KR102622930B1 - 공기 조화기 - Google Patents

공기 조화기 Download PDF

Info

Publication number
KR102622930B1
KR102622930B1 KR1020200181627A KR20200181627A KR102622930B1 KR 102622930 B1 KR102622930 B1 KR 102622930B1 KR 1020200181627 A KR1020200181627 A KR 1020200181627A KR 20200181627 A KR20200181627 A KR 20200181627A KR 102622930 B1 KR102622930 B1 KR 102622930B1
Authority
KR
South Korea
Prior art keywords
board
space
tower
air
guide
Prior art date
Application number
KR1020200181627A
Other languages
English (en)
Other versions
KR20220090767A (ko
Inventor
김기동
오시영
김재현
최석호
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to KR1020200181627A priority Critical patent/KR102622930B1/ko
Publication of KR20220090767A publication Critical patent/KR20220090767A/ko
Application granted granted Critical
Publication of KR102622930B1 publication Critical patent/KR102622930B1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/08Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/08Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation
    • F04D25/10Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation the unit having provisions for automatically changing direction of output air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/403Casings; Connections of working fluid especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/08Air-flow control members, e.g. louvres, grilles, flaps or guide plates
    • F24F13/10Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers
    • F24F13/12Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers built up of sliding members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/20Casings or covers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2210/00Working fluids
    • F05D2210/10Kind or type
    • F05D2210/12Kind or type gaseous, i.e. compressible
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2221/00Details or features not otherwise provided for
    • F24F2221/28Details or features not otherwise provided for using the Coanda effect

Abstract

본 발명의 기류변환기는 상기 타워케이스에 배치되고, 구동력을 제공하는 가이드모터 상기 타워케이스에 설치되어, 상기 블로잉스페이스와 상기 타워케이스 내부를 왕복하는 스페이스 보드 상기 가이드모터의 회전력을 왕복 운동으로 변환하는 운동변환 유닛 및 상기 운동변환 유닛의 왕복 운동을 상기 스페이스 보드에 전달하는 보드가이더를 포함한다.

Description

공기 조화기{Air conditioner}
본 발명은 코안다 효과를 통해 토출되는 공기의 경로 및 공기의 토출 형태를 변경할 수 있는 공기 조화기에 관한 것이다.
일반적으로 송풍기는 팬을 구동하여 공기의 유동을 일으키는 기계장치이다. 종래 송풍기는 회전축을 중심으로 회전하는 팬을 구비하고, 모터가 상기 팬을 회전시켜 바람을 발생시킨다.
축류팬을 이용하는 종래 팬은 넓은 범위에 바람을 제공하는 장점이 있지만, 좁은 영역에 집중적으로 바람을 제공할 수 없는 문제점이 있었다.
일본 공개특허 2019107643호에는 코안다효과를 이용하여 사용자에게 바람을 제공하는 팬이 기재되어 있다.
종래 팬의 경우에는 코안다 효과를 통해 토출되는 공기의 경로를 조절하거나, 토출되는 공기의 형태를 변경하는 기술을 개시하지 않고 있다. 따라서, 종래 팬의 경우, 토출되는 공기의 유속이 매우 약하거나, 토출되는 공기의 방향을 변경하지 못하는 문제점이 있고, 토출되는 공기가 먼 곳에 있는 사용자에게 도달하기 어려운 문제점이 있다.
일본 공개특허 2019107643호
본 발명이 해결하고자 하는 과제는 토출구를 통해 토출되는 공기를 다양한 방향 및 다양한 형태로 토출시키는 공기 조화기를 제공하는 것이다.
또한, 본 발명이 해결하고자 하는 다른 과제는 공기가 토출되는 블로잉스페이스를 차폐하도록 움직이는 스페이스 보드와 다른 구성품과 마찰을 줄여서, 가이드모터의 부담을 줄이는 공기 조화기를 제공하는 것이다.
또한, 본 발명이 해결하고자 하는 또 다른 과제는 가이드모터의 회전력을 왕복운동으로 전달하는 과정에서 발생되는 소음을 줄이는 공기 조화기를 제공하는 것이다.
또한, 본 발명이 해결하고자 하는 다른 과제는 가이드모터의 전원이 꺼진 상태에서 스페이스 보드의 자중으로 인해 발생하는 가이드모터의 티텐트 토크(Detent Torque)를 줄이는 공기 조화기를 제공하는 것이다.
또한, 본 발명이 해결하고자 하는 다른 과제는 본 발명은 스페이스 보드를 안정적으로 안내하여 진동과 소음을 저감하는 공기 조화기를 제공하는 것이다.
또한, 본 발명이 해결하고자 하는 과제는 커버와 본체를 유격 없이 단단하게 결합하게 하고, 커버와 본체를 분리할 때, 커버 분리 유닛에 외력을 가해 본체와 커버를 쉽게 분리할 수 있는 공기 조화기를 제공하는 것이다.
본 발명은 스페이스 보드가 블로잉스페이스를 선택적으로 차폐하는 구조를 특징으로 한다.
또한, 본 발명은 보드가이더의 왕복운동 시에 발생되는 소음을 줄이는 구조를 특징으로 한다.
구체적으로, 본 발명은, 흡입된 공기를 토출하는 제1 타워와, 상기 제1 타워와 이격되고 흡입된 공기를 토출하는 제2 타워를 포함하는 타워케이스, 상기 제1 타워와 상기 제2 타워의 사이에 위치되고, 상기 제1 타워 및 상기 제2 타워에서 토출되는 공기가 유동되는 공간을 제공하는 블로잉스페이스 및 상기 블로잉스페이스의 적어도 일부를 폐쇄하거나, 상기 블로잉스페이스를 개방하여, 상기 블로잉스페이스를 통해 유동되는 공기의 방향을 바꾸는 기류변환기를 포함하고, 상기 기류변환기는 상기 타워케이스에 배치되고, 구동력을 제공하는 가이드모터 상기 타워케이스에 설치되어, 상기 블로잉스페이스와 상기 타워케이스 내부를 왕복하는 스페이스 보드 상기 가이드모터의 회전력을 왕복 운동으로 변환하는 운동변환 유닛 및 상기 운동변환 유닛의 왕복 운동을 상기 스페이스 보드에 전달하는 보드가이더를 포함한다.
상기 운동변환유닛은, 상기 가이드모터의 회전축에 결합되어 상기 회전축과 교차되는 방향으로 연장되는 슬라이드암, 일단이 상기 슬라이드암에 회전 가능하게 결합되는 슬라이드 로드 및 상기 슬라이드 로드의 일단이 슬라이딩되게 결합되는 슬라이드 슬롯을 포함하고, 상기 보드가이더에 연결되는 변환 슬라이더를 포함할 수 있다.
상기 슬라이드 슬롯은 상기 가이드모터의 회전축과 교차되는 방향으로 연장될 수 있다.
상기 기류변환기는 상기 슬라이드 로드와 상기 슬라이드암을 결합하는 제1 힌지를 더 포함하고, 상기 제1 힌지는 상기 가이드모터의 회전축에서 편심된 상기 슬라이드암에 결합될 수 있다.
상기 변환 스라이더는 상기 보드가이더의 상단에 연결될 수 있다.
상기 슬라이드 슬롯의 길이는 상기 가이드모터의 회전축과 상기 제1 힌지 사이의 이격거리 보다 클 수 있다.
상기 스페이스 보드는 제1 방향을 따라 이동하고, 상기 가이드모터의 회전축은 상기 제1 방향과 나란하게 배치되며, 상기 보드가이더는 상기 제1 방향과 교차되는 제2방향을 따라 이동하며, 상기 슬라이드 슬롯은 상기 제1방향 및 상기 제2방향과 교차되는 제3방향으로 연장될 수 있다.
상기 기류변환기는 상기 보드가이더와 상기 스페이스 보드 사이를 이격시켜 면접촉을 방지하는 마찰저감 돌기를 더 포함할 수 있다.
상기 마찰저감 돌기는 상기 보드가이더에 형성되고, 상기 스페이스 보드와 마주보는 면에서 돌출되며, 상기 스페이스 보드와 접촉될 수 있다.
상기 변환 슬라이더는 상기 제3방향에서 상기 스페이스 보드의 상부와 중첩되게 위치될 수 있다.
상기 가이드 모터와, 상기 슬라이드 로드는 상기 제3방향에서 상기 스페이스 보드의 상부와 중첩되게 위치되고, 상기 보드가이더 보다 상부에 위치될 수 있다.
상기 운동변환유닛은 상기 가이드모터의 회전축에 결합되어 상기 회전축과 교차되는 방향으로 연장되는 크랭크암 및 일단이 상기 크랭크암에 회전 가능하게 결합되고 타단이 상기 보드가이더에 회전 가능하게 결합되는 크랭크 로드를 포함할 수 있다.
상기 크랭크 로드는 일단이 상기 크랭크암에 회전 가능하게 결합되는 제1 크랭크 로드 및 일단이 상기 제1 크랭크 로드의 타단에 회전 가능하게 결합되고, 타단이 상기 보드가이더에 회전 가능하게 결합되는 제2 크랭크 로드를 포함할 수 있다.
상기 크랭크 로드는 상기 보드가이더의 상단에 결합될 수 있다.
상기 기류변환기는 상기 제1 크랭크 로드와 상기 크랭크암을 결합하는 제1크랭크 힌지를 더 포함하고, 상기 제1크랭크 힌지는 상기 가이드모터의 회전축에서 편심된 상기 크랭크암에 결합될 수 있다.
상기 스페이스 보드는 제1 방향을 따라 이동하고, 상기 보드가이더는 상기 제1 방향과 교차되는 제2방향을 따라 이동하며, 상기 가이드모터의 회전축은 상기 제1방향 및 상기 제2방향과 교차되는 제3방향으로 연장될 수 있다.
상기 크랭크로드의 회전축은 상기 제3방향과 나란할 수 있다.
상기 기류변환기는 상기 보드가이더의 이동을 가이드하는 가이드바디를 더 포함할 수 있다.
상기 가이드바디는 상기 가이드바디의 길이방향과 교차되는 방향으로 돌출된 바디돌기를 더 포함하고, 상기 보드가이더는 상기 바디돌기가 삽입되어 가이드되는 제2 슬릿을 더 포함할 수 있다.
또한, 본 발명의 기류변환기는 상기 타워케이스에 배치되고, 구동력을 제공하는 가이드모터 상기 타워케이스에 설치되어, 상기 블로잉스페이스와 상기 타워케이스 내부를 왕복하는 스페이스 보드 상기 가이드모터의 회전력을 왕복 운동으로 변환하는 운동변환 유닛 및 상기 운동변환 유닛의 왕복 운동을 상기 스페이스 보드에 전달하는 보드가이더를 포함한다.
본 발명에 따른 공기 조화기는 다음과 같은 효과가 하나 혹은 그 이상 있다.
본 발명은 블로잉스페이스를 스페이스 보드가 선택적으로 차폐하여서, 토출구를 통해 토출되는 공기를 다양한 방향 및 다양한 형태로 토출시키는 이점이 존재한다.
또한, 본 발명은 모터의 회전력을 왕복운동으로 전환하여 보드가이더에 전달하는 구조가 슬라이드 구조를 가져서, 모터의 회전력을 왕복운동으로 전환하는 과정에서 발생되는 소음을 줄일 수 있는 이점이 존재한다.
또한, 본 발명은 모터의 회전력을 왕복운동으로 전환하여 보드가이더에 전달하는 구조가 크랭크 방식을 사용하여서, 모터의 회전력을 왕복운동으로 전환하는 과정에서 발생되는 소음을 줄일 수 있는 이점이 존재한다.
또한, 본 발명은 하나의 모터가 보가이더의 상부에 배치되고, 슬라이드 또는 크랭크 방식으로 보드 가이더를 상하로 이동시키므로, 하나의 모터로 보드가이더의 균일한 운동이 가능한 이점이 존재한다.
또한, 본 발명은 스페이스 보드와 보드가이더가 접촉하는 면에 스페이스 보드의 이동방향과 나란한 마차저감 돌기를 형성하여서, 스페이스 보드와 보드가이더의 마찰을 줄일 수 있고, 가이드모터의 부담을 줄일 수 있으며, 가이드모터의 크기를 줄일 수 있다.
또한, 본 발명은 스페이스 보드를 가이드하는 보드가이더의 슬릿의 경사를 블로잉스페이스의 방향으로 하향 경사지게 형성하여서, 가이드모터의 전원이 꺼진 상태에서 스페이스 보드의 자중으로 인해 발생하는 가이드모터의 티텐트 토크(Detent Torque)를 줄이는 이점이 존재한다.
본 발명의 효과들은 이상에서 언급한 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 청구범위의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
도 1은 본 발명의 일 실시예에 따른 공기 조화기의 사시도,
도 2는 도 1의 작동 예시도,
도 3은 도 2의 정면도,
도 4는 도 3의 평면도,
도 5는 도 2의 우측단면도,
도 6은 도 2의 정단면도,
도 7은 도 2의 제 2 타워 내부가 도시된 일부 분해 사시도,
도 8은 도 7의 우측면도,
도 9는 도1의 공기 조화기를 다른 방향에서 바라본 사시도,
도 10은 도 9의 케이스에 필터가 분리된 모습을 도시한 사시도,
도 11은 도 9의 A-A' 선을 따라 절단된 단면 사시도,
도 12은 도 11의 작동 모습을 도시한 도면,
도 13는 커버와 케이스가 결합된 상태의 도 9의 작동을 도시한 도면,
도 14는 도 3의 Ⅸ-Ⅸ를 따라 절단된 평면 단면도,
도 15은 도 3의 Ⅸ-Ⅸ를 따라 절단된 저면 단면도,
도 16은 기류변환기의 제1상태를 도시한 사시도,
도 17는 기류변환기의 제2상태를 도시한 사시도,
도 18은 기류변환기의 분해사시도,
도 19는 기류변환기에서 스페이스 보드를 제외한 상태를 도시한 정면도,
도 20는 도 19에서 스페이스 보드를 설치한 상태를 도시한 정면도,
도 21은 기류변환기의 측단면도,
도 22은 기류변환기의 스페이스 보드의 후면을 도시한 도면,
도 23은 스페이스 보드의 위치에 따라 공기의 유동방향을 간략히 나타낸 평단면도,
도 24은 본 발명의 다른 실시예에 따른 도 2의 정단면도,
도 25은 도 24의 제 2 타워 내부가 도시된 일부 분해 사시도,
도 26은 도 25의 우측면도,
도 27은 본 발명에 따른 공기 조화기의 수평기류가 도시된 예시도,
도 28은 본 발명에 따른 공기 조화기의 상승기류가 도시된 예시도,
도 29는 본 발명의 다른 실시예에 따른 기류변환기를 도시한 도면,
도 30a 내지 도 30c는 도 29의 기류변환기의 작동모습을 도시한 도면,
도 31은 본 발명의 또 다른 실시예에 따른 기류변환기를 도시한 도면,
도 32는 도 31의 기류변환기의 작동모습을 도시한 도면이다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.
도 1은 본 발명의 일 실시예에 따른 공기 조화기의 사시도이고, 도 2는 도 1의 작동 예시도이고, 도 3은 도 2의 정면도이고, 도 4는 도 3의 평면도이다.
도 1 내지 도 4를 참조하면, 본 발명의 실시예에 따른 공기 조화기(1)은 외형을 제공하는 케이스(100)를 포함한다. 케이스(100)는 필터(200)가 설치되는 베이스케이스(150)와, 코안다효과를 통해 공기를 토출하는 타워케이스(140)를 포함한다.
그리고 타워케이스(140)는 2개의 기둥 형태로 분리되어 배치된 제 1 타워(110) 및 제 2 타워(120)를 포함한다. 본 실시예에서 제 1 타워(110)는 좌측에 배치되고, 제 2 타워(120)는 우측에 배치된다.
본 명세서에서, 상하방향은 팬(320)의 회전축 방향과 나란한 방향으로 정의한다. 상부 방향(수직 방향)은 케이스(100)에서 타워케이스(140)가 위치되는 방향이고, 하부 방향은 케이스(100)에서 베이스케이스(150)가 위치되는 방향을 의미한다.
제 1 타워(110) 및 제 2 타워(120)는 이격되고, 제 1 타워(110) 및 제 2 타워(120) 사이에 블로잉스페이스(105)가 형성된다.
본 실시예에서 블로잉스페이스(105)은 전방, 후방 및 상방이 개구되고, 블로잉스페이스(105)의 상단 및 하단의 간격이 같게 형성된다.
제 1 타워, 제 2 타워 및 블로잉스페이스를 포함하는 타워케이스(140)는 원뿔대 형상으로 형성된다.
제 1 타워(110) 및 제 2 타워(120)에 각각 배치된 토출구(117)(127)은 블로잉스페이스(105)로 공기를 토출한다. 토출구의 구분이 필요할 경우, 제 1 타워(110)에 형성된 토출구를 제 1 토출구(117)라 하고, 제 2 타워(120)에 형성된 토출구를 제 2 토출구(127)라 한다.
제 1 토출구 및 제 2 토출구는 블로잉스페이스의 높이 내에 배치되고, 블로잉스페이스(105)를 가로지르는 방향을 공기 토출방향으로 정의한다.
제 1 타워(110) 및 제 2 타워(120)가 좌우에 배치되기 때문에, 본 실시예에서 공기토출방향은 전후 방향 및 상하 방향으로 형성될 수 있다.
즉 블로잉스페이스(105)를 가로지르는 공기토출방향은 수평방향으로 배치되는 제 1 공기토출방향(S1)과, 상하 방향으로 형성되는 제 2 공기토출방향(S2)을 포함한다.
제 1 공기토출방향(S1)으로 유동되는 공기를 수평기류라 하고, 제 2 공기토출방향(S2)으로 유동되는 공기를 상승기류라 한다.
수평기류는 공기를 수평방향으로만 유동시킨다는 의미라기 보다는 수평방향으로 유동되는 공기의 유량이 더 많다고 이해되어야 한다. 마찬가지로 상승기류는 공기를 상측 방향으로만 유동시킨다는 의미라기 보다는 상측 방향으로 유동되는 공기의 유량이 더 많아고 이해되어야 할 것이다.
본 실시예에서 블로잉스페이스(105)의 상단 간격과 하단 간격은 같게 형성된다. 본 실시예와 달리 블로잉스페이스(105)의 상단 간격이 하단간격보다 좁게 형성되거나 넓게 형성되어도 무방하다.
블로잉스페이스(105)의 좌우 폭을 일정하게 형성시킴으로써, 블로잉스페이스 전방에서 유동되는 공기의 유동을 보다 균일하게 형성시킬 수 있다.
예를 들어 상측의 폭과 하측의 폭이 다를 경우, 넓은 쪽의 유동속도가 낮게 형성될 수 있고, 상하 방향을 기준으로 속도의 편차가 발생될 수 있다. 상하 방향에 대해 공기의 유속편차가 발생될 경우, 공기의 도달길이가 달라질 수 있다.
제 1 토출구 및 제 2 토출구에서 토출된 공기는 블로잉스페이스(105)에서 합류된 후, 사용자에게 유동될 수 있다.
즉, 본 실시예에서는 제 1 토출구(117)의 토출공기 및 제 2 토출구(127)의 토출공기가 개별적으로 사용자에게 유동되게 하지 않고, 제 1 토출구(117)의 토출공기 및 제 2 토출구(127)의 토출공기를 블로잉스페이스(105)에서 합류시킨 후 사용자에게 제공한다.
블로잉스페이스(105)는 토출공기들이 합류되어 믹스되는 공간으로 이용될 수 있다. 또한, 블로잉스페이스(105)로 토출되는 토출공기에 의해 블로잉스페이스 후방의 공기도 블로잉스페이스로 유동시킬 수 있다.
제 1 토출구(117)의 토출공기 및 제 2 토출구(127)의 토출공기가 블로잉스페이스에서 합류됨으로써 토출공기의 직진성을 향상시킬 수 있다. 또한, 제 1 토출구(117)의 토출공기 및 제 2 토출구(127)의 토출공기를 블로잉스페이스에서 합류시킴으로써, 제 1 타워 및 제 2 타워 주변의 공기도 공기 토출방향으로 간접유동시킬 수 있다.
본 실시예에서 제 1 공기토출방향(S1)은 후방에서 전방으로 형성되고, 제 2 공기토출방향(S2)은 하측에서 상측 방향으로 형성된다.
제 2 공기토출방향(S2)을 위해 제 1 타워(110)의 상측단(111) 및 제 2 타워(120)의 상측단(121)이 이격된다. 즉, 제 2 공기토출방향(S2)으로 토출되는 공기는 공기 조화기(1)의 케이스와 간섭을 발생시키지 않는다.
그리고 제 1 공기토출방향(S1)을 위해, 제 1 타워(110)의 전단(112) 및 제 2 타워(120)의 전단(122)이 이격되며, 제 1 타워(110)의 후단(113) 및 제 2 타워(120)의 후단(123)도 이격된다.
제 1 타워(110) 및 제 2 타워(120)에서 블로잉스페이스(105)를 향하는 면은 내측면이라 하고, 블로잉스페이스(105)를 향하지 않는 면을 외측면이라 한다.
제 1 타워(110)의 외측벽(114) 및 제 2 타워(120)의 외측벽(124)은 서로 반대 방향으로 배치되고, 제 1 타워(110)의 내측벽(115) 및 제 2 타워(120)의 내측벽(125)은 서로 대향된다.
내측벽(115)(125)의 구분이 필요할 경우, 제 1 타워의 내측면을 제 1 내측벽(115)이라 하고, 제 2 타워의 내측면을 제 2 내측벽(125)이라 한다.
마찬가지로, 외측벽(114)(124)의 구분이 필요할 경우, 제 1 타워의 외측면을 제 1 외측벽(114)이라 하고, 제 2 타워의 외측면을 제 2 외측벽(124)이라 한다.
제 1 외측벽(114)은 제 1 내측벽(115)의 외측방에 형성된다. 제 1 외측벽(114)과 제 1 내측벽(115)은 내부에 공기가 유동하는 공간을 형성한다. 제 2 외측벽(124)은 제 2 내측벽(125)의 외측방에 형성된다. 제 1 외측벽(124)과 제 1 내측벽(125)은 내부에 공기가 유동하는 공간을 형성한다.
제 1 타워(110) 및 제 2 타워(120)는 공기의 유동방향에 대하여 유선형으로 형성된다.
구체적으로 제 1 내측벽(115) 및 제 1 외측벽(114)은 전후 방향에 대해 유선형으로 형성되고, 제 2 내측벽(125) 및 제 2 외측벽(124)은 전후 방향에 대해 유선형으로 형성된다.
제 1 토출구(117)는 제 1 내측벽(115)에 배치되고, 제 2 토출구(127)는 제 2 내측벽(125)에 배치된다.
제 1 내측벽(115) 및 제 2 내측벽(125)의 최단거리를 B0이라 한다. 토출구(117)(127)은 최단거리(B0) 보다 후방 측에 위치된다.
제 1 타워(110)의 전단(112) 및 제 2 타워(120)의 전단(122)의 이격거리를 제 1 이격거리 B1라 하고, 제 1 타워(110)의 후단(113) 및 제 2 타워(120)의 후단(123)의 이격거리를 제 2 이격거리 B2이라 한다.
본 실시예에서 B1 및 B2는 동일하게 형성된다. 본 실시예와 달리 B1 또는 B2 중 어느 하나의 길이가 더 길게 형성되어도 무방하다.
제 1 토출구(117) 및 제 2 토출구(127)는 B0 및 B2 사이에 배치된다.
제 1 토출구(117) 및 제 2 토출구(127)는 B0 보다 제 1 타워(110)의 후단(113) 및 제 2 타워(120)의 후단(123)에 가깝게 배치되는 것이 바람직하다.
토출구(117)(127)가 후단(113)(123)에 가깝게 배치될 수록 후술하는 코안다효과를 통한 기류제어에 용이하다.
제 1 타워(110)의 내측벽(115) 및 제 2 타워(120)의 내측벽(125)은 코안다효과를 직접적으로 제공하고, 제 1 타워(110)의 외측벽(114) 및 제 2 타워(120)의 외측벽(124)은 코안다효과를 간접적으로 제공한다.
내측벽(115)(125)은 토출구(117)(127)에서 토출된 공기를 전단(112)(122)까지 직접적으로 가이드한다.
즉 토출구(117)(127)에서 토출된 공기를 수평기류를 직접 제공한다.
블로잉스페이스(105)에서의 공기 유동으로 인해 외측벽(114)(124)에서도 간접적인 공기유동이 발생된다.
외측벽(114)(124)은 간접적인 공기유동에 대해 코안다효과를 유발시키고, 간접 공기유동을 전단(112)(122)으로 안내한다.
블로잉스페이스의 좌측은 제 1 내측벽(115)에 의해 막히고, 블로잉스페이스의 우측은 제 2 내측벽(125)에 의해 막히지만, 블로잉스페이스(105)의 상측은 개방된다.
후술하는 기류변환기가 블로잉스페이스를 통과하는 수평기류를 상승기류로 전환시킬 수 있고, 상승기류는 블로잉스페이스의 개방된 상측으로 유동될 수 있다. 상승기류는 토출공기가 사용자에게 직접 유동되는 것을 억제하고, 실내공기를 적극적으로 대류시킬 수 있다.
또한, 블로잉스페이스에서 합류된 공기의 유량을 통해 토출공기의 폭을 조절할 수 있다.
블로잉스페이스의 좌우 폭(B0, B1, B2)보다 제 1 토출구(117) 및 제 2 토출구(127)의 상하 길이를 훨씬 길게 형성함으로써, 제 1 토출구의 토출공기 및 제 2 토출구의 토출공기가 블로잉스페이스에서 합류되도록 유도할 수 있다.
도 1 내지 도 3을 참조하면, 본 발명의 실시예에 따른 공기 조화기(1)의 케이스(100)는, 필터가 탈착가능하게 설치되는 베이스케이스(150)와, 베이스케이스(150) 상측에 배치되고, 베이스케이스(150)에 지지되는 타워케이스(140)를 포함한다.
타워케이스(140)는 제 1 타워(110) 및 제 2 타워(120)를 포함한다.
본 실시예에서는 제 1 타워(110) 및 제 2 타워(120)를 연결하는 타워베이스(130)가 배치되고, 타워베이스(130)가 베이스케이스(150)에 조립된다. 타워베이스(130)는 제 1 타워(110) 및 제 2 타워(120)와 일체로 제작될 수 있다.
본 실시예와 달리 제 1 타워(110) 및 제 2 타워(120)는 타워베이스(130) 없이 베이스케이스(150)에 직접 조립될 수 있고, 베이스케이스(150)와 일체로 제작될 수도 있다.
베이스케이스(150)는 공기 조화기(1)의 하부를 형성하며, 타워케이스(140)는 공기 조화기(1)의 상부를 형성한다.
공기 조화기(1)은 베이스케이스(150)에서 주위 공기를 흡입하고, 타워케이스(140)에서 여과된 공기를 토출시킬 수 있다. 타워케이스(140)는 베이스케이스(150) 보다 높은 위치에서 공기를 토출시킬 수 있다.
공기 조화기(1)은 상부를 향할수록 직경이 작아지는 기둥 형상이다. 공기 조화기(1)은 전체적으로 원뿔 또는 원뿔대(Truncated cone) 형상일 수 있다.
본 실시예와 달리 공기 조화기(1)은 2개의 타워가 배치된 형태를 모두 포함할 수 있다. 또한, 본 실시예와 달리 상측으로 갈수록 단면이 좁아지는 형태가 아니어도 무방하다.
다만, 본 실시예와 같이 상측으로 갈수록 단면이 좁아질 경우, 무게중심이 낮아지고 외부 충력에 의한 전도의 위험이 저감되는 장점이 있다. 조립의 편의성을 위해, 본 실시예에서는 베이스케이스(150) 및 타워케이스(140)로 분리하여 제작한다.
본 실시예와 달리 베이스케이스(150) 및 타워케이스(140)가 일체여도 무방하다. 예를 들어 베이스케이스 및 타워케이스가 일체로 제작된 프론트 케이스 및 리어 케이스 형태로 제작한 후 조립할 수도 있다.
본 실시예에서 베이스케이스(150)는 상단으로 갈수록 직경이 점진적으로 작아지게 형성된다. 타워케이스(140) 역시 상단으로 갈수록 직경이 점진적으로 작아지게 형성된다.
베이스케이스(150) 및 타워케이스(140)의 외측면은 역속되게 형성된다. 특히 타워베이스(130)의 하단과 베이스케이스(150)의 상단이 밀착되고, 타워베이스(130)의 외측면과 베이스케이스(150)의 외측면이 연속된 면을 형성한다.
이를 위해 타워베이스(130)의 하단 직경은 베이스케이스(150) 상단 직경은 같거나 약간 작게 형성될 수 있다.
타워베이스(130)는 베이스(150) 타워에서 공급된 여과공기를 분배하고, 분배된 공기를 제 1 타워(110) 및 제 2 타워(120)에 제공한다.
타워베이스(130)는 제 1 타워(110) 및 제 2 타워(120)를 연결하고, 블로잉스페이스(105)는 타워베이스(130)의 상측에 배치된다.
또한, 타워베이스(130)의 상측에 토출구(117)(127)가 배치되고, 상승기류 및 수평기류는 타워베이스(130)의 상측에서 형성된다.
공기와의 마찰을 최소화하기 위해 타워베이스(130)의 상측면(131)은 곡면으로 형성된다. 특히 상측면은 하측으로 오목한 곡면으로 형성되고, 전후 방향으로 연장되어 형성된다. 상측면(131)의 일측(131a)은 제 1 내측벽(115)에 연결되고, 상측면(131)의 타측(131b)은 제 2 내측벽(125)에 연결된다.
도 4를 참조하면, 탑뷰로 볼 때, 제 1 타워(110) 및 제 2 타워(120)는 중심선 L-L'를 기준으로 좌우 대칭된다. 특히 제 1 토출구(117) 및 제 2 토출구(127)는 중심선 L-L'를 기준으로 좌우 대칭되게 배치된다.
중심선 L-L'은 제 1 타워(110) 및 제 2 타워(120) 사이의 가상의 선으로서, 본 실시예에서 전후 방향으로 배치되고, 상측면(131)을 지나가게 배치된다.
본 실시예와 달리 제 1 타워(110) 및 제 2 타워(120)가 비대칭 형태로 형성되어도 무방하다. 그러나 중심선 L-L'를 기준으로 제 1 타워(110) 및 제 2 타워(120)가 대칭되게 배치되는 것이 수평기류 및 상승기류의 제어에 보다 유리하다.
도 5는 도 2의 우측단면도이고, 도 6은 도 2의 정단면도이다.
도 1, 도 5 또는 도 6을 참조하면, 공기 조화기(1)은 케이스(100) 내부에 배치된 필터(200)와, 케이스(100)의 내부에 배치되어 공기를 토출구(117)(127)로 유동시키는 팬장치(300)를 포함한다.
본 실시예에서 필터(200) 및 팬장치(300)은 베이스케이스(150) 내부에 배치된다. 베이스케이스(150)는 원뿔대 형상으로 형성되고, 본 실시예에서 상측이 개구된다.
베이스케이스(150)는, 지면에 안착되는 베이스(151)와, 베이스(151) 상측에 결합되고, 내부에 공간이 형성되며, 흡입구(155)가 형성된 베이스아우터(152)를 포함한다.
탑뷰로 볼 때, 베이스(151)는 원형으로 형성된다. 베이스(151)의 형상은 다양하게 형성될 수 있다.
베이스아우터(152)는 상측 및 하측이 개구된 원뿔대 형상으로 형성된다. 또한, 베이스아우터(152)의 측면 일부는 개구되어 형성된다. 베이스아우터(152)의 개구된 부분을 필터삽입구(154)라 한다.
케이스(100)는 필터삽입구(154) 또는/ 및 흡입구를 차폐하는 커버(153)를 더 포함한다. 커버(153)는 베이스아우터(152)에서 착탈가능하게 조립될 수 있다. 본 실시예에서는 커버(153) 및 필터삽입구(154)를 함께 차폐하는 구조를 가진다.
사용자는 커버(153)를 분리하여 필터(200)를 케이스(100) 밖으로 인출할 수 있다. 본 발명은 커버(153)를 분리시키는 커버 분리 유닛을 더 포함할 수 있다. 커버 분리 유닛에 대해서는 도 9 내지 도 13에서 상술한다.
흡입구(155)는 베이스아우터(152) 및 커버(153) 중 적어도 어느 하나에 형성될 수 있다. 본 실시예에서 흡입구(155)는 베이스아우터(152) 및 커버(153)에 모두 형성되고, 케이스(100)의 주변 360 전 방향에서 공기를 흡입할 수 있다.
본 실시예에서 흡입구(155)는 홀 형태로 형성되고, 흡입구(155)의 형태는 다양하게 형성될 수 있다.
필터(200)는 내부에 상하 방향 중공이 형성된 원통형으로 형성된다. 필터(200)의 외측면은 흡입구(155)와 대향된다.
실내의 공기는 필터(200)의 외측에서 내측으로 관통되어 유동되고, 이 과정에서 공기중의 이물질 또는 유해한 가스를 제거할 수 있다.
팬장치(300)는 필터(200)의 상측에 배치된다. 팬장치(300)는 필터(200)를 통과한 공기를 제 1 타워(110) 및 제 2 타워(120)로 유동시킬 수 있다.
팬장치(300)는 팬모터(310)와, 팬모터(310)에 의해 회전되는 팬(320)을 포함하고, 베이스케이스(150) 내부에 배치된다.
팬모터(310)는 팬(320) 보다 상측에 배치되고, 팬모터(310)의 모터축은 하측에 배치된 팬(320)에 결합된다.
팬(320)의 상측에 팬모터(310)가 설치되는 모터하우징(330)이 배치된다.
본 실시예에서 모터하우징(330)은 팬모터(310) 전체를 감싸는 형상이다. 모터하우징(330)이 팬모터(310) 전체를 감싸기 때문에, 하측에서 상측으로 유동되는 공기와의 유동저항을 저감시킬 수 있다.
본 실시예와 달리 모터하우징(330)은 팬모터(310)의 하부만을 감싸는 형상으로 형성될 수 있다.
모터하우징(330)은 로어모터하우징(332) 및 어퍼모터하우징(334)을 포함한다. 로어모터하우징(332) 및 어퍼모터하우징(334) 중 적어도 어느 하나는 케이스(100)에 결합된다.
본 실시예에서는 로어모터하우징(332)이 케이스(100)에 결합된다. 로어모터하우징(332) 상측에 팬모터(310)가 설치된 후, 어퍼모터하우징(334)을 덮어 팬모터(310)를 감싼다.
팬모터(310)의 모터축은 로어모터하우징(332)을 관통하고, 하측에 배치된 팬(320)에 조립된다.
팬(320)은 팬모터의 축이 결합되는 허브, 허브와 이격 배치되는 쉬라우드 및 허브 및 쉬라우드를 연결하는 다수의 블레이드를 포함할 수 있다.
필터(200)를 통과한 공기는 쉬라우드 내측으로 흡입된 후, 회전되는 블레이드에 의해 가압되어 유동된다. 허브는 블레이드의 상측에 배치되고, 쉬라우드는 블레이드의 하측에 배치된다. 허브는 하측으로 오목한 보올(BOWL) 형상으로 형성될 수 있고, 로어모터하우징(332)의 하측이 일부 삽입될 수 있다.
본 실시예에서 팬(320)은 사류팬이 사용된다. 사류팬은 축중심으로 공기를 흡입하고 반경방향으로 공기를 토출하되, 토출되는 공기가 축방향에 대해 경사지게 형성되는 특징이 있다.
전체적인 공기 유동이 하측에서 상측으로 유동되기 때문에, 일반적인 원심팬과 같이 반경방향으로 공기를 토출할 경우, 유동방향 전환에 따른 유동손실이 크게 발생된다. 사류팬은 반경방향 상측으로 공기를 토출함으로써 공기의 유동손실을 최소화할 수 있다.
한편, 팬(320)의 상측에 디퓨져(340)가 더 배치될 수 있다. 디퓨져(340)는 팬(320)에 의한 공기유동을 상측 방향으로 가이드한다.
디퓨져(330)는 공기유동에서 반경방향 성분을 더욱 저감하고 상측 방향공기 유동성분을 강화시키는 역할이다. 모터하우징(330)은 디퓨져(330) 및 팬(320) 사이에 배치된다. 모터하우징의 상하 방향 설치높이를 최소화하기 위해, 모터하우징(330)의 하단은 팬(320)에 삽입되고, 팬(320)과 오버랩될 수 있다. 또한, 모터하우징(330)의 상단은 디퓨져(340)에 삽입되고, 디퓨져(340)와 오버랩될 수 있다.
여기서 모터하우징(330)의 하단은 팬(320)의 하단보다 높게 배치되고, 모터하우징(330)의 상단은 디퓨져(340)의 상단 보다 낮게 배치된다.
모터하우징(330)의 설치위치를 최적화하기 위해, 본 실시예에서 모터하우징(330)의 상측은 타워베이스(130) 내부에 배치되고, 모터하우징(330)의 하측은 베이스케이스(150) 내부에 배치된다. 본 실시예와 달리 모터하우징(330)이 타워베이스(130) 또는 베이스케이스(150) 내부에 배치될 수 있다.
한편, 베이스케이스(150)의 내부에 흡입그릴(350)이 배치될 수 있다. 흡입그릴(350)은 필터(200)가 분리되었을 때, 팬(320) 측으로 사용자의 손가락이 침입하는 것을 차단하고, 이를 통해 사용자 및 팬(320)을 보호하기 위한 것이다.
흡입그릴(350)의 하측에 필터(200)가 배치되고, 상측에 팬(320)이 배치된다. 흡입그릴(350)은 공기가 유동될 수 있도록 다수개의 통공이 상하 방향으로 형성된다.
케이스(100) 내부에서, 흡입그릴(350)의 하측 공간을 필터설치공간(101)으로 정의한다. 케이스(100) 내부에서 흡입그릴(350) 및 토출구(117)(127) 사이의 공간을 송풍공간(102)으로 정의한다. 케이스(100) 내부에서 토출구(117)(127)가 배치된 제 1 타워(110) 및 제 2 타워(120)의 내부 공간을 토출공간(103)으로 정의한다.
실내 공기는 흡입구(155)를 통해 필터설치공간(101)으로 유입된 후, 송풍공간(102) 및 토출공간(103)을 거쳐 토출구(117)(127)로 토출된다.
다음으로 도 5 또는 8을 참조하면, 본 실시예에 따른 제 1 토출구(117) 및 제 2 토출구(127)는 상하 방향으로 길게 연장되어 배치된다. 제 1 토출구(117)는 제 1 타워(110)의 전단(112) 및 후단(113) 사이에 배치되고, 후단(113)에 가깝게 배치된다. 제 1 토출구(117)에서 토출된 공기는 코안다효과에 의해 제 1 내측벽(115)을 따라 유동될 수 있고, 전단(112)을 향해 유동될 수 있다.
제 1 토출구(117)는 공기토출 측(본 실시예에서 전단) 가장자리를 형성하는 제 1 보더(117a)와, 공기토출 반대측(본 실시예에서 후단) 가장자리를 형성하는 제 2 보더(117b)와, 제 1 토출구(117)의 상측 가장자리를 형성하는 상측보더(117c)와, 제 1 토출구(117)의 하측 가장자리를 형성하는 하측보더(117d)를 포함한다.
본 실시예에서 제 1 보더(117a) 및 제 2 보더(117b)는 서로 평행하게 배치된다. 상측보더(117c) 및 하측보더(117d)는 서로 평행하게 배치된다.
제 1 보더(117a) 및 제 2 보더(117b)는 수직 방향(V)에 대해 경사지게 배치된다. 또한, 제 1 타워(110)의 후단(113) 역시 수직방향(V)에 대해 경사지게 배치된다.
본 실시예에서 수직방향(V)에 대한 제 1 보더(117a) 및 제 2 보더(117b)의 기울기(a1)는 4도로 형성되고, 후단(113) 기울기(a2)는 3도로 형성된다. 즉, 토출구(117)의 기울기(a1)가 타워의 외측면 기울기보다 더 크게 형성된다.
제 2 토출구(127)는 제 1 토출구(117)와 좌우 대칭이다.
제 2 토출구(127)는 공기토출 측(본 실시예에서 전단) 가장자리를 형성하는 제 1 보더(127a)와, 공기토출 반대측(본 실시예에서 후단) 가장자리를 형성하는 제 2 보더(127b)와, 제 2 토출구(127)의 상측 가장자리를 형성하는 상측보더(127c)와, 제 2 토출구(127)의 하측 가장자리를 형성하는 하측보더(127d)를 포함한다.
제 1 보더(127a) 및 제 2 보더(127b)는 수직 방향(V)에 대해 경사지게 배치되고, 제 1 타워(110)의 후단(113) 역시 수직방향(V)에 대해 경사지게 배치된다. 그리고 토출구(127)의 기울기(a1)가 타워의 외측면 기울기(a2)보다 더 크게 형성된다.
이하, 커버(153)를 베이스케이스(150)에서 분리시키는 커버 분리 유닛(600)에 대해 상술한다.
도 9 및 도 10을 참조하면, 본 발명의 커버(153)는 사용자에게 주는 심미감을 위해 케이스(100)와 이격없이 결합된다. 구체적으로, 커버(153)는 케이스(100)와 자성으로 결합되고, 커버(153)와 케이스(100)에는 자석(미도시)이 설치될 수 있다. 이하에서, 설명하는 방향은 특별한 설명이 없는 한, 커버(153)가 케이스(100)에 결합된 상태에서의 방향을 의미한다.
또한, 커버(153)는 베이스케이스(150)의 외면(상세히는 외주면) 전체를 감싸는 형상을 가진다. 따라서, 커버(153)는 원통형으로 베이스케이스(150)의 외주면에 대응되는 형상을 가진다. 또한, 커버(153)는 분리의 편의성과, 결합 시에 유격을 줄이기 위해, 2개의 조각으로 분리될 수 있다.
구체적으로, 커버(153)는 베이스케이스(150) 전면을 커버하는 전면커버(153a)와, 베이스케이스(150)의 전면을 제외한 나머지 면을 커버하는 후면커버(153b)를 포함할 수 있다. 전면커버(153a)와 후면커버(153b)의 반 원통 형상이다. 따라서, 커버(153)는 베이스케이스(150)에 형성된 필터삽입구(154) 및 흡입구(155)를 모두 차폐하게 되어서, 사용자에게 주는 심미감이 우수하다.
또한, 커버(153)의 외면은 타워케이스(140)의 외면을 연장한 면 또는 선과 일치된다. 따라서, 커버(153)가 베이스케이스(150)에 결합될 때, 타워케이스(140)와 일체감을 가지고, 유격이 없게 된다. 이 경우, 사용자에게 주는 심미감은 향상되지만, 사용자의 손이 들어갈 공간이 없어서 사용자가 커버(153)를 베이스케이스(150)에서 분리하기 어렵게 된다.
본 발명은 사용자가 커버(153)를 베이스케이스(150)에서 쉽게 분리하기 위해 커버 분리 유닛(600)을 제공한다.
커버 분리 유닛(600)은 케이스(100)에 설치되어 커버(153)를 베이스케이스(150)에서 분리시킨다. 예를 들면, 커버 분리 유닛(600)은 레버(610)와 상부 커버푸셔(620)를 포함할 수 있다. 다른 예를 들면, 커버 분리 유닛(600)은 커버(153)의 상하를 동시에 분리시키기 위해, 레버(610)와 상부 커버푸셔(620), 슬라이더(630) 및 하부 커버푸셔(640)를 포함할 수 있다.
도 11 및 도 12를 참조하면, 레버(610)는 케이스(100)에 설치되고, 케이스(100)의 외면을 따라 슬라이딩된다. 레버(610)는 베이스케이스(150) 또는 타워케이스(140)에 설치될 수 있다. 본 실시 예에서는 커버(153)가 베이스케이스(150) 전체를 차폐하고, 레버(610)는 타워케이스(140)에 설치되고, 타워케이스(140)의 외면을 따라 슬라이딩된다.
레버(610)는 외력을 상부 커버푸셔(620) 또는/및 하부 커버푸셔(640)에 전달한다. 레버(610)는 적어도 일부가 케이스(100)의 외면에 노출된다. 본 실시 예에서는 레버(610)의 적어도 일부는 타워케이스(140)의 외면에 노출된다. 레버(610)는 커버(153)보다 상부에 배치될 수 있다.
레버(610)가 타워케이스(140)에 일면에 노출되어서 외력에 의해 상하로 이동되게 된다. 따라서, 사용자가 허리를 과도하게 숙이지 않고, 레버(610)를 조작할 수 있고, 레버(610)가 케이스(100)의 외면을 따라 이동하므로, 레버(610)가 움직일 때, 케이스(100)의 외부로 돌출되지 않게 된다. 따라서, 레버(610)의 사용 중에 레버(610)가 케이스(100) 외부로 돌출되어서 레버(610)가 파손될 가능성이 줄어들게 된다.
레버(610)는 케이스(100)에 형성된, 레버 수용홈(1310)에 수용될 수 있다. 레버 수용홈(1310)은 타워케이스(140)에 형성되거나, 베이스케이스(150)에 형성될 수 있다.
본 실시 예에서, 레버 수용홈(1310)은 타워케이스(140)의 외주면이 중심방향으로 함몰되어 형성된다. 또한, 레버 수용홈(1310)은 후술하는 푸셔 수용홈(1521)과 연통될 수 있다. 즉, 레버 수용홈(1310)의 하부는 개방되어서, 푸셔 수용홈(1521)과 연통되게 된다. 레버 수용홈(1310)은 레버(610)를 수용하고, 레버(610)가 이동하는 공간을 제공한다.
레버 수용홈(1310)에는 가이드 슬릿(1311)이 형성된다. 가이드 슬릿(1311)은 레버(610)를 가이드 하고, 레버(610)가 케이스(100)에서 이탈되는 것을 방지하게 된다. 레버(610)에는 홀더(611)가 더 형성될 수 있다.
홀더(611)의 일단은 레버(610)와 가이드 슬릿(1311)을 통해 연결되고, 홀더(611)의 타단은 타워케이스(140)의 내부에 위치되고, 가이드 슬릿(1311)의 폭 보다 큰 폭을 가진다. 따라서, 레버(610)가 상하로 이동되더라도, 레버(610)가 케이스(100)에서 이탈되는 것이 방지된다.
커버 분리 유닛(600)은 레버(610)에 복원력을 제공하는 리턴 스프링(660)을 더 포함한다. 리턴 스프링(660)은 레버(610)에 상부방향 복원력을 제공한다. 구체적으로, 리턴 스프링(660)의 일단은 케이스(100)에 연결되고, 타단은 레버(610)에 연결된다. 더욱 구체적으로, 리턴 스프링(660)의 일단은 타워케이스(140)의 내측면에 연결되고, 타단은 홀더(611)에 연결된다.
상부 커버푸셔(620)는 레버(610)에 회전 가능하게 결합되고, 케이스(100)의 외면에 가이드 되어 커버(153)를 밀어낸다. 따라서, 레버(610)에 외력을 가하면, 상부 커버푸셔(620)에 의해 커버(153)가 케이스(100)에서 분리되게 된다.
상부 커버푸셔(620)가 레버(610)에 회전 가능하게 결합되는 것은 상부 커버푸셔(620)가 레버(610)에 힌지결합되어 회전되는 것과, 레버(610)의 일단에 밴딩되게 연결되어서 회전되는 것을 포함한다. 또한, 상부 커버푸셔(620)가 레버(610)에 회전 가능하게 결합되는 것은 상부 커버푸셔(620)가 유연한 재질로써, 전체가 밴딩되면서, 상부 커버푸셔(620)의 일단이 외면 방향으로 움직이는 것을 포함한다. 본 실시 예에서 커버(153)푸셔는 레버(610)의 하단에 힌지 결합된다.
상부 커버푸셔(620)는 커버(153)가 베이스케이스(150)에 결합되는 베이스케이스(150)의 결합 영역에 배치될 수 있다. 여기서, 결합 영역은 베이스케이스(150)에서 커버(153)와 수평적으로 중첩되는 위치를 의미한다. 결합 영역은 베이스케이스(150)의 일부일 수도 있고, 베이스케이스(150) 전체일 수도 있다.
상부 커버푸셔(620)는 커버(153)와 베이스케이스(150)의 사이에 위치된다. 커버(153)가 베이스케이스(150)에 결합되는 경우, 상부 커버푸셔(620)는 커버(153)에 의해 외부에 노출되지 않게 된다. 상부 커버푸셔(620)는 후술하는 베이스케이스(150)에 형성된 푸셔 수용홈(1521)에 위치된다.
따라서, 커버(153)가 베이스케이스(150)와 결합된 상태에서, 상부 커버푸셔(620)가 커버(153)에 의해 가려지게 되므로, 사용자에게 주는 심미감을 향상시킬 수 있다. 도한, 상부 커버푸셔(620)가 회전하는 별도의 공간이 필요 없으므로, 슬림한 제품을 구현할 수 있는 이점도 있다.
상부 회전가이드(1520)는 상부 커버푸셔(620)가 베이스케이스(150)의 외면을 따라 이동될 때, 상부 커버푸셔(620)가 일 방향으로 회전되도록 가이드한다. 또한, 상부 회전가이드(1520)는 상부 커버푸셔(620)를 수용한다.
상부 회전가이드(1520)는 베이스케이스(150)의 외면(외주면)과 교차되는 방향으로 연장되고 상부 커버푸셔(620)를 가이드하는 상부 가이드면(1522)을 포함할 수 있다. 상부 가이드면(1522)은 베이스케이스(150)의 외주면의 상하방향과 교차되는 방향으로 연장될 수 있다. 구체적으로, 상부 가이드면(1522)은 베이스케이스(150)의 외면과 0도 보다 큰 경사각을 가질 수 있다. 상부 가이드면(1522)은 베이스케이스(150)의 내측에서 외측으로 갈수록 하향경사질 수 있다.
이때, 상부 커버푸셔(620)의 하면은 상부 가이드면(1522)과 대응되게 내측에서 외측으로 갈수록 하향 경사질 수 있다. 상부 커버푸셔(620)의 하면은 상하 방향과 일정한 각도의 경사각을 가질 질 수 있다. 따라서, 상부 커버푸셔(620)의 하면과 상부 가이드면(1522)의 간섭으로 상부 커버푸셔(620)가 아래로 이동하게 되면, 상부 커버푸셔(620)의 하단이 외측으로 돌출되게 된다.
상부 가이드면(1522)의 적어도 일부는 상부 커버푸셔(620)의 상단과 수직적으로 중첩된다. 상부 가이드면(1522)의 적어도 일부는 필터가 결합된 상태에서 상부 커버푸셔(620)의 상단과 수직적으로 중첩된다.
상부 회전가이드(1520)는 베이스케이스(150)에 형성된다. 구체적으로, 베이스케이스(150)에서 커버(153)와 수평적으로 중첩되는 영역에 배치된다. 따라서, 커버(153)가 베이스케이스(150)에 결합되는 경우, 상부 회전가이드(1520)는 커버(153)에 의해 외부에 노출되지 않게 된다.
더욱 구체적으로, 베이스케이스(150)는 이너 베이스케이스(150a)와 이너 베이스케이스(150a)의 적어도 일부를 감싸게 배치되는 아우터 베이스케이스(150b)를 포함하고, 상부 가이드면(1522)은 아우터 베이스케이스(150b)의 외면에 형성된다.
상부 회전가이드(1520)는 상부 커버푸셔(620)를 수용하는 상부 푸셔 수용홈(1521)을 더 포함할 수 있다. 상부 푸셔 수용홈(1521)은 레버(610)가 아래로 이동 시에 레버(610)의 일부를 수용할 수도 있다.
상부 푸셔 수용홈(1521)은 레버(610)가 작동하지 않는 경우, 상부 커버푸셔(620)를 수용하고, 레버(610)가 아래로 이동하는 경우, 상부 커버푸셔(620)의 이동을 가이드하면서, 레버(610)의 이동을 가이드한다.
본 실시 예에서, 상부 푸셔 수용홈(1521)은 아우터 베이스케이스(150b)의 외주면이 내측방향으로 함몰되어 형성된다. 즉, 상부 푸셔 수용홈(1521)은 아우터 베이스케이스(150b)에서 외측방향으로 개방된다. 또한, 상부 푸셔 수용홈(1521) 레버(610)가 아래로 이동 시에 레버(610)를 수용하고 가이드 하기 위해, 상부 방향이 개방되고, 레버 수용홈(1310)의 하부와 연통된다. 상부 푸셔 수용홈(1521)과, 레버 수용홈(1310)은 수직적으로 적어도 일부가 중첩되게 위치된다.
상부 푸셔 수용홈(1521)의 일면에는 상부 가이드면(1522)이 형성된다. 상부 가이드면(1522)은 상부 푸셔 수용홈(1521)의 하측면에 형성된다. 상부 가이드면(1522)을 따라 가이드 되어서 상부 커버푸셔(620)는 푸셔 수용홈(1521)에서 외부로 이탈되게 된다.
슬라이더(630)는 상부 커버푸셔(620)에서 이격되어 케이스(100)에 슬라이딩되게 설치되고, 레버(610)와 연결된다. 슬라이더(630)는 레버(610)에 구속되어 이동된다. 슬라이더(630)는 베이스케이스(150)에 슬라이딩되게 설치된다. 슬라이더(630)는 레버(610)에서 전달된 외력을 하부 커버푸셔(640)에 전달한다.
슬라이더(630)는 케이스(100)에 형성된, 하부 회전가이드(1530)에 수용될 수 있다. 슬라이더(630)는 하부 회전가이드(1530) 내에서 이동하면서, 하부 회전가이드(1530)에 의해 그 이동방향이 가이드 된다.
슬라이더(630)는 상부 커버푸셔(620) 보다 하부에 위치될 수 있다. 슬라이더(630)는 베이스케이스(150)와 커버(153) 사이에 위치될 수 있다. 따라서, 커버(153)가 케이스(100)에 결합된 상태에서 슬라이더(630)가 외부에서 보이지 않는 이점이 있다.
하부 회전가이드(1530)에는 슬라이드 슬릿(1534)이 형성된다. 슬라이드 슬릿(1534)은 슬라이더(630)를 가이드 하고, 슬라이더(630)가 케이스(100)에서 이탈되는 것을 방지하게 된다.
슬라이더(630)에는 슬라이드 홀더(631)가 더 형성될 수 있다. 슬라이드 홀더(631)의 일단은 슬라이더(630)와 슬라이드 슬릿(1534)을 통해 연결되고, 슬라이드 홀더(631)의 타단은 베이스케이스(150)의 내부에 위치되고, 슬라이드 슬릿(1534)의 폭 보다 큰 폭을 가진다. 따라서, 슬라이더(630)가 상하로 이동되더라도, 슬라이더(630)가 케이스(100)에서 이탈되는 것이 방지된다.
슬라이더(630)와 레버(610)는 연결링크(650)에 의해 연결된다. 연결링크(650)의 일단은 홀더(611)에 연결되고, 연결링크(650)의 타단은 슬라이드 홀더(631)에 연결된다. 연결링크(650)는 레버(610)의 이동에 구속되어 함께 이동된다.
연결링크(650)는 케이스(100)의 내부에 위치될 수 있다. 본 실시 예에서는 연결링크(650)는 이너 베이스케이스(150a)와 아우터 베이스케이스(150b) 사이의 공간에 위치되고, 이너 베이스케이스(150a)와 아우터 베이스케이스(150b)에 가이드 될 수 있다.
하부 커버푸셔(640)는 슬라이더(630)에 회전 가능하게 결합되고, 케이스(100)의 외면에 가이드 되어 커버(153)를 밀어낸다. 따라서, 슬라이더(630)에 외력을 가하면, 하부 커버푸셔(640)에 의해 커버(153)가 케이스(100)에서 분리되게 된다.
하부 커버푸셔(640)가 슬라이더(630)에 회전 가능하게 결합되는 것은 하부 커버푸셔(640)가 슬라이더(630)에 힌지결합되어 회전되는 것과, 슬라이더(630)의 일단에 밴딩되게 연결되어서 회전되는 것을 포함한다. 또한, 하부 커버푸셔(640)가 슬라이더(630)에 회전 가능하게 결합되는 것은 하부 커버푸셔(640)가 유연한 재질로써, 전체가 밴딩되면서, 하부 커버푸셔(640)의 일단이 외면 방향으로 움직이는 것을 포함한다. 본 실시 예에서 커버(153)푸셔는 슬라이더(630)의 하단에 힌지 결합된다.
하부 커버푸셔(640)는 커버(153)가 베이스케이스(150)에 결합되는 베이스케이스(150)의 결합 영역에 배치될 수 있다. 여기서, 결합 영역은 베이스케이스(150)에서 커버(153)와 수평적으로 중첩되는 위치를 의미한다. 결합 영역은 베이스케이스(150)의 일부일 수도 있고, 베이스케이스(150) 전체일 수도 있다.
하부 커버푸셔(640)는 커버(153)와 베이스케이스(150)의 사이에 위치된다. 커버(153)가 베이스케이스(150)에 결합되는 경우, 하부 커버푸셔(640)는 커버(153)에 의해 외부에 노출되지 않게 된다. 하부 커버푸셔(640)는 후술하는 베이스케이스(150)에 형성된 하부 푸셔 수용홈(1531)에 위치된다.
따라서, 커버(153)가 베이스케이스(150)와 결합된 상태에서, 하부 커버푸셔(640)가 커버(153)에 의해 가려지게 되므로, 사용자에게 주는 심미감을 향상시킬 수 있다. 도한, 하부 커버푸셔(640)가 회전하는 별도의 공간이 필요 없으므로, 슬림한 제품을 구현할 수 있는 이점도 있다.
하부 커버푸셔(640)는 상부 커버푸셔(620) 보다 하부에 위치될 수 있다. 레버(610)의 작동 시에 커버(153)가 상부 커버푸셔(620)와 하부 커버푸셔(640)에 의해 상하부가 동시에 분리되게 되어서, 안정적으로 커버(153)가 분리된다.
하부 회전가이드(1530)는 하부 커버푸셔(640)가 베이스케이스(150)의 외면을 따라 이동될 때, 하부 커버푸셔(640)가 일 방향으로 회전되도록 가이드한다. 또한, 하부 회전가이드(1530)는 하부 커버푸셔(640)를 수용한다.
하부 회전가이드(1530)는 베이스케이스(150)의 외면(외주면)과 경사를 가지고 하부 커버푸셔(640)를 가이드하는 하부 가이드면(1532)을 포함할 수 있다.
하부 가이드면(1532)은 베이스케이스(150)의 외주면의 상하방향과 교차되는 방향으로 연장될 수 있다. 하부 가이드면(1532)은 상하방향과 교차되는 방향으로 연장될 수 있다. 구체적으로, 하부 가이드면(1532)은 베이스케이스(150)의 외면과 평행하지 않은 경사를 가질 수 있다. 하부 가이드면(1532)은 베이스케이스(150)의 내측에서 외측으로 갈수록 하향경사질 수 있다.
이때, 하부 커버푸셔(640)의 하면(641)은 하부 가이드면(1532)과 대응되게 내측에서 외측으로 갈수록 하향 경사질 수 있다. 따라서, 하부 커버푸셔(640)의 하면과 하부 가이드면(1532)의 간섭으로 하부 커버푸셔(640)가 아래로 이동하게 되면, 하부 커버푸셔(640)의 하단이 외측으로 돌출되게 된다.
하부 가이드면(1532)의 적어도 일부는 하부 커버푸셔(640)의 상단과 수직적으로 중첩된다. 하부 가이드면(1532)의 적어도 일부는 커버(153)가 결합된 상태에서 하부 커버푸셔(640)의 상단과 수직적으로 중첩된다.
하부 회전가이드(1530)는 베이스케이스(150)에 형성된다. 구체적으로, 베이스케이스(150)에서 커버(153)와 수평적으로 중첩되는 영역에 배치된다. 따라서, 커버(153)가 베이스케이스(150)에 결합되는 경우, 하부 회전가이드(1530)는 커버(153)에 의해 외부에 노출되지 않게 된다.
더욱 구체적으로, 베이스케이스(150)는 이너 베이스케이스(150a)와 이너 베이스케이스(150a)의 적어도 일부를 감싸게 배치되는 아우터 베이스케이스(150b)를 포함하고, 하부 가이드면(1532)은 아우터 베이스케이스(150b)의 외면에 형성된다.
하부 회전가이드(1530)는 하부 커버푸셔(640)를 수용하는 하부 푸셔 수용홈(1531)을 더 포함할 수 있다. 하부 푸셔 수용홈(1531)은 슬라이더(630)가 아래로 이동 시에 슬라이더(630)의 일부를 수용할 수도 있다.
하부 푸셔 수용홈(1531)은 슬라이더(630)가 작동하지 않는 경우, 하부 커버푸셔(640) 및 슬라이더(630)를 수용하고, 슬라이더(630)가 아래로 이동하는 경우, 하부 커버푸셔(640) 및 슬라이더(630)의 이동을 가이드한다.
본 실시 예에서, 하부 푸셔 수용홈(1531)은 아우터 베이스케이스(150b)의 외주면이 내측방향으로 함몰되어 형성된다. 즉, 하부 푸셔 수용홈(1531)은 아우터 베이스케이스(150b)에서 외측방향으로 개방된다. 또한, 하부 푸셔 수용홈(1531) 슬라이더(630)가 아래로 이동 시에 슬라이더(630)를 수용하고 가이드 하기 위해, 하부 방향이 개방되고, 슬라이더(630) 수용홈의 하부와 연통된다. 하부 푸셔 수용홈(1531)과, 슬라이더(630) 수용홈은 수직적으로 적어도 일부가 중첩되게 위치된다.
하부 푸셔 수용홈(1531)의 일면에는 하부 가이드면(1532)이 형성된다. 하부 가이드면(1532)은 하부 푸셔 수용홈(1531)의 하측면에 형성된다. 하부 가이드면(1532)을 따라 가이드되어서 하부 커버푸셔(640)는 푸셔 수용홈(1521)에서 외부로 이탈되게 된다.
커버 분리 유닛(600)의 위치는 제한이 없다. 바람직하게는, 사용자가 공기 조화기(1)의 후방을 벽쪽으로 배치하는 것이 일반적이므로, 커버 분리 유닛(600)은 공기 조화기(1)의 후면에 배치된다.
구체적으로, 커버 분리 유닛(600)은 블로잉스페이스(105)와 적어도 일부가 수직적으로 중첩되는 위치에 배치된다. 레버(610)는 블로잉스페이스(105)와 적어도 일부가 수직적으로 중첩되게 위치된다. 레버(610)는 블로잉스페이스(105)의 하부에 배치된다. 또한, 상부 커버푸셔(620), 하부 커버(153) 푸셔 및 슬라이더(630)는 블로잉스페이스(105)와 수직적으로 중첩되는 위치에 배치될 수 있다.
도 14는 도 3의 Ⅸ-Ⅸ를 따라 절단된 평면 단면도이고, 도 15은 도 3의 Ⅸ-Ⅸ를 따라 절단된 저면 단면도이다.
도 5, 도 14 또는 도 15을 참조하면, 제 1 타워(110)의 제 1 토출구(117)는 제 2 타워(120)를 향하게 배치되고, 제 2 타워(120)의 제 2 토출구(127)는 제 1 타워(110)를 향하게 배치된다.
제 1 토출구(117)에서 토출되는 공기는 코안다효과를 통해 제 1 타워(110)의 내측벽(115)을 따라 공기가 유동되게 한다. 제 2 토출구(127)에서 토출되는 공기는 코안다효과를 통해 제 2 타워(120)의 내측벽(125)을 따라 공기가 유동되게 한다.
본 실시예에서는 제 1 토출케이스(170) 및 제 2 토출케이스(180)를 더 포함한다.
제 1 토출구(117)는 제 1 토출케이스(170)에 형성되고, 제 1 토출케이스(170)는 제 1 타워(110)에 조립된다. 제 2 토출구(127)는 제 2 토출케이스(180)에 형성되고, 제 2 토출케이스(180)는 제 2 타워(120)에 조립된다.
제 1 토출케이스(170)는 제 1 타워(110의 내측벽(115)을 관통하게 설치되고, 제 2 토출케이스(180)는 제 2 타워(120)의 내측벽(125)을 관통하게 설치된다.
제 1 타워(110)에 제 1 토출케이스(170)가 설치되는 제 1 토출개구부(118)가 형성되고, 제 2 타워(120)에 제 2 토출케이스(180)가 설치되는 제 2 토출개구부(128)가 형성된다.
제 1 토출케이스(170)는 제 1 토출구(117)를 형성하고, 제 1 토출구(117)의 공기 토출측에 배치된 제 1 토출가이드(172)와, 제 1 토출구(117)를 형성하고, 제 1 토출구(117)의 공기 토출 반대측에 배치된 제 2 토출가이드(174)를 포함한다.
제 1 토출가이드(172) 및 제 2 토출가이드(174)의 외측면(172a)(174a)은 제 1 타워(110)의 내측벽(115) 중 일부를 제공한다.
제 1 토출가이드(172)의 내측은 제 1 토출공간(103a) 향하게 배치되고, 외측은 블로잉스페이스(105)를 향하게 배치된다. 제 2 토출가이드(174)의 내측은 제 1 토출공간(103a) 향하게 배치되고, 외측은 블로잉스페이스(105)를 향하게 배치된다.
제 1 토출가이드(172)의 외측면(172a)은 곡면으로 형성될 수 있다. 외측면(172a)은 제 1 내측벽(115)과 연속된 면을 제공할 수 있다. 특히 외측면(172a)은 제 1 내측벽(115)의 외측면과 연속된 곡면을 형성한다.
제 2 토출가이드(174)의 외측면(174a)은 제 1 내측벽(115)과 연속된 면을 제공할 수 있다. 제 2 토출가이드(174)의 내측면(174b)은 곡면으로 형성될 수 있다. 특히 내측면(174b)은 제 1 외측벽(115)의 내측면과 연속된 곡면을 형성하고, 이를 통해 제 1 토출공간(103a)의 공기를 제 1 토출가이드(172) 측으로 안내할 수 있다.
제 1 토출가이드(172) 및 제 2 토출가이드(174) 사이에 제 1 토출구(117)가 형성되고, 제 1 토출공간(103a)의 공기는 제 1 토출구(117)를 통해 블로잉스페이스(105)로 토출된다.
구체적으로 제 1 토출공간(103a)의 공기는 제 1 토출가이드(172)의 외측면(172a) 및 제 2 토출가이드(174)의 내측면(174b) 사이로 토출되고, 제 1 토출가이드(172)의 외측면(172a) 및 제 2 토출가이드(174)의 내측면(174b) 사이를 토출간격(175)으로 정의한다. 토출간격(175)은 소정의 채널을 형성한다.
토출간격(175)은 입구(175a) 및 출구(175c)에 비해 중간 부분(175b)의 폭이 좁게 형성된다. 중간부분(175b)은 제 2 보더(117b) 및 외측면(172a)의 최단거리로 정의한다.
토출간격(175)의 입구에서 중간부분(175b)까지 점진적으로 단면적이 좁아지고, 중간부분(175b) 부터 출구(175c)까지 단면적이 다시 넓어진다. 중간부분(175b)은 제 1 타워(110)의 내측에 위치된다. 외부에서 볼 때, 토출간격(175)의 출구(175c)가 토출구(117)로 보일 수 있다.
코안다효과를 유발시키기 위해, 제 1 토출가이드(172)의 외측면(172a) 곡률반경보다 제 2 토출가이드(174)의 내측면(174b) 곡률반경이 더 크게 형성된다.
제 1 토출가이드(172) 외측면(172a)의 곡률중심은 외측면(172a) 보다 전방에 위치되고, 제 1 토출공간(103a) 내부에 형성된다. 제 2 토출가이드(174) 내측면(174b)의 곡률중심은 제 1 토출가이드(172) 측에 위치되고, 제 1 토출공간(103a) 내부에 형성된다.
제 2 토출케이스(180)는 제 2 토출구(127)를 형성하고, 제 2 토출구(127)의 공기 토출측에 배치된 제 1 토출가이드(182)와, 제 2 토출구(127)를 형성하고, 제 2 토출구(127)의 공기 토출 반대측에 배치된 제 2 토출가이드(184)를 포함한다.
제 1 토출가이드(182) 및 제 2 토출가이드(184) 사이에 토출간격(185)이 형성된다. 제 2 토출케이스(180)는 제 1 토출케이스(170)와 좌우 대칭이기 때문에, 상세한 설명을 생략한다.
한편, 공기 조화기(1)은 블로잉스페이스(105)의 공기유동방향을 바꾸는 기류변환기(400, air flow converter)를 더 포함할 수 있다. 기류변환기(400)는 블로잉스페이스(105)를 개방하거나, 블로잉스페이스(105)를 폐쇄하여, 블로잉스페이스(105)를 통해 유동되는 공기의 방향을 바꾸는 구성요소이다.
물론, 기류변환기(400)는 블로잉스페이스(105)를 일부 개방하거나, 블로잉스페이스(105)를 일부 폐쇄하여, 블로잉스페이스(105)를 통해 유동되는 공기의 방향을 바꿀 수도 있다. 블로잉스페이스(105)본 실시예에서 기류변환기(400)는, 블로잉스페이스(105)를 통해 유동되는 수평기류를 상승기류로 전환시킬 수 있다.
도 16 및 도 17는 기류변환기(400)가 사시도이다. 보다 상세하게, 도 16은 블로잉스페이스(105)의 전방을 열어 전방 토출기류를 구현하는 기류변환기(400)를 도시한 것이다. 도 1 내지 도 6에는 기류변환기(400)가 박스(box)로 도시되어 있으며, 기류변환기(400)가 제 1 타워(110)의 상부 또는 제 2 타워(120)의 상부에 배치된 것을 나타낸 것이다.
도 17은 블로잉스페이스(105)의 전방을 막아 상승기류를 구현하는 기류변환기(400)를 도시한 것이고, 도 6을 참조하면, 기류변환기(400)는, 제 1 타워(110)에 배치된 제 1 기류변환기(401)와, 제 2 타워(120)에 배치된 제 2 기류변환기(402)를 포함한다. 제 1 기류변환기(401) 및 제 2 기류변환기(402)는 좌우 대칭이고, 구성이 동일하다. 이하에서는, 제 1 기류변환기(401)를 위주로 설명하고, 제 1 기류변환기(401)와 구성이 동일한 제 2 기류변환기(402)에 대한 설명은 생략한다.
기류변환기(400)는, 타워케이스(140)에 배치되고, 블로잉스페이스(105)와 타워케이스(140) 내부를 왕복하는 스페이스 보드(410)와, 스페이스 보드(410)의 이동을 위해 구동력을 제공하는 가이드모터(420)와, 타워케이스(140)에 설치되고, 스페이스 보드(410)의 이동을 안내하는 보드가이더(430)를 포함한다.
도 15 내지 도 17을 참조하면, 스페이스 보드(410)는 제 1 타워(110) 또는 제 2 타워(120) 중 적어도 어느 하나에 배치되고, 타워의 내부와 블로잉스페이스(105) 사이를 이동하여서, 블로잉스페이스(105)의 전방의 토출면적을 선택적으로 변경하는 구성요소이다. 스페이스 보드(410)는 보드슬릿(119,129)을 통하여 블로잉스페이스(105) 전방으로 노출된다.
스페이스 보드(410)는 타워 내부에 은닉될 수 있고, 가이드모터(420)의 작동 시 타워에서 돌출되어 블로잉스페이스(105)를 차폐할 수 있다. 본 실시예에서 스페이스 보드(410)는 제 1 타워(110)에 배치된 제 1 스페이스 보드(410)(411)와, 제 2 타워(120)에 배치된 제 2 스페이스 보드(410)(412)를 포함한다.
이를 위해, 도 15를 참조하면, 제 1 타워(110)의 내측벽(115)을 관통하는 보드슬릿(119)이 형성되고, 제 2 타워(120)의 내측벽(125)을 관통하는 보드슬릿(129)이 각각 형성된다.
제 1 타워(110)에 형성된 보드슬릿(119)을 제 1 보드슬릿(119)이라 하고, 제 2 타워(120)에 형성된 보드슬릿을 제 2 보드슬릿(129)라 한다. 제 1 보드슬릿(119) 및 제 2 보드슬릿(129)은 좌우 대칭으로 배치된다. 제 1 보드슬릿(119) 및 제 2 보드슬릿(129)은 상하 방향(제2 방향)으로 길게 연장되어 형성된다. 제 1 보드슬릿(119) 및 제 2 보드슬릿(129)은 수직방향(V)에 대해 경사지게 배치될 수 있다.
제 1 타워(110)의 전단(112)은 3도의 기울기로 형성되고, 제 1 보드슬릿(119)은 4도의 기울기로 형성된다. 제 2 타워(120)의 전단(122)은 3도의 기울기로 형성되고, 제 2 보드슬릿(129)은 4도의 기울기로 형성된다.
스페이스 보드(410)는 평면 또는 곡면의 판 형상으로 형성될 수 있다. 스페이스 보드(410)는 상하 방향으로 길게 연장되어 형성될 수 있고, 블로잉스페이스(105)의 중심에 전방으로 치우쳐 배치될 수 있다. 스페이스 보드(410)는 반경 방향으로 볼록한 곡면부를 포함할 수 있다. 스페이스 보드(410)는 블로잉스페이스(105)로 유동되는 수평기류를 가로막아 상측방향으로 방향전환시킬 수 있다.
본 실시예에서는 제 1 스페이스 보드(410)(411)의 내측단(411a) 및 제 2 스페이스 보드(410)(412)의 내측단(412a)이 맞닿거나 근접되어 상승기류를 형성시킬 수 있다. 본 실시예와 달리 하나의 스페이스 보드(410)가 반대편 타워에 밀착되어 상승기류를 형성시킬 수도 있다.
기류변환기(400)가 상승 기류를 형성할 때, 제 1 스페이스 보드(410)(411)의 내측단(411a)이 제 1 보드슬릿(119)을 폐쇄하고, 제 2 스페이스 보드(410)(412)의 내측단(412a)이 제 2 보드슬릿(129)를 폐쇄할 수 있다.
기류변환기(400)가 수평 기류를 형성할 때, 제 1 스페이스 보드(410)(411)의 내측단(411a)이 제 1 보드슬릿(119)을 관통하여 블로잉스페이스(105)로 돌출되고, 제 2 스페이스 보드(410)(412)의 내측단(412a)이 제 2 보드슬릿(129)을 관통하여 블로잉스페이스(105)로 돌출될 수 있다.
본 실시예에서 제 1 스페이스 보드(410)(411) 및 제 2 스페이스 보드(410)(412)는 회전 동작으로 블로잉스페이스(105)로 돌출된다. 본 실시예와 달리 제 1 스페이스 보드(410)(411) 및 제 2 스페이스 보드(410)(412) 중 적어도 어느 하나가 슬라이드 방식으로 직선 이동되어 블로잉스페이스(105)로 노출되어도 무방하다. 제 1 스페이스 보드(410)(411) 및 제 2 스페이스 보드(410)(412)는 제1 방향(수평 방향)을 따라 이동한다.
탑뷰로 볼 때, 제 1 스페이스 보드(410)(411) 및 제 2 스페이스 보드(410)(412)은 호형상으로 형성된다. 제 1 스페이스 보드(410)(411) 및 제 2 스페이스 보드(410)(412)는 소정의 곡률반경을 형성하고, 곡률중심은 블로잉스페이스(105)에 위치된다.
타워 내부에 스페이스 보드(410)가 은닉된 상태일 때, 스페이스 보드(410)의 반경방향 내측의 부피가 반경방향 외측의 부피보다 크게 형성되는 것이 바람직하다.
스페이스 보드(410)는 투명한 재질로 형성될 수 있다. 스페이스 보드(410)에 LED와 같은 발광부재를 배치하고, 발광부재에서 발생된 빛을 통해 스페이스 보드(410) 전체를 발광시킬 수 있다. 발광부재는 타워 내부의 토출공간(103)에 배치되고, 스페이스 보드(410)의 외측단에 배치될 수 있다.
가이드모터(420)는 스페이스 보드(410)에 구동력을 제공하는 구성요소이다. 가이드모터(420)는 제 1 타워(110) 또는 제 2 타워(120) 중 적어도 어느 하나에 배치된다. 가이드모터(420)는 스페이스 보드(410)보다 상방에 배치된다.
가이드모터(420)는 제 1 스페이스 보드(410)(411)에 회전력을 제공하는 제 1 가이드모터(421)와, 제 2 스페이스 보드(410)(412)에 회전력을 제공하는 제 2 가이드모터(422)를 포함한다.
제 1 가이드모터(421)는 상측 및 하측에 각각 배치될 수 있고, 구분이 필요할 경우, 상측 제 1 가이드모터(421) 및 하측 제 1 가이드모터(421)로 구분할 수 있다.
제 2 가이드모터(422) 역시 상측 및 하측에 각각 배치될 수 있고, 구분이 필요할 경우, 상측 제 2 가이드모터(422) 및 하측 제 2 가이드모터(422)로 구분할 수 있다.
특히, 도 18을 참조하면, 가이드모터(420)는 타워케이스(140)에 체결될 수 있다. 타워케이스(140)는 가이드모터(420)가 설치되는 가이드바디(440)를 포함할 수 있다. 본 실시예에서, 가이드모터(420)는 가이드바디(440)에 체결된다. 가이드바디(440)는 타워케이스(140)와 일체로 형성될 수도 있고, 조립의 편의성을 위해 별개로 구성될 수 있다.
가이드모터(420)에는 피니언기어(423)가 축 결합된다. 피니언기어(423)는 가이드모터(420)의 샤프트(미도시)에 결합된다. 가이드모터(420)가 작동시 피니언기어(423)가 회전한다.
피니언기어(423)의 회전축은 스페이스 보드(410)의 길이방향과 교차되는 방향으로 배치될 수 있다. 피니언기어(423)의 회전축은 수평방향과 나란하게 배치되는 것이 바람직하다.
피니언기어(423)는 보드가이더(430)에 형성된 랙(436)에 기어 결합된다. 피니언기어(423)가 수평방향을 축으로 회전하게 되면, 랙(436)이 상하로 이동하게 되고, 랙(436)과 연결된 보드가이더(430)가 승강된다.
보드가이더(430)는 가이드모터(420)의 구동력을 스페이스 보드(410)에 전달하는 구성요소이다. 보드가이더(430)는 가이드모터(420)의 전방에 배치되고, 스페이스 보드(410)의 후방에 배치된다. 보드가이더(430)는 스페이스 보드(410)와 연결되고, 스페이스 보드(410)의 이동방향과 교차되는 방향으로 이동한다. 보드가이더(430)는 상하방향으로 승강된다.
제 1 타워(110)에 배치되는 보드가이더(430)를 제 1 보드가이더(430a)라고 정의하고, 제 2 타워(120)에 배치되는 보드가이더(430)를 제 2 보드가이더(430b)라고 정의한다.
보드가이더(430)는 스페이스 보드(410)와 나란하게 배치될 수 있다. 보드가이더(430)는 제 1 보드슬릿(119) 또는 제 2 보드슬릿(129)과 평행으로 배치될 수 있다.
보드가이더(430)는 전면이 곡면으로 형성될 수 있다. 보드가이더(430)의 전면은 스페이스 보드(410)의 후면과 인접한다. 스페이스 보드(410)의 후면이 호 형상으로 형성된 경우, 보드가이더(430)의 전면은 곡면으로 형성되어 스페이스 보드(410)가 보드가이더(430)의 전면을 따라 슬라이딩할 수 있다.
보드가이더(430)는 후면이 평면으로 형성될 수 있다. 보드가이더(430)의 후면은 기류변환기 제1커버(441)의 전면에 인접한다. 보드가이더(430)는 기류변환기 제1커버(441)를 따라 슬라이딩할 수 있다.
보드가이더(430)의 상단은 스페이스 보드(410)보다 상부에 배치된다. 가이드모터(420)를 토출공간(103a,b)으로부터 차폐하는 판이 형성된 경우, 스페이스 보드(410)의 상단은 판보다 낮게 배치되고, 보드가이더(430)의 상단은 판보다 위에 배치될 수 있다.
보드가이더(430)는 제1슬릿(432)이 형성될 수 있다. 제1슬릿(432)에는 스페이스 보드(410)의 제1돌기(4111)가 삽입되며, 보드가이더(430)가 이동 시 스페이스 보드(410)를 이동시킨다.
도 19 및 도 20을 참조하면, 제1슬릿(432)은 보드가이더(430)의 보드가이더(430)가 개구되어 형성되어, 스페이스 보드(410)의 이동을 안내한다. 제1돌기(4111)는 스페이스 보드(410)의 일 측에 돌출하여 형성되고, 적어도 일부가 제1슬릿(432)에 삽입되고, 제1슬릿(432)을 따라 슬라이딩 이동한다.
제1슬릿(432)의 좌측단(도 19 기준)은 보드가이더(430)의 좌측단에 가깝게 배치되고, 제1슬릿(432)의 우측단은 보드가이더(430)의 우측단에 배치된다.
제1슬릿(432)은 블로잉스페이스(105)에 상대적으로 가까운 부분이 블로잉스페이스(105)에서 상대적으로 먼 부분 보다 낮은 높이를 가질 수 있다. 구체적으로, 제1슬릿(432)의 하단은 제1슬릿(432)의 상단보다 블로잉스페이스(105)에서 가깝게 배치된다. 예를 들어, 도 19을 참조하면, 제1보드가이더(430)(430a)에 형성된 제1슬릿(432)의 하단은 제1슬릿(432)의 상단보다 우측에 배치된다. 마찬가지로, 도시하지 않았으나, 제2보드가이더(430)(430b)에 형성된 제2슬릿(434)의 하단은 제2슬릿(434)의 상단보다 좌측에 배치될 것이다.
제1슬릿(432)은 슬릿경사부(4321)를 포함한다. 슬릿경사부(4321)는 블로잉스페이스(105) 방향으로 하향 경사진 경사를 포함할 수 있다. 예를 들어, 도 19을 참조하면, 제1보드가이더(430a)에 형성된 제1슬릿(432)은 우측 방향으로 하향 경사진다. 마찬가지로, 미도시하였으나, 제2보드가이더(430b)에 형성된 제1슬릿(432)은 좌측 방향으로 하향 경사진다.
슬릿경사부(4321)는 블로잉스페이스(105) 방향으로 하향 경사지면, 가이드모터(420)의 전원이 꺼진 상태에서 스페이스 보드(410)의 자중으로 인해 발생하는 가이드모터(420)의 티텐트 토크(Detent Torque)를 줄이게 된다.
제1슬릿(432)의 슬릿경사부(4321)는 보드가이더(430)가 상승 하강함에 따라 위치가 상하로 이동된다. 보드가이더(430)가 상승하면, 제1돌기(4111)가 제1슬릿(432)의 슬릿경사부(4321)의 하단으로 향한다. 반대로, 보드가이더(430)가 하강하면, 제1돌기(4111)가 제1슬릿(432)의 슬릿경사부(4321)의 상단으로 향한다.
도 19 및 도 21을 참조하면, 제1슬릿(432)의 슬릿경사부(4321)는 턱을 형성할 수 있다. 제1슬릿(432)의 슬릿경사부(4321)는 전단의 폭이 후단의 폭보다 작게 형성될 수 있다. 제1돌기(4111)는 제1슬릿(432)의 슬릿경사부(4321)의 턱에 대응하도록 걸림턱(4111b)을 형성한다. 즉, 제1슬릿(432)의 슬릿경사부(4321)의 후단에는 제1돌기(4111)의 걸림턱(4111b)이 배치된다. 따라서, 제1슬릿(432)의 슬릿경사부(4321)에서는 제1돌기(4111)는 이탈되지 않는다.
제1슬릿(432)은 수직부(4322)를 포함한다. 수직부(4322)의 하단은 슬릿경사부(4321)의 상단과 연결된다. 수직부(4322)는 보드가이더(430)의 길이방향(수직 방향)으로 연장된다..
제1슬릿(432)의 수직부(4322)는 스토퍼의 기능을 한다. 즉, 제1돌기(4111)는 상방 최대이동거리가 슬릿경사부(4321)의 상단이며, 수직부(4322)를 따라 슬라이딩 이동하지는 않는다.
제1슬릿(432)의 수직부(4322)는 턱을 형성할 수 있다. 제1슬릿(432)의 수직부(4322)는 전단의 폭이 후단의 폭보다 작게 형성될 수 있다. 제1돌기(4111)는 제1슬릿(432)의 수직부(4322)의 턱에 대응하도록 걸림턱(4111b)을 형성한다. 즉, 제1슬릿(432)의 수직부(4322)의 후단에는 제1돌기(4111)의 걸림턱(4111b)이 배치된다. 따라서, 제1슬릿(432)의 슬릿경사부(4321)에서는 제1돌기(4111)는 이탈되지 않는다.
제1슬릿(432)은 수직부(4322)의 상단에 배치되고, 제1돌기(4111)를 제1슬릿(432) 내로 삽입하는 제1돌기삽입부(4323)를 포함한다.
제1돌기삽입부(4323)는 제1돌기(4111)의 단면형상과 대응되는 형상으로 형성될 수 있다. 제1돌기삽입부(4323)의 직경은 제1돌기(4111)의 직경보다 크게 형성될 수 있다. 보다 상세하게, 제1돌기삽입부(4323)의 직경은 제1돌기의 걸림턱(4111b)의 직경보다 크게 형성된다.
제1돌기(4111)는 제1돌기삽입부(4323)로 삽입된다. 제1돌기(4111)가 수직부(4322)를 따라 하강하여 스페이스 보드(410)가 보드가이더(430)에 체결된다. 제1돌기(4111)가 슬릿경사부(4321)를 따라 슬라이딩 하강 또는 슬라이딩 상승하며 스페이스 보드(410)가 이동한다.
제1슬릿(432)은 복수개가 형성될 수 있다. 보드가이더(430)에는 3개의 제1슬릿(432)이 형성된다. 제1슬릿(432) 사이에는 제2슬릿(434)이 형성된다. 제1슬릿(432)의 개수는 한정되지 않으며, 통상의 기술자가 용이하게 채택할 수 있는 범위에서 변경될 수 있다.
도 18을 참조하면, 보드가이더(430)에는 제2슬릿(434)이 형성될 수 있다. 제2슬릿(434)은 보드가이더(430)의 길이 방향(수직 방향)으로 연장된다. 제2슬릿(434)은 보드가이더(430)가 수평방향으로 개구되어 형성된다.
제2슬릿(434)은 하나의 제1슬릿(432)과 다른 제1슬릿(432)의 사이에 배치된다. 제2슬릿(434)과 제1슬릿(432)은 교차로 배치된다. 제2슬릿(434)과 제1슬릿(432)을 교차로 배치하여 힘을 분산시키고 보드가이더(430)의 굽힘응력을 상쇄시킬 수 있다.
제2슬릿(434)에는 가이드바디(440)의 바디돌기(444)가 삽입되며, 보드가이더(430)는 바디돌기(444)를 따라 슬라이딩 된다.
가이드바디(440)의 바디돌기(444)는 가이드바디(440)의 길이방향과 교차되는 방향으로 돌출된다. 구체적으로, 바디돌기(444)는 가이드바디(440)에서 수평방향으로 돌출된다.
보다 상세하게, 바디돌기(444)는 제1커버(441)의 전면에 형성된다. 바디돌기(444)는 제1커버(441)에서 전면으로 돌출하여 형성된다. 바디돌기(444)는 측면이 제 1 타워(110) 또는 제 2 타워(120)의 길이방향으로 연장된다. 도 18을 참조하면, 바디돌기(444)는 상하 방향으로 연장된다.
보드가이더(430)는 랙(436)이 형성될 수 있다. 랙(436)은 피니언기어(423)와 연결되어 가이드모터(420)가 작동시 보드가이더(430)를 이동시킨다. 랙(436)은 가이드모터(420)의 회전력을 보드가이더(430)에 직선운동으로 전달한다. 랙(436)은 보드가이더(430)에서 스페이스 보드(410)와 마주보는 면과 반대면에 배치된다. 구체적으로, 랙(436)은 보드가이더(430)의 상부의 후면에 배치될 수 있다.
기류변환기(400) 가이드모터(420), 및 보드가이더(430)를 가 설치되는 가이드바디(440)를 포함한다. 가이드바디(440)는 보드가이더(430)의 후방에 배치된다. 가이드바디(440)는 제1커버(441)와 제2커버(442), 그리고 모터지지판(443)으로 구성된다.
제1커버(441)는 보드가이더(430)의 후면을 지지하고, 보드가이더(430)의 슬라이딩을 안내한다. 제1커버(441)의 좌측단, 다시 말해 제1커버(441)의 외측단은 제 1 타워(110)의 외측벽에 배치된다. 제1커버(441)의 우측단, 다시말해 제1커버(441)의 내측단은 제 1 타워(110)의 내측벽에 배치된다.
제2커버(442)의 외측단은 보드가이더(430)의 내측면과 접한다. 따라서, 보드가이더(430)는 제2커버(442)의 외측면을 따라 슬라이딩 이동할 수 있다. 모터지지판(443)은 제1커버(441)의 상단에 배치되고, 일 면이 가이드모터(420)를 지지하고, 다른 일 면이 보드가이더(430)를 지지한다.
모터지지판(443)은 제1커버(441)의 상단에서 상부로 돌출하여 형성될 수 있다. 모터지지판(443)은 제2커버(442)의 외측방에 배치된다. 모터지지판(443)의 상단은 모터보다 상방에 배치된다. 보다 상세하게는 모터지지판(443)의 상단은 피니언기어(423)보다 상방에 배치된다.
도 22에서 도시하는 바와 같이, 가이드바디(440)는 후술하는 롤러(412)를 가이드 하는 레일(445)을 포함할 수도 있다.
제1돌기(4111)는 스페이스 보드(410)에 형성된다. 보다 상세하게, 제1돌기(4111)는 스페이스 보드(410)의 후면에 형성된다. 도 22를 참조하면, 제1돌기(4111)는 스페이스 보드(410)의 폭 방향의 일단에 인접하여 형성된다. 하지만 이에 한하지 않고, 통상의 기술자가 용이하게 채택할 수 있는 범위에서 제1돌기(4111)의 위치는 변경될 수 있다.
제1돌기(4111)는 걸림턱(4111b)을 형성할 수 있다. 도 21을 참조하면, 제1돌기의 걸림턱(4111b)은 제1돌기(4111)의 단부에서 반경방향 외측으로 돌출하여 형성된다. 제1돌기의 걸림턱(4111b)은 제1슬릿(432)의 슬릿경사부(4321)나 수직부(4322)의 턱에 걸려 이탈되지 않는다.
보드가이더(430)와 제1슬릿(432)이 상승 또는 하강하는 경우, 제1돌기(4111)와 스페이스 보드(410)는 인입 또는 돌출된다. 보드가이더(430)가 상승하는 경우, 제1돌기(4111)는 제1슬릿(432)의 슬릿경사부(4321)의 하단에 위치한다. 제1돌기(4111)가 슬릿경사부(4321)의 하단에 위치하는 경우, 스페이스 보드(410)는 원주방향으로 이동하며, 제 1 보드슬릿(119)을 통해 타워케이스(140) 내부로 인입된다. 보드가이더(430)가 하강하는 경우, 제1돌기(4111)는 제1슬릿(432)의 슬릿경사부(4321)의 상단에 위치한다. 제1돌기(4111)가 슬릿경사부(4321)의 상단에 위치하는 경우, 스페이스 보드(410)는 원주방향으로 이동하며, 제 1 보드슬릿(119)을 통해 타워케이스(140) 외부로 돌출된다.
보드가이더(430)는 일 측에 관통하여 형성되는 제2슬릿(434)을 포함한다. 가이드바디(440)는 일 측에 돌출하여 형성되고, 적어도 일부가 제2슬릿(434)에 삽입되는 바디돌기(444)를 포함한다.
도 18을 참조하면, 기류변환기(400)은 보드가이더(430)와 스페이스 보드(410) 사이를 이격시켜 면 접촉을 방지하는 마찰저감 돌기(437)를 포함한다. 마찰저감 돌기(437)는 스페이스 보드(410)와 보드가이더(430)를 수평방향에서 이격시킨다.
마찰저감 돌기(437)는 보드가이더(430) 및 스페이스 보드(410) 중 적어도 어느 하나에 형성될 수 있다. 마찰저감 돌기(437)는 보드가이더(430) 및 스페이스 보드(410)에서 수평 방향으로 돌출될 수 있다. 이하에서는, 마찰저감 돌기(437)가 보드가이더(430)에 형성된 것을 기준으로 설명하지만, 이러한 설명은 스페이스 보드(410)에 마찰저감 돌기(437)가 형성된 것에 그대로 적용될 수 있다.
마찰저감 돌기(437)는 보드가이더(430)에 형성되고, 스페이스 보드(410)와 마주보는 면에서 돌출되며, 스페이스 보드(410)와 접촉될 수 있다. 구체적으로, 마찰저감 돌기(437)는 보드가이더(430)에서 스페이스 보드(410)와 마주보는 면인 전면(438)에서 전방으로 돌출되어 형성된다.
다른 예로, 마찰저감 돌기(437)는, 스페이스 보드(410)에 형성되고, 보드가이더(430)와 마주보는 면에서 돌출되며, 스페이스 보드(410)와 접촉될 수 있다. 구체적으로, 마찰저감 돌기(437)는 스페이스 보드(410)에서 보드가이더(430)와 마주보는 후면에서 후방으로 돌출되어 형성된다.
스페이스 보드(410)가 수평 방향(제1 방향)으로 왕복하므로, 마찰저감 돌기(437)는 제1 방향으로 연장된다. 즉, 마찰저감 돌기(437)는 제1 방향의 길이가 가장 긴 형태를 가지게 된다. 마찰저감 돌기(437)의 제2 방향(수직 방향)의 폭은 마찰저감 돌기(437)의 제1 방향의 길이 보다 작고, 보드가이더(430)의 폭 보다 작다. 마찰저감 돌기(437)의 폭이 너무 넓으면 마찰 저감 효과를 기대할 수 없으므로, 5mm 이하가 바람직하다.
따라서, 마찰저감 돌기(437)는 제1 방향으로 이동하는 스페이스 보드(410)와 보드가이더(430) 사이의 마찰을 줄이게 된다. 다만, 마찰저감 돌기(437)가 1개만 배치되는 경우, 스페이스 보드(410)의 이동이 불안하게 되므로, 마찰저감 돌기(437)는 제1 방향과 교차되는 제2 방향으로 복수 개가 이격되어 배열되는 것이 바람직하다. 더욱 바람직하게는, 마찰저감 돌기(437)는 보드가이더(430)의 상부, 중부, 하부에 3개 배치될 수 있다.
도 18 및 도 22를 참조하면, 기류변환기(400)는 타워케이스(140)와 스페이스 보드(410)를 이격시켜서, 타워케이스(140)와 스페이스 보드(410)의 면 접촉을 방지하는 롤러(412)를 더 포함할 수 있다.
롤러(412)는 타워케이스(140) 및 스페이스 보드(410) 중 하나에 설치될 수 있다. 본 실시예에서, 롤러(412)는 스페이스 보드(410)에 설치된다. 롤러(412)는 스페이스 보드(410)의 하부에 위치될 수 있다. 롤러(412)의 회전축은 수평방향으로 연장될 수 있다. 더욱 구체적으로, 롤러(412)의 회전축은 전후 방향으로 연장된다.
롤러(412)가 스페이스 보드(410)의 후면 하부에 설치되고, 롤러(412)는 타워케이스(140)의 상면에 지지된다. 롤러(412)는 스페이스 보드(410)의 무게를 지지하면서, 타워케이스(140)와 미끄럼 마찰된다. 구체적으로, 롤러(412)는 타워케이스(140)의 가이드바디(440)에 지지된다. 롤러(412)는 가이드바디(440)는 레일(445)에 의해 가이드 될 수 있다.
롤러(412)가 스페이스 보드(410)를 수직방향에서 지지하면서, 타워케이스(140)에서 움직이면, 스페이스 보드(410)의 무게를 지지하면서, 타워케이스(140)와 스페이스 보드(410) 사이에 마찰을 줄이게 된다. 또한, 롤러(412)는 스페이스 보드(410)의 이동 시에 스페이스 보드(410)를 안정적으로 유지한다.
특히, 스페이스 보드(410)가 블로잉스페이스(105) 쪽으로 돌출되는 경우에도, 롤러(412)가 타워케이스(140)에 지지되도록 롤러(412)는 스페이스 보드(410)의 폭 방향의 일 측에 치우치게 배치될 수 있다. 구체적으로, 롤러(412)는 스페이스 보드(410)의 폭 방향의 양단 중 블로잉스페이스(105) 쪽에서 먼 일단에 위치될 수 있다.
도면에는 도시하지 않았지만, 기류변환기(400)는 타워케이스(140)와 스페이스 보드(410)를 이격시키고, 타워케이스(140) 및 스페이스 보드(410) 중 하나에 설치되는 가이드핀을 더 포함할 수 있다.
가이드핀은 타워케이스(140) 및 스페이스 보드(410) 중 하나에 설치될 수 있다. 본 실시예에서, 가이드핀은 스페이스 보드(410)에 설치된다. 가이드핀은 스페이스 보드(410)의 하부에 위치될 수 있다. 가이드핀은 수평방향으로 연장되는 원 기둥 형태이다. 가이드핀은 전후 방향으로 연장된다.
가이드핀이 스페이스 보드(410)를 수직방향에서 지지하면서, 타워케이스(140)에서 미끌리면, 스페이스 보드(410)의 무게를 지지하면서, 타워케이스(140)와 스페이스 보드(410) 사이에 마찰을 줄이게 된다. 가이드핀은 스페이스 보드(410)의 폭 방향의 양단 중 블로잉스페이스(105) 쪽에서 먼 일단에 위치될 수 있다.
기류변환기(400)는 공기토출방향을 기준으로 제 1 토출구(117) 또는 제2토출구보다 전방에 배치된다. 공기는 제 1 토출구(117) 또는 제2토출구에서 전방으로 토출된다. 공기가 제1내측벽(115) 또는 제 2 내측벽(125)을 지나면서 코안다효과가 발생된다. 기류변환기(400)는 제1내측벽(115) 또는 제 2 내측벽(125)에 배치되어 선택적으로 풍향을 변경시킨다. 기류변환기(400)는 돌출정도에 따라, 광역풍, 집중풍, 또는 상승기류를 구현할 수 있다.
기류변환기(400)의 구동방법을 설명하면 다음과 같다.
도 16, 도 17 및 도 23을 참조하면, 가이드모터(420)가 작동시 피니언기어(423)가 회전하고, 피니언기어(423)과 치합된 랙(436)이 이동하면서 보드가이더(430)가 승강된다.
보드가이더(430)가 상승시 제1슬릿(432)과 제2슬릿(434)의 위치도 높아진다. 제2슬릿(434)은 바디돌기(444)를 따라 슬라이딩 하강된다. 제1슬릿(432)의 위치가 높아짐에 따라 제1돌기(4111)는 점점 오른쪽으로 이동하고, 스페이스 보드(410)가 보드슬릿을 관통하여 블로잉스페이스(105)로 돌출된다.
보드가이더(430)가 하강시 제1슬릿(432)과 제2슬릿(434)의 위치도 낮아진다. 제2슬릿(434)은 바디돌기(444)를 따라 슬라이딩 상승된다. 제1슬릿(432)의 위치가 낮아짐에 따라 제1돌기(4111)는 점점 왼쪽으로 이동하고, 스페이스 보드(410)가 보드슬릿을 통해 타워케이스(140) 내부로 인입된다.
이하, 공기 조화기에 설치된 히터(500)를 설명한다.
히터(500)는 제1토출공간(103a) 또는 제2토출공간(103b)에 배치되어, 유동하는 공기를 가열하는 구성요소이다. 히터(500)는 유동하는 공기를 가열하여, 공기 조화기 외부로 가열된 공기를 토출하게 한다.
도 1 및 도 2를 참조하면, 히터(500)는 공기 조화기의 제 1 타워(110) 또는 제 2 타워(120)에 배치될 수 있다.
히터(500)는 상-하방향으로 길게 배치된다. 히터(500)는 제 1 타워(110) 또는 제 2 타워(120)의 길이방향으로 배치된다. 히터(500)는 기류변환기(400)의 하방에 배치된다.
도 3을 참조하면, 히터(500)는 제 1 타워(110) 및 제 2 타워(120)에 각각 배치될 수 있다. 제 1 타워(110)에 배치된 히터(500)를 제1히터(501)라고 하고, 제 2 타워(120)에 배치된 히터(500)를 제2히터(502)라고 할 수 있다. 제 1 타워(110)와 제 2 타워(120)는 중심축을 기준으로 대칭으로 형성될 수 있고, 제 1 타워(110)와 제 2 타워(120)는 중심축을 기준으로 대칭으로 배치될 수 있다.
히터(500)의 상단은 스페이스 보드(410)의 상단보다 아래에 배치될 수 있다. 히터(500)의 하단은 스페이스 보드(410)의 하단보다 위에 배치될 수 있다.
도 4를 참조하면, 상부에서 볼 때, 히터(500)의 상단은 제 1 타워(110) 또는 제 2 타워(120)의 전후방향 상의 중앙에 배치될 수 있다.
도 5를 참조하면, 히터(500)의 상단은 히터(500)의 하단보다 전방에 배치된다. 다시 말해, 히터(500)는 하단이 상단보다 후방에 배치되도록 경사지게 배치된다.
히터(500)는 타워케이스(140)의 내부에 배치되되, 제 1 토출구(117) 또는 제2토출구의 상류에 배치된다. 상류라 함은 공기유동방향을 기준으로 공기유입방향에 배치됨을 의미한다. 즉, 히터(500)는 제 1 토출구(117) 또는 제2토출구의 공기유입방향에 배치된다. 보다 상세하게는, 히터(500)는 제 1 토출구(117) 또는 제2토출구의 전방에 배치된다.
히터(500)는 열을 발하는 발열튜브(520)와, 발열튜브(520)로부터 열을 전달하는 핀(530,Fin)을 포함한다.
발열튜브(520)는 에너지를 공급받아 열에너지로 전환하여 열을 발하는 구성요소이다. 발열튜브(520)는 전기장치와 연결되어 전기에너지를 공급받을 수 있고, 저항으로 구성되어 전기에너지를 열에너지로 전환할 수 있다. 혹은, 발열튜브(520)는 내부에 냉매가 유동하는 배관으로 형성되어, 내부를 유동하는 냉매와 외부를 유동하는 공기 사이에 열을 교환하여 공기를 가열할 수도 있다. 이밖에, 발열튜브(520)는 통상의 기술자를 기준으로 용이하게 변경할 수 있는 범위내에서 발열소자를 포함한다.
발열튜브(520)는 경사를 가지고 형성될 수 있다. 보다 상세하게, 발열튜브(520)의 상단은 하단보다 전방에 배치될 수 있다.
발열튜브(520)는 U자 형으로 형성될 수 있다. 핀(530,Fin)은 발열튜브(520)와 연결되고, 발열튜브(520)로부터 열은 전달하는 구성요소이다. 핀(530)은 넓은 표면적을 갖는 바, 발열튜브(520)로 전달받은 열을 유동공기에 효과적으로 전달할 수 있다.
핀(530)은 공기유동방향을 전환하여, 제 1 토출구(117) 또는 제2토출구로 공기를 안내한다. 도 5를 참조하면, 흡입구는 하방에 배치되고, 제 1 토출구(117)와 제2토출구는 상방에 배치된다. 제 1 타워(110)와 제 2 타워(120)의 내부에서, 공기는 하부에서 상부로 상승하는 유동을 형성한다. 핀(530)은 하부에서 상부로 상승하는 유동을 전방에서 후방으로 이동하는 유동으로 전환한다.
히터(500)는 지지부재(510)를 포함한다. 지지부재(510)는 튜브와 히터(500)를 지지하는 구성요소이다. 지지부재(510)는 상부수평판(511)과 수직판(512)과 하부수평판(513)을 포함한다.
수직판(512)은 상하로 길게 연장된다.
수직판(512)에는 복수개의 핀(530)이 고정된다. 복수개의 핀(530)은 수직판(512)의 연장방향과 교차되는 방향으로 연장된다. 예를 들어, 수직판(512)은 상하로 길게 연장되고, 복수개의 핀(530)은 전후좌우 방향으로 연장될 수 있다.
수직판(512)의 연장방향을 따라 발열튜브(520)가 길게 배치된다. 발열튜브(520)는 수직판(512)과 평행하게 배치될 수 있다. 또는, 발열튜브(520)는 수직판(512)에 접촉할 수도 있다.
수직판(512)은 경사를 가지고 형성될 수 있다. 보다 상세하게, 수직판(512)의 상단은 하단보다 전방에 배치될 수 있다.
상부수평판(511)은 수직판(512)의 상단에 배치된다. 제 1 타워(110)와 제 2 타워(120)의 상부에는 가이드모터(420)를 차폐하는 판이 형성될 수 있고, 상부수평판(511)은 판에 고정되어 히터(500)를 지지할 수 있다. 상부수평판(511)은 가이드모터(420)를 차폐하는 판이 지면에 대해 수평인 경우, 판과 같이 지면에 대해 평행하게 배치될 수 있다. 도 5를 참조하면, 측방에서 볼 때에는, 상부수평판(511)은 수직판(512)과 수직하지 않는다. 도 6을 참조하면, 전방 또는 후방에서 볼 때에는 상부수평판(511)은 수직판(512)과 수직한다.
하부수평판(513)은 수직판(512)의 하단에 배치된다. 하부수평판(513)의 상부면에는 수직판(512)이 연결되고, 하부수평판(513)의 하부면은 유로차폐부재(540)가 배치된다. 하부수평판(513)은 상부수평판(511)과 달리 수직판(512)과 수직한다. 도 5를 참조하면, 하부수평판(513)은 측방에서 볼 때 수직판(512)과 수직하고, 지면에 대해 수평이 아니게 배치된다. 도 6을 참조하면, 하부수평판(513)은 전방에서 볼 때에도 수직판(512)과 수직한다.
도 5를 참조하면, 제 1 토출구(117)는 제 1 타워(110)의 길이방향으로 길게 연장되고, 제2토출구는 제 2 타워(120)의 길이방향으로 길게 연장된다. 핀(530)은 제 1 토출구(117) 또는 제2토출구의 길이방향을 따라 복수개가 배치된다. 제 1 토출구(117)와 제2토출구는 제 1 타워(110)와 제 2 타워(120)의 길이방향으로 상하고 길게 형성될 수 있다. 히터(500)는 제 1 토출구(117)를 따라 복수개가 배치될 수 있고, 제2토출구를 따라 복수개가 배치될 수도 있다. 히터(500)는 제 1 토출구(117)와 제2토출구를 따라 복수개가 배치되는 바, 제 1 토출구(117)와 제2토출구에 균등하게 공기를 토출할 수 있다.
도 5를 참조하면, 핀(530)은 제 1 토출구(117) 또는 제2토출구의 길이방향과 교차되는 방향으로 연장된다. 도 5를 참조하면, 제 1 토출구(117)와 제2토출구는 상단 중앙에서 우측 하단으로 길게 연장된다. 복수의 핀(530)은 중앙에서 우측 상단으로 연장된다. 제 1 토출구(117)와 제2토출구의 길이방향과 복수의 핀(530)의 연장방향은 서로 교차할 수 있다. 보다 자세하게는, 핀(530)은 제 1 토출구(117) 또는 제2토출구의 길이방향에 수직으로 연장될 수 있다.
핀(530)은 제 1 토출구(117)와 제2토출구의 길이방향으로 복수개가 배치되되, 제 1 토출구(117)와 제2토출구의 길이방향에 수직하는 방향으로 연장된다. 따라서, 공기유동은 핀(530)의 안내를 따라 제 1 토출구(117)와 제2토출구 쪽으로 유동방향이 전환되고, 상하로 길게 형성된 제 1 토출구(117)와 제2토출구에 균등한 양으로 분산되어 유동된다.
발열튜브(520)는 제 1 토출구(117) 또는 제2토출구의 길이방향을 따라 길게 연장되고, 핀(530)은 발열튜브(520)의 연장방향의 수직으로 연장될 수 있다.
도 5를 참조하면, 발열튜브(520)는 히터(500)의 상부에 배치될 수 있다. 발열튜브(520)는 히터(500)의 상부에서 하방으로 연장된다. 발열튜브(520)는 수직판(512)과 이격된 채 수직판(512)과 평행하게 배치될 수 있고, 수직판(512)에 접촉한 채 연장될 수도 있다. 발열튜브(520)는 제 1 토출구(117)와 제2토출구의 길이방향을 따라 길게 연장된다.
도 5를 참조하면, 핀(530)은 발열튜브(520)의 연장방향의 수직으로 연장된다. 예를 들어, 발열튜브(520)가 수직축(V)과의 사이에 4도 정도의 각도를 형성하는 경우, 핀(530)은 지면과의 사이에서 4도정도의 각도를 형성할 수 있다. 이때에는 핀(530)은 발열튜브(520)의 연장방향의 수직으로 연장된다.
도 5를 참조하면, 측방에서 볼 때 발열튜브(520)는 수직축과의 사이에서 일정한 기울기를 가지고 경사지게 배치되고, 수직판(512)도 수직축과의 사이에서 일정한 기울기를 가지고 경사지게 배치되고, 발열튜브(520)와 수직판(512)은 평행하게 배치된다. 또한, 상부수평판(511)은 지평면과 평행하게 배치된다. 하부수평판(513)은 지평면과의 사이에 일정한 기울기를 가지고 경사지게 배치된다. 핀(530)은 지평면과의 사이에 일정한 기울기를 가지고 경사지게 배치되고, 하부수평면과 평행하게 배치된다.
도 5를 참조하면, 히터(500)는 수직방향에 대하여 경사지게 배치된다. 히터(500)는 제 1 토출구(117) 또는 제 2 토출구(127)와 평행하게 배치된다.
히터(500)는 수직방향에 대하여 a3만큼의 기울기(각도)를 가지도록 경사지게 배치될 수 있다. 예를 들어, 히터(500)는 수직방향에 대하여 4도의 각도를 기준으로 일정한 오차범위 내에서 경사지게 배치될 수 있다. 도 5를 참조하면, 제2토출구는 수직방향에 대하여 a1만큼의 기울기를 가지도록 경사지게 배치될 수 있다. 예를 들어, 제2토출구는 수직방향에 대하여 4도의 각도를 기준으로 일정한 오차범위 내에서 경사지게 배치될 수 있다. 도 5에 도시되지는 않았으나, 제 1 토출구(117)도 수직방향에 대하여 a1만큼의 기울기를 가지도록 경사지게 배치될 수 있음은 자명하다.
히터(500)의 기울기(a3)는 다음의 값과 대응될 수 있다. 지면에 대한 수직축(V)과 수직판(512)이 갖는 기울기. 지면에 대한 수직축(V)과 발열튜브(520)가 갇는 기울기. 상부수평판(511)과 수직판(512)이 갖는 기울기. 핀(530)과 상부수평판(511)이 갖는 기울기. 핀(530)과 지면이 갖는 기울기. 하부수평판(513)과 지면이 갖는 기울기.
히터(500)는 수직방향에 대하여 제 1 토출구(117) 또는 제2토출구와 평행하게 배치된다. 다시 말해, 히터(500)가 수직방향에 대하여 갖는 기울기(a3)와 제 1 토출구(117)/제2토출구가 수직방향에 대하여 갖는 기울기(a1)는 동일할 수 있다. 히터(500)는 제 1 토출구(117) 또는 제2토출구와 평행하게 배치됨으로써, 핀(530)에 의해 안내되는 공기는 균등한 양이 제 1 토출구(117) 또는 제2토출구로 유동될 수 있다.
도 14 및 도 15을 참조하면, 제 1 타워(110)는 블로잉스페이스(105)를 향해 배치되고, 제 1 토출구(117)가 형성된 제1내측벽(115)을 포함한다. 제 2 타워(120)는 블로잉스페이스(105)를 향해 배치되고, 제2토출구가 형성된 제 2 내측벽(125)을 포함한다. 히터(500)는 제 1 내측벽(115) 또는 제 2 내측벽(125) 중 적어도 어느 하나의 내측면과 이격되게 배치된다. 히터(500)와 제1내측벽(115) 사이에는 공기가 유동할 수 있는 공간이 형성되고, 공간에는 공기가 유동한다. 히터(500)와 제2내측면 사이에는 공기가 유동할 수 있는 공간이 형성되고, 공간에는 공기가 유동한다. 히터(500)와 내측면 사이에 공기가 유동함으로써, 공기의 벽을 형성한다. 따라서, 히터(500)에서 방출되는 열은 제1내측벽(115)이나 제 2 내측벽(125)으로 대류하지 못하고, 제1내측벽(115)과 제 2 내측벽(125)이 과열되는 것을 방지한다.
도 14 및 도 15을 참조하면, 제 1 타워(110)는 제1내측벽(115)의 외측방에 형성된 제1외측벽(114)을 포함한다. 제 2 타워(120)는 제 2 내측벽(125)의 외측방에 형성된 제 2 외측벽(124)을 포함한다. 히터(500)는 제1외측벽(114) 또는 제 2 외측벽(124)의 내측면과 이격되게 배치된다. 히터(500)와 제1외측벽(114)의 내측면 사이에는 공기가 유동할 수 있는 공간이 형성되고, 공간에는 공기가 유동한다. 히터(500)와 제 2 외측벽(124)의 내측면 사이에는 공기가 유동할 수 있는 공간이 형성되고, 공간에는 공기가 유동한다. 히터(500)와 외측벽의 내측면 사이에 공기가 유동함으로써, 공기의 벽을 형성한다. 따라서, 히터(500)에서 방출되는 열은 제1외측벽(114)이나 제 2 외측벽(124)으로 대류하지 못하고, 제1외측벽(114)과 제 2 외측벽(124)이 과열되는 것을 방지한다.
도 14 및 도 15을 참조하면, 히터(500)는 제1외측벽(114)보다 제1내측벽(115)에 더 가깝게 배치된다. 히터(500)는 제 2 외측벽(124)보다 제 2 내측벽(125)에 더 가깝게 배치된다. 제 1 내측벽(115)에는 제 1 토출구(117)에서 토출된 공기가 빠른 속도로 유동되고, 제 2 내측벽(125)에는 제2토출구에서 토출된 공기가 빠른 속도로 유동된다. 제1내측벽(115)과 제 2 내측벽(125)에는 공기가 빠른 속도로 유동하는 바 강제대류가 발생하고, 제1내측벽(115)과 제 2 내측벽(125)을 보다 빠르게 냉각시킬 수 있다. 하지만, 제1외측벽(114)과 제 2 외측벽(124)에는 간접적인 코안다효과에 의하여 공기가 느린 속도로 유동한다. 따라서, 제1외측벽(114)의 냉각속도는 제1내측벽(115)보다 느리고, 제 2 외측벽(124)의 냉각속도는 제 2 내측벽(125)보다 느리다. 따라서, 히터(500)를 제1내측벽(115) 또는 제 2 외측벽(124)에 더 가깝게 배치하여, 타워케이스(140)의 과열을 보다 효율적으로 방지할 수 있다.
도 5를 참조하면, 히터(500)의 하단은 제 1 타워(110) 또는 제 2 타워(120)의 전방 하단보다 후방 하단에 가깝게 배치된다. 따라서 토출공간(103)의 단면적은 하부가 상부보다 크다.
제1타워 또는 제 2 타워(120)의 하단에서 유동하는 공기의 양은 최대이고, 상부로 갈수록 히터(500)를 통과하여 블로잉스페이스(105)로 토출되고, 제 1 타워(110) 또는 제 2 타워(120)의 상단에서 유동하는 공기의 양이 최소이다. 히터(500)의 하단은 제 1 타워(110) 또는 제 2 타워(120)의 전방 하단보다 후방 하단에 가깝게 배치하여 공기유량에 알맞은 토출공간(103)을 형성할 수 있다. 따라서, 압력차이를 보상하여 압력손실을 방지하고 효율을 향상시킬 수 있다.
히터(500)는 핀(530)과 제 1 토출구(117) 또는 제2토출구 사이에 공기가 유동하는 것을 차폐하는 유로차폐부재(540)를 더 포함한다. 도 5를 참조하면, 유로차폐부재(540)는 히터(500)의 하단에 배치되고, 제 1 토출구(117) 또는 제2토출구의 하단을 향해 연장된다.
유로차폐부재(540)는 타워케이스(140) 내부에 배치된다. 유로차폐부재(540)의 하단은 흡입그릴보다 상부에 배치된다.
유로차폐부재(540)는 후단이 전단보다 상부에 배치되도록 경사를 형성한다.
유로차폐부재(540)는 제 1 타워(110) 또는 제 2 타워(120)의 후단으로 연장된다.
제 1 토출구(117) 또는 제2토출구의 하단은 유로차폐부재(540)의 상부에 배치된다.
유로차폐부재(540)는 도 7에 도시한 것과 같이, 하부수평판(513)의 전단에서 좌측 또는 우측으로 연장되고, 후방으로도 연장된다. 따라서, 반원 형상으로 형성될 수도 있다. 또는, 유로차폐부재(540)는 도 5에 도시한 것과 같이, 하부수평판(513)의 폭과 동일한 폭으로 형성되고, 후단으로 연장될 수도 있다.
유로차폐부재(540)는 제1토출공간(103a) 또는 제2토출공간(103b)을 유동하는 공기가 히터(500)를 통과하지 않고 제 1 토출구(117) 또는 제2토출구로 직접 토출되는 것을 방지한다. 보다 상세하게, 유로차폐부재(540)는 히터(500)의 후방 하단, 좌측 하단, 우측 하단과 제 1 타워(110)의 내측면을 차폐하고, 히터(500)의 후방 하단, 좌측 하단, 우측 하단과 제 2 타워(120)의 내측면을 차폐한다. 따라서, 히터(500)의 후방 하단, 좌측 하단, 우측 하단에서 제 1 토출구(117) 또는 제2토출구로 직접 토출되는 공기유동을 차폐하여, 효율을 향상시킨다.
도 24 내지 도 26를 참조하여 본 발명의 다른 실시예에 따른 공기 조화기는 히터(500) 외에도 방향이 전환된 공기를 제 1 토출구(117) 또는 제2토출구로 안내하는 에어가이드(160)를 더 포함할 수 있다.
에어가이드(160)는 토출공간(103)에는 공기의 유동방향을 수평방향으로 전환시키는 구성요소이다. 에어가이드(160)는 복수개가 배치될 수 있다.
에어가이드(160)는 하측에서 상측으로 유동되는 공기를 수평방향으로 방향전환시키고, 방향전환된 공기는 토출구(117)(127)로 유동된다.
에어가이드(160)의 구분이 필요할 경우, 제 1 타워(110) 내부에 배치된 것을 제 1 에어가이드(161)라 하고, 제 2 타워(120) 내부에 배치된 것을 제 2 에어가이드(162)라 한다.
제1에어가이드(161)의 외측단은 제 1 타워(110)의 외측벽에 결합된다. 제1에어가이드의 내측단은 제1히터(501)에 인접한다.
제 1 에어가이드(161)는 전방 측 단이 제 1 토출구(117)에 근접한다. 제1에어가이드의 전방 측 단은 제 1 토출구(117)에 근접한 내측벽에 결합될 수 있다. 제1에어가이드의 후방 측 단은 제 1 타워(110)의 후단과 이격된다.
하측에서 유동되는 공기를 제 1 토출구(117)로 안내하기 위해 제 1 에어가이드(161)는 하측에서 상측으로 볼록한 곡면으로 형성되고, 후방측 단이 전방측 단보다 낮게 배치된다.
제1에어가이드(161)는 곡면부(161f)와 평면부(161e)로 구분될 수 있다.
제1에어가이드(161)의 평면부(161e)는 후단이 제1토출가이드에 근접한다. 제1에어가이드의 평면부(160e)는 전방으로 연장되고, 보다 상세하게는 지면에 수평으로 연장될 수 있다.
제1에어가이드의 곡면부(161f)는 후단이 제1에어가이드의 평면부에 배치된다. 제1에어가이드의 곡면부(160f)는 곡면을 형성하면서 전방 하부로 연장된다. 제1에어가이드의 곡면부(160f)의 전단은 후단보다 낮게 배치된다. 제1에어가이드의 곡면부(160f)의 전단과 후단은 지면으로부터 수평거리가 10mm~20mm 사이로 형성될 수 있다. 제1에어가이드의 곡면부(160f)의 전단과 후단이 지면으로부터의 수평거리는 곡률길이로 정의한다. 즉, 제1에어가이드의 곡면부의 곡률길이는 10mm~20mm 사이로 형성될 수 있다.
제1에어가이드의 곡면부(160f)의 전단의 입구각(a4)은 10도로 형성될 수 있다. 입구각(a4)이라 함은 지면에 대한 수직선과 제1에어가이드의 곡면부(160f)의 전단의 접선과 사이의 각도로 정의한다.
제1에어가이드(161)의 우측단 중 적어도 일부는 히터(500)의 외측에 인접하고, 나머지 일부는 제 1 타워(110)의 내측벽에 결합한다. 제1에어가이드(161)의 좌측단은 제 1 타워(110)의 외측벽에 밀착 또는 결합될 수 있다.
그래서 토출공간(103)을 따라 상측으로 이동되는 공기는 제 1 에어가이드(161)의 후단에서 전단으로 유동된다. 다시 말해, 팬장치(300)를 통과한 공기는 상승하고, 제1에어가이드(161)의 안내를 받아 후방으로 유동한다.
제 2 에어가이드(162)는 제 1 에어가이드(161)와 좌우 대칭된다.
제2에어가이드(162)의 외측단은 제 2 타워(120)의 외측벽에 결합된다. 제2에어가이드(162)의 내측단은 제2히터(502)에 인접한다.
제 2 에어가이드(162)는 전방 측 단이 제 2 토출구(127)에 근접한다. 제2에어가이드(162)의 전방 측 단은 제2토출구에 근접한 내측벽에 결합될 수 있다. 제2에어가이드(162)의 후방 측 단은 제 2 타워(120)의 후단과 이격된다.
하측에서 유동되는 공기를 제 2 토출구(127)로 안내하기 위해 제 2 에어가이드(162)는 하측에서 상측으로 볼록한 곡면으로 형성되고, 후방측 단이 전방측 단보다 낮게 배치된다.
제2에어가이드(162)는 곡면부(162f)와 평면부(162e)로 구분될 수 있다.
제2에어가이드의 평면부(162e)는 후단이 제2토출가이드에 근접한다. 제2에어가이드의 평면부는 전방으로 연장되고, 보다 상세하게는 지면에 수평으로 연장될 수 있다.
제2에어가이드의 곡면부(162f)는 후단이 제2에어가이드의 평면부(162e)의 전단에 배치된다. 제2에어가이드의 곡면부(162f)는 곡면을 형성하면서 전방 하부로 연장된다. 제2에어가이드의 곡면부(162f)의 전단은 후단보다 낮게 배치된다. 제2에어가이드의 곡면부(162f)의 전단과 후단은 지면으로부터 수평거리가 10mm~20mm 사이로 형성될 수 있다. 제2에어가이드의 곡면부(162f)의 전단과 후단이 지면으로부터의 수평거리는 곡률길이로 정의한다. 즉, 제2에어가이드의 곡면부(162f)의 곡률길이는 10mm~20mm 사이로 형성될 수 있다.
제2에어가이드의 곡면부(162f)의 전단의 입구각(a4)은 10도로 형성될 수 있다. 입구각(a4)이라 함은 지면에 대한 수직선과 제2에어가이드의 곡면부의 전단의 접선과 사이의 각도로 정의한다.
제2에어가이드(162)의 좌측단 중 적어도 일부는 제2히터(502)의 외측에 인접하고, 나머지 일부는 제 2 타워(120)의 내측벽에 결합한다. 제2에어가이드(162)의 우측단은 제 2 타워(120)의 외측벽에 밀착 또는 결합될 수 있다.
그래서 토출공간(103)을 따라 상측으로 이동되는 공기는 제 2 에어가이드(162)의 후단에서 전단으로 유동된다. 다시 말해, 팬장치(300)를 통과한 공기는 상승하고, 제2에어가이드(162)의 안내를 받아 후방으로 유동한다.
에어가이드(160)를 설치하는 경우, 수직방향으로 올라오는 공기를 수평방향으로 방향전환한다. 따라서, 상하로 길게 형성된 공기토출구에서 균일한 유량의 공기를 토출할 수 있다는 장점이 있다. 또한, 공기를 수평으로 토출할 수 있다는 효과도 있다.
에어가이드(160)의 입구각(a4)이 크거나 곡률길이가 긴 경우, 수직방향으로 올라오는 공기에 저항으로 작용하여 소음이 증가하는 문제가 있다. 반대로, 에어가이드의 곡률길이가 짧은 경우, 공기를 가이드하는 역할을 하지 못해 수평토출이 불가능하다. 따라서, 본 발명에 따른 입구각(a4)으로 배치하거나 곡률길이로 형성하는 경우, 풍량이 증가하고 소음이 감소하는 효과가 있다.
도 29는 본 발명에 따른 에어가이드와 종래기술 간의 효과의 차이를 설명하기 위한 그래프를 나타낸 것이다.
도 29의 상부 그래프는 에어가이드의 입구각(a4)에 따른 팬의 회전속도 대비 토출되는 풍량을 나타낸 것이다. 도 29에 언급하지는 않았으나, 에어가이드의 곡면부의 곡률길이도 영향을 끼칠 수 있다. 팬의 회전속도가 낮을 때는 큰 차이가 없으나, 팬의 회전속도가 증가하는 경우에는 토출되는 풍량에 차이가 나타난다. 예를 들어, 팬의 회전속도가 2500RPM인 경우에는, 종래기술에 따른 공기청정기에서 토출되는 유량은 13.4CMM정도이나, 본 발명에 따른 에어가이드를 갖는 공기청정기에서 토출되는 유량은 14CMM정도인 것으로 나타났다. 팬이 동일한 RPM을 기준으로 할 때 본 발명에 따르면, 종래기술보다 풍량이 약 4%정도 증가되는 효과가 있다.
도 29의 하부 그래프는 에어가이드의 입구각(a4)에 따른 팬의 풍량 대비 발생하는 소음을 나타낸 것이다. 도 29에 언급하지는 않았ㅇ으나, 에어가이드의 곡면부의 곡률길이도 영향을 끼칠 수 있다. 토출되는 풍량이 낮을 때는 큰 차이가 없으나, 풍량이 증가하는 경우에는 발생하는 소음에 차이가 나타난다. 예를 들어, 풍량이 10.0CMM인 경우에는, 종래기술에 따른 공기청정기에서 발생하는 소음은 40.5dB정도이나, 본 발명에 따른 에어가이드를 갖는 공기청정기에서 발생하는 소음은 40dB정도인 것으로 나타났다. 동일한 풍량을 기준으로 할 때 본 발명에 따르면, 종래기술보다 발생하는 소음이 약 0.5dB정도 감소하는 효과가 있다.
기류변환기(400)는 히터(500)의 상방에 배치될 수 있다. 보다 상세하게는 가이드모터(420)는 히터(500)의 상방에 배치될 수 있다. 가이드모터(420)는 구동력을 발생시키고, 스페이스 보드(410)는 토출되는 공기를 변화시키고, 보드가이더(430)는 가이드모터(420)의 구동력을 스페이스 보드(410)에 전달한다. 스페이스 보드(410)와 보드가이더(430)는 히터(500)의 전방에 배치될 수 있으나, 가이드모터(420)는 히터(500)의 상방에 배치된다. 따라서, 공간을 효율적으로 활용할 수 있고, 가이드모터(420)가 토출공간(103) 내부의 공기유동을 방해하는 것을 방지한다. 가이드모터(420)는 열을 발하는 구성요소이고, 열에 취약하다는 단점이 있다. 따라서, 가이드모터(420)를 히터(500)의 상방에 배치하여, 공기유로상에 배치하지 않으며, 히터(500)의 열이 가이드모터(420)로 대류하는 것을 방지할 수 있다.
이하 도 24를 참조하여, 상부에서 바라본 히터 주위를 유동하는 공기유동을 설명한다. 팬장치(300)를 통과한 공기는 히터 전방에서 상승한다. 히터 전방에서 상승하는 공기는 유동방향이 후방으로 전환된다. 공기의 대부분은 히터를 통과하여 가열되고, 따뜻한 공기가 블로잉스페이스로 토출된다. 일부 공기는 히터와 외측벽(114,124) 사이의 공간을 유동한다. 이 공기는 히터와 외측벽 사이에 에어커튼을 형성하여, 히터의 열이 외측벽으로 대류하는 것을 방지한다. 다른 일부 공기는 히터와 내측벽 사이의 공간으로 유동한다. 이 공기는 히터와 내측벽 사이에 에어커튼을 형성하여, 히터의 열이 내측벽으로 대류하는 것을 방지한다.
도 27은 본 발명의 제 1 실시예에 따른 공기 조화기의 수평기류가 도시된 예시도이다.
도 27를 참조하면, 수평기류를 제공할 경우, 제 1 스페이스 보드(411)는 제 1 타워(110) 내부에 은닉되고, 제 2 스페이스 보드(412)는 제 2 타원(120) 내부에 은닉된다.
제 1 토출구(117)의 토출공기와 제 2 토출구(127)의 토출공기는 블로잉스페이스(105)에서 합류되고, 전단(112)(122)을 통과하여 전방으로 유동될 수 있다.
그리고 블로잉스페이스(105) 후방의 공기는 블로잉스페이스(105) 내부로 유도된 후, 전방으로 유동될 수 있다.
또한, 제 1 타워(110) 주변의 공기는 제 1 외측벽(114)을 따라 전방으로 유동될 수 있고, 제 2 타워(120) 주변의 공기는 제 2 외측벽(124)을 따라 전방으로 유동될 수 있다.
제 1 토출구(117) 및 제 2 토출구(127)는 상하 방향으로 길게 연장되어 형성되고, 좌우 대칭으로 배치되기 때문에, 제 1 토출구(117) 및 제 2 토출구(127) 상측에서 유동되는 공기와 하측에서 유동되는 공기를 보다 균일하게 형성시킬 수 있다.
또한, 제 1 토출구 및 제 2 토출구에서 토출된 공기가 블로잉스페이스(105)에서 합류됨으로써 토출공기의 직진성을 향상시키고, 보다 먼 곳까지 공기를 유동시킬 수 있다.
도 28은 본 발명의 제 1 실시예에 따른 공기 조화기의 상승기류가 도시된 예시도이다.
도 28을 참조하면, 상승기류를 제공할 경우, 제 1 스페이스 보드(411) 및 제 2 스페이스 보드(412)가 블로잉스페이스(105)로 돌출되고, 블로잉스페이스(105)의 전방을 막는다.
제 1 스페이스 보드(411) 및 제 2 스페이스 보드(412)에 의해 블로잉스페이스(105)의 전방이 막힘에 따라 토출구(117)(127)에서 토출된 공기는 제 1 스페이스 보드(411) 및 제 2 스페이스 보드(412)의 후면을 따라 상승되고, 블로잉스페이스(105)의 상부로 토출된다.
공기 조화기(1)에서 상승기류를 형성시킴으로서, 토출공기가 사용자에게로 직접 유동되는 것을 억제할 수 있다. 또한, 실내공기를 순환시키고자할 때, 공기 조화기(1)을 상승기류로 작동시킬 수 있다.
예를 들어 공기조화기와 공기 조화기를 동시에 사용할 경우, 공기 조화기(1)을 상승기류로 작동시켜 실내공기의 대류를 촉진시킬 수 있고, 실내공기를 보다 신속하게 냉방 또는 난방할 수 있다.
도 29는 본 발명의 다른 실시예에 따른 기류변환기를 도시한 도면이다.
도 29를 참조하면, 다른 실시예에 따른 기류변환기(400A)는 가이드모터(420), 스페이스 보드(410), 운동변환 유닛 및 운동변환 유닛의 왕복 운동을 스페이스 보드(410)에 전달하는 보드가이더(430)를 포함한다.
다른 실시예에 따른 기류변환기는 도 16 내지 도 22의 기류변환기와 비교하면, 보드가이더(430)에서 랙과 피니언기어가 생략되며, 운동변환 유닛이 추가된다. 이하에서는 도 16 내지 도 22의 구성과 차이점을 위주로 설명하고 특별한 설명이 없는 구성은 도 16 내지 도 22의 구성과 동일한 것으로 본다.
운동변환 유닛은 가이드모터(420)의 회전력을 왕복 운동으로 변환한다. 예를 들면, 운동변환 유닛은 슬라이드암(424), 슬라이드 로드(426) 및 변환 슬라이더(461)를 포함한다.
슬라이드암(424)은 가이드모터(420)의 회전축(423)에 결합되어 회전축과 교차되는 방향으로 연장된다. 슬라이드암(424)은 슬라이드 로드(426)에 회전반경을 제공하게 된다. 슬라이드암(424)은 가이드모터(420)의 회전에 구속되어 함께 회전된다.
슬라이드암(424)은 적어도 일부는 회전축의 회전중심에서 편심되어 위치된다. 구체적으로, 슬라이드암(424)의 일단은 회전축에 축결합되고, 슬라이드암(424)의 타단은 회전축과 직교하는 방향으로 연장될 수 있다. 다른 예로, 슬라이드암(424)은, 회전축에 축결합되고 회전축의 반경방향으로 확장된 원판 형태일 수도 있다.
슬라이드 로드(426)의 일단은 슬라이드암(424)에 회전 가능하게 결합되고, 슬라이드 로드(426)의 타단은 변환 슬라이더(461)에 슬라이딩되게 결합된다. 슬라이드 로드(426)의 타단은 슬라이드 슬롯(461a)에 결합되어 슬라이드 슬롯(461a)을 따라 슬라이드된다.
슬라이드 로드(426)와 슬라이드암(424)은 제1 힌지(426a)에 의해 힌지결합되고, 제1 힌지(426a)는 가이드모터(420)의 회전축(423)에서 편심된 슬라이드암(424)에 결합될 수 있다.
슬라이드 로드(426)에는 슬라이드 슬롯(461a)에 삽입되는 슬라이드 돌기(426b)가 형성될 수 있다. 슬라이드 돌기(426b)는 회전축과 나란한 방향으로 연장될 수 있다.
변환 슬라이더(461)는 보드가이더(430)에 연결되고, 슬라이드 로드(426)가 회전 운동할 때, 보드가이더(430)가 전후로 이동하기 않고 상하로 이동하게 가이드한다. 변환 슬라이더(461)는 보드가이더(430)의 상단에 연결될 수 있다. 변환 슬라이더(461)가 보드가이더(430)의 상단에 연결되면 슬라이드 로드(426)의 길이를 줄일 수 있다.
변환 슬라이더(461)는 슬라이드 로드(426)의 타단이 슬라이딩되게 결합되는 슬라이드 슬롯(461a)을 포함한다. 슬라이드 슬롯(461a)은 슬라이드 로드(426)가 회전운동할 때, 보드가이더(430)가 전후로 이동하기 않고 상하로 이동하게 가이드한다.
슬라이드 슬롯(461a)은 가이드모터(420)의 회전축(423)과 교차되는 방향으로 연장될 수 있다. 구체적으로, 스페이스 보드(410)는 제1 방향(좌우 방향)을 따라 이동하고, 가이드모터(420)의 회전축(423)은 제1 방향과 나란하게 배치되며, 보드가이더(430)는 제1 방향과 교차되는 제2방향(상하 방향)을 따라 이동하며, 슬라이드 슬롯(461a)은 제1방향 및 제2방향과 교차되는 제3방향(전후 방향)으로 연장될 수 있다.
더욱 구체적으로, 슬라이드 슬롯(461a)의 전단은 보드가이더(430)의 일부와 수직적으로 중첩되고, 슬라이드 슬롯(461a)의 후단은 보드가이더(430) 보다 후방으로 위치될 수 있다. 이러한 구조로, 가이드 모터가 보드가이더(430)의 후방에 위치될 수 있다.
슬라이드 슬롯(461a)의 길이는 가이드모터(420)의 회전축(423)과 제1 힌지 사이의 이격거리 보다 큰 것이 바람직하다. 슬라이드 슬롯(461a)의 길이가 너무 작은 경우, 슬라이드암(424)의 회전에 의해 보드가이더(430)가 상하로 운동되지 못할 수 있기 때문이다.
변환 슬라이더(461)는 제3방향(전후 방향)에서 스페이스 보드(410)의 상부와 중첩되게 위치될 수 있다. 가이드 모터와, 슬라이드 로드(426)는 제3방향에서 스페이스 보드(410)의 상부와 중첩되게 위치되고, 보드가이더(430) 보다 상부에 위치될 수 있다.
변환 슬라이더(461), 슬라이드 로드(426), 가이드 모터가 스페이스 보드(410)의 상부와 중첩되게 위치되고, 보드 가이드의 상부에 위치되면, 변환 슬라이드 슬라이드 로드(426) 및 가이드 모터가 스페이스 보드(410)에 의해 외부에서 보이지 않게 되고, 보드가이더(430)의 상부의 공간을 활용할 수 있는 이점이 있다.
도 30a 내지 도 30c는 도 29의 기류변환기의 작동모습을 도시한 도면이다.
도 30a를 참조하면, 슬라이드암(424)과 슬라이드 로드(426)를 연결하는 제1 힌지(426a)가 회전축 보다 아래(6시 방향) 위치된다. 이 경우, 보드가이더(430)와 하강된 상태이고, 스페이스 보드(410)가 타워케이스(140) 내부에 위치된다.
도 30b 및 도 30c를 참조하면, 가이드모터(420)가 시계방향으로 회전되면, 슬라이드암(424)도 회전된다. 슬라이드암(424)이 회전되면, 슬라이드암(424)과 슬라이드 로드(426)를 연결하는 제1 힌지(426a)가 회전축을 기준으로 9시 방향으로 회전되고, 슬라이드 로드(426)가 상승하면서, 변환 슬라이더(461)를 상승시킨다. 슬라이드 로드(426)의 타단은 슬라이드 슬롯(461a)에서 슬라이딩 되며 전방으로 이동된다.
가이드모터(420)의 회전에 의해 제1 힌지(426a)가 회전축을 기준으로 12시 방향으로 회전되면, 슬라이드 로드(426)가 상승하면서, 변환 슬라이더(461)를 상승시키고, 스페이스 보드(410)를 블로잉스페이스(105)로 노출된다.
도 31은 본 발명의 또 다른 실시예에 따른 기류변환기를 도시한 도면이다.
도 31을 참조하면, 또 다른 실시예에 따른 기류변환기(400B)는 가이드모터(420), 스페이스 보드(410), 운동변환 유닛 및 운동변환 유닛의 왕복 운동을 스페이스 보드(410)에 전달하는 보드가이더(430)를 포함한다.
또 다른 실시예에 따른 기류변환기는 도 29의 기류변환기와 비교하면, 운동변환 유닛과 보드가이더(430)의 구성에 차이가 존재한다.
운동변환 유닛은 가이드모터(420)의 회전력을 왕복 운동으로 변환한다. 예를 들면, 운동변환 유닛은 크랭크암(427), 크랭크 로드(428, 429)를 포함한다.
크랭크암(427)은 가이드모터(420)의 회전축(423)에 결합되어 회전축과 교차되는 방향으로 연장된다. 크랭크암(427)은 크랭크 로드(428, 429)에 회전반경을 제공하게 된다. 크랭크암(427)은 가이드모터(420)의 회전에 구속되어 함께 회전된다.
크랭크암(427)은 적어도 일부는 회전축의 회전중심에서 편심되어 위치된다. 구체적으로, 크랭크암(427)의 일단은 회전축에 축 결합되고, 크랭크암(427)의 타단은 회전축과 직교하는 방향으로 연장될 수 있다. 다른 예로, 크랭크암(427)은, 가이드모터의 회전축에 축 결합되고 회전축의 반경방향으로 확장된 원판 형태일 수도 있다.
크랭크 로드(428, 429)는 크랭크암(427)의 회전력을 보드가이더(430)에 왕복운동력으로 전달한다. 크랭크 로드(428, 429)의 일단은 크랭크암(427)에 회전 가능하게 결합되고 크랭크 로드(428, 429)의 타단은 보드가이더(430)에 회전 가능하게 결합될 수 있다. 크랭크 로드(428, 429)는 보드가이더(430)의 상단에 결합될 수 있다.
크랭크 로드(428, 429)는 보드가이더(430)의 왕복거리와 크랭크암(427)의 회전반경을 고려하여 1개 내지 3개가 설치될 수 있다. 크랭크 로드(428, 429)의 개수가 너무 많으면, 에너지 손실이 크고, 크랭크 로드(428, 429)의 개수가 너무 작으면, 보드가이더(430)가 원활하게 왕복운동 할 수 없게 된다.
크랭크 로드(428, 429)의 개수는 2개인 것이 바람직하다. 구체적으로, 크랭크 로드(428, 429)는 일단이 크랭크암(427)에 회전 가능하게 결합되는 제1 크랭크 로드(428)와 일단이 제1 크랭크 로드(428)의 타단에 회전 가능하게 결합되고, 타단이 보드가이더(430)에 회전 가능하게 결합되는 제2 크랭크 로드(429)를 포함한다.
제1 크랭크 로드(428)와 크랭크암(427)은 제1 크랭크 힌지(428a)에 의해 힌지결합되고, 제1 크랭크 힌지(428a)는 가이드모터(420)의 회전축(423)에서 편심된 크랭크암(427)에 결합될 수 있다.
제1 크랭크 로드(428)와 제2 크랭크 로드(429)는 제2 크랭크 힌지(428b)에 의해 힌지결합되고, 제2 크랭크 힌지(428b)는 제1 크랭크 로드(428)의 타단과 제2 크랭크 로드(429)의 일단에 결합될 수 있다. 제1 크랭크 힌지(428a)와, 제2 크랭크 힌지(428b)는 제1 크랭크 로드(428)의 양단에 각각 결합된다.
제2 크랭크 로드(429)는 보드가이더(430)와 제3 크랭크 힌지(429b)에 의해 힌지 결합될 수 있다. 제3 크랭크 힌지(429b)는 제2 크랭크 로드(429)의 타단과, 보드가이더(430)의 상단에 결합된다. 보드가이더(430)의 상단에는 제3 크랭크 힌지(429b)가 결합되는 힌지 결합부(430a)가 형성될 수 있다.
스페이스 보드(410)는 제1 방향을 따라 이동하고, 보드가이더(430)는 제1 방향과 교차되는 제2방향을 따라 이동하며, 가이드모터(420)의 회전축(423)은 제1방향 및 제2방향과 교차되는 제3방향으로 연장될 수 있다. 각 크랭크로드의 회전축은 제3방향과 나란할 수 있다.
도 32는 도 31의 기류변환기의 작동모습을 도시한 도면이다.
도 32를 참조하면, 크랭크암(427)과 크랭크 로드(428, 429)를 연결하는 제1 크랭크 힌지(428a))가 회전축 보다 아래(6시 방향) 위치된다. 이 경우, 보드가이더(430)와 하강된 상태이고, 스페이스 보드(410)가 타워케이스(140) 내부에 위치된다.
가이드모터(420)가 시계 또는 반 시계방향으로 회전되면, 크랭크암(427)도 회전된다. 크랭크암(427)이 회전되면, 크랭크암(427)과 크랭크 로드(428, 429)를 연결하는 제1 힌지(426a)가 회전축을 기준으로 12시 방향으로 회전되면, 크랭크 로드(428, 429)가 상승하면서, 보드가이더(430)를 상승시키고, 스페이스 보드(410)를 블로잉스페이스(105)로 노출된다.
본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 본 발명의 범위는 상세한 설명보다는 후술하는 특허청구의 범위에 의하여 나타내어지며, 특허청구의 범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
100 : 케이스
110 : 제 1 타워 114: 제1외측벽
115: 제1내측벽 117: 제1토출구
119: 제1보드슬릿
120 : 제 2 타워 124: 제2외측벽
125: 제2내측벽 127: 제2토출구
129: 제2보드슬릿
130 : 타워베이스 140 : 타워케이스
150 : 베이스케이스 160: 에어가이드
200 : 필터
400 : 기류변환기 410: 스페이스 보드
420: 가이드모터 430: 보드가이더
440: 기류변환기 커버
500: 히터 510: 지지부재
511: 상부수평판 512: 수직판
513:하부수평판
520: 발열튜브 530: 핀
540: 유로차폐부재

Claims (22)

  1. 상하 방향으로 길게 형성되고 흡입된 공기를 토출하는 제1 타워와, 상기 제1 타워와 측방으로 이격되고 상하 방향으로 길게 형성되고 흡입된 공기를 토출하는 제2 타워를 포함하는 타워케이스;
    이격된 상기 제1 타워와 상기 제2 타워의 사이에 형성되고, 상기 제1 타워 및 상기 제2 타워에서 토출되는 공기가 유동되는 공간인 블로잉스페이스; 및
    상기 블로잉스페이스의 적어도 일부를 폐쇄하거나, 상기 블로잉스페이스를 개방하여, 상기 블로잉스페이스를 통해 유동되는 공기의 방향을 바꾸는 기류변환기를 포함하고,
    상기 기류변환기는,
    상기 타워케이스에 배치되고, 회전력을 제공하는 가이드모터;
    상기 가이드모터의 회전력을 상하방향 운동으로 변환하는 운동변환 유닛;
    상하 방향으로 길게 형성되고, 상기 운동변환 유닛과 연결되어 상하방향으로 운동하고, 상하방향에 대해 기울어진 사선방향으로 형성되며 상하방향으로 배열되는 복수개의 제1슬릿을 구비하는 보드가이더;
    상하 방향으로 길게 형성되고, 상기 복수개의 제1슬릿에 각각 삽입되는 돌기를 구비하여 측방향으로 운동함으로써, 상기 블로잉스페이스로 돌출되거나 상기 타워케이스로 수납되는 스페이스 보드; 및
    상기 스페이스 보드를 상하방향에서 지지하며 상기 스페이스 보드의 이동 방향을 가이드하는 서포터를 포함하는 공기 조화기.
  2. 제1항에 있어서,
    상기 운동변환유닛은,
    상기 가이드모터의 회전축에 결합되어 상기 회전축과 교차되는 방향으로 연장되는 슬라이드암;
    일단이 상기 슬라이드암에 회전 가능하게 결합되는 슬라이드 로드; 및
    상기 슬라이드 로드의 일단이 슬라이딩되게 결합되는 슬라이드 슬롯을 포함하고, 상기 보드가이더에 연결되는 변환 슬라이더를 포함하는 공기 조화기.
  3. 제2항에 있어서,
    상기 슬라이드 슬롯은 상기 가이드모터의 회전축과 교차되는 방향으로 연장되는 공기 조화기.
  4. 제2항에 있어서,
    상기 기류변환기는,
    상기 슬라이드 로드와 상기 슬라이드암을 결합하는 제1 힌지를 더 포함하고,
    상기 제1 힌지는 상기 가이드모터의 회전축에서 편심된 상기 슬라이드암에 결합되는 공기 조화기.
  5. 제2항에 있어서,
    상기 변환 슬라이더는 상기 보드가이더의 상단에 연결되는 공기 조화기.
  6. 제4항에 있어서,
    상기 슬라이드 슬롯의 길이는 상기 가이드모터의 회전축과 상기 제1 힌지 사이의 이격거리 보다 큰 공기 조화기.
  7. 제2항에 있어서,
    상기 스페이스 보드는 제1 방향을 따라 이동하고,
    상기 가이드모터의 회전축은 상기 제1 방향과 나란하게 배치되며,
    상기 보드가이더는 상기 제1 방향과 교차되는 제2방향을 따라 이동하며,
    상기 슬라이드 슬롯은 상기 제1방향 및 상기 제2방향과 교차되는 제3방향으로 연장되는 공기 조화기.
  8. 제1항에 있어서,
    상기 기류변환기는,
    상기 보드가이더와 상기 스페이스 보드 사이를 이격시켜 면접촉을 방지하는 마찰저감 돌기를 더 포함하는 공기 조화기.
  9. 제8항에 있어서,
    상기 마찰저감 돌기는,
    상기 보드가이더에 형성되고, 상기 스페이스 보드와 마주보는 면에서 돌출되며, 상기 스페이스 보드와 접촉되는 공기 조화기.
  10. 제7항에 있어서,
    상기 변환 슬라이더는,
    상기 제3방향에서 상기 스페이스 보드의 상부와 중첩되게 위치되는 공기 조화기.
  11. 제7항에 있어서,
    상기 가이드 모터와, 상기 슬라이드 로드는 상기 제3방향에서 상기 스페이스 보드의 상부와 중첩되게 위치되고, 상기 보드가이더 보다 상부에 위치되는 공기 조화기.
  12. 제1항에 있어서,
    상기 운동변환유닛은,
    상기 가이드모터의 회전축에 결합되어 상기 회전축과 교차되는 방향으로 연장되는 크랭크암; 및
    일단이 상기 크랭크암에 회전 가능하게 결합되고 타단이 상기 보드가이더에 회전 가능하게 결합되는 크랭크 로드를 포함하는 공기 조화기.
  13. 제12항에 있어서,
    상기 크랭크 로드는,
    일단이 상기 크랭크암에 회전 가능하게 결합되는 제1 크랭크 로드; 및
    일단이 상기 제1 크랭크 로드의 타단에 회전 가능하게 결합되고, 타단이 상기 보드가이더에 회전 가능하게 결합되는 제2 크랭크 로드를 포함하는 공기 조화기.
  14. 제12항에 있어서,
    상기 크랭크 로드는,
    상기 보드가이더의 상단에 결합되는 공기 조화기.
  15. 제13항에 있어서,
    상기 기류변환기는,
    상기 제1 크랭크 로드와 상기 크랭크암을 결합하는 제1크랭크 힌지를 더 포함하고,
    상기 제1크랭크 힌지는 상기 가이드모터의 회전축에서 편심된 상기 크랭크암에 결합되는 공기 조화기.
  16. 제12항에 있어서,
    상기 스페이스 보드는 제1 방향을 따라 이동하고,
    상기 보드가이더는 상기 제1 방향과 교차되는 제2방향을 따라 이동하며,
    상기 가이드모터의 회전축은 상기 제1방향 및 상기 제2방향과 교차되는 제3방향으로 연장되는 공기 조화기.
  17. 제16항에 있어서,
    상기 크랭크로드의 회전축은 상기 제3방향과 나란한 공기 조화기.
  18. 제1항에 있어서,
    상기 기류변환기는,
    상기 보드가이더의 이동을 가이드하는 가이드바디를 더 포함하는 공기 조화기.
  19. 제18항에 있어서,
    상기 가이드바디는 상기 가이드바디의 길이방향과 교차되는 방향으로 돌출된 바디돌기를 더 포함하고,
    상기 보드가이더는 상기 바디돌기가 삽입되어 가이드되는 제2 슬릿을 더 포함하는 공기 조화기.
  20. 구동력을 제공하는 가이드모터;
    공기의 유동을 가이드하는 스페이스 보드; 및
    상기 가이드모터의 회전력을 왕복 운동으로 변환하는 운동변환 유닛;
    상기 운동변환 유닛의 왕복 운동을 상기 스페이스 보드에 전달하는 보드가이더를 포함하고,
    상기 운동변환 유닛은,
    상기 가이드모터의 회전축에 결합되어 상기 회전축과 교차되는 방향으로 연장되는 슬라이드암;
    일단이 상기 슬라이드암에 회전 가능하게 결합되는 슬라이드 로드; 및
    상기 슬라이드 로드의 일단이 슬라이딩되게 결합되는 슬라이드 슬롯을 포함하고, 상기 보드가이더에 연결되는 변환 슬라이더를 포함하는 기류변환기.

  21. 제1항에 있어서,
    상기 서포터는,
    상기 스페이스 보드의 하부 부위에 배치되는 롤러; 및
    상기 스페이스 보드의 하측에 배치되어 상기 롤러를 지지하는 레일을 포함하는 공기 조화기.
  22. 제1항에 있어서,
    상기 스페이스 보드는,
    상기 블로잉스페이스로 돌출되면서 상승하고 상기 타워케이스로 수납되면서 하강하는 공기 조화기.
KR1020200181627A 2020-12-23 2020-12-23 공기 조화기 KR102622930B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200181627A KR102622930B1 (ko) 2020-12-23 2020-12-23 공기 조화기

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200181627A KR102622930B1 (ko) 2020-12-23 2020-12-23 공기 조화기

Publications (2)

Publication Number Publication Date
KR20220090767A KR20220090767A (ko) 2022-06-30
KR102622930B1 true KR102622930B1 (ko) 2024-01-08

Family

ID=82215132

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200181627A KR102622930B1 (ko) 2020-12-23 2020-12-23 공기 조화기

Country Status (1)

Country Link
KR (1) KR102622930B1 (ko)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206877265U (zh) * 2017-06-26 2018-01-12 华北电力大学(保定) 一种用于高性能cpu的新型无叶风扇散热器
JP2020051297A (ja) * 2018-09-26 2020-04-02 パナソニックIpマネジメント株式会社 送風装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102032192B1 (ko) * 2015-10-23 2019-10-15 삼성전자주식회사 공기조화기
GB2568937B (en) 2017-12-01 2020-08-12 Dyson Technology Ltd A fan assembly

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206877265U (zh) * 2017-06-26 2018-01-12 华北电力大学(保定) 一种用于高性能cpu的新型无叶风扇散热器
JP2020051297A (ja) * 2018-09-26 2020-04-02 パナソニックIpマネジメント株式会社 送風装置

Also Published As

Publication number Publication date
KR20220090767A (ko) 2022-06-30

Similar Documents

Publication Publication Date Title
TW202128268A (zh) 空氣調節機
KR20240014544A (ko) 에어클린팬
US11708997B2 (en) Air conditioner
US11802569B2 (en) Air conditioner
KR102622930B1 (ko) 공기 조화기
KR102658132B1 (ko) 에어클린팬
KR102356609B1 (ko) 공기 조화기용 팬장치
KR102630058B1 (ko) 공기 조화기용 팬
KR102553489B1 (ko) 공기 조화기용 팬장치
KR102553490B1 (ko) 공기 조화기용 팬장치
KR102389592B1 (ko) 에어클린팬
KR102336220B1 (ko) 공기 조화기용 팬장치
KR102585886B1 (ko) 공기 조화기용 팬장치
KR102658126B1 (ko) 에어클린팬
KR102630055B1 (ko) 에어클린팬
KR20210155167A (ko) 에어클린팬
KR102644819B1 (ko) 에어클린팬
KR102658127B1 (ko) 에어클린팬
KR20240032475A (ko) 블로워
KR20230163329A (ko) 에어클린팬
CN117968152A (zh) 空调

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant