prediction model
- load
- axis
- movement
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 27
- 238000003745 diagnosis Methods 0.000 claims abstract description 39
- 230000001133 acceleration Effects 0.000 claims description 70
- 230000015654 memory Effects 0.000 claims description 20
- 238000013507 mapping Methods 0.000 claims description 15
- 238000013480 data collection Methods 0.000 claims description 14
- 238000004422 calculation algorithm Methods 0.000 claims description 9
- 238000000605 extraction Methods 0.000 claims description 9
- 238000013468 resource allocation Methods 0.000 claims description 7
- 239000000284 extract Substances 0.000 claims description 6
- 238000001514 detection method Methods 0.000 claims description 5
- 238000009826 distribution Methods 0.000 claims description 4
- 238000010276 construction Methods 0.000 claims description 3
- 238000012937 correction Methods 0.000 claims 2
- 238000012544 monitoring process Methods 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 3
- 238000004891 communication Methods 0.000 description 12
- 238000013528 artificial neural network Methods 0.000 description 8
- 238000012417 linear regression Methods 0.000 description 7
- 238000004590 computer program Methods 0.000 description 5
- 238000003066 decision tree Methods 0.000 description 5
- 238000003860 storage Methods 0.000 description 5
- 238000012423 maintenance Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 238000007637 random forest analysis Methods 0.000 description 3
- 238000012549 training Methods 0.000 description 3
- 230000000295 complement effect Effects 0.000 description 2
- 238000013527 convolutional neural network Methods 0.000 description 2
- 238000013136 deep learning model Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 238000010801 machine learning Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 210000002569 neuron Anatomy 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000013178 mathematical model Methods 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000000306 recurrent effect Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000006403 short-term memory Effects 0.000 description 1
- 238000013403 standard screening design Methods 0.000 description 1
- 238000012706 support-vector machine Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1674—Programme controls characterised by safety, monitoring, diagnostic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J13/00—Controls for manipulators
- B25J13/08—Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1602—Programme controls characterised by the control system, structure, architecture
- B25J9/161—Hardware, e.g. neural networks, fuzzy logic, interfaces, processor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1628—Programme controls characterised by the control loop
- B25J9/163—Programme controls characterised by the control loop learning, adaptive, model based, rule based expert control
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/18—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
- G05B19/406—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by monitoring or safety
- G05B19/4065—Monitoring tool breakage, life or condition
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/418—Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
- G05B19/4183—Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by data acquisition, e.g. workpiece identification
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/418—Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
- G05B19/41865—Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by job scheduling, process planning, material flow
- G05B19/4187—Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by job scheduling, process planning, material flow by tool management
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B23/00—Testing or monitoring of control systems or parts thereof
- G05B23/02—Electric testing or monitoring
- G05B23/0205—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
- G05B23/0259—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the response to fault detection
- G05B23/0283—Predictive maintenance, e.g. involving the monitoring of a system and, based on the monitoring results, taking decisions on the maintenance schedule of the monitored system; Estimating remaining useful life [RUL]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
- G06Q10/063—Operations research, analysis or management
- G06Q10/0631—Resource planning, allocation, distributing or scheduling for enterprises or organisations
- G06Q10/06312—Adjustment or analysis of established resource schedule, e.g. resource or task levelling, or dynamic rescheduling
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/02—Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
Landscapes
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Human Resources & Organizations (AREA)
- General Physics & Mathematics (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Quality & Reliability (AREA)
- Manufacturing & Machinery (AREA)
- Human Computer Interaction (AREA)
- Economics (AREA)
- Entrepreneurship & Innovation (AREA)
- General Engineering & Computer Science (AREA)
- Strategic Management (AREA)
- Evolutionary Computation (AREA)
- Software Systems (AREA)
- Development Economics (AREA)
- Mathematical Physics (AREA)
- Educational Administration (AREA)
- Fuzzy Systems (AREA)
- Game Theory and Decision Science (AREA)
- Artificial Intelligence (AREA)
- Marketing (AREA)
- Operations Research (AREA)
- Tourism & Hospitality (AREA)
- General Business, Economics & Management (AREA)
- Theoretical Computer Science (AREA)
- Manipulator (AREA)
Abstract
Description
도 2 는 본 발명의 일 실시예에 따른 로봇 축 움직임 예측 모델을 통한 로봇 상태 진단 방법의 흐름도이다.
120 : 메모리 130 : 입출력 인터페이스
140 : 프로세서
Claims (8)
- 하나의 프로세서들, 및
상기 하나 이상의 프로세서들에 의해 실행되는 하나 이상의 프로그램들을 저장하는 메모리를 구비한 컴퓨팅 장치에서 수행되는 방법으로서,
로봇 축에 장착된 센서로부터 움직임 관련 데이터를 수집하는 단계;
상기 수집된 움직임 관련 데이터에서 움직임 예측을 위한 특성을 추출하는 단계;
상기 추출된 특성을 기반으로 예측 모델을 구축하는 단계;
상기 구축된 예측 모델을 이용하여 로봇 부하를 예측하여 로봇 상태를 진단하는 단계;
상기 예측 모델을 구축하는 단계에서 구축된 움직임 예측 모델에 대해 상기 수집하는 단계에서 수집한 데이터를 활용하여 학습을 수행하는 단계; 및
로봇의 실제 움직임을 모니터링하여 로봇 부하를 파악하는 단계;를 포함하며,
상기 학습을 수행하는 단계는,
상기 부하를 파악하는 단계에서 파악된 로봇 부하와 상기 구축된 예측 모델을 이용하여 예측된 로봇 부하를 비교하여 상기 예측 모델의 정확도를 평가하고 반복적으로 수정 및 학습을 수행하며,
상기 부하를 파악하는 단계는,
상기 수집하는 단계에서 수집된 1축 가속도 센서의 가속도 데이터를 3D 매핑 알고리즘에 적용하여 로봇의 3D공간 상의 움직임을 추정하고, 추정된 3D 공간 상의 움직임에 따른 부하 변화를 파악하며,
변수 선택 모델(Feature selection Model)을 적용하여 6축 로봇에서 3D 매핑을 위한 1축 가속도 센서의 위치를 선정하는 것을 특징으로 하는 로봇 축 움직임 예측 모델을 통한 로봇 상태 진단 방법.
- 삭제
- 삭제
- 삭제
- 삭제
- 제 1 항에 있어서,
상기 로봇 상태를 진단하는 단계에서의 로봇 상태 진단 결과에 따라 로봇 작업 운영 속도를 예측하는 단계;를 더 포함하는, 로봇 축 움직임 예측 모델을 통한 로봇 상태 진단 방법.
- 제 1 항에 있어서,
상기 로봇 상태를 진단하는 단계에서의 로봇 상태 진단 결과를 이용하여 부하 분포를 파악하여 부하가 분산되도록 작업 스케줄링 또는 자원 할당을 수행하는 단계;를 더 포함하는, 로봇 축 움직임 예측 모델을 통한 로봇 상태 진단 방법.
- 하나 이상의 프로세서들, 및
상기 하나 이상의 프로세서들에 의해 실행되는 하나 이상의 프로그램들을 저장하는 메모리를 구비한 컴퓨터 장치로서,
로봇 축에 장착된 센서로부터 움직임 관련 데이터를 수집하는 데이터 수집부;
상기 데이터 수집부에서 수집된 움직임 관련 데이터에서 움직임 예측을 위한 특성을 추출하는 특성 추출부;
상기 특성 추출부에서 추출된 특성을 기반으로 예측 모델을 구축하는 예측 모델 구축부;
상기 예측 모델 구축부에서 구축된 예측 모델을 이용하여 로봇 부하를 예측하여 로봇 상태를 진단하는 상태 진단부;
상기 예측 모델을 구축하는 단계에서 구축된 움직임 예측 모델에 대해 상기 수집하는 단계에서 수집한 데이터를 활용하여 학습을 수행하는 학습부; 및
로봇의 실제 움직임을 모니터링하여 로봇 부하를 파악하는 부하 파악부;를 포함하며,
상기 학습부는,
상기 부하를 파악하는 단계에서 파악된 로봇 부하와 상기 구축된 예측 모델을 이용하여 예측된 로봇 부하를 비교하여 상기 예측 모델의 정확도를 평가하고 반복적으로 수정 및 학습을 수행하며,
상기 부하 파악부는,
상기 수집하는 단계에서 수집된 1축 가속도 센서의 가속도 데이터를 3D 매핑 알고리즘에 적용하여 로봇의 3D공간 상의 움직임을 추정하고, 추정된 3D 공간 상의 움직임에 따른 부하 변화를 파악하며,
변수 선택 모델을 적용하여 6축 로봇에서 3D 매핑을 위한 1축 가속도 센서의 위치를 선정하는 것을 특징으로 하는 로봇 축 움직임 예측 모델을 통한 로봇 상태 진단 장치.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020230098128A KR102624240B1 (ko) | 2023-07-27 | 2023-07-27 | 로봇 축 움직임 예측 모델을 통한 로봇 상태 진단 장치및 방법 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020230098128A KR102624240B1 (ko) | 2023-07-27 | 2023-07-27 | 로봇 축 움직임 예측 모델을 통한 로봇 상태 진단 장치및 방법 |
Publications (1)
Publication Number | Publication Date |
---|---|
KR102624240B1 true KR102624240B1 (ko) | 2024-01-16 |
Family
ID=89719335
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020230098128A KR102624240B1 (ko) | 2023-07-27 | 2023-07-27 | 로봇 축 움직임 예측 모델을 통한 로봇 상태 진단 장치및 방법 |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102624240B1 (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118990519A (zh) * | 2024-10-24 | 2024-11-22 | 深圳市亚博智能科技有限公司 | 一种机械臂控制模型的训练方法及系统 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101789673B1 (ko) | 2016-10-31 | 2017-11-20 | 한국생산기술연구원 | 로봇 가공부하 진동 저감장치 및 이를 이용한 진동 저감방법 |
KR20200072069A (ko) | 2018-12-12 | 2020-06-22 | 주식회사 큐엔티 | 모터 정보 기반 로봇 상태 정보 제공 시스템 |
KR102427048B1 (ko) * | 2021-02-18 | 2022-08-01 | 성균관대학교산학협력단 | 어깨 착용형 외골격 장치를 착용한 사용자의 동작 의도를 예측하는 장치 및 그 방법 |
KR20220152413A (ko) * | 2021-05-06 | 2022-11-16 | 주식회사 원프레딕트 | 실시간 로봇 상태 진단 방법 및 이러한 방법을 수행하는 장치 |
JP2022191211A (ja) * | 2019-04-11 | 2022-12-27 | アプライド マテリアルズ インコーポレイテッド | ロボットの関節座標教示精度を向上させるための装置、システム、及び方法 |
-
2023
- 2023-07-27 KR KR1020230098128A patent/KR102624240B1/ko active IP Right Grant
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101789673B1 (ko) | 2016-10-31 | 2017-11-20 | 한국생산기술연구원 | 로봇 가공부하 진동 저감장치 및 이를 이용한 진동 저감방법 |
KR20200072069A (ko) | 2018-12-12 | 2020-06-22 | 주식회사 큐엔티 | 모터 정보 기반 로봇 상태 정보 제공 시스템 |
JP2022191211A (ja) * | 2019-04-11 | 2022-12-27 | アプライド マテリアルズ インコーポレイテッド | ロボットの関節座標教示精度を向上させるための装置、システム、及び方法 |
KR102427048B1 (ko) * | 2021-02-18 | 2022-08-01 | 성균관대학교산학협력단 | 어깨 착용형 외골격 장치를 착용한 사용자의 동작 의도를 예측하는 장치 및 그 방법 |
KR20220152413A (ko) * | 2021-05-06 | 2022-11-16 | 주식회사 원프레딕트 | 실시간 로봇 상태 진단 방법 및 이러한 방법을 수행하는 장치 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118990519A (zh) * | 2024-10-24 | 2024-11-22 | 深圳市亚博智能科技有限公司 | 一种机械臂控制模型的训练方法及系统 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11275345B2 (en) | Machine learning Method and machine learning device for learning fault conditions, and fault prediction device and fault prediction system including the machine learning device | |
Wang et al. | Fault prognostics using dynamic wavelet neural networks | |
Cattaneo et al. | A digital twin proof of concept to support machine prognostics with low availability of run-to-failure data | |
Ma et al. | Exploring edge computing for multitier industrial control | |
Čech et al. | Digital twins and AI in smart motion control applications | |
US20230289568A1 (en) | Providing an alarm relating to an accuracy of a trained function method and system | |
KR102624240B1 (ko) | 로봇 축 움직임 예측 모델을 통한 로봇 상태 진단 장치및 방법 | |
Abdallah et al. | Anomaly detection through transfer learning in agriculture and manufacturing IoT systems | |
CN117923331B (zh) | 一种基于吊车吊装的负荷控制系统及方法 | |
Bondoc et al. | Live digital twin: Developing a sensor network to monitor the health of belt conveyor system | |
Bondoc et al. | Employing LIVE digital twin in prognostic and health management: Identifying location of the sensors | |
Fahmi et al. | Fault detection in the gas turbine of the Kirkuk power plant: An anomaly detection approach using DLSTM-Autoencoder | |
Malykhina et al. | Digital twin technology as a basis of the industry in future | |
Justus et al. | Intelligent single-board computer for Industry 4.0: Efficient real-time monitoring system for anomaly detection in CNC machines | |
Herrero et al. | An I4. 0 data intensive platform suitable for the deployment of machine learning models: a predictive maintenance service case study | |
Rusman et al. | Fog computing concept implementation in work error detection system of the industrial machine using support vector machine (svm) | |
KR102504701B1 (ko) | 블록체인 기반의 드론 군집에 대한 데이터 수집 및 이상 관제 장치 및 방법 | |
Silva et al. | Predictive maintenance for sensor enhancement in industry 4.0 | |
Asadova et al. | A Survey of Usage of Anytime Algorithm in Fault detection in Cloud Systems | |
Benecki et al. | Towards detection of anomalies in automated guided vehicles based on telemetry data | |
Kremer et al. | Implementation of a predictive maintenance system using unsupervised anomaly detection | |
Kibira et al. | Data requirements for a digital twin of a robot workcell | |
KR102619793B1 (ko) | Ai 기반 안전 센서 이상치 감지 및 알람 분류 방법, 컴퓨팅 장치 및 컴퓨터 프로그램 | |
KR102607487B1 (ko) | 로봇팔의 노이즈 제거 방법 및 장치 | |
Parola et al. | Structural Damage Localization via Deep Learning and IoT Enabled Digital Twin. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20230727 |
|
PA0201 | Request for examination | ||
PA0302 | Request for accelerated examination |
Patent event date: 20230804 Patent event code: PA03022R01D Comment text: Request for Accelerated Examination Patent event date: 20230727 Patent event code: PA03021R01I Comment text: Patent Application |
|
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20231027 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20231213 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20240109 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20240109 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration |