KR102620551B1 - 통신 시스템들에서의 학습 - Google Patents

통신 시스템들에서의 학습 Download PDF

Info

Publication number
KR102620551B1
KR102620551B1 KR1020217042817A KR20217042817A KR102620551B1 KR 102620551 B1 KR102620551 B1 KR 102620551B1 KR 1020217042817 A KR1020217042817 A KR 1020217042817A KR 20217042817 A KR20217042817 A KR 20217042817A KR 102620551 B1 KR102620551 B1 KR 102620551B1
Authority
KR
South Korea
Prior art keywords
transmitter
parameters
transmission system
symbols
generating
Prior art date
Application number
KR1020217042817A
Other languages
English (en)
Other versions
KR20220010565A (ko
Inventor
제이콥 호이디스
오디오 파이칼 아이트
맥시밀리안 스타크
Original Assignee
노키아 테크놀로지스 오와이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 노키아 테크놀로지스 오와이 filed Critical 노키아 테크놀로지스 오와이
Publication of KR20220010565A publication Critical patent/KR20220010565A/ko
Application granted granted Critical
Publication of KR102620551B1 publication Critical patent/KR102620551B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/3405Modifications of the signal space to increase the efficiency of transmission, e.g. reduction of the bit error rate, bandwidth, or average power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0228Channel estimation using sounding signals with direct estimation from sounding signals
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/048Activation functions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/084Backpropagation, e.g. using gradient descent
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0212Channel estimation of impulse response
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0264Arrangements for coupling to transmission lines
    • H04L25/0266Arrangements for providing Galvanic isolation, e.g. by means of magnetic or capacitive coupling
    • H04L25/0268Arrangements for providing Galvanic isolation, e.g. by means of magnetic or capacitive coupling with modulation and subsequent demodulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03165Arrangements for removing intersymbol interference using neural networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/03592Adaptation methods
    • H04L2025/03598Algorithms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/03592Adaptation methods
    • H04L2025/03745Timing of adaptation
    • H04L2025/03764Timing of adaptation only during predefined intervals
    • H04L2025/0377Timing of adaptation only during predefined intervals during the reception of training signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Biophysics (AREA)
  • Computing Systems (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

송신기, 채널 및 수신기를 갖는 송신 시스템의 훈련가능 파라미터들을 초기화하는 것; 미분가능 분포 함수에 기반하여 훈련 심볼들을 생성하는 것; 훈련 모드에서 채널을 통해 변조된 훈련 심볼들을 수신기에 송신하는 것; 송신 시스템의 수신기에서 수신된 바와 같은 생성된 훈련 심볼들 및 변조된 훈련 심볼들에 기반하여 손실 함수를 생성하는 것; 및 손실 함수를 최소화하기 위해 송신 시스템의 업데이트된 파라미터들을 생성하는 것을 포함하는 장치, 방법 및 컴퓨터 프로그램이 설명된다.

Description

통신 시스템들에서의 학습
본 명세서는 통신 시스템들에서의 학습에 관한 것이다.
간단한 통신 시스템은 송신기, 송신 채널, 및 수신기를 포함한다. 송신기에서 수신기로 데이터의 송신에 사용되는 통신 방식의 선택은 이러한 통신 시스템들의 종단간(end-to-end) 성능에 상당한 영향을 미칠 수 있다. 개발이 이루어졌지만, 이 영역에서 추가 개발의 여지가 남아 있다.
제1 양태에서, 본 명세서는 송신 시스템의 훈련가능 파라미터들을 초기화(예를 들어, 무작위로, 또는 일부 다른 방식으로 - 이를테면 채널 정보에 기반하여)하기 위한 수단으로서, 송신 시스템은 송신기, 채널 및 수신기를 포함하고, 송신기는 하나 이상의 입력들(예를 들어, 데이터 비트(들) 또는 데이터 스트림)을 하나 이상의 데이터 심볼들로 변환하기 위한 송신기 알고리즘(예를 들어, 신경망으로서 구현됨) 및 변조 방식에 따라 상기 데이터 심볼들을 송신 심볼들로 변환하기 위한 변조기를 포함하고, 송신 시스템의 훈련가능 파라미터들은 개별 데이터 심볼들이 송신기 알고리즘에 의해 출력될 확률을 정의하는 확률 함수(예를 들어, 본원에 설명된 바와 같은, 확률적 성형을 구현)를 포함하는, 상기 훈련가능 파라미터들을 초기화하기 위한 수단; 분포 함수에 기반하여 훈련 심볼들을 생성하기 위한 수단으로서, 분포 함수는 미분가능한, 상기 훈련 심볼들을 생성하기 위한 수단; 훈련 모드에서 채널을 통해 변조된 훈련 심볼들을 수신기로 송신하기 위한 수단; 송신 시스템의 수신기에서 수신된 바와 같은 생성된 훈련 심볼들 및 변조된 훈련 심볼들에 기반하여 손실 함수를 생성하기 위한 수단; 손실 함수를 최소화하기 위해 송신 시스템의 업데이트된 파라미터들을 생성하기 위한 수단(예를 들어, 기계 학습 원리들을 사용하여, 예를 들어 신경망을 업데이트함으로써)으로서, 송신 시스템의 업데이트된 파라미터들을 생성하는 것은 송신기 알고리즘의 파라미터들을 업데이트하는 것을 포함하는, 상기 송신 시스템의 업데이트된 파라미터들을 생성하기 위한 수단; 및 제1 조건에 도달할 때까지 훈련 심볼들 생성, 손실 함수 생성 및 송신 시스템의 파라미터들 업데이트를 반복하기 위한 수단을 포함하는 장치를 설명한다. 데이터 심볼들은 유한하고 이산적인 심볼들의 세트일 수 있다. 데이터 심볼들은 송신기의 성상도 포인트들에 대응할 수 있다. 확률 함수는 미분가능하지 않은 이산 함수일 수 있다(그리고 훈련 동안 미분가능 근사화(분포 함수)로 대체될 수 있음). 미분가능 분포 함수에 기반한 훈련 심볼들의 생성은 파라미터들의 훈련 동안 역-전파의 사용을 가능하게 할 수 있다.
훈련 알고리즘의 파라미터들을 업데이트하는 것은 확률 함수를 훈련하는 것을 포함할 수 있다. 상기 파라미터들을 업데이트하는 것은 또한 변조기 성상도와 같은 다른 파라미터들을 업데이트하는 것을 포함할 수 있다.
분포 함수는 확률 함수의 근사화일 수 있다. 예를 들어, 분포 함수는 확률 함수의 미분가능 근사화일 수 있다(이 확률 함수는 이산적이고 미분가능하지 않을 수 있음).
훈련 심볼들은 검벨-소프트맥스(Gumbel-softmax) 재파라미터화를 사용하는 것과 같은 검벨-소프트맥스 알고리즘에 의해 생성될 수 있다.
송신 심볼들(및 훈련 모드의 훈련 심볼들)은 상기 변조기에 의해 구현되는 변조 방식의 고정된 성상도 포지션들에 대응할 수 있다. 대안적으로, 송신 심볼들(및 훈련 모드의 훈련 심볼들)은 상기 변조기에 의해 구현되는 변조 방식의 가변 성상도 포지션들에 대응할 수 있고, 여기서 송신 시스템의 훈련가능 파라미터들은 상기 변조 방식의 성상도 포인트 포지션들을 포함한다.
수신기는 동작 모드에서 상기 채널을 통해 송신된 바와 같은 상기 송신 심볼들을 수신하고 훈련 모드에서 채널을 통해 송신된 바와 같은 상기 변조된 훈련 심볼들을 수신하도록 구성될 수 있다.
송신 시스템의 업데이트된 파라미터들을 생성하는 것은 훈련가능 수신기 알고리즘의 파라미터들을 업데이트하는 것을 포함할 수 있다. 따라서, 예를 들어, 송신 시스템의 종단간 훈련이 제공될 수 있다.
일부 실시예들은 송신 시스템의 생성된 업데이트된 파라미터들을 사용하여 송신 시스템의 훈련가능 파라미터들을 업데이트하기 위한 수단을 포함할 수 있다. 예를 들어, 송신기 파라미터들은 훈련 모드에서 업데이트되고, 이어서 송신기 알고리즘에 배포될 수 있다. 송신기 시스템의 훈련가능 파라미터들은 다음 중 하나 이상: 송신기 알고리즘의 훈련가능 파라미터들; 변조기의 훈련가능 파라미터들; 및 수신기의 훈련가능 파라미터들을 포함할 수 있다.
확률 함수 및 분포 함수는 송신 시스템의 채널 정보(예를 들어, 신호-대-잡음비)에 적어도 부분적으로 의존할 수 있다.
일부 실시예들에서, 제1 조건은 정의된 수행 레벨을 포함한다. 대안적으로, 또는 추가로, 제1 조건은 정의된 수의 반복들을 포함할 수 있다.
송신기 알고리즘은 동작 모드에서 룩업 테이블(look-up table)로 구현될 수 있다.
손실 함수는 블록 오류율, 비트 오류율, 상호 정보 및 범주형 교차-엔트로피(categorical cross-entropy) 중 하나 이상과 관련될 수 있다.
송신 시스템의 업데이트된 파라미터들을 생성하기 위한 수단은 훈련 모드에서 사용되는 심볼 근사치들의 배치 크기(batch size) 및 학습률 중 하나 이상을 최적화할 수 있다.
송신 시스템의 업데이트된 파라미터들을 생성하기 위한 수단은 확률론적 경사 하강법(또는 일부 다른 역전파 알고리즘)을 사용하여 상기 파라미터들을 업데이트할 수 있다.
송신기는 상기 송신기 알고리즘을 구현하도록 구성된 송신기 신경망을 포함할 수 있다. 수신기 알고리즘은 수신기 신경망을 포함할 수 있다.
상기 수단은 적어도 하나의 프로세서; 및 컴퓨터 프로그램 코드를 포함하는 적어도 하나의 메모리를 포함할 수 있고, 적어도 하나의 메모리 및 컴퓨터 프로그램은 적어도 하나의 프로세서와 함께, 장치의 수행을 야기하도록 구성된다.
제2 양태에서, 본 명세서는: 송신 시스템의 훈련가능 파라미터들을 초기화하는 단계로서, 송신 시스템은 송신기, 채널 및 수신기를 포함하고, 송신기는 하나 이상의 입력들을 하나 이상의 데이터 심볼들로 변환하기 위한 송신기 알고리즘 및 변조 방식에 따라 상기 데이터 심볼들을 송신 심볼들로 변환하기 위한 변조기를 포함하고, 송신 시스템의 훈련가능 파라미터들은 개별 데이터 심볼들이 송신기 알고리즘에 의해 출력될 확률을 정의하는 확률 함수를 포함하는, 상기 훈련가능 파라미터들을 초기화하는 단계; 분포 함수에 기반하여 훈련 심볼들을 생성하는 단계로서, 분포 함수는 미분가능한, 상기 훈련 심볼들을 생성하는 단계; 훈련 모드에서 채널을 통해 변조된 훈련 심볼들을 수신기로 송신하는 단계; 송신 시스템의 수신기에서 수신된 바와 같은 생성된 훈련 심볼들 및 변조된 훈련 심볼들에 기반하여 손실 함수를 생성하는 단계; 손실 함수를 최소화하기 위해 송신 시스템의 업데이트된 파라미터들을 생성하는 단계로서, 송신 시스템의 업데이트된 파라미터들을 생성하는 단계는 송신기 알고리즘의 파라미터들을 업데이트하는 단계를 포함하는, 상기 송신 시스템의 업데이트된 파라미터들을 생성하는 단계; 및 제1 조건에 도달할 때까지 훈련 심볼들을 생성하는 단계, 손실 함수를 생성하는 단계 및 송신 시스템의 파라미터들을 업데이트하는 단계를 반복하는 단계를 포함하는 방법을 설명한다.
훈련 심볼들은 검벨-소프트맥스 알고리즘에 의해 생성될 수 있다.
송신 심볼들은 상기 변조기에 의해 구현되는 변조 방식의 고정된 성상도 포지션들에 대응할 수 있다. 대안적으로, 송신 심볼들은 상기 변조기에 의해 구현되는 변조 방식의 가변 성상도 포지션들에 대응할 수 있고, 여기서 송신 시스템의 훈련가능 파라미터들은 상기 변조 방식의 성상도 포인트 포지션들을 포함한다.
송신 시스템의 업데이트된 파라미터들을 생성하는 단계는 훈련가능 수신기 알고리즘의 파라미터들을 업데이트하는 것을 포함할 수 있다.
일부 실시예들은 송신 시스템의 생성된 업데이트된 파라미터들을 사용하여 송신 시스템의 훈련가능 파라미터들을 업데이트하는 것을 포함할 수 있다. 송신기 시스템의 상기 훈련가능 파라미터들은 다음 중 하나 이상: 송신기 알고리즘의 훈련가능 파라미터들; 변조기의 훈련가능 파라미터들; 및 수신기의 훈련가능 파라미터들을 포함할 수 있다.
확률 함수 및 분포 함수는 송신 시스템의 채널 정보에 적어도 부분적으로 의존할 수 있다.
제2 양태는 전술한 바와 같은 제1 양태의 특징들 중 적어도 일부를 더 포함할 수 있다.
제3 양태에서, 본 명세서는 제2 양태를 참조하여 설명된 바와 같은 임의의 방법을 수행하도록 구성된 장치를 설명한다.
제4 양태에서, 본 명세서는 제2 양태의 방법에 의해 생성된 룩업 테이블 또는 어레이를 포함하는 작업 산물을 설명한다.
제5 양태에서, 본 명세서는 컴퓨팅 장치에 의해 실행될 때 컴퓨팅 장치가 제3 또는 제4 양태를 참조하여 설명된 바와 같은 임의의 방법을 수행하게 하는 컴퓨터-판독가능 명령들을 설명한다.
제6 양태에서, 본 명세서는 다음 적어도 하나: 송신 시스템의 훈련가능 파라미터들을 초기화하는 것으로서, 송신 시스템은 송신기, 채널 및 수신기를 포함하고, 송신기는 하나 이상의 입력들을 하나 이상의 데이터 심볼들로 변환하기 위한 송신기 알고리즘 및 변조 방식에 따라 상기 데이터 심볼들을 송신 심볼들로 변환하기 위한 변조기를 포함하고, 송신 시스템의 훈련가능 파라미터들은 개별 데이터 심볼들이 송신기 알고리즘에 의해 출력될 확률을 정의하는 확률 함수를 포함하는, 상기 훈련가능 파라미터들을 초기화하는 것; 분포 함수에 기반하여 훈련 심볼들을 생성하는 것으로서, 분포 함수는 미분가능한, 상기 훈련 심볼들을 생성하는 것; 훈련 모드에서 채널을 통해 변조된 훈련 심볼들을 수신기로 송신하는 것; 송신 시스템의 수신기에서 수신된 바와 같은 생성된 훈련 심볼들 및 변조된 훈련 심볼들에 기반하여 손실 함수를 생성하는 것; 손실 함수를 최소화하기 위해 송신 시스템의 업데이트된 파라미터들을 생성하는 것으로서, 송신 시스템의 업데이트된 파라미터들을 생성하는 것은 송신기 알고리즘의 파라미터들을 업데이트하는 것을 포함하는, 상기 송신 시스템의 업데이트된 파라미터들을 생성하는 것; 및 제1 조건에 도달할 때까지 훈련 근사치들을 생성, 손실 함수를 생성 및 송신 시스템의 파라미터들을 업데이트하는 것을 반복하는 것을 수행하기 위해 저장된 프로그램 명령들을 포함하는 컴퓨터 판독가능 매체를 설명한다.
제7 양태에서, 본 명세서는 장치가 적어도 다음: 송신 시스템의 훈련가능 파라미터들을 초기화하는 것으로서, 송신 시스템은 송신기, 채널 및 수신기를 포함하고, 송신기는 하나 이상의 입력들을 하나 이상의 데이터 심볼들로 변환하기 위한 송신기 알고리즘 및 변조 방식에 따라 상기 데이터 심볼들을 송신 심볼들로 변환하기 위한 변조기를 포함하고, 송신 시스템의 훈련가능 파라미터들은 개별 데이터 심볼들이 송신기 알고리즘에 의해 출력될 확률을 정의하는 확률 함수를 포함하는, 상기 훈련가능 파라미터들을 초기화하는 것; 분포 함수에 기반하여 훈련 심볼들을 생성하는 것으로서, 분포 함수는 미분가능한, 상기 훈련 심볼들을 생성하는 것; 훈련 모드에서 채널을 통해 변조된 훈련 심볼들을 수신기로 송신하는 것; 송신 시스템의 수신기에서 수신된 바와 같은 생성된 훈련 심볼 및 변조된 훈련 심볼에 기반하여 손실 함수를 생성하는 것; 손실 함수를 최소화하기 위해 송신 시스템의 업데이트된 파라미터들을 생성하는 것으로서, 송신 시스템의 업데이트된 파라미터들을 생성하는 것은 송신기 알고리즘의 파라미터들을 업데이트하는 것을 포함하는, 상기 송신 시스템의 업데이트된 파라미터들을 생성하는 것; 및 제1 조건에 도달할 때까지 심볼 근사치들을 생성하는 것, 손실 함수를 생성하는 것 및 송신 시스템의 파라미터들을 업데이트하는 것을 반복하는 것을 수행하게 하기 위한 명령들을 포함하는 컴퓨터 프로그램을 설명한다.
제8 양태에서, 본 명세서는: 적어도 하나의 프로세서; 및 적어도 하나의 메모리를 포함하는 장치를 설명하고, 적어도 하나의 메모리는 적어도 하나의 프로세서에 의해 실행될 때, 장치가: 송신 시스템의 훈련가능 파라미터들을 초기화하게 하는 것으로서, 송신 시스템은 송신기, 채널 및 수신기를 포함하고, 송신기는 하나 이상의 입력들을 하나 이상의 데이터 심볼들로 변환하기 위한 송신기 알고리즘 및 변조 방식에 따라 상기 데이터 심볼들을 송신 심볼들로 변환하기 위한 변조기를 포함하고, 송신 시스템의 훈련가능 파라미터들은 개별 데이터 심볼들이 송신기 알고리즘에 의해 출력될 확률을 정의하는 확률 함수를 포함하는, 상기 훈련가능 파라미터들을 초기화하게 하고; 분포 함수에 기반하여 훈련 심볼들을 생성하게 하는 것으로서, 분포 함수는 미분가능한, 상기 훈련 심볼들을 생성하게 하고; 훈련 모드에서 채널을 통해 변조된 훈련 심볼들을 수신기로 송신하게 하고; 송신 시스템의 수신기에서 수신된 바와 같은 생성된 훈련 심볼 및 변조된 훈련 심볼에 기반하여 손실 함수를 생성하게 하고; 손실 함수를 최소화하기 위해 송신 시스템의 업데이트된 파라미터들을 생성하게 하는 것으로서, 송신 시스템의 업데이트된 파라미터들을 생성하는 것은 송신기 알고리즘의 파라미터들을 업데이트하는 것을 포함하는, 상기 송신 시스템의 업데이트된 파라미터들을 생성하게 하고; 제1 조건에 도달할 때까지 심볼 근사치들을 생성, 손실 함수를 생성 및 송신 시스템의 파라미터들을 업데이트를 반복하게 하는 컴퓨터 프로그램 코드를 포함한다.
제9 양태에서, 본 명세서는: 송신 시스템의 훈련가능 파라미터들을 초기화(예를 들어, 무작위로, 또는 일부 다른 방식으로 - 이를테면 채널 정보에 기반하여)하기 위한 초기화 모듈로서, 송신 시스템은 송신기, 채널 및 수신기를 포함하고, 송신기는 하나 이상의 입력들(예를 들어, 데이터 비트(들) 또는 데이터 스트림)을 하나 이상의 데이터 심볼들로 변환하기 위한 송신기 알고리즘(예를 들어, 신경망으로서 구현됨) 및 변조 방식에 따라 상기 데이터 심볼들을 송신 심볼들로 변환하기 위한 변조기를 포함하고, 송신 시스템의 훈련가능 파라미터들은 개별 데이터 심볼들이 송신기 알고리즘에 의해 출력될 확률을 정의하는 확률 함수(예를 들어, 본원에 설명된 바와 같은, 확률적 성형을 구현)를 포함하는, 상기 훈련가능 파라미터들을 초기화하기 위한 초기화 모듈; 분포 함수에 기반하여 훈련 심볼들을 생성하기 위한 훈련 모듈(이를테면 성형 디바이스)로서, 분포 함수는 미분가능한, 상기 훈련 심볼들을 생성하기 위한 훈련 모듈; 훈련 모드에서 채널을 통해 변조된 훈련 심볼들을 수신기로 송신하기 위한 송신기; 송신 시스템의 수신기에서 수신된 바와 같은 생성된 훈련 심볼들 및 변조된 훈련 심볼들에 기반하여 손실 함수를 생성하기 위한 프로세서; 손실 함수를 최소화하기 위해 송신 시스템의 업데이트된 파라미터들을 생성하기 위한 업데이트 모듈(예를 들어, 기계 학습 원리들을 사용하여, 예를 들어 신경망을 업데이트함으로써)로서, 송신 시스템의 업데이트된 파라미터들을 생성하는 것은 송신기 알고리즘의 파라미터들을 업데이트하는 것을 포함하는, 상기 송신 시스템의 업데이트된 파라미터들을 생성하기 위한 업데이트 모듈; 및 제1 조건에 도달할 때까지 훈련 심볼들 생성, 손실 함수 생성 및 송신 시스템의 파라미터들 업데이트를 반복하기 위한 제어 모듈을 포함하는 장치를 설명한다. 데이터 심볼들은 유한하고 이산적인 심볼들의 세트일 수 있다. 데이터 심볼들은 송신기의 성상도 포인트들에 대응할 수 있다. 확률 함수는 미분가능하지 않은 이산 함수일 수 있다(그리고 훈련 동안 미분가능 근사화(분포 함수)로 대체될 수 있음).
예시적인 실시예들은 이제 다음 개략도들을 참조하여 비-제한적인 예들을 통해 설명될 것이다.
도 1은 예시적인 실시예에 따른 예시적인 종단간 통신 시스템의 블록도이다.
도 2는 도 1의 통신 시스템에서 사용될 수 있는 예시적인 송신기의 블록도이다.
도 3은 도 1의 통신 시스템에서 사용될 수 있는 예시적인 수신기의 블록도이다.
도 4는 예시적인 실시예에 따른 송신 시스템의 블록도이다.
도 5는 예시적인 실시예에 따른 송신기의 블록도이다.
도 6은 예시적인 실시예에 따른 예시적인 수신기 모듈의 블록도이다.
도 7은 예시적인 실시예에 따른 알고리즘을 도시하는 흐름도이다.
도 8은 예시적인 실시예에 따른 시스템의 구성요소들의 블록도이다.
도 9a 및 도 9b는 유형 매체, 각각 착탈식 메모리 유닛 및 컴퓨터에 의해 실행될 때 실시예들에 따른 동작을 수행하는 컴퓨터-판독가능 코드를 저장하는 콤팩트 디스크(CD)를 도시한다.
본 발명의 다양한 실시예에 대한 보호 범위는 독립 청구항들에 의해 설명된다. 만약 있다면, 독립 청구항의 범위에 속하지 않는 명세서에 설명된 실시예들 및 특징들은 본 발명의 다양한 실시예들을 이해하는 데 유용한 예들로서 해석되어야 한다.
설명 및 도면들에서, 동일한 참조 번호들은 전체에 걸쳐 동일한 요소들을 지칭한다.
도 1은 예시적인 실시예에 따른, 일반적으로 참조 번호 1로 표시된 예시적인 종단간 통신 시스템의 블록도이다. 시스템(1)은 송신기(2), 채널(4) 및 수신기(6)를 포함한다. 시스템 레벨에서 볼 때, 시스템(1)은 송신기(2)의 입력에서 수신된 입력 비트들(b)을 수신기(6)의 출력에서 출력 비트()로 변환한다. 보다 구체적으로, 송신기(2)는 채널(4)을 통한 송신을 위해 입력 비트들()을 송신 심볼들(x)로 변환하고 수신기(6)는 채널(4)로부터 수신된 심볼들(y)로부터 출력 비트들()을 생성한다.
도 2는 위에서 설명된 통신 시스템(1)에서 사용될 수 있는 예시적인 송신기(2)의 블록도이다. 도 2에 도시된 바와 같이, 송신기(2)는 비트-투-심볼 모듈(12) 및 변조기(14)를 포함한다. 비트-투-심볼 모듈(12)은 입력 데이터 비트들(b)을 수신하고 송신을 위해 이러한 비트들을 데이터 심볼들(s)로 변환한다. 예를 들어, 입력 데이터 비트들(b)은 데이터 스트림의 형태를 취할 수 있고, 이 데이터 스트림은 비트-투-심볼 모듈(12)에 의한 송신을 위해 패키징된다. 변조기(14)는 변조 방식에 따라 데이터 심볼들을 송신 심볼들(x)로 변환한다. 이어서, 송신 심볼들은 채널(4)을 통해 송신되고 수신기(6)에서 수신된 심볼들(y)로 수신된다.
도 3은 위에서 설명된 통신 시스템(1)에서 사용될 수 있는 예시적인 수신기(6)의 블록도이다. 도 3에 도시된 바와 같이, 수신기(6)는 복조기(22) 및 디매퍼 모듈(demapper module)(24)을 포함한다. 복조기(22)는 수신된 심볼들(y)을 심볼 확률들()로 변환하고 디매퍼(24)는 심볼 확률들을 비트 확률들()로 변환한다.
변조기(14)(및 복조기(22))의 구현에 다수의 변조 기법들이 사용될 수 있다. 이들 변조 기법들은 송신되는 신호에 기반하여 반송파 신호의 진폭이 수정되는 진폭 편이 키잉(ASK: Amplitude Shift Keying)와 송신되는 신호에 기반하여 반송파 신호의 위상이 수정되는 위상 편이 키잉(PSK: Phase Shift Keying)을 포함한다. 예를 들어, 직교 위상 편이 키잉(QPSK: quadrature phase shift keying)은 2개의 비트들이 한 번에 변조되어, 4개의 가능한 반송파 위상 편이들(예를 들어, 0, +90도, 180도, -90도) 중 하나를 선택하는 위상 편이 키잉의 한 형태이다. 이러한 반송파 위상 및 진폭들은 종종 복잡한 평면에서 성상도 포지션들로 표현된다. 통상의 기술자는 다른 많은 적합한 변조 기법들을 알고 있을 것이다.
통신 시스템(1)과 같은 정보를 송신하는 데 사용되는 변조 방식의 선택은 그러한 통신 시스템들의 종단간 성능에 영향을 미친다. 또한, 그러한 변조 방식들은 최적화될 수 있다.
(진폭 및/또는 위상 편이 변조 방식들과 같은) 다중 성상도 포인트들을 갖는 통신 방식들의 경우, 복잡한 평면에서 이러한 성상도 포인트들의 위치들은 최적화될 수 있다. 대안적으로, 또는 추가적으로, 그러한 성상도 포인트들이 사용되는 상대적 빈도가 최적화될 수 있다. 이러한 방법들은 본원에서 각각 기하학적 성형 및 확률적 성형으로 지칭된다.
도 4는 예시적인 실시예에 따른, 일반적으로 참조 번호 30으로 표시된 송신 시스템의 블록도이다. 송신 시스템(30)은 송신기(32), 채널(34) 및 수신기(36)(이들은 위에서 설명된 송신기(2), 채널(4) 및 수신기(6)와 일부 유사성들을 가짐)를 포함한다.
도 4에 도시된 바와 같이, 송신기(32)는 비트-투-심볼 모듈(37)(위에서 설명된 비트-투-심볼 모듈(12)과 유사함), 변조기(38)(변조기(14)와 유사함) 및 성형 디바이스(39)를 포함한다. 수신기(36)는 복조기(40)(복조기(22)와 유사함) 및 디매퍼 모듈(41)(디매퍼 모듈(24)과 유사함)을 포함한다.
아래에서 더 논의되는 바와 같이, 송신기(32)는 비트들의 입력 스트림을 송신 심볼들에 매핑한다. 송신기는 신경망(또는 훈련가능 파라미터를 갖는 일부 다른 함수)을 포함한다.
비트-투-심볼 모듈(37)은 로 표시되는 크기(N)의 인입 비트 시퀀스를 수신하고, 해당 비트 시퀀스를 하이퍼심볼들()에 매핑하여, 심볼들(s)의 발생 빈도들은 성형 디바이스(39)에 의해 제공되는 확률 분포()에 대응한다. 여기서, 는 하이퍼심볼들의 유한하고 이산적인 세트이다. 하이퍼심볼(s)은 s를 복소 송신 심볼들()에 매핑하는 변조기(38)에 제공되고, 여기서 M는 채널 사용들의 수이다.
시스템(30)의 채널(34)은 복소 송신 심볼들()을 취하고 에서 풀링(pool)된 M개의 수신된 샘플들을 출력한다. 아마도 알려지지 않은 전이 확률()은 채널(34)의 입력-출력 관계를 설명한다.
시스템(30)의 수신기(36)는 채널(34)에 의해 생성된 M개의 샘플들의 시퀀스()에 대해 동작한다. 수신기(36)의 복조기(40)는 수신된 심볼들을 심볼 확률들()에 매핑하고, 디매퍼 모듈(41)은 비트 확률들()을 출력한다.
도 5는 예시적인 실시예에 따른, 일반적으로 참조 번호 50으로 표시된 송신기의 블록도이다. 송신기(50)는 전술한 송신기(32)의 예이고; 특히, 송신기(50)는 위에서 설명된 송신기(32)를 훈련하기 위한 예시적인 배열을 도시한다.
송신기(50)는 예시적인 실시예에 따른 비트-투-심볼 모듈(37), 변조기(38) 및 성형 디바이스(39)를 포함한다. 성형 디바이스(39)는 송신기(50)의 훈련 동안 사용될 수 있다. 아래에서 추가로 설명되는 바와 같이, 정상 동작 모드에서, 성형 디바이스(39)는 예를 들어 적절한 설정들을 제공하는 룩업 테이블로 대체될 수 있다.
변조기(38)는 임베딩 모듈(52), 정규화 모듈(54) 및 실수-투-복소수 변환 모듈(56)을 포함한다. 성형 디바이스(39)는 파라미터 모듈(60), 합산 모듈(62), 검벨 샘플기(63), 소프트맥스 모듈(64), 소프트맥스 τ 모듈(65) 및 직선형 추정기(66)를 포함한다.
비트-투-심볼 모듈(37)은 인입 비트들(b)을 하이퍼심볼들(s)에 매핑한다. 이 매핑은 심볼들이 사용되는 빈도가 주어진 확률 분포()와 일치하도록 구현된다. 확률 분포()는 아래에서 더 논의되는 바와 같이 성형 모듈(39)에 의해 생성된다.
비트들-투-심볼들 모듈(37)은 다양한 방식으로 구현될 수 있다. 예로서, CCDM(constant composition distribution matching) 접근법이 사용될 수 있다. CCDM은 N1 비트들을 N2 심볼들의 벡터에 매핑하는 것을 포함하고, 여기서 N1 및 N2는 일반적으로 큰 수들이다. 가능한 모든 크기(N 2 )의 심볼들의 벡터들의 세트로부터, 심볼들이 원하는 목표 확률들로 대략적으로 나타나도록 하는 것을 선택한다. 이러한 선택된 벡터들은 세트()를 형성한다. N2가 클수록, 목표 확률들의 근사치가 더 좋다. N1이도록 해야 한다. 이어서, 산술 코딩을 사용하여 로부터 심볼들의 벡터들에 크기(N1)의 비트들의 벡터들을 매핑한다.
아래에서 상세히 논의되는 바와 같이, 역전파와 같은 기계-학습 원리들을 사용하여 시스템(50)을 훈련시키는 것이 바람직할 수 있다. 비트들-투-심볼 모듈(37)에 의해 수행되는 연산은 이산적이고 미분가능하지 않은 함수이고, 따라서, 기계 학습에 사용되는 많은 훈련 기법들은 적용할 수 없다.
성형 디바이스(39)는 파라미터들(θ)(또는 임의의 다른 훈련가능 함수)를 갖는 신경망으로서 구현될 수 있다. 도 5에서 제안된 바와 같이, 성형 디바이스(39)는 직선형 검벨 소프트맥스 재파라미터화 기법을 이용할 수 있다. 검벨 소프트맥스 기법은 임의의 이산 확률 분포()의 샘플들()을 하기에 의해 대략적으로 샘플링할 수 있다고 언급한다:
(1)
여기서,
(2)
그리고 를 갖는 는 검벨(0,1) 분포로부터의 샘플이고, 를 갖는 는 파라미터들(θ)을 갖는 훈련가능 신경망에 의해 계산된 소위 로짓(logit)(예를 들어, 비정규화 확률들의 로그 - 소프트맥스 함수는 이 프로세스를 역전시킴)이다. (파라미터(τ)는 아래에서 추가로 논의된다.)
분포()는 에 의해 로짓들로부터 검색될 수 있다. 시스템(50)에서, 로짓들을 생성하는 신경망의 예시적인 아키텍처가 묘사된다. 로짓들은 예에서 직접 훈련되므로, . 다른 아키텍처들이 또한 가능하다는 것이 유념된다. 예를 들어, 로짓들은 신경망에 의한 채널 정보(예를 들어, 신호-투-잡음비)로부터의 컴퓨터일 수 있다.
θ를 최적화함으로써, 분포()를 최적화한다.
방정식 (1)에서 소프트맥스 연산자 대신 아그맥스(argmax) 연산자를 사용하면, 이것은 정확한 분포()에서 샘플링을 가능하게 한다. 아그맥스 출력은 원-핫(one-hot) 표현, 즉 단일 요소가 1로 설정되고 다른 요소가 0으로 설정된 벡터로 변환된다. 1로 설정된 요소의 인덱스는 아그맥스 출력에 대응한다. 그러나, 아그맥스 연산자는 미분가능하지 않으므로, 일반적인 확률론적 경사 하강법(SGD) 또는 유사한 역전파 기법들에 의한 의 최적화를 방지한다. 소프트맥스 함수는 아그맥스 연산자의 미분가능한 근사치로 사용될 수 있다. 양수 파라미터(τ)는 생성된 샘플들()의 분포가 정확한 분포에서 얼마나 크게 벗어나는지를 제어한다. τ를 낮은 값으로 설정하는 것은 더 나은 근사화를 가능하게 하지만, 소프트맥스 τ 레이어(layer)의 선명도를 증가시켜, 경사의 역전파를 더 어렵게 만들기 때문에, 훈련을 더 어렵게 만든다. 소프트맥스 함수의 단점은 원-핫 벡터의 근사치만 출력한다는 것이다. 훈련 시, 변조기의 입력이 항상 진정한 원-핫 벡터임을 보장하기 위해, 소프트맥스의 출력은 직선형 추정기(66)에 공급될 수 있다. 직선형 추정기는 (가장 큰 요소를 1로 설정하고 다른 모든 요소들을 0으로 설정함으로써) 입력을 가장 가까운 진정한 원-핫 벡터로 이산화하는 매우 간단한 유닛이지만. 역전파를 수행할 때 건너뛸 수 있다(즉, 이산화는 무시됨).
확률론적 경사 하강법은 역전파 기울기들에 기반하여 훈련가능 파라미터들을 최적화하려고 한다. 전술한 배열에서, 비트들-투-심볼들 모듈(37)이 아닌 제안된 샘플링 디바이스만이 훈련가능하기 때문에, 상이한 서브모듈들은 훈련 및 배포 시에 활성이다. 이것은 시스템(50)의 스위치(58)에 의해 묘사된다.
훈련 동안, 훈련가능 성형 디바이스(39)가 활성화되고, 하이퍼심볼들(s)은 이 디바이스에 의해 생성된다. 정보 속도를 최대화하는 분포()를 학습하기 위해, 역전파 기울기들의 흐름은 훈련가능 디바이스에 공급되고 이에 따라 파라미터들(θ)이 업데이트된다. 훈련이 완료되면, 학습된 분포()는 비트들-투-심볼들 모듈(37)에 공급되고 스위치(58)는 "평가"로 설정된다. 따라서, 배포 시, 이제 심볼들은 비트들-투-심볼들 모듈(37)에 의해 생성되고, 이 모듈(37)은 인입 비트 스트림을 학습된 주파수()를 갖는 하이퍼심볼들에 매핑한다. 위에서 언급한 바와 같이, 이러한 배열은 룩업 테이블 또는 일부 유사한 모듈에 의해 구현될 수 있다.
변조기(38)는 복소 평면의 성상 포인트들(x)에 심볼들(s)을 매핑한다. 이러한 포인트들의 실제 위치는 고정되거나 로 함께 최적화될 수 있다. 성상도가 또한 학습되면, 변조기(38)는 훈련가능 파라미터들(또는 임의의 다른 학습가능 함수)을 갖는 신경망으로 구현될 수 있고 로 표시된다. 훈련가능 변조기의 예시적인 아키텍처는 도 5에 도시되고, 이는 차원()의 임베딩 레이어(52) 및 일부 전력 제약, 예를 들어, 을 보장하기 위해 학습된 분포()를 제2 입력으로 취하는 정규화 레이어(54)를 포함한다. 마지막으로, 실수-투-복소수 변환 모듈(56)은 2M개의 실제 출력들을 M개의 복소 채널 심볼들에 매핑한다. 통상의 기술자는 (특히 성상도 포인트들의 위치들이 고정된 경우) 변조기(38)의 대안적인 구현들을 알 것이다.
시스템들(30 및 50)은 종단간 학습을 사용하여 훈련될 수 있다. 이러한 접근법으로, 송신기(32), 채널(34) 및 수신기(36)는 단일 신경망으로 구현될 수 있고, 종단간 시스템은 입력(들) 및 출력을 재구성하도록 훈련될 수 있다. 일부 실시예들에서, 미분 채널 모델은 이용 가능한 것으로 가정될 수 있다. 예를 들어, 적합한 채널 모델이 이용가능하지 않은 경우에 대안적인 실시예들이 가능하다.
종단간 훈련을 통해, 신경망(또는 다른 훈련가능 함수)으로 구현된 파라미터들()을 갖는 훈련가능 수신기()가 제공될 수 있다.
도 6은 예시적인 실시예에 따른, 일반적으로 참조 번호 70으로 표시된 예시적인 수신기 모듈의 블록도이다. 수신기 모듈(70)은 복소수-투-실수 변환 모듈(71), 제1 조밀한 레이어(72), 제2 조밀한 레이어(73) 및 소프트맥스 레이어(74)를 포함한다. 시스템(70)에 2개의 조밀한 레이어를 제공하는 것은 예시일 뿐이고; 임의의 수의 조밀한 레이어들이 제공될 수 있다.
복소수-투-실수 변환 모듈(71)은 수신된 벡터()를 실수 값들로 변환한다. 이것은, 예를 들어 의 값들을 취하는 벡터를 획득하기 위해 샘플의 실수부와 허수부를 연결하여 행해진다.
그렇게 획득된 벡터는 조밀한 레이어들(72 및 73)에 제공되어 공급되고, 조밀한 레이어들은 상이한 활성화 함수들(예를 들어, ReLU, tanh, sigmoid, linear 등)를 가질 수 있다. 소프트맥스 레이어의 마지막 레이어는 출력 차원들을 가지며 소프트맥스 활성화 함수들을 활용하여 이산 확률 질량 함수()를 생성하고, 이 함수의 요소들은 심볼(s)이 송신된 확률로 해석될 수 있다.
(확률적 성형과 관련된) 훈련가능 함수(θ) 중 하나 이상을 결정하기 위해, (성상도 포지션들 또는 기하학적 성형과 관련된) 및 (수신기와 관련된) 확률론적 경사 하강법(또는 일부 유사한 알고리즘)이 수행된다. 최소화될 수 있는 하나의 가능한 손실 함수는 심볼 엔트로피를 뺀 교차-엔트로피(CE) 손실 함수이다:
(3)
방정식 (3)에서, 심볼들(s) 및 채널 출력들(y)의 모든 실현들에 대한 기대치가 적용된다. 독립적이고 동일하게 분포된(i.i.d.) 실현들을 가정하면, 손실 함수는 다음과 같이 추정할 수 있다:
(4)
여기서 B는 배치 크기(즉, 손실을 근사화하는 데 사용되는 훈련 예들의 수)를 나타낸다. 변조기가 고정된 성상도들을 갖는 것이 가정되면, 최적화가 를 통해 수행되지 않는 것이 유념된다.
도 7은 예시적인 실시예에 따른, 일반적으로 참조 번호 80으로 표시된 알고리즘을 도시하는 흐름도이다.
알고리즘(80)은 (도 4 및 5를 참조하여 위에서 논의된 송신 시스템과 같은) 송신 시스템의 훈련가능 파라미터들이 초기화되는 동작(81)에서 시작한다. 초기화는 많은 형태들을 취할 수 있고, 예를 들어, 초기화는 훈련가능 파라미터들을 무작위로(또는 의사-무작위로) 또는 임의의 방식으로 설정할 수 있고; 대안적으로, 훈련가능 파라미터들은 미리 정의된 시작점으로 설정되거나 일부 알고리즘에 따라(예를 들어, 신호-투-잡음비와 같은 송신 시스템의 채널 정보에 기반하여) 정의될 수 있다.
파라미터들의 초기화는 파라미터들 모듈(60)에 의해 구현될 수 있다. 파라미터들 모듈(60)은, 예를 들어, 개별 데이터 심볼들(예를 들어, 송신기의 성상도 포인트들)이 송신기 알고리즘에 의해 출력될 확률을 정의하는 초기 확률 함수를 설정할 수 있다. 확률 함수는 이산 함수이고 직접 미분가능하지 않다.
알고리즘은, 분포 함수에 기반하여 훈련 심볼들이 생성되는 동작(82)으로 이동하고, 여기서 분포 함수는 미분가능하다. 분포 함수는 확률 함수의 근사화(예를 들어, 미분가능 근사화)일 수 있다. 위에서 언급된 바와 같이, 확률 함수는 일반적으로 이산 및 비-미분 확률 함수이고, 이는 기계-학습 프로세스에서 자주 이용되는 역전파 기법들에 도움이 되지 않는다(아래에서 추가로 논의됨). 따라서, 미분가능하지 않은 확률 함수는 훈련 동안 미분 근사치로 대체될 수 있다.
훈련 심볼들은 검벨-소프트맥스 알고리즘(예를 들어, 위에서 논의한 검벨-소프트맥스 재파라미터화 사용)에 의해 생성될 수 있다. 훈련 모드에서 성형 디바이스(39)에 의해 생성된 훈련 심볼들은 변조기(38)에 제공되고 변조된 훈련 심볼들은 채널(34)을 통해 수신기(36)로 송신된다.
위에서 논의된 바와 같이, (훈련 모드에서) 훈련 심볼들은 변조기(38)에 의해 구현되는 변조 방식의 고정된 성상도 포지션들에 대응할 수 있다. 유사하게, (정상 동작 모드에서) 송신 심볼들은 고정된 성상도 포지션들에 대응할 수 있다.
대안적으로, 훈련 모드에서의 훈련 심볼들(및 정상 동작 모드에서의 송신 심볼들)은 상기 변조기(38)에 의해 구현되는 변조 방식의 가변 성상 포지션들에 대응할 수 있다. 또한, 송신 시스템의 훈련가능 파라미터들은 상기 변조 방식의 성상도 포인트 포지션들을 포함할 수 있다.
동작(82)에서 생성되어 상기 채널을 통해 송신되는 심볼들은 수신기(36)에 의해 수신된다.
동작(83)에서, 생성된 훈련 심볼들 및 송신 시스템의 수신기에서 수신된 변조된 훈련 심볼들에 기반하여 손실 함수가 생성된다. 손실 함수는 많은 상이한 형태들을 취할 수 있다. 예를 들어, 손실 함수는 블록 오류율, 비트 오류율, 상호 정보 및 범주형 교차-엔트로피 중 하나 이상과 관련될 수 있다.
동작(84)에서, 송신 시스템의 파라미터들은 손실 함수를 최소화하기 위해 업데이트되고, 여기서 송신 시스템의 업데이트된 파라미터들을 생성하는 것은 (예를 들어, 기계-학습 원리들을 사용하여, 예를 들어 신경망을 업데이트함으로써) 송신기 알고리즘의 파라미터들을 업데이트하는 것을 포함한다. 송신 시스템의 업데이트된 파라미터들을 생성하는 것은 위에서 논의된 확률 함수를 훈련하는 것을 포함할 수 있다. 따라서, 예를 들어 확률 함수는 비트 오류율(또는 일부 다른 오류 함수)이 최소화되도록 확률적 성형을 설정하기 위해 훈련될 수 있다. 변조기 성상도 포지션들과 같은 다른 파라미터들이 또한 업데이트될 수 있다.
훈련가능 송신기 알고리즘을 업데이트하는 것에 더하여, 동작(84)에서 송신 시스템의 업데이트된 파라미터들을 생성하는 것은 훈련가능 수신기 알고리즘의 파라미터들을 업데이트하는 것(따라서 송신 시스템의 종단간 훈련을 구현함)을 포함할 수 있다.
동작(85)에서, 알고리즘(80)이 완료되었는지 여부가 결정된다. 완료되었다면, 알고리즘은 동작(86)에서 종료되고; 그렇지 않으면, 알고리즘은 동작들(82 내지 85)이 반복되도록 동작(82)으로 복귀한다(즉, 훈련 심볼들의 생성 및 송신, 손실 함수 생성 및 송신 시스템의 파라미터들 업데이트가 반복됨).
조건에 도달하면 알고리즘은 (동작 85에서) 완료된 것으로 간주될 수 있다. 그러한 조건은 많은 형태들을 취할 수 있다. 예를 들어, 동작들(82 내지 85)은 정의된 성능 레벨에 도달할 때까지 반복될 수 있다. 대안적으로, 또는 추가로, 정의된 수의 반복들이 완료될 때까지 동작들(82 내지 85)이 반복될 수 있다.
또한, 훈련에 사용된 심볼 근사치들의 배치 크기(B) 및/또는 학습률(및 아마도 선택된 SGD 변형의 다른 파라미터들, 예를 들어 ADAM, RMSProp, Momentum)이 알고리즘(80)의 최적화 파라미터들일 수 있다는 것이 유념되어야 한다.
훈련되면, 송신 시스템의 훈련가능 파라미터들이 배포될 수 있다. 이것은 송신 시스템의 생성된 업데이트된 파라미터들을 사용하여 송신 시스템의 훈련가능 파라미터들을 업데이트하는 것을 포함할 수 있다. 또한, 송신기 시스템의 훈련가능 파라미터들은 다음 중 하나 이상: 송신기 알고리즘의 훈련가능 파라미터들, 변조기의 훈련가능 파라미터들 및 수신기의 훈련가능 파라미터들을 포함할 수 있다.
위에서 설명된 예시적인 실시예들에 대한 다수의 수정들이 가능하다. 예를 들어, 송신 시스템들(30 및 50)의 종단간 훈련은 강화 학습의 원리들을 활용하여 관련 채널 모드에 대한 지식 없이, 그리고 미분가능 채널 모드를 요구하지 않고 수행될 수 있다. 또한, 생성적 적대 네트워크들의 원리들을 사용하여 미분 채널 모델이 학습될 수 있다. 이러한 모델이 학습되면, 학습된 채널 모델을 미분가능 채널 모델로 사용하여 종단간 학습이 수행될 수 있다.
완전성을 위해, 도 8은 이전에 설명된 모듈들(예를 들어, 송신기 또는 수신기 신경망들) 중 하나 이상의 구성요소들의 개략도이고, 이는 이후 일반적으로 프로세싱 시스템들(110)로 지칭된다. 프로세싱 시스템(110)은 프로세서(112), 프로세서에 밀접하게 결합되고 RAM(124) 및 ROM(122), 및 선택적으로 하드웨어 키들(120) 및 디스플레이(128)로 구성된 메모리(114)를 가질 수 있다. 프로세싱 시스템(110)은 예를 들어, 네트워크에 연결하기 위한 하나 이상의 네트워크 인터페이스들(118), 예를 들어 유선 또는 무선일 수 있는 모뎀을 포함할 수 있다.
프로세서(112)는 다른 구성요소들 각각과 연결되어 그 동작을 제어한다.
메모리(114)는 비휘발성 메모리, 하드 디스크 드라이브(HDD) 또는 솔리드 스테이트 드라이브(SSD)를 포함할 수 있다. 메모리(114)의 ROM(122)은 특히 운영 체제(125)를 저장하고 소프트웨어 애플리케이션들(126)을 저장할 수 있다. 메모리(114)의 RAM(124)은 데이터의 임시 저장을 위해 프로세서(112)에 의해 사용된다. 운영 체제(125)는 프로세서에 의해 실행될 때 알고리즘(80)의 양태들을 구현하는 코드를 포함할 수 있다.
프로세서(112)는 임의의 적합한 형태를 취할 수 있다. 예를 들어, 이는 마이크로제어기, 복수의 마이크로제어기들, 프로세서 또는 복수의 프로세서들일 수 있다.
프로세싱 시스템(110)은 독립형 컴퓨터, 서버, 콘솔, 또는 이들의 네트워크일 수 있다.
일부 실시예들에서, 프로세싱 시스템(110)은 또한 외부 소프트웨어 애플리케이션들과 연관될 수 있다. 이들은 원격 서버 디바이스에 저장된 애플리케이션들일 수 있고 원격 서버 디바이스에서 부분적으로 또는 독점적으로 실행될 수 있다. 이러한 애플리케이션들은 클라우드-호스팅 애플리케이션들이라고 할 수 있다. 프로세싱 시스템(110)은 원격 서버 디바이스에 저장된 소프트웨어 애플리케이션을 활용하기 위해 원격 서버 디바이스와 통신할 수 있다.
도 9a 및 도 9b는 컴퓨터에 의해 실행될 때 위에서 설명된 실시예들에 따른 방법들을 수행할 수 있는 컴퓨터-판독가능 코드를 저장하는 유형 매체, 각각 착탈식 메모리 유닛(165) 및 콤팩트 디스크(CD)(168)를 도시한다. 착탈식 메모리 유닛(165)은 예를 들어, 메모리 스틱, 예를 들어 컴퓨터-판독가능 코드를 저장하는 내부 메모리(166)를 갖는 USB 메모리 스틱일 수 있다. 메모리(166)는 연결기(167)를 통해 컴퓨터 시스템에 의해 액세스될 수 있다. CD(168)는 CD-ROM 또는 DVD 등일 수 있다. 유형의 저장 매체의 다른 형태들이 사용될 수 있다.
본 발명의 실시예들은 소프트웨어, 하드웨어, 애플리케이션 로직 또는 소프트웨어, 하드웨어 및 애플리케이션 로직의 조합으로 구현될 수 있다. 소프트웨어, 애플리케이션 로직 및/또는 하드웨어는 메모리, 또는 임의의 컴퓨터 매체에 상주할 수 있다. 예시적인 실시예에서, 애플리케이션 로직, 소프트웨어 또는 명령 세트는 다양한 종래의 컴퓨터-판독가능 매체 중 임의의 하나에 유지된다. 이 문서의 맥락에서, "메모리" 또는 "컴퓨터-판독가능 매체"는 명령 실행 시스템, 장치, 또는 디바이스, 이를테면 컴퓨터에 의해 사용하거나 이와 관련하여 명령들을 포함, 저장, 통신, 전파 또는 전송할 수 있는 임의의 비-일시적 매체 또는 수단일 수 있다.
관련되는 경우, "컴퓨터-판독가능 저장 매체", "컴퓨터 프로그램 제품", "유형적으로 구현된 컴퓨터 프로그램" 등, 또는 "프로세서" 또는 "프로세싱 회로" 등에 대한 언급은 단일/다중-프로세서 아키텍처들 및 시퀀서/병렬 아키텍처들과 같은 상이한 아키텍처들을 갖는 컴퓨터들뿐 아니라, 현장 프로그래밍 가능한 게이트 어레이들(FPGA), 주문형 집적 회로들(ASIC), 신호 프로세싱 디바이스들 및 다른 디바이스들 같은 특수 회로들을 포함하는 것으로 이해되어야 한다. 컴퓨터 프로그램, 명령들, 코드 등에 대한 언급들은 하드웨어 디바이스의 프로그램가능 콘텐츠와 같은 프로그램가능 프로세서 펌웨어용 소프트웨어를 프로세서에 대한 명령들로 표현하거나 고정 기능 디바이스, 게이트 어레이, 프로그램가능 로직 디바이스 등에 대해 구성된 또는 구성 설정들을 표현하는 것으로 이해되어야 한다.
본 출원에 사용된 바와 같이, "회로"라는 용어는 이하의 모두를 지칭한다: (a) 하드웨어-전용 회로 구현들(이를테면 아날로그 및/또는 디지털 회로만의 구현들) 및 (b) (적용가능하면) 다음과 같은 회로들 및 소프트웨어(및/또는 펌웨어)의 조합들: (i) 프로세서(들)의 조합 또는 (ii) 프로세서(들)/소프트웨어의 일부들(서버와 같은 장치로 하여금 다양한 기능들을 수행하게 하기 위해 함께 작동하는 디지털 신호 프로세서(들), 소프트웨어, 및 메모리(들)를 포함함) 및 (c) 소프트웨어 또는 펌웨어가 물리적으로 존재하지 않는 경우에도 동작을 위해 소프트웨어 또는 펌웨어를 요구하는 마이크로프로세서(들) 또는 마이크로프로세서(들)의 일부와 같은 회로들을 지칭한다.
원하는 경우, 본원에 논의된 상이한 기능들은 상이한 순서 및/또는 서로 동시에 수행될 수 있다. 또한, 원하는 경우, 전술한 기능들 중 하나 이상은 선택적일 수 있거나 조합될 수 있다. 유사하게, 도 7의 흐름도가 단지 예이고, 본원에 묘사된 다양한 동작들이 생략, 재정렬 및/또는 결합될 수 있다는 것이 또한 인식될 것이다.
상술한 예시적인 실시예들이 순전히 예시적이며 본 발명의 범위를 제한하지 않는다는 것이 인식될 것이다. 다른 변형들 및 수정들은 본 명세서를 읽을 때 통상의 기술자에게 명백할 것이다.
또한, 본 출원의 개시내용은 본원에 명시적으로 또는 암시적으로 개시된 임의의 신규 특징들 또는 특징들의 임의의 신규 조합 또는 그의 일반화를 포함하는 것으로 이해되어야 하고, 본 출원 또는 그로부터 유도된 임의의 출원의 추진 동안, 새로운 청구범위들은 임의의 이러한 특징들 및/또는 이러한 특징들의 조합을 포함하도록 공식화된다.
본 발명의 다양한 양태들이 독립 청구항들에 기재되어 있지만, 본 발명의 다른 양태들은 청구범위들에 명시적으로 기재된 조합들만이 아닌, 설명된 실시예들 및/또는 종속 청구항들의 특징들과 독립 청구항들의 특징들의 다른 조합을 포함한다.
또한, 상기가 다양한 예들을 설명하지만, 이러한 설명들이 제한적인 의미로 이해되어서는 안 된다는 것이 유념되어야 한다. 오히려, 첨부된 청구범위들에 정의된 본 발명의 범위를 벗어나지 않고 이루어질 수 있는 여러 변형들 및 수정들이 존재한다.

Claims (27)

  1. 송신 시스템(30)을 위한 송신기(32)로서, 상기 송신 시스템(30)은 상기 송신기(32), 채널(34) 및 수신기(36)를 포함하고, 상기 송신기(32)는 하나 이상의 입력들을 하나 이상의 데이터 심볼들로 변환하기 위한 송신기 알고리즘, 및 변조 방식 및 훈련가능 파라미터들에 따라 상기 데이터 심볼들을 송신 심볼들로 변환하기 위한 변조기(38)를 포함하고, 상기 훈련가능 파라미터들은 개별 데이터 심볼들이 상기 송신기 알고리즘에 의해 출력될 확률을 정의하는 확률 함수를 포함하는, 상기 송신기(32)에 있어서:
    송신 시스템(30)의 훈련가능 파라미터들을 초기화하기 위한 수단;
    분포 함수에 기반하여 훈련 심볼들을 생성하기 위한 수단으로서, 상기 분포 함수는 미분가능하고, 상기 분포 함수는 상기 확률 함수의 근사화인, 상기 훈련 심볼들을 생성하기 위한 수단;
    훈련 모드에서 상기 채널(34)을 통해 변조된 훈련 심볼들을 상기 수신기(36)로 송신하기 위한 수단;
    상기 송신 시스템(30)의 상기 수신기(36)에서 수신된 바와 같은 생성된 훈련 심볼들 및 상기 변조된 훈련 심볼들에 기반하여 손실 함수를 생성하기 위한 수단;
    상기 손실 함수를 최소화하기 위해 상기 송신 시스템(30)의 업데이트된 파라미터들을 생성하기 위한 수단으로서, 상기 송신 시스템의 업데이트된 파라미터들을 생성하는 것은 상기 송신기 알고리즘의 상기 파라미터들을 업데이트하는 것을 포함하는, 상기 송신 시스템(30)의 업데이트된 파라미터들을 생성하기 위한 수단; 및
    제1 조건에 도달할 때까지 상기 훈련 심볼들 생성, 상기 손실 함수 생성 및 상기 송신 시스템의 파라미터들 업데이트를 반복하기 위한 수단을 포함하는, 송신기(32).
  2. 삭제
  3. 제 1 항에 있어서, 상기 훈련 심볼들은 검벨-소프트맥스 알고리즘(Gumbel-softmax algorithm)에 의해 생성되는, 송신기(32).
  4. 제 1 항 또는 제 3 항에 있어서, 상기 송신 심볼들은 상기 변조기에 의해 구현되는 변조 방식의 고정된 성상도 포지션들에 대응하는, 송신기(32).
  5. 제 1 항 또는 제 3 항에 있어서, 상기 송신 심볼들은 상기 변조기에 의해 구현되는 변조 방식의 가변 성상도 포지션들에 대응할 수 있고, 상기 송신 시스템의 상기 훈련가능 파라미터들은 상기 변조 방식의 성상도 포인트 포지션들을 포함하는, 송신기(32).
  6. 제 1 항 또는 제 3 항에 있어서, 상기 송신기(32)는 동작 모드에서 상기 채널(34)을 통해 상기 송신 심볼들을 상기 수신기(36)로 송신하고 훈련 모드에서 상기 채널(34)을 통해 상기 변조된 훈련 심볼들을 상기 수신기(36)로 송신하도록 구성되는, 송신기(32).
  7. 제 1 항 또는 제 3 항에 있어서, 상기 송신 시스템의 업데이트된 파라미터들을 생성하는 것은 훈련가능 수신기 알고리즘의 파라미터들을 업데이트하는 것을 포함하는, 송신기(32).
  8. 제 1 항 또는 제 3 항에 있어서, 상기 송신 시스템의 상기 생성된 업데이트된 파라미터들을 사용하여 상기 송신 시스템(30)의 상기 훈련가능 파라미터들을 업데이트하기 위한 수단을 더 포함하고,
    상기 송신 시스템의 상기 훈련가능 파라미터들은 상기 송신기 알고리즘의 훈련가능 파라미터들; 상기 변조기의 훈련가능 파라미터들; 및 상기 수신기의 훈련가능 파라미터들 중 하나 이상을 포함하는, 송신기(32).
  9. 삭제
  10. 제 1 항 또는 제 3 항에 있어서, 상기 확률 함수 및 상기 분포 함수는 상기 송신 시스템의 채널 정보에 적어도 부분적으로 의존하는, 송신기(32).
  11. 제 1 항 또는 제 3 항에 있어서, 상기 제 1 조건은 정의된 성능 레벨을 포함하거나, 또는 상기 제 1 조건은 정의된 반복 횟수를 포함하는, 송신기(32).
  12. 삭제
  13. 제 1 항 또는 제 3 항에 있어서, 상기 송신기 알고리즘은 동작 모드에서 룩업 테이블로서 구현되는, 송신기(32).
  14. 제 1 항 또는 제 3 항에 있어서, 상기 손실 함수는 블록 오류율, 비트 오류율, 상호 정보 및 범주형 교차-엔트로피 중 하나 이상에 관련되는, 송신기(32).
  15. 제 1 항 또는 제 3 항에 있어서, 상기 송신 시스템(30)의 상기 업데이트된 파라미터들을 생성하기 위한 수단은 상기 훈련 모드에서 사용되는 심볼 근사치들의 배치 크기(batch size) 및 학습률 중 하나 이상을 최적화하는, 송신기(32).
  16. 삭제
  17. 제 1 항 또는 제 3 항에 있어서, 상기 송신기(32)는 상기 송신기 알고리즘을 구현하도록 구성된 송신기 신경망을 포함하는, 송신기(32).
  18. 삭제
  19. 방법에 있어서,
    송신 시스템(30)의 훈련가능 파라미터들을 초기화하는 단계(81)로서, 상기 송신 시스템(30)은 송신기(32), 채널(34) 및 수신기(36)를 포함하고, 상기 송신기(32)는 하나 이상의 입력들을 하나 이상의 데이터 심볼들로 변환하기 위한 송신기 알고리즘 및 변조 방식에 따라 상기 데이터 심볼들을 송신 심볼들로 변환하기 위한 변조기를 포함하고, 상기 송신 시스템의 상기 훈련가능 파라미터들은 개별 데이터 심볼들이 상기 송신기 알고리즘에 의해 출력될 확률을 정의하는 확률 함수를 포함하는, 상기 훈련가능 파라미터들을 초기화하는 단계(81);
    분포 함수에 기반하여 훈련 심볼들을 생성하는 단계(82)로서, 상기 분포 함수는 미분가능하고, 상기 분포 함수는 상기 확률 함수의 근사화인, 상기 훈련 심볼들을 생성하는 단계(82);
    훈련 모드에서 상기 채널을 통해 변조된 훈련 심볼들을 상기 수신기로 송신하는 단계(82);
    상기 송신 시스템의 상기 수신기에서 수신된 바와 같은 생성된 훈련 심볼들 및 상기 변조된 훈련 심볼들에 기반하여 손실 함수를 생성하는 단계(83);
    상기 손실 함수를 최소화하기 위해 상기 송신 시스템의 업데이트된 파라미터들을 생성하는 단계(84)로서, 상기 송신 시스템의 업데이트된 파라미터들을 생성하는 단계는 상기 송신기 알고리즘의 상기 파라미터들을 업데이트하는 단계를 포함하는, 상기 송신 시스템의 업데이트된 파라미터들을 생성하는 단계(84); 및
    제1 조건에 도달할 때까지 상기 훈련 심볼들 생성, 상기 손실 함수 생성 및 상기 송신 시스템의 파라미터들 업데이트를 반복하는 단계(85)를 포함하는, 방법.
  20. 삭제
  21. 삭제
  22. 삭제
  23. 삭제
  24. 삭제
  25. 삭제
  26. 삭제
  27. 컴퓨터 프로그램이 저장되어 있는 컴퓨터 판독가능 저장 매체에 있어서,
    상기 컴퓨터 프로그램은 장치가 적어도:
    송신 시스템(30)의 훈련가능 파라미터들을 초기화하는 것(81)으로서, 상기 송신 시스템(30)은 송신기(32), 채널(34) 및 수신기(36)를 포함하고, 상기 송신기(32)는 하나 이상의 입력들을 하나 이상의 데이터 심볼들로 변환하기 위한 송신기 알고리즘 및 변조 방식에 따라 상기 데이터 심볼들을 송신 심볼들로 변환하기 위한 변조기를 포함하고, 상기 송신 시스템의 상기 훈련가능 파라미터들은 개별 데이터 심볼들이 상기 송신기 알고리즘에 의해 출력될 확률을 정의하는 확률 함수를 포함하는, 상기 훈련가능 파라미터들을 초기화하는 것(81);
    분포 함수에 기반하여 훈련 심볼들을 생성하는 것(82)으로서, 상기 분포 함수는 미분가능하고, 상기 분포 함수는 상기 확률 함수의 근사화인, 상기 훈련 심볼들을 생성하는 것(82);
    훈련 모드에서 상기 채널을 통해 변조된 훈련 심볼들을 상기 수신기로 송신하는 것(82);
    상기 송신 시스템의 상기 수신기에서 수신된 바와 같은 생성된 훈련 심볼들 및 상기 변조된 훈련 심볼들에 기반하여 손실 함수를 생성하는 것(83);
    상기 손실 함수를 최소화하기 위해 상기 송신 시스템의 업데이트된 파라미터들을 생성하는 것(84)으로서, 상기 송신 시스템의 업데이트된 파라미터들을 생성하는 것은 상기 송신기 알고리즘의 상기 파라미터들을 업데이트하는 것을 포함하는, 상기 송신 시스템의 업데이트된 파라미터들을 생성하는 것(84); 및
    제1 조건에 도달할 때까지 심볼 근사치들 생성, 상기 손실 함수 생성 및 상기 송신 시스템의 파라미터들 업데이트를 반복하는 것(85)을 수행하게 하기 위한 명령들을 포함하는, 컴퓨터 판독가능 저장 매체.
KR1020217042817A 2019-05-30 2019-05-30 통신 시스템들에서의 학습 KR102620551B1 (ko)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2019/064146 WO2020239232A1 (en) 2019-05-30 2019-05-30 Learning in communication systems

Publications (2)

Publication Number Publication Date
KR20220010565A KR20220010565A (ko) 2022-01-25
KR102620551B1 true KR102620551B1 (ko) 2024-01-03

Family

ID=66793959

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020217042817A KR102620551B1 (ko) 2019-05-30 2019-05-30 통신 시스템들에서의 학습

Country Status (6)

Country Link
US (1) US11750436B2 (ko)
EP (1) EP3977655B1 (ko)
JP (1) JP7307199B2 (ko)
KR (1) KR102620551B1 (ko)
CN (1) CN113906704A (ko)
WO (1) WO2020239232A1 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3824606A1 (en) * 2018-07-20 2021-05-26 Nokia Technologies Oy Learning in communication systems by updating of parameters in a receiving algorithm
EP3852326B1 (en) 2020-01-15 2022-06-29 Nokia Technologies Oy Transmitter
WO2021151477A1 (en) * 2020-01-29 2021-08-05 Nokia Technologies Oy A receiver for a communication system
CN113193925B (zh) * 2021-02-09 2023-08-11 中国人民解放军战略支援部队信息工程大学 一种通信系统的优化处理方法、装置及电子设备
WO2023138763A1 (en) * 2022-01-19 2023-07-27 Nokia Technologies Oy Signal transmission based on transformed signal constellation

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019080988A1 (en) * 2017-10-23 2019-05-02 Nokia Technologies Oy END-TO-END LEARNING IN COMMUNICATION SYSTEMS

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001069046A (ja) * 1999-08-30 2001-03-16 Fujitsu Ltd 送受信システムおよび受信装置
US20090310707A1 (en) * 2008-06-17 2009-12-17 Jung-Fu Cheng Transmitter and method for transmitting soft pilot symbols in a digital communication system
CN108615044A (zh) * 2016-12-12 2018-10-02 腾讯科技(深圳)有限公司 一种分类模型训练的方法、数据分类的方法及装置
CN106951783B (zh) * 2017-03-31 2021-06-01 国家电网公司 一种基于深度神经网络的伪装入侵检测方法及装置
KR102563752B1 (ko) * 2017-09-29 2023-08-04 삼성전자주식회사 뉴럴 네트워크를 위한 트레이닝 방법, 뉴럴 네트워크를 이용한 인식 방법 및 그 장치들
JP2021500813A (ja) 2017-10-23 2021-01-07 ノキア テクノロジーズ オサケユイチア 通信システムにおけるエンドツーエンド学習
US10439287B2 (en) * 2017-12-21 2019-10-08 Nxgen Partners Ip, Llc Full duplex using OAM
CN112236782A (zh) * 2018-04-03 2021-01-15 诺基亚技术有限公司 通信系统中的端到端学习
CN109474352B (zh) * 2018-12-24 2021-07-06 三亚哈尔滨工程大学南海创新发展基地 一种基于深度学习的水声正交频分复用通信方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019080988A1 (en) * 2017-10-23 2019-05-02 Nokia Technologies Oy END-TO-END LEARNING IN COMMUNICATION SYSTEMS

Also Published As

Publication number Publication date
JP2022534603A (ja) 2022-08-02
CN113906704A (zh) 2022-01-07
US11750436B2 (en) 2023-09-05
WO2020239232A1 (en) 2020-12-03
US20220247614A1 (en) 2022-08-04
KR20220010565A (ko) 2022-01-25
EP3977655B1 (en) 2023-04-26
EP3977655A1 (en) 2022-04-06
JP7307199B2 (ja) 2023-07-11

Similar Documents

Publication Publication Date Title
KR102620551B1 (ko) 통신 시스템들에서의 학습
US11575547B2 (en) Data transmission network configuration
US11082264B2 (en) Learning in communication systems
US11556799B2 (en) Channel modelling in a data transmission system
CN113169752B (zh) 通信系统中的学习
EP3418821B1 (en) Method and device for configuring a data transmission system
KR102494797B1 (ko) 통신 시스템들에서의 단-대-단 학습
WO2019080988A1 (en) END-TO-END LEARNING IN COMMUNICATION SYSTEMS
CN113748626A (zh) 通信系统中的迭代检测
Fan et al. Intelligent communication: Application of deep learning at the physical layer of communication
KR20220027189A (ko) 송신기 알고리즘
CN115804068A (zh) 使用狄利克雷过程优化通信信道的容量的方法、系统及计算机程序
WO2022002347A1 (en) Training in communication systems
JP2024517991A (ja) 訓練装置、制御方法、及びプログラム
CN116346263A (zh) 一种智能信号检测模型的构建方法及应用
Kashif Factor graphs and MCMC approaches to iterative equalization of nonlinear dispersive channels

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant