KR102610494B1 - 엣지 컴퓨팅 환경에서 영상에 기초하여 방문객을 분석하기 위한 방법, 디바이스 및 비일시성의 컴퓨터 판독 가능한 기록 매체 - Google Patents

엣지 컴퓨팅 환경에서 영상에 기초하여 방문객을 분석하기 위한 방법, 디바이스 및 비일시성의 컴퓨터 판독 가능한 기록 매체 Download PDF

Info

Publication number
KR102610494B1
KR102610494B1 KR1020200188854A KR20200188854A KR102610494B1 KR 102610494 B1 KR102610494 B1 KR 102610494B1 KR 1020200188854 A KR1020200188854 A KR 1020200188854A KR 20200188854 A KR20200188854 A KR 20200188854A KR 102610494 B1 KR102610494 B1 KR 102610494B1
Authority
KR
South Korea
Prior art keywords
data
detection
appearance
detection data
location
Prior art date
Application number
KR1020200188854A
Other languages
English (en)
Other versions
KR20220096436A (ko
Inventor
박진우
신인식
Original Assignee
주식회사 메이아이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 메이아이 filed Critical 주식회사 메이아이
Priority to KR1020200188854A priority Critical patent/KR102610494B1/ko
Priority to PCT/KR2021/016654 priority patent/WO2022145712A1/ko
Priority to US18/270,408 priority patent/US20240062408A1/en
Publication of KR20220096436A publication Critical patent/KR20220096436A/ko
Application granted granted Critical
Publication of KR102610494B1 publication Critical patent/KR102610494B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/52Surveillance or monitoring of activities, e.g. for recognising suspicious objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/20Image preprocessing
    • G06V10/25Determination of region of interest [ROI] or a volume of interest [VOI]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/44Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/77Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
    • G06V10/771Feature selection, e.g. selecting representative features from a multi-dimensional feature space
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/82Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20084Artificial neural networks [ANN]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V2201/00Indexing scheme relating to image or video recognition or understanding
    • G06V2201/07Target detection

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Computing Systems (AREA)
  • Software Systems (AREA)
  • Databases & Information Systems (AREA)
  • Medical Informatics (AREA)
  • Biomedical Technology (AREA)
  • Mathematical Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Data Mining & Analysis (AREA)
  • Computational Linguistics (AREA)
  • Biophysics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Image Analysis (AREA)

Abstract

본 발명의 일 태양에 따르면, 엣지 컴퓨팅 환경에서 영상에 기초하여 방문객을 분석하기 위한 방법으로서, 오프라인 공간에 대한 촬영 영상으로부터 특징 데이터를 추출하는 단계, 인공 신경망 기반 검출 모델을 이용하여 상기 특징 데이터로부터 상기 촬영 영상에 포함된 객체의 위치 및 외관에 대한 검출 데이터를 생성하는 단계, 및 대상 객체의 위치 및 외관에 대한 검출 데이터를 통합시키는 단계를 포함하는 방법이 제공된다.

Description

엣지 컴퓨팅 환경에서 영상에 기초하여 방문객을 분석하기 위한 방법, 디바이스 및 비일시성의 컴퓨터 판독 가능한 기록 매체{METHOD, DEVICE AND NON-TRANSITORY COMPUTER-READABLE RECORDING MEDIUM FOR ANALYZING VISITORS BASED ON IMAGES IN EDGE COMPUTING ENVIRONMENT}
본 발명은 엣지 컴퓨팅 환경에서 영상에 기초하여 방문객을 분석하기 위한 방법, 디바이스 및 비일시성의 컴퓨터 판독 가능한 기록 매체에 관한 것이다.
근래에 들어, 컴퓨터 비전 분야의 기술이 급격히 발전함에 따라 영상에서 객체를 검출 및 인식하고 그로부터 유의미한 정보를 알아내는 방법에 관한 다양한 기술들이 소개되고 있다.
특히, 오프라인 공간에서 촬영되는 영상을 분석하여 그 공간에 방문한 사람의 수와 그 사람의 성별, 나이 등에 관한 정보를 수집하고, 이러한 정보를 마케팅 전략, 판매 전략 등의 수립에 활용할 수 있도록 지원하는 기술에 대한 수요가 점차 높아지고 있다.
이에 관한 종래 기술의 일 예로서, 오프라인 매장의 출입구 주변에 설치된 카메라와 같은 센서를 이용하여 오프라인 매장의 방문객 수를 카운팅하는 기술이 소개된 바 있지만, 이러한 종래 기술에 따르면, 방문객의 성별, 나이 등 마케팅 전략을 수립하기 위해 필요한 인구통계학적 정보를 알아내기 어렵다는 한계가 존재한다.
종래 기술의 다른 예로서, 방문객의 수를 카운팅하는 시스템과 별개로 방문객의 외관(얼굴 등)을 인식하는 시스템을 구축함으로써 방문객의 인구통계학적 정보를 알아내는 기술이 소개되기도 하였지만, 이러한 종래 기술에 따르면, 개별적으로 구축되는 두 시스템으로부터 각각 도출되는 방문객의 수에 관한 정보와 방문객의 인구통계학적 정보를 통합하여 활용하기가 어렵다는 문제가 있고, 방문객의 얼굴 등 외관을 촬영한 영상은 민감한 개인 정보에 해당하기 때문에 이를 저장, 전송 또는 가공함에 있어서 개인 정보 보호에 관한 법률적인 이슈가 발생할 리스크가 존재한다는 한계가 존재한다.
이에 본 발명자(들)는, 엣지(edge) 컴퓨팅 환경에서 클라이언트 단에 존재하는 디바이스가 오프라인 공간에서 촬영된 영상에 포함된 방문객의 위치 및 외관에 관한 다양한 데이터를 통합적으로 생성함으로써, 오프라인 공간에 방문한 방문객을 분석함에 있어서 연산 속도 및 리소스 활용 측면의 효율성을 높이고, 개인 정보 보호에 관한 법률적인 이슈가 발생할 리스크를 낮출 수 있도록 하는 기술을 제안하는 바이다.
공개특허공보 제2016-97872호 (2016. 8. 18)
본 발명은 전술한 종래 기술의 문제점을 모두 해결하는 것을 그 목적으로 한다.
또한, 본 발명은, 오프라인 공간에 대한 촬영 영상으로부터 특징 데이터를 추출하고, 인공 신경망 기반 검출 모델을 이용하여 위의 특징 데이터로부터 위의 촬영 영상에 포함된 객체의 위치 및 외관에 대한 검출 데이터를 생성하고, 대상 객체의 위치 및 외관에 대한 검출 데이터를 통합시킴으로써, 오프라인 공간에서 촬영된 영상에 포함된 방문객의 출입 여부에 관한 정보 및 인구통계학적 정보에 관한 다양한 데이터를 통합적으로 생성하는 것을 다른 목적으로 한다.
또한, 본 발명은, 서버가 아닌 엣지 컴퓨팅 디바이스에서 경량화된 검출 모델을 이용하여 방문객의 위치 및 외관에 대한 통합된 검출 데이터를 생성함으로써, 디바이스와 서버 사이의 통신 또는 서버에서의 고도화된 분석에 소요되는 시간을 절약하고, 엣지 컴퓨팅 디바이스가 설치되어 있는 현장(즉, 오프라인 공간)에서 방문객의 출입에 관한 정보와 방문객의 인구통계학적 정보를 바로 알아낼 수 있도록 하는 것을 또 다른 목적으로 한다.
또한, 본 발명은, 방문객을 촬영한 영상을 외부의 서버에 전송하지 않고 엣지 컴퓨팅 디바이스의 리소스만 활용하여 방문객에 대한 검출 데이터를 생성함으로써, 촬영 영상에 포함된 방문객의 개인 정보 보호에 관한 법률적인 이슈가 발생할 리스크를 낮출 수 있도록 것을 또 다른 목적으로 한다.
상기 목적을 달성하기 위한 본 발명의 대표적인 구성은 다음과 같다.
본 발명의 일 태양에 따르면, 엣지 컴퓨팅 환경에서 영상에 기초하여 방문객을 분석하기 위한 방법으로서, 오프라인 공간에 대한 촬영 영상으로부터 특징 데이터를 추출하는 단계, 인공 신경망 기반 검출 모델을 이용하여 상기 특징 데이터로부터 상기 촬영 영상에 포함된 객체의 위치 및 외관에 대한 검출 데이터를 생성하는 단계, 및 대상 객체의 위치 및 외관에 대한 검출 데이터를 통합시키는 단계를 포함하는 방법이 제공된다.
본 발명의 다른 태양에 따르면, 엣지 컴퓨팅 환경에서 영상에 기초하여 방문객을 분석하기 위한 디바이스로서, 오프라인 공간에 대한 촬영 영상으로부터 특징 데이터를 추출하는 특징 추출부, 인공 신경망 기반 검출 모델을 이용하여 상기 특징 데이터로부터 상기 촬영 영상에 포함된 객체의 위치 및 외관에 대한 검출 데이터를 생성하는 정보 검출부, 및 대상 객체의 위치 및 외관에 대한 검출 데이터를 통합시키는 데이터 통합부를 포함하는 디바이스가 제공된다.
이 외에도, 본 발명을 구현하기 위한 다른 방법, 다른 디바이스 및 상기 방법을 실행하기 위한 컴퓨터 프로그램을 기록하는 비일시성의 컴퓨터 판독 가능한 기록 매체가 더 제공된다.
본 발명에 의하면, 오프라인 공간에서 촬영된 영상에 포함된 방문객의 출입 여부에 관한 정보 및 인구통계학적 정보에 관한 다양한 데이터를 통합적으로 생성할 수 있게 된다.
또한, 본 발명에 의하면, 디바이스와 서버 사이의 통신 또는 서버에서의 고도화된 분석에 소요되는 시간을 절약하고, 엣지 컴퓨팅 디바이스가 설치되어 있는 현장(즉, 오프라인 공간)에서 방문객의 출입에 관한 정보와 방문객의 인구통계학적 정보를 바로 알아낼 수 있게 된다.
또한, 본 발명에 의하면, 촬영 영상에 포함된 방문객의 개인 정보 보호에 관한 법률적인 이슈가 발생할 리스크를 낮출 수 있게 된다.
도 1은 본 발명의 일 실시예에 따라 엣지 컴퓨팅 환경에서 영상에 기초하여 방문객을 분석하기 위한 전체 시스템의 개략적인 구성을 나타내는 도면이다.
도 2는 본 발명의 일 실시예에 따른 디바이스의 내부 구성을 상세하게 도시하는 도면이다.
도 3은 본 발명의 일 실시예에 따른 객체 인식 관리부의 내부 구성을 상세하게 도시하는 도면이다.
후술하는 본 발명에 대한 상세한 설명은, 본 발명이 실시될 수 있는 특정 실시예를 예시로서 도시하는 첨부 도면을 참조한다. 이러한 실시예는 당업자가 본 발명을 실시할 수 있기에 충분하도록 상세히 설명된다. 본 발명의 다양한 실시예는 서로 다르지만 상호 배타적일 필요는 없음이 이해되어야 한다. 예를 들어, 본 명세서에 기재되어 있는 특정 형상, 구조 및 특성은 본 발명의 정신과 범위를 벗어나지 않으면서 일 실시예로부터 다른 실시예로 변경되어 구현될 수 있다. 또한, 각각의 실시예 내의 개별 구성요소의 위치 또는 배치도 본 발명의 정신과 범위를 벗어나지 않으면서 변경될 수 있음이 이해되어야 한다. 따라서, 후술하는 상세한 설명은 한정적인 의미로서 행하여지는 것이 아니며, 본 발명의 범위는 특허청구범위의 청구항들이 청구하는 범위 및 그와 균등한 모든 범위를 포괄하는 것으로 받아들여져야 한다. 도면에서 유사한 참조부호는 여러 측면에 걸쳐서 동일하거나 유사한 구성요소를 나타낸다.
이하에서는, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있도록 하기 위하여, 본 발명의 여러 바람직한 실시예에 관하여 첨부된 도면을 참조하여 상세히 설명하기로 한다.
전체 시스템의 구성
도 1은 본 발명의 일 실시예에 따라 엣지 컴퓨팅 환경에서 영상에 기초하여 방문객을 분석하기 위한 전체 시스템의 개략적인 구성을 나타내는 도면이다.
도 1에 도시된 바와 같이, 본 발명의 일 실시예에 따른 전체 시스템은 통신망(100), 서버(200) 및 디바이스(300)를 포함할 수 있다.
먼저, 본 발명의 일 실시예에 따른 통신망(100)은 유선 통신이나 무선 통신과 같은 통신 양태를 가리지 않고 구성될 수 있으며, 근거리 통신망(LAN; Local Area Network), 도시권 통신망(MAN; Metropolitan Area Network), 광역 통신망(WAN; Wide Area Network) 등 다양한 통신망으로 구성될 수 있다. 바람직하게는, 본 명세서에서 말하는 통신망(100)은 공지의 인터넷 또는 월드 와이드 웹(WWW; World Wide Web)일 수 있다. 그러나, 통신망(100)은, 굳이 이에 국한될 필요 없이, 공지의 유무선 데이터 통신망, 공지의 전화망 또는 공지의 유무선 텔레비전 통신망을 그 적어도 일부에 있어서 포함할 수도 있다.
예를 들면, 통신망(100)은 무선 데이터 통신망으로서, 와이파이(WiFi) 통신, 와이파이 다이렉트(WiFi-Direct) 통신, 롱텀 에볼루션(LTE, Long Term Evolution) 통신, 5G 통신, 블루투스 통신(저전력 블루투스(BLE; Bluetooth Low Energy) 통신 포함), 적외선 통신, 초음파 통신 등과 같은 종래의 통신 방법을 적어도 그 일부분에 있어서 구현하는 것일 수 있다. 다른 예를 들면, 통신망(100)은 광 통신망으로서, 라이파이(LiFi, Light Fidelity) 등과 같은 종래의 통신 방법을 적어도 그 일부분에 있어서 구현하는 것일 수 있다.
다음으로, 본 발명의 일 실시예에 따른 서버(200)는 통신망(100)을 통하여 후술할 디바이스(300)와 통신할 수 있는 기기로서, 디바이스(300)로부터 전송되는 다양한 데이터를 획득하고 디바이스(300) 동작에 필요한 다양한 데이터를 디바이스(300)에게 전송하는 기능을 수행할 수 있다.
다음으로, 본 발명의 일 실시예에 따른 디바이스(300)는, 통신망(100)을 통하여 서버(200) 또는 다른 시스템(미도시됨)과 통신할 수 있는 디지털 기기로서, 오프라인 공간에 대한 촬영 영상으로부터 특징 데이터를 추출하고, 인공 신경망 기반 검출 모델을 이용하여 위의 특징 데이터로부터 위의 촬영 영상에 포함된 객체의 위치 및 외관에 대한 검출 데이터를 생성하고, 대상 객체의 위치 및 외관에 대한 검출 데이터를 통합시킴으로써, 오프라인 공간에서 촬영된 영상에 포함된 방문객의 출입 여부에 관한 정보 및 인구통계학적 정보에 관한 다양한 데이터를 통합적으로 생성하는 기능을 수행할 수 있다.
본 발명에 따른 디바이스(300)의 구성과 기능에 관하여는 이하의 상세한 설명을 통하여 자세하게 알아보기로 한다.
한편, 본 발명의 일 실시예에 따른 디바이스(300)는 메모리 수단을 구비하고 마이크로 프로세서를 탑재하여 연산 능력을 갖춘 디지털 기기라면 얼마든지 본 발명에 따른 디바이스(300)로서 채택될 수 있다. 또한, 본 발명의 일 실시예에 따른 디바이스(300)는, 영상을 촬영할 수 있는 디바이스 그 자체(예를 들면, 상용 보안 카메라, IP 카메라 등)를 지칭하는 것일 수 있지만, 그와 유선 및/또는 무선으로 연결(또는 결합)될 수 있는 디바이스(예를 들면, 스마트폰, 태블릿, PC 등)까지 포괄하여 지칭하는 것일 수도 있다.
한편, 본 발명에 따른 디바이스(300)에는, 본 발명에 따른 기능을 지원하는 애플리케이션(미도시됨)이 포함될 수 있다. 이와 같은 애플리케이션은 외부의 애플리케이션 배포 서버(미도시됨)로부터 다운로드된 것일 수 있다. 여기서, 애플리케이션은 그 적어도 일부가 필요에 따라 그것과 실질적으로 동일하거나 균등한 기능을 수행할 수 있는 하드웨어 장치나 펌웨어 장치로 치환될 수도 있다.
디바이스의 구성
이하에서는, 본 발명의 구현을 위하여 중요한 기능을 수행하는 디바이스(300)의 내부 구성과 각 구성요소의 기능에 대하여 살펴보기로 한다.
도 2는 본 발명의 일 실시예에 따른 디바이스(300)의 내부 구성을 상세하게 도시하는 도면이다.
도 2에 도시된 바와 같이, 본 발명의 일 실시예에 따른 디바이스(300)는, 객체 인식 관리부(310), 객체 추적 관리부(320), 출입 판단 관리부(330), 통신부(340) 및 제어부(350)를 포함하여 구성될 수 있고, 여기서, 객체 인식 관리부(310)는 특징 추출부(311), 정보 검출부(312) 및 데이터 통합부(313)을 포함하여 구성될 수 있다. 본 발명의 일 실시예에 따르면, 객체 인식 관리부(310), 객체 추적 관리부(320), 출입 판단 관리부(330), 통신부(340) 및 제어부(350)는 그 중 적어도 일부가 외부의 시스템(미도시됨)과 통신하는 프로그램 모듈일 수 있다. 이러한 프로그램 모듈은 운영 시스템, 응용 프로그램 모듈 또는 기타 프로그램 모듈의 형태로 디바이스(300)에 포함될 수 있고, 물리적으로는 여러 가지 공지의 기억 장치에 저장될 수 있다. 또한, 이러한 프로그램 모듈은 디바이스(300)와 통신 가능한 원격 기억 장치에 저장될 수도 있다. 한편, 이러한 프로그램 모듈은 본 발명에 따라 후술할 특정 업무를 수행하거나 특정 추상 데이터 유형을 실행하는 루틴, 서브루틴, 프로그램, 오브젝트, 컴포넌트, 데이터 구조 등을 포괄하지만, 이에 제한되지는 않는다.
한편, 디바이스(300)에 관하여 위와 같이 설명되었으나, 이러한 설명은 예시적인 것이고, 디바이스(300)의 구성요소 또는 기능 중 적어도 일부가 필요에 따라 서버(200) 또는 외부 시스템(미도시됨) 내에서 실현되거나 포함될 수도 있음은 당업자에게 자명하다.
먼저, 본 발명의 일 실시예에 따른 객체 인식 관리부(310)는, 오프라인 공간(예를 들면, 상점, 사무실, 학교, 공연장, 경기장 등)에서 촬영된 영상에 포함된 객체(주로 방문객)의 위치 및 외관에 대한 통합된 검출 데이터를 생성하는 기능을 수행한다. 구체적으로, 본 발명의 일 실시예에 따른 객체 인식 관리부(310)는, 촬영 영상을 분석함으로써 오프라인 공간에 출입한 방문객의 수를 카운팅하고 방문객의 인구통계학적 정보(즉, 방문객의 겉모습으로부터 추정될 수 있는 정보)를 추정할 수 있다. 그리고, 본 발명의 일 실시예에 따른 객체 인식 관리부(310)는, 많은 연산량이 요구되는 인공 신경망 기반 모델을 이용하여 분석을 수행하기 위하여, 본 발명에 따른 디바이스(300)와 별개로 구비되는 보조 연산 디바이스(미도시됨)의 컴퓨팅 리소스를 활용할 수도 있다.
여기서, 본 발명의 일 실시예에 따르면, 분석의 대상이 되는 촬영 영상은, 오프라인 공간에 설치된 별개의 영상 촬영 디바이스(예를 들면, 상용 보안 카메라, IP 카메라 등)로부터 수집되거나 본 발명에 따른 디바이스(300)에 구비된 영상 촬영 모듈로부터 수집될 수 있다. 또한, 본 발명의 일 실시예에 따르면, 위와 같이 수집되는 촬영 영상은 소정 주기(예를 들면, 10fps 등)마다 샘플링되거나 촬영 영상 내에서 발견되는 움직임(인접한 프레임 사이의 차이)이 소정 수준 이상인 때에 샘플링될 수 있고, 위와 같이 샘플링된 촬영 영상이 객체 인식 관리부(310)에 전달될 수 있다.
보다 더 구체적으로, 본 발명의 일 실시예에 따른 객체 인식 관리부(310)는, 특징 추출부(311), 정보 검출부(312) 및 데이터 통합부(313)를 포함하여 구성될 수 있다.
먼저, 본 발명의 일 실시예에 따른 특징 추출부(311)는, 오프라인 공간에 대한 촬영 영상으로부터 특징 데이터를 추출하는 기능을 수행할 수 있다.
구체적으로, 본 발명의 일 실시예에 따른 특징 추출부(311)는, 촬영 영상을 구성하는 임의 크기의 프레임을 입력 받아서 텐서(tensor) 형태의 특징(feature) 데이터를 출력할 수 있다. 또한, 본 발명의 일 실시예에 따른 특징 추출부(311)는, 촬영 영상으로부터 특징 데이터를 추출하기 위한 수단으로서 인공 신경망(주로 심층 신경망) 기반 모델을 이용할 수 있는데, 예를 들면, 이러한 인공 신경망은 DLA(Deep Layer Aggregation), RESNET(residual neural network) 등의 공지의 구조에 기초하여 구현될 수 있다.
다음으로, 본 발명의 일 실시예에 따른 정보 검출부(312)는, 인공 신경망 기반 검출 모델을 이용하여 특징 데이터로부터 촬영 영상에 포함된 객체의 위치 및 외관에 대한 검출 데이터를 생성하는 기능을 수행할 수 있다.
여기서, 본 발명의 일 실시예에 따르면, 객체의 위치에 관한 검출 데이터에는, 객체에 대응하는 바운딩 박스(bounding box)의 객체화 점수(objectness score)(즉, 바운딩 박스가 실제 객체에 해당할 가능성에 관한 점수), 폭(width), 높이(height), 중심 오프셋(center offset) 등에 대한 검출 데이터가 포함될 수 있고, 객체의 발의 위치에 대한 검출 데이터가 포함될 수 있다.
또한, 본 발명의 일 실시예에 따르면, 객체의 외관에 관한 검출 데이터에는, 객체(즉, 방문객)의 나이, 성별 등 방문객의 외관으로부터 검출되어 마케팅에 유용하게 활용될 수 있는 인구통계학적 정보에 관한 검출 데이터가 포함될 수 있다. 여기서, 본 발명의 일 실시예에 따르면, 객체의 나이, 성별 등에 관한 검출 데이터는 익명화 처리될 수 있다.
또한, 본 발명의 일 실시예에 따르면, 인공 신경망 기반 검출 모델은 특징 데이터로부터 방문객에 관한 어떤 속성을 검출하도록 학습될 수 있으며, 예를 들면, Fully Convolutional Network(FCN)과 같은 인공 신경망에 기초하여 구현될 수 있다. 그리고, 본 발명의 일 실시예에 따르면, 인공 신경망 기반 검출 모델이 특징 데이터를 분석한 결과로서 생성되는 검출 데이터는 특징 맵(feature map)에 기초하여 생성될 수 있고, 이에 따라 서로 다른 속성에 대한 복수의 특징 데이터가 특징 맵(또는 특징 맵상의 좌표)를 매개로 하여 서로 연관될 수 있게 된다.
구체적으로, 본 발명의 일 실시예에 따른 정보 검출부(312)는 둘 이상의 인공 신경망 기반 검출 모델을 이용하여 객체의 위치 및 외관에 대한 검출 데이터를 생성할 수 있다. 예를 들면, 인공 신경망 기반 검출 모델은, 객체의 위치 및 외관에 대한 검출 데이터 중 일부를 생성하는 제1 검출 모델 및 객체의 위치 및 외관에 대한 검출 데이터 중 나머지 일부를 생성하는 제2 검출 모델을 포함할 수 있다.
또한, 본 발명의 일 실시예에 따른 정보 검출부(312)에서 이용되는 인공 신경망 기반 검출 모델은, 필요에 따라 또는 검출하고자 하는 속성이 무엇인지에 따라 서로 분리되거나 통합될 수 있다.
예를 들면. 본 발명의 일 실시예에 따른 정보 검출부(312)에서 이용되는 인공 신경망 기반 검출 모델은, 객체에 관한 여러 속성(즉, 객체에 대응하는 바운딩 박스의 객체화 점수, 폭, 높이, 중심 오프셋, 객체의 발의 위치, 객체의 성별 및 객체의 나이) 중 하나의 속성에 대한 검출 데이터를 하나의 특징 맵에 기초하여 생성하는 검출 모델을 포함할 수 있다.
다른 예를 들면, 본 발명의 일 실시예에 따른 정보 검출부(312)에서 이용되는 인공 신경망 기반 검출 모델은, 객체에 관한 여러 속성(즉, 객체에 대응하는 바운딩 박스의 객체화 점수, 폭, 높이, 중심 오프셋, 객체의 발의 위치, 객체의 성별 및 객체의 나이) 중 둘 이상의 속성에 대한 검출 데이터를 하나의 특징 맵에 기초하여 함께 생성하는 검출 모델을 포함할 수도 있다.
다음으로, 본 발명의 일 실시예에 따른 데이터 통합부(313)는, 위와 같이 검출 데이터가 생성되면, 대상(target) 객체의 위치 및 외관에 대한 검출 데이터를 통합시키는 기능을 수행할 수 있다.
구체적으로, 본 발명의 일 실시예에 따른 데이터 통합부(313)는, 검출 데이터의 기초가 되는 특징 맵상의 적어도 하나의 좌표를 매개로 하여 대상 객체의 위치 및 외관에 대한 검출 데이터 중 적어도 일부를 그 대상 객체에 대하여 할당함으로써, 대상 객체의 위치 및 외관에 대한 검출 데이터를 통합시킬 수 있다.
예를 들면, 본 발명의 일 실시예에 따른 데이터 통합부(313)는, 대상 객체에 대응하는 바운딩 박스의 객체화 스코어가 소정 수준 이상이고, 해당 바운딩 박스가 특징 맵상의 제1 좌표에 위치하고 있는 경우에, 대상 객체가 특징 맵상의 제1 좌표에 위치하고 있다고 판단할 수 있다. 이에 따라, 본 발명의 일 실시예에 따른 데이터 통합부(313)는, 특징 맵상의 제1 좌표를 매개로 하여 대상 객체의 위치 및 외관에 대한 검출 데이터의 기초가 되는 특징 맵 각각에서 위의 제1 좌표에 해당하는 픽셀값을 대상 객체에 할당할 수 있다. 여기서, 대상 객체에 대하여 할당될 수 있는 픽셀값에는, 바운딩 박스의 폭의 길이, 바운딩 박스의 높이의 길이, 바운딩 박스의 중심 오프셋의 위치, 대상 객체의 발의 위치, 대상 객체의 성별(0과 1 사이의 값), 대상 객체의 나이(클래스별 스코어 벡터) 등이 포함될 수 있다.
이상에서, 본 발명에서 이용될 수 있는 인공 신경망 기술에 관하여 설명되었지만, 본 발명에서 이용될 수 있는 인공 신경망 기술이 반드시 상기 설명된 바에 한정되는 것은 아니며, 본 발명의 목적을 달성할 수 있는 범위 내에서 얼마든지 변경 또는 확장될 수 있음을 밝혀 둔다. 예를 들면, R-CNN(Region-based Convolutional Neural Networks), YOLO(You Only Look Once), SSD(Single Shot multibox Detector) 등의 인공 신경망 기술을 이용하여 특징 데이터를 추출하거나 검출 데이터를 생성할 수 있다.
또한, 본 발명에서 이용될 수 있는 인공 신경망 기반 추출 모델 또는 검출 모델은, 엣지 컴퓨팅 환경에서 상대적으로 연산 리소스가 부족한 디바이스(300)에서도 원활하게 동작하도록 하기 위하여, 프루닝(Pruning), 양자화(Quantization), 지식 증류(Knowledge Distillation)와 같은 경량화 알고리즘에 의하여 경량화된 모델일 수 있고, 위와 같이 경량화된 모델은 서버(200) 또는 외부 시스템(미도시됨)에서 생성되어 디바이스(300)로 배포될 수 있다. 다만, 본 발명의 일 실시예에 따른 경량화 알고리즘은 위의 열거된 것에 한정되지 않으며, 본 발명의 목적을 달성할 수 있는 범위 내에서 다양하게 변경될 수 있음을 밝혀 둔다.
다음으로, 본 발명의 일 실시예에 따른 객체 추적 관리부(320)는, 위의 객체 인식 관리부(310)에 의하여 통합적으로 생성되는 검출 데이터를 참조하여 대상 객체를 추적하는 기능을 수행할 수 있다.
구체적으로, 본 발명의 일 실시예에 따른 객체 추적 관리부(320)는, 촬영 영상의 프레임별로 트랙렛(tracklet)을 관리하면서, 새로운 프레임에서 검출되는 대상 객체에 대하여 기존 트랙렛을 연결시키거나 새로운 트랙렛을 생성할 수 있다. 예를 들면, 본 발명의 일 실시예에 따른 객체 추적 관리부(320)는, 프레임별로 대상 객체에 대하여 예측된 바운딩 박스와 실제로 입력된 바운딩 박스가 서로 겹쳐지는 정도를 기준으로 하여(예를 들면, IoU(Intersection over Union)를 기준으로 하여) 그 대상 객체에 대하여 기존 트랙렛을 연결시킬지 아니면 새로운 트랙렛을 생성할지를 결정할 수 있다.
또한, 본 발명의 일 실시예에 따른 객체 추적 관리부(320)는, 위의 객체 인식 관리부(310)에 의하여 생성되는 대상 객체의 검출 데이터(즉, 대상 객체에 대응하는 바운딩 박스, 대상 객체의 발 위치, 대상 객체의 성별, 나이 등에 관한 검출 데이터)를 그 대상 객체에 해당하는 트랙렛에 부여할 수 있다.
다만, 본 발명의 일 실시예에 따른 객체 추적 알고리즘은 위의 열거된 것에 한정되지 않으며, 본 발명의 목적을 달성할 수 있는 범위 내에서 다양하게 변경될 수 있음을 밝혀 둔다.
다음으로, 본 발명의 일 실시예에 따른 출입 판단 관리부(330)는, 위의 객체 추적 관리부(320)에 의하여 생성되는 대상 객체 추적에 관한 정보(즉, 트랙렛에 관한 정보)를 참조하여 대상 객체가 소정의 검지선을 통과하는지 여부를 판단함으로써, 오프라인 공간에 대한 대상 객체의 출입 여부를 결정하는 기능을 수행할 수 있다.
구체적으로, 본 발명의 일 실시예에 따른 출입 판단 관리부(330)는, 이전 프레임에서의 트랙렛에 의해 특정되는 대상 객체의 발 위치를 시점으로 하고 현재 프레임에서의 트랙렛에 의해 특정되는 대상 객체의 발 위치를 종점으로 하는 벡터를 설정할 수 있고, 이렇게 설정되는 벡터와 출입문 근처에 설정되는 소정의 검지선 사이에 교점이 존재하면 대상 객체가 검지선을 통과한 것으로 판단할 수 있다. 나아가, 본 발명의 일 실시예에 따른 출입 판단 관리부(330)는, 위의 벡터의 방향에 관한 정보와 위의 검지선을 기준으로 한 입장 방향에 관한 정보를 참조하여, 대상 객체가 오프라인 공간(즉, 매장)에 입장했는지 아니면 대상 객체가 오프라인 공간에서 퇴장했는지를 판단할 수 있다.
다만, 본 발명의 일 실시예에 따른 출입 판단 알고리즘은 위의 열거된 것에 한정되지 않으며, 본 발명의 목적을 달성할 수 있는 범위 내에서 다양하게 변경될 수 있음을 밝혀 둔다.
한편, 본 발명의 일 실시예에 따른 디바이스(300)는, 대상 객체를 인식하는 과정에서 통합적으로 생성되는 검출 데이터, 대상 객체를 추적하는 과정에서 생성되는 트랙렛에 관한 데이터 및 대상 객체의 출입 판단 과정에서 생성되는 입장 또는 퇴장에 관한 데이터를 모두 통합할 수 있고, 그 통합된 데이터를 서버(200) 또는 외부 시스템에 전송할 수 있다.
다음으로, 본 발명의 일 실시예에 따른 통신부(340)는, 객체 인식 관리부(310), 객체 추적 관리부(320) 및 출입 판단 관리부(330)로부터의/로의 데이터 송수신이 가능하도록 하는 기능을 수행할 수 있다.
마지막으로, 본 발명의 일 실시예에 따른 제어부(350)는, 객체 인식 관리부(310), 객체 추적 관리부(320), 출입 판단 관리부(330) 및 통신부(340) 간의 데이터의 흐름을 제어하는 기능을 수행할 수 있다. 즉, 본 발명에 따른 제어부(250)는 디바이스(300)의 외부로부터의/로의 데이터 흐름 또는 디바이스(300)의 각 구성요소 간의 데이터 흐름을 제어함으로써, 객체 인식 관리부(310), 객체 추적 관리부(320), 출입 판단 관리부(330) 및 통신부(340)에서 각각 고유 기능을 수행하도록 제어할 수 있다.
이상 설명된 본 발명에 따른 실시예는 다양한 컴퓨터 구성요소를 통하여 실행될 수 있는 프로그램 명령어의 형태로 구현되어 컴퓨터 판독 가능한 기록 매체에 기록될 수 있다. 상기 컴퓨터 판독 가능한 기록 매체는 프로그램 명령어, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 상기 컴퓨터 판독 가능한 기록 매체에 기록되는 프로그램 명령어는 본 발명을 위하여 특별히 설계되고 구성된 것이거나 컴퓨터 소프트웨어 분야의 당업자에게 공지되어 사용 가능한 것일 수 있다. 컴퓨터 판독 가능한 기록 매체의 예에는, 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체, CD-ROM 및 DVD와 같은 광기록 매체, 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical medium), 및 ROM, RAM, 플래시 메모리 등과 같은, 프로그램 명령어를 저장하고 실행하도록 특별히 구성된 하드웨어 장치가 포함된다. 프로그램 명령어의 예에는, 컴파일러에 의하여 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용하여 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드도 포함된다. 하드웨어 장치는 본 발명에 따른 처리를 수행하기 위하여 하나 이상의 소프트웨어 모듈로 변경될 수 있으며, 그 역도 마찬가지이다.
이상에서 본 발명이 구체적인 구성요소 등과 같은 특정 사항과 한정된 실시예 및 도면에 의하여 설명되었으나, 이는 본 발명의 보다 전반적인 이해를 돕기 위하여 제공된 것일 뿐, 본 발명이 상기 실시예에 한정되는 것은 아니며, 본 발명이 속하는 기술분야에서 통상적인 지식을 가진 자라면 이러한 기재로부터 다양한 수정과 변경을 꾀할 수 있다.
따라서, 본 발명의 사상은 상기 설명된 실시예에 국한되어 정해져서는 아니 되며, 후술하는 특허청구범위뿐만 아니라 이 특허청구범위와 균등한 또는 이로부터 등가적으로 변경된 모든 범위는 본 발명의 사상의 범주에 속한다고 할 것이다.
100: 통신망
200: 서버
300: 디바이스
310: 객체 인식 관리부
320: 객체 추적 관리부
330: 출입 판단 관리부
340: 통신부
350: 제어부

Claims (11)

  1. 엣지 컴퓨팅 환경에서 영상에 기초하여 방문객을 분석하기 위한 방법으로서,
    오프라인 공간에 대한 촬영 영상으로부터 특징 데이터를 추출하는 단계,
    인공 신경망 기반 검출 모델을 이용하여 상기 특징 데이터로부터 상기 촬영 영상에 포함된 객체의 위치 및 외관에 대한 검출 데이터를 생성하는 단계,
    대상 객체의 위치 및 외관에 대한 검출 데이터를 통합시키는 단계,
    상기 통합적으로 생성되는 검출 데이터를 참조하여 상기 촬영 영상에서 상기 대상 객체를 추적하는 단계, 및
    상기 대상 객체의 추적에 관한 정보를 참조하여 상기 대상 객체가 소정의 검지선을 통과하는지 여부를 판단함으로써 상기 대상 객체의 출입 여부를 결정하는 단계를 포함하고,
    상기 촬영 영상에 포함된 객체의 위치 및 외관에 대한 검출 데이터는 특징 맵(feature map)에 기초하여 생성되는
    방법.
  2. 삭제
  3. 제1항에 있어서,
    상기 객체의 위치에 대한 검출 데이터에는 상기 객체에 대응하는 바운딩 박스(bounding box)의 객체화 점수(objectness score), 폭(width), 높이(height) 및 중심 오프셋(center offset) 중 적어도 하나에 대한 검출 데이터와 상기 객체의 발의 위치에 대한 검출 데이터가 포함되고, 상기 객체의 외관에 관한 검출 데이터에는 상기 객체의 나이 및 성별 중 적어도 하나에 관한 검출 데이터가 포함되는
    방법.
  4. 제1항에 있어서,
    상기 검출 모델은, 상기 객체의 위치 및 외관에 대한 검출 데이터 중 일부를 생성하는 제1 검출 모델 및 상기 객체의 위치 및 외관에 대한 검출 데이터 중 나머지 일부를 생성하는 제2 검출 모델을 포함하는
    방법.
  5. 제1항에 있어서,
    상기 검출 모델은, 상기 객체의 위치 및 외관에 관한 복수의 속성 중 하나의 속성에 대한 검출 데이터를 하나의 특징 맵에 기초하여 생성하는 검출 모델을 포함하는
    방법.
  6. 제1항에 있어서,
    상기 검출 모델은, 상기 객체의 위치 및 외관에 관한 복수의 속성 중 둘 이상의 속성에 대한 검출 데이터를 하나의 특징 맵에 기초하여 함께 생성하는 검출 모델을 포함하는
    방법.
  7. 제1항에 있어서,
    상기 통합 단계에서, 상기 생성되는 검출 데이터의 기초가 되는 특징 맵상의 적어도 하나의 좌표를 매개로 하여 상기 대상 객체의 위치 및 외관에 대한 검출 데이터 중 적어도 일부를 상기 대상 객체에 대하여 할당함으로써, 상기 대상 객체의 위치 및 외관에 대한 검출 데이터를 통합시키는
    방법.
  8. 삭제
  9. 삭제
  10. 제1항에 따른 방법을 실행하기 위한 컴퓨터 프로그램을 기록하는 비일시성의 컴퓨터 판독 가능 기록 매체.
  11. 엣지 컴퓨팅 환경에서 영상에 기초하여 방문객을 분석하기 위한 디바이스로서,
    오프라인 공간에 대한 촬영 영상으로부터 특징 데이터를 추출하는 특징 추출부,
    인공 신경망 기반 검출 모델을 이용하여 상기 특징 데이터로부터 상기 촬영 영상에 포함된 객체의 위치 및 외관에 대한 검출 데이터를 생성하는 정보 검출부,
    대상 객체의 위치 및 외관에 대한 검출 데이터를 통합시키는 데이터 통합부,
    상기 통합적으로 생성되는 검출 데이터를 참조하여 상기 촬영 영상에서 상기 대상 객체를 추적하는 객체 추적 관리부, 및
    상기 대상 객체의 추적에 관한 정보를 참조하여 상기 대상 객체가 소정의 검지선을 통과하는지 여부를 판단함으로써 상기 대상 객체의 출입 여부를 결정하는 출입 판단 관리부를 포함하고,
    상기 촬영 영상에 포함된 객체의 위치 및 외관에 대한 검출 데이터는 특징 맵(feature map)에 기초하여 생성되는
    디바이스.
KR1020200188854A 2020-12-31 2020-12-31 엣지 컴퓨팅 환경에서 영상에 기초하여 방문객을 분석하기 위한 방법, 디바이스 및 비일시성의 컴퓨터 판독 가능한 기록 매체 KR102610494B1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020200188854A KR102610494B1 (ko) 2020-12-31 2020-12-31 엣지 컴퓨팅 환경에서 영상에 기초하여 방문객을 분석하기 위한 방법, 디바이스 및 비일시성의 컴퓨터 판독 가능한 기록 매체
PCT/KR2021/016654 WO2022145712A1 (ko) 2020-12-31 2021-11-15 엣지 컴퓨팅 환경에서 영상에 기초하여 방문객을 분석하기 위한 방법, 디바이스 및 비일시성의 컴퓨터 판독 가능한 기록 매체
US18/270,408 US20240062408A1 (en) 2020-12-31 2021-11-15 Method, device, and non-transitory computer-readable recording medium for analyzing visitor on basis of image in edge computing environment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200188854A KR102610494B1 (ko) 2020-12-31 2020-12-31 엣지 컴퓨팅 환경에서 영상에 기초하여 방문객을 분석하기 위한 방법, 디바이스 및 비일시성의 컴퓨터 판독 가능한 기록 매체

Publications (2)

Publication Number Publication Date
KR20220096436A KR20220096436A (ko) 2022-07-07
KR102610494B1 true KR102610494B1 (ko) 2023-12-06

Family

ID=82260482

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200188854A KR102610494B1 (ko) 2020-12-31 2020-12-31 엣지 컴퓨팅 환경에서 영상에 기초하여 방문객을 분석하기 위한 방법, 디바이스 및 비일시성의 컴퓨터 판독 가능한 기록 매체

Country Status (3)

Country Link
US (1) US20240062408A1 (ko)
KR (1) KR102610494B1 (ko)
WO (1) WO2022145712A1 (ko)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200311387A1 (en) * 2019-03-26 2020-10-01 Nec Laboratories America, Inc. Person search system based on multiple deep learning models

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101448392B1 (ko) * 2013-06-21 2014-10-13 호서대학교 산학협력단 피플 카운팅 방법
JP6428062B2 (ja) * 2014-09-04 2018-11-28 富士ゼロックス株式会社 情報処理装置及び情報処理プログラム
KR102340134B1 (ko) 2015-02-10 2021-12-15 한화테크윈 주식회사 매장 방문 정보 제공 시스템 및 방법
JP2016177755A (ja) * 2015-03-23 2016-10-06 日本電気株式会社 注文端末装置、注文システム、客情報生成方法、及びプログラム
KR20170006356A (ko) * 2015-07-08 2017-01-18 주식회사 케이티 이차원 영상 기반 고객 분석 방법 및 장치
KR101779096B1 (ko) * 2016-01-06 2017-09-18 (주)지와이네트웍스 지능형 영상분석 기술 기반 통합 매장관리시스템에서의 객체 추적방법
KR101839827B1 (ko) * 2017-09-06 2018-03-19 한국비전기술주식회사 원거리 동적 객체에 대한 얼굴 특징정보(연령, 성별, 착용된 도구, 얼굴안면식별)의 인식 기법이 적용된 지능형 감시시스템
KR102138301B1 (ko) * 2020-05-06 2020-07-27 유정환 Pos 기반 고객 마케팅 시스템

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200311387A1 (en) * 2019-03-26 2020-10-01 Nec Laboratories America, Inc. Person search system based on multiple deep learning models

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
한국 공개특허공보 제10-2017-0006356호(2017.01.18.) 1부.*
한국 공개특허공보 제10-2017-0082299호(2017.07.14.) 1부.*
한국 등록특허공보 제10-1448392호(2014.10.13.) 1부.*
한국 등록특허공보 제10-1839827호(2018.03.19.) 1부.*

Also Published As

Publication number Publication date
US20240062408A1 (en) 2024-02-22
KR20220096436A (ko) 2022-07-07
WO2022145712A1 (ko) 2022-07-07

Similar Documents

Publication Publication Date Title
US11195067B2 (en) Systems and methods for machine learning-based site-specific threat modeling and threat detection
US9697420B2 (en) Information processing system, information processing method, and computer-readable recording medium
US10691950B2 (en) Activity recognition method and system
CN107292240B (zh) 一种基于人脸与人体识别的找人方法及系统
US10055646B2 (en) Local caching for object recognition
US10592771B2 (en) Multi-camera object tracking
US10346688B2 (en) Congestion-state-monitoring system
US8855369B2 (en) Self learning face recognition using depth based tracking for database generation and update
US20170213091A1 (en) Video processing
KR102333143B1 (ko) 무인 계수 서비스 제공 시스템
Cheong et al. Practical automated video analytics for crowd monitoring and counting
US20190273866A1 (en) Analytics based power management for cameras
CA3196344A1 (en) Rail feature identification system
US12020510B2 (en) Person authentication apparatus, control method, and non-transitory storage medium
KR102077632B1 (ko) 로컬 영상분석과 클라우드 서비스를 활용하는 하이브리드 지능형 침입감시 시스템
US20240037454A1 (en) Optimized IoT Data Processing for Real-time Decision Support Systems
KR102610494B1 (ko) 엣지 컴퓨팅 환경에서 영상에 기초하여 방문객을 분석하기 위한 방법, 디바이스 및 비일시성의 컴퓨터 판독 가능한 기록 매체
WO2015136828A1 (ja) 人物検出装置および人物検出方法
KR102641534B1 (ko) 클라우드-에지 통합 플랫폼 시스템
CN116343419B (zh) 一种智能化视频监控报警管理系统
KR20140087062A (ko) 하이브리드 인식 기술을 이용한 전사적 인적자원 관리 시스템 및 방법
WO2017144089A1 (en) Method for managing advanced plugins in an electronic device for analyzing the people behaviour in a physical space, electronic device for analyzing the people behaviour in a physical space and related program product
KR20230097892A (ko) 구역에 대한 분석을 수행하기 위한 방법, 시스템 및 비일시성의 컴퓨터 판독 가능한 기록 매체
KR20230090908A (ko) 얼굴 인식에 기초한 인물 별 영상 처리에 관련된 방법 및 장치
KR20220091859A (ko) 타겟 대상의 얼굴을 인식하는 장치, 방법 및 컴퓨터 프로그램

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right