KR102603251B1 - 플레어 가스의 직접 연소식 열량 측정 시스템 - Google Patents

플레어 가스의 직접 연소식 열량 측정 시스템 Download PDF

Info

Publication number
KR102603251B1
KR102603251B1 KR1020220159673A KR20220159673A KR102603251B1 KR 102603251 B1 KR102603251 B1 KR 102603251B1 KR 1020220159673 A KR1020220159673 A KR 1020220159673A KR 20220159673 A KR20220159673 A KR 20220159673A KR 102603251 B1 KR102603251 B1 KR 102603251B1
Authority
KR
South Korea
Prior art keywords
flare gas
unit
pipe
gas
flare
Prior art date
Application number
KR1020220159673A
Other languages
English (en)
Other versions
KR20230002114A (ko
Inventor
정요셉
조병규
홍승오
신동우
박권성
조규석
최상규
최성호
정승주
한상민
박세진
이경환
전동근
조철희
이광현
이대원
김극래
김일중
김호진
김영민
Original Assignee
필즈엔지니어링 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 필즈엔지니어링 주식회사 filed Critical 필즈엔지니어링 주식회사
Priority to KR1020220159673A priority Critical patent/KR102603251B1/ko
Publication of KR20230002114A publication Critical patent/KR20230002114A/ko
Application granted granted Critical
Publication of KR102603251B1 publication Critical patent/KR102603251B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/20Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity
    • G01N25/22Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on combustion or catalytic oxidation, e.g. of components of gas mixtures
    • G01N25/28Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on combustion or catalytic oxidation, e.g. of components of gas mixtures the rise in temperature of the gases resulting from combustion being measured directly
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/86Indirect mass flowmeters, e.g. measuring volume flow and density, temperature or pressure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K17/00Measuring quantity of heat
    • G01K17/06Measuring quantity of heat conveyed by flowing media, e.g. in heating systems e.g. the quantity of heat in a transporting medium, delivered to or consumed in an expenditure device
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2247Sampling from a flowing stream of gas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N9/00Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/14Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring differences of pressure in the fluid

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Fluid Mechanics (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

본 발명은, 플레어 가스가 유동되는 파이프에 마련되어 상기 플레어 가스를 샘플링하는 추출부; 상기 추출부에 의하여 추출된 플레어 가스를 전달받아 연소시키는 연소부; 및 상기 연소부에서 연소된 플레어 가스의 발열량을 산출하는 발열량 산출부;를 포함하며, 상기 추출부는, 상기 파이프에 마련된 벤트에 장착된 상태에서 플레어 가스를 추출하는 것을 특징으로 한다.

Description

플레어 가스의 직접 연소식 열량 측정 시스템{DIRECT COMBUSTION CALORIMETRY SYSTEM OF FLARE GAS}
본 발명은 플레어 가스의 직접 연소식 열량 측정 시스템에 관한 것으로서, 상세하게는, 파이프 라인을 따라 이동되는 플레어 가스의 발열량을 높은 정확도로 측정할 수 있도록 구성된 플레어 가스의 직접 연소식 열량 측정 시스템에 관한 것이다.
일반적으로 플레어 가스란 정유공장이나 석유화학공장 등에서 발생되는 폐가스로서, 휘발성 및 가연성을 가지고 있는 가스를 의미하는데, 이러한 지속적, 대용량으로 발생하는 플레어 가스를 관리하고 처리 및 배출하기 위해, 플레어 가스가 유동되는 다수의 관로(파이프), 방출 가스나 액체 등을 포집하는 플레어 헤더, 플레어 헤더로부터 전달된 액체를 가스와 분리 포집하는 녹아웃 드럼, 소각탑으로서 파일럿 버너, 점화 장치 등을 포함하여 구성되어 플레어 가스를 연소시키며 방출하는 플레어 스택, 플레어 스택으로부터 역류된 화염으로 인해 사고가 일어나는 것을 방지하기 위한 실 드럼 등을 포함하여 구성된 플레어 시스템이 마련된다.
따라서, 플레어 가스는 플레어 스택이라는 배출 및 폐가스 처리 장치를 통하여 외부로 배출된다. 즉, 플레어 가스는 파이프를 통하여 플레어 스택으로 전달되며, 이 플레어 스택에서 연소되어 대기중으로 배출될 수 있다.
플레어 스택은 다수개의 파이프와 연결되어 플레어 가스를 전달받기 때문에, 파이프의 내부 압력변동에 민감하게 영향을 받는다. 다시 말해, 플레어 스택에 의한 플레어 가스의 연소 효율이나 플레어 스택의 구조적 안정성 등 다양한 사항들이 파이프의 내부 압력이나 플레어 가스의 유동 상태에 영향을 받게 된다.
따라서, 파이프를 따라 유동되는 플레어 가스의 유량을 측정하고, 그 측정된 결과에 따라 파이프의 이상유무, 또는, 플레어 가스의 누출유무 등을 파악하여 플레어 스택에서 발생될 수 있는 문제점을 사전에 방지하는 것이 매우 중요하다고 할 수 있다.
최근에는 대기 환경을 위한 법률로 인하여 플레어 스택에서 배출되는 플레어 가스의 유량 뿐만 아니라 플레어 가스의 발열량에 대해서도 관심이 높아지고 있다. 즉, 이산화탄소의 배출량과 미세먼지를 줄이기 위하여 플레어 스택에서 배출되는 가스의 발열량을 지속적으로 측정하는 환경 법률이 2024년 부터 발효될 예정이다.
따라서, 플레어 가스의 열량을 실시간으로 감시하고 그에 따른 결과를 바탕으로 정유공장이나 석유화학공장 등의 운영 조건을 변경할 필요성이 있다.
종래에는 시료를 채취하는 방식으로 파이프를 따라 유동되는 플레어 가스의 성분을 분석한 뒤, 성분별 단위 열량값으로 계산하거나, 또는, 채취된 플레어 가스를 직접 연소시켜 열량을 측정하는 방법이 사용되어왔다. 하지만, 이러한 방법은 과정이 복잡하고 번거로우며, 실시간으로 플레어 가스의 열량을 측정할 수 없는 문제점이 있다.
특히, 플레어 가스를 직접 연소시키는 방식은, 플레어 가스가 유동되는 파이프에 마련된 별도의 분기관(가지관)에서 플레어 가스를 채취한 뒤 수행되는데, 이 방식은, 파이프의 내벽을 따라 흐르는 플레어 가스만 분기관을 통하여 채취하기 때문에 다양한 성분으로 구성된 플레어 가스의 발열량을 정확하게 측정할 수 없는 문제점이 있다.
한편, 플레어 가스의 발열량을 실시간으로 정확하게 측정하기 위해서는 플레어 가스의 유량이 정확하게 측정되어야 한다. 그러나, 플레어 가스는 다양한 공정에서 발생되는 혼합가스이기 때문에 그 조성을 그 조성을 정확하게 파악하기 어려워 유량값의 정확도가 떨어지는 문제점이 있다.
종래에는, 실제 플레어 시스템이 설치된 현장에서는 파이프를 따라 유동되는 플레어 가스의 조성을 알기 어렵고, 또한, 파이프 내의 압력에 따른 플레어 가스의 밀도값도 수시로 변동되기도 하기 때문에, 설치 장소나 시설의 특징에 따라서 플레어 가스의 유량값이 차이가 나며, 결국, 플레어 스택에서 배출되는 가스의 열량값이 부정확한 문제점이 있다.
따라서, 본 출원인은, 상기와 같은 문제점을 해결하기 위하여 본 발명을 제안하게 되었으며, 이와 관련된 선행기술문헌으로는, 대한민국 등록특허 제10-1423566호의 '천연가스의 열량측정 시스템'이 있다.
본 발명은 상기와 같은 문제점을 해결하기 위한 것으로서, 샘플링된 플레어 가스와 교정용 가스를 개별적으로 연소시키는 방식으로 플레어 가스의 발열량을 정확하게 측정할 수 있도록 구성된 플레어 가스의 직접 연소식 열량 측정 시스템을 제공하는데 목적이 있다.
또한, 본 발명은, 다양한 성분을 포함하고 있는 플레어 가스를 샘플링한 뒤 발열량을 측정할 수 있도록 구성된 플레어 가스의 직접 연속식 열량 측정 시스템을 제공하는데 목적이 있다.
본 발명은, 플레어 가스가 유동되는 파이프에 마련되어 상기 플레어 가스를 샘플링하는 추출부; 상기 추출부에 의하여 추출된 플레어 가스를 전달받아 연소시키는 연소부; 및 상기 연소부에서 연소된 플레어 가스의 발열량을 산출하는 발열량 산출부;를 포함하며, 상기 추출부는, 상기 파이프에 마련된 가스 노즐에 장착된 상태에서 플레어 가스를 추출할 수 있다.
또한, 상기 연소부로 교정용 가스를 공급하는 교정용 가스 공급부; 및 상기 교정용 가스 공급부에 의하여 상기 연소부에서 연소된 상기 교정용 가스의 발열량을 바탕으로 상기 발열량 산출부의 교정값을 산출하는 교정부;를 포함할 수 있다.
또한, 상기 교정용 가스 공급부는, 상기 추출부와 상기 연소부를 서로 연결하는 플레어 가스 유동관에 연결된 상태에서 상기 교정용 가스를 공급하거나 상기 연소부와 직접적으로 연결된 상태에서 상기 교정용 가스를 공급할 수 있다.
또한, 상기 교정부는, 상기 교정용 가스 공급부에서 공급되는 교정용 가스의 이론적 발열량과 상기 발열량 산출부에서 실제로 측정된 교정용 가스의 발열량을 비교 분석하여 상기 발열량 산출부의 교정값을 산출할 수 있다.
또한, 상기 추출부는 상기 파이프에 마련된 가스 노즐에 장착된 상태에서 상기 파이프의 내부 중앙부를 따라서 유동되는 플레어 가스를 샘플링할 수 있다.
또한, 상기 추출부는, 상기 파이프로 길이방향 하단부위가 삽입되는 샘플링바; 상기 샘플링바에 연결된 상태로 플레어 가스의 속도를 측정하는 속도 측정부; 상기 샘플링바와 연결된 상태로 플레어 가스의 밀도를 측정하는 밀도 측정부; 및 상기 속도 측정부와 상기 밀도 측정부에 의해 측정된 값을 기초로 플레어 가스의 유량을 산출하고, 그 산출된 유량을 저장 및 분석하는 유량 분석부;를 포함할 수 있다.
또한, 상기 샘플링바는, 상기 플레어 가스의 유동방향과 마주하게 배치되는 라운드면; 상기 라운드면의 배면측에 마련되는 면취부; 및 상기 면취부를 구획하되 상기 라운드면의 폭방향 양단을 서로 연결하는 수직면;을 포함할 수 있다.
또한, 상기 속도 측정부에 의하여 측정되는 상기 플레어 가스의 속도는, 상기 플레어 가스의 유동으로 인해 발생하는 압력 차이를 이용하여 산출되며, 상기 속도 측정부는, 상기 라운드면에 형성된 제1압력구에 길이방향 일단이 연통 가능하게 연결되는 제1배관; 상기 수직면에 형성된 제2압력구에 길이방향 일단이 연통 가능하게 연결되는 제2배관; 및 상기 제1배관의 길이방향 타단 및 상기 제2배관의 길이방향 타단과 연통 가능하게 연결되며, 상기 제1배관에서 발생되는 압력과 상기 제2배관에서 발생되는 압력의 차압을 이용하여 플레어 가스의 속도를 측정하는 제1센서부;를 포함할 수 있다.
또한, 상기 밀도 측정부는, 상기 라운드면에 형성된 가스 유입구에 길이방향 일단이 연통 가능하게 연결되는 제3배관; 상기 샘플링바의 둘레면에 형성된 가스 배출구에 길이방항 일단이 연통 가능하게 연결되는 제4배관; 및 상기 제3배관의 길이방향 타단 및 상기 제4배관의 길이방향 타단과 연통 가능하게 연결되며, 상기 제3배관을 통하여 유입되는 플레어 가스의 밀도를 측정하는 제2센서부;를 포함할 수 있다.
또한, 상기 연소부는, 상기 밀도 측정부를 경유한 플레어 가스를 전달받아 연소시킬 수 있다.
본 발명에 따른 플레어 가스의 직접 연소식 열량 측정 시스템은, 플레어 스택에서 배출되는 플레어 가스의 발열량을 실시간으로 확인 가능하도록 하여, 정유공장이나 석유화학공장 등과 같이 플레어 가스를 대기중으로 배출시키는 시설의 운영 조건을 대기오염이 일어나지 않는 방향으로 용이하게 변경할 수 있다.
또한, 본 발명에 따른 플레어 가스의 직접 연소식 열량 측정 시스템은, 파이프의 내부 중앙을 따라 유동되는 플레어 가스를 추출하여 연소시키는 방식으로 발열량을 측정하므로, 플레어 가스의 유속과 밀도로 인하여 발열량이 부정확하게 측정되는 것을 방지할 수 있다.
또한, 본 발명에 따른 플레어 가스의 직접 연소식 열량 측정 시스템은, 플레어 가스의 발열량을 산출하는 발열량 산출부를 교정하기 위하여 이론적 발열량을 알고 있는 교정용 가스를 공급하고 연소시키는 구성을 제공하므로, 플레어 가스의 발열량이 높은 정밀도로 측정되고 있는지를 쉽게 파악할 수 있고, 그에 따른 보정작업을 수행하여 플레어 가스의 발열량을 높은 정확도로 획득할 수 있다.
또한, 본 발명에 따른 플레어 가스의 직접 연소식 열량 측정 시스템은, 플레어 가스의 유속에 따른 난류/층류에 영향을 받지 않는 압력산출 방식으로 플레어 가스의 속도를 측정하고 그 속도값을 이용하여 플레어 가스의 유량을 산출하는 구성을 가지므로, 높은 정확도로 측정된 플레어 가스의 유량값을 적용하여 플레어 가스의 열량을 정확하게 산출할 수 있다.
또한, 본 발명에 따른 플레어 가스의 직접 연소식 열량 측정 시스템은, 플레어 가스 배출처에 마련되어 배관된 파이프 라인의 다양한 지점에 적용되어 유량과 열량을 동시에 측정할 수 있는 구성을 가지므로, 다수 지점에서 측정된 데이터를 종합적으로 분석하여 최종적으로 플레어 가스의 유량과 열량을 높은 정확도로 도출할 수 있다.
또한, 본 발명에 따른 플레어 가스의 직접 연소식 열량 측정 시스템은, 플레어 가스 배출처에 마련되어 배관된 파이프 라인의 다양한 지점에 적용되어 유량과 열량을 동시에 측정할 수 있는 구성을 가지므로, 다수 지점에서 측정된 데이터를 종합적으로 분석하여 가스의 누출지점, 파이프의 파손 지점, 불균일 압력구간, 등을 정확하게 파악할 수 있고, 또한, 배관된 파이프 라인의 압력변동도 정확하게 파악하여 정유공장이나 석유화학공장의 운영 조건에 참고 데이터로 제공할 수 있다.
도 1은 본 발명에 따른 플레어 가스의 직접 연소식 열량 측정 시스템의 구성을 보여주는 도면.
도 2는 본 발명의 일 실시예에 따른 추출부의 구성을 보여주는 도면.
도 3은 도 2에 도시된 샘플링바의 A영역을 확대한 사시도.
도 4는 도 3에 도시된 샘플링바의 A영역의 내부 모습을 보여주는 도면.
도 5는 본 발명에 따른 추출부의 제1센서부와 제2센서부를 보여주는 도면.
도 6은 도 3에 도시된 샘플링바의 하단을 위에서 바라본 평단면도.
도 7은 본 발명의 다른 실시예에 따른 플레어 가스의 직접 연소식 열량 측정 시스템의 구성을 보여주는 도면.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다.
그러나, 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.
이하, 도 1 내지 도 7을 참조하여 본 발명의 일 실시예에 따른 플레어 가스의 직접 연소식 열량 측정 시스템이 상세하게 설명된다. 본 발명을 설명함에 있어, 관련된 공지기능 혹은 구성에 대한 구체적인 설명은 발명의 요지를 모호하지 않게 하기 위하여 생략된다.
본 발명의 일 실시예에 따른 플레어 가스의 직접 연소식 열량 측정 시스템(100)은, 플레어 가스를 유동시키는 파이프 라인의 다양한 지점에서 플레어 가스의 발열량을 실시간으로 측정하고, 더불어, 플레어 가스의 발열량이 정확하게 측정되고 있는 가의 여부를 파악할 수 있도록 구성된 것에 특징이 있다.
상기 열량 측정 시스템(100)은, 도 1 및 도 2에 도시된 바와 같이,
플레어 가스가 유동되는 파이프(P)에 마련되어 상기 플레어 가스를 샘플링하는 추출부(200); 상기 추출부(200)에 의하여 추출된 플레어 가스를 전달받아 연소시키는 연소부(300); 상기 연소부(300)로 교정용 가스를 공급하는 교정용 가스 공급부(400); 상기 연소부(300)에서 연소되는 가스의 발열량을 산출하는 발열량 산출부(500); 및 상기 연소부(300)에서 연소된 상기 교정용 가스의 발열량과 상기 플레어 가스의 발열량을 바탕으로 상기 발열량 산출부(500)의 교정값을 산출하는 교정부(600);를 크게 포함할 수 있다.
상기 추출부(200)는, 파이프(P)를 따라 유동되는 플레어 가스를 파이프(P)의 외부로 추출하는 구성요소라 할 수 있다. 다시 말해, 파이프(P)의 길이방향 일 지점에 마련될 수 있으며, 파이프(P)의 내부를 따라 흐르는 플레어 가스를 뽑아내는 구성요소라 할 수 있다.
상기 연소부(300)는, 상기 추출부(200)에 추출된 플레어 가스를 전달받아 연소시키는 구성요소라 할 수 있다. 즉, 연소부(300)는 연소용 챔버와 상기 챔버에 저장된 가스를 연소시키는 버너를 포함하여 구성될 수 있다. 참고로, 상기 연소용 챔버는, 별도의 유동관을 매개로 상기 추출부(200)와 연결된다.
상기 교정용 가스 공급부(400)는, 연소부(300)에 이론적 발열량을 알고있는 가스를 공급할 수 있다. 예컨대, 교정용 가스 공급부(400)는 연소부(300)에 부탄(butane) 가스나 프로판(propane) 가스를 공급할 수 있다.
교정용 가스 공급부(400)는, 추출부(200)와 연소부(300)를 서로 연결하는 플레어 가스 유동관에 직접적으로 연결되거나, 또는, 상기 연속부(300)의 챔버와 직접적으로 연결된 상태에서 교정용 가스를 공급할 수 있다. 참고로, 본 발명의 일 실시예에서는, 도 2에 도시된 바와 같이, 교정용 가스 공급부(400)가 연소부(300)에 직접적으로 연결된 것으로 도시되어 있다.
상기 발열량 산출부(500)는, 상기 연소부(300)에서 연소된 플레어 가스의 발열량을 측정할 수 있다. 아울러, 발열량 산출부(500)는, 연소부(300)에 교정용 가스가 공급되었을 시에는, 연소부(300)에서 연소된 교정용 가스의 발열량을 측정할 수도 있다.
파이프(P) 라인을 따라서 유동되는 플레어 가스의 발열량은, 추출부(200)에 의해 추출된 플레어 가스를 연소부(300)에서 연소시키는 과정으로 산출할 수 있다.
따라서, 상기 발열량 산출부(500)에서 산출되는 발열량 데이터를 바탕으로 플레어 시스템을 구성하는 파이프(P) 라인을 따라서 유동되는 플레어 가스의 발열량을 실시간을 파악할 수 있고, 더불어, 이 발열량 데이터를 바탕으로 플레어 시스템의 운영 조건을 제어할 수 있다.
한편, 상기 교정부(600)는, 상기 교정용 가스 공급부(400)와 함께, 상기 발열량 산출부(500)가 연소부(300)에서 연소된 플레어 가스의 발열량을 정확하게 측정하고 있는지 파악하는 구성요소라 할 수 있다.
교정부(600)는, 교정용 가스 공급부(400)에서 연소부(300)로 공급된 교정용 가스의 이론적 발열량과 상기 발열량 산출부(500)에서 실제로 측정된 교정용 가스의 발열량을 비교 분석하여 상기 발열량 산출부의 교정값을 산출할 수 있다.
다시 말해, 상기 교정부(600)는, 연소부(300)에서 연소된 교정용 가스의 실제 측정 발열량과, 교정용 가스의 이론적 발열량을 비교 분석하고, 이 데이터를 바탕으로 발열량 산출부(500)를 교정할 수 있다.
예컨대, 교정부(600)는, 발열량 산출부(500)에 의하여 실제로 측정된 교정용 가스의 발열량이 이론적 발열량의 미만이거나 초과한 경우, 발열량 산출부(500)를 교정할 수 있다.
따라서, 발열량 산출부(500)는, 교정용 가스 공급부(400)와 교정부(600)에 의하여 연소부(300)에서 연소되는 플레어 가스의 발열량을 높은 정확도로 측정할 수 있다.
참고로, 본 발명의 일 실시예에서는 하나의 연소부(300)에서 플레어 가스가 연소되거나 교정용 가스가 연소되는 것으로 설명되었으나 이에 한정되는 것은 아니다. 예컨대, 본 발명에 따른 열량 측정 시스템(100)은, 발열량 산출부(500)를 교정하기 위하여, 상기 연소부(300)로 공급되는 교정용 가스를 연소시키는 연소용 챔버와, 상기 추출부(200)에 의하여 추출된 플레어 가스를 연소시키는 연소용 챔버를 별도로 갖출 수 있다. 즉, 교정용 가스를 연소시키기 위한 별도의 연소부를 더 마련할 수도 있다. 이때, 플레어 가스를 연소시키는 연소부의 챔버와 교정용 가스를 연소시키는 연소부의 챔버는 당연히 동일한 체적을 가지고 있고, 동일한 연소 조건을 가진다고 할 수 있다.
한편, 본 발명의 일 실시예에 따른 추출부(200)는, 파이프(P)의 내부 중앙부를 따라서 유동되는 플레어 가스를 추출하는 것이 바람직하다.
왜냐하면, 플레어 가스를 구성하는 여러 종류의 기체 중에서 어느 하나의 기체가 유난히 큰 비중을 차지할 경우, 플레어 가스의 발열량을 높은 정확도로 파악하지 못하는 현상이 발생될 수 있다.
좀더 구체적으로 설명하면, 파이프(P)를 따라서 유동되는 플레어 가스는 다양한 공정에서 발생되는 가스의 혼합물질이라 할 수 있다. 따라서, 플레어 가스를 구성하는 각각의 가스들은 자체 비중이나 성질에 의해 파이프(P)의 내부에서 뷸규칙한 흐름으로 유동될 수 있다. 만약, 추출부(200)가 파이프(P)의 내벽을 따라서 유동되는 플레어 가스만 추출하면, 추출된 플레어 가스가 일부 가스 성분만 포함하고 있을 확률이 높기 때문에 플레어 가스의 발열량이 부정확해질 수 있다.
따라서, 다양한 가스 성분을 포함하고 있는 플레어 가스를 추출하고 높은 정확되의 발열량을 산출하기 위해서는 추출부(200)가 파이프(P)의 내부 중앙부를 따라서 유동되는 플레어 가스를 추출하는 것이 바람직하다.
상기 추출부(200)는, 위와 같은 관점에서, 다음과 같은 구성을 가질 수 있다.
추출부(200)는, 도 2 내지 도 5에 도시된 바와 같이, 상기 파이프(P)로 길이방향 하단부위가 삽입되는 샘플링바(210); 상기 샘플링바(210)에 연결된 상태로 플레어 가스의 속도를 측정하는 속도 측정부(220); 상기 샘플링바(210)와 연결된 상태로 플레어 가스의 밀도를 측정하는 밀도 측정부(230); 및 상기 속도 측정부(220)와 상기 밀도 측정부(230)에 의해 측정된 값을 기초로 플레어 가스의 유량을 산출하고, 그 산출된 유량을 저장 및 분석하는 유량 분석부(240);를 포함할 수 있다.
상기 샘플링바(210)는 전체적으로 수직봉의 형태를 가지며, 비교적 작은 직경의 가스 노즐(B)을 통해 파이프(P)의 길이방향과 교차되는 수직방향으로 삽입될 수 있다.
상기 샘플링바(210)의 상단부에는 후술할 속도 측정부(220)의 제1센서부(221)와 밀도 측정부(230)의 제2센서부(231)가 내장되는 케이스(미도시)가 마련될 수 있으며, 이 케이스를 포함한 상기 샘플링바(210)의 상단 부위는 파이프(P)의 외부로 노출되게 배치되는 구성요소라 할 수 있다.
상기 샘플링바(210)의 하단은, 도 3 및 도 4에 도시된 바와 같이, 플레어 가스의 유동방향(A)과 마주하게 배치되는 원호 형상의 라운드면(211); 상기 라운드면(211)의 배면측에서 소정의 깊이를 가진 채 마련되는 면취부(212); 및 상기 면취부(212)를 구획하며, 상기 라운드면(211)의 폭방향 양단을 서로 연결하는 수직면(213);을 포함할 수 있다.
즉, 전체적으로 원형의 단면을 가지는 수직봉 형태의 샘플링바(210) 중에서 하단부위는 'ㄷ'자로 절개된 형태를 가질 수 있으며, 이 하단부위가 실질적으로 플레어 가스의 속도와 밀도를 측정하기 위하여 사용되는 부분이라 할 수 있다.
상기 라운드면(211)은 반원의 곡률을 가진 채로 플레어 가스의 유동방향(A)과 마주하게 배치될 수 있다. 즉, 샘플링바(210)의 하단이 파이프(P)에 마련된 가스 노즐(B)을 통하여 파이프(P)의 내부로 삽입되면 상기 라운드면(211)은 플레어 가스의 유동방향과 마주하게 배치된다고 할 수 있다.
그리고, 상기 라운드면(211)에는 플레어 가스의 속도를 측정하기 위한 제1압력구(h1)가 형성될 수 있으며, 이 제1압력구(h1)는 상기 라운드면(211)의 길이방향 중단 부위에 배치될 수 있다.
또한, 상기 면취부(212)가 마련되지 않은 라운드면(211)의 상측 부위에는 플레어 가스의 밀도를 측정하기 위한 가스 유입구(h2)가 형성될 수 있으며, 이 가스 유입구(h2)는 상기 제1압력구(h1)에 간섭되지 않는 위치상에 배치될 수 있다.
상기 면취부(212)는, 전술한 바와 같이, 상기 라운드면(211)의 폭방향 양단을 서로 연결하는 수직면(213)과, 상기 수직면(213)의 상단 및 하단에서 각각 수평방향으로 연장된 수평면(131d)에 의해 구획될 수 있다.
한편, 상기 수직면(213)에는 플레어 가스의 속도를 측정하기 위한 제2압력구(h3)가 형성될 수 있으며, 이 제2압력구(h3)는 상기 수직면(213)의 길이방향 중단 부위에 배치될 수 있다.
참고로, 상기 라운드면(211)에 형성된 제1압력구(h1)는, 샘플링바(210)가 파이프(P)로 삽입된 지점의 전압을 측정하기 위한 구멍이라 할 수 있고, 반대로, 상기 수직면(213)에 형성된 제2압력구(h3)는 샘플링바(210)가 파이프(P)로 삽입된 지점의 정압을 측정하기 위한 구멍이라 할 수 있다.
위와 같이, 플레어 가스의 유동방향(A)과 마주하는 라운드면(211)에 제1압력구(h1)를 마련하고, 상기 라운드면(211)과 반대되는 수직면(213)에 제2압력구(h3)를 형성시키는 이유는, 도 6에 도시된 바와 같이, 플레어 가스가 라운드면(211)과 접촉될 시에 발생되는 와류(vortex)가 상기 수직면(213)이 배치된 방향으로 유동되어 제2압력구(h3)로 유입되는 것을 방지하기 위함이다. 즉, 라운드면(211)과 접촉된 후 유동되는 플레어 가스가 제2압력구(h3)가 형성된 방향으로 유동되는 것을 방지하여 제2압력구(h3)에서 정확한 정압을 측정할 수 있도록 하기 위함이다.
따라서, 제1압력구(h1)는 플레어 가스를 양 방향으로 분기시키는 라운드면(211)에 형성되는 것이 바람직하고, 제2압력구(h3)는, 라운드면(211)에 의해 분기되어 유동되는 플레어 가스에 영향을 받지 않는 수직면(213)에 형성되는 것이 바람직하다.
한편, 상기 면취부(212)가 형성되지 않은 상기 샘플링바(210)의 하단 부위에는 가스 배출구(h4)가 마련될 수 있다.
상기 속도 측정부(220)는, 도 4 및 도 5에 도시된 바와 같이, 상기 라운드면(211)에 형성된 제1압력구(h1)에 길이방향 일단이 연통 가능하게 연결되는 제1배관(L1); 상기 수직면(213)에 형성된 제2압력구(h3)에 길이방향 일단이 연통 가능하게 연결되는 제2배관(L2); 및 상기 제1배관(L1)의 길이방향 타단 및 상기 제2배관(L3)의 길이방향 타단과 연통 가능하게 연결되며, 상기 제1배관(L1)에서 발생되는 압력과 상기 제2배관(L2)에서 발생되는 압력의 차압을 이용하여 플레어 가스의 속도를 측정하는 제1센서부(221);를 포함할 수 있다.
상기 제1배관(L1)과 상기 제2배관(L2)은, 상기 샘플링바(210)의 내부에서 상기 샘플링바(210)의 길이방향을 따라 마련될 수 있다.
상기 제1배관(L1)의 길이방향 일단, 즉, 하단은 전술한 바와 같이 상기 제1압력구(h1)와 연통 가능하게 연결되고, 길이방향 타단, 즉 상단은 상기 제1센서부(221)와 연결될 수 있다.
상기 제2배관(L2)의 길이방향 일단, 즉, 하단은 전술한 바와 같이 상기 제2압력구(h3)와 연통 가능하게 연결되고, 길이방향 타단, 즉 상단은 상기 제1센서부(221)와 연결될 수 있다.
상기 제1센서부(221)는, 공지의 차압센서라 할 수 있으며, 상기 제1배관(L1)에서 발생되는 압력과 상기 제2배관(L2)에서 발생되는 압력의 차압(동압)을 산출하고, 그 산출된 값을 이용하여 플레어 가스의 속도를 산출할 수 있다.
그리고, 상기 제1센서부(221)에서 산출된 플에어 가스의 속도는 유량 분석부(240)로 전달될 수 있다.
상기 밀도 측정부(230)는, 도 4 및 도 5에 도시된 바와 같이, 상기 라운드면(211)에 형성된 가스 유입구(h1)에 길이방향 일단이 연통 가능하게 연결되는 제3배관(L3); 상기 면취부(212)가 배치되지 않은 상기 샘플링바(110)의 외면에 형성된 가스 배출구(h4)에 길이방항 일단이 연통 가능하게 연결되는 제4배관(L4); 상기 제3배관(L3)의 길이방향 타단 및 상기 제4배관(L4)의 길이방향 타단과 연통 가능하게 연결되며, 상기 제3배관(L3)을 통하여 유입되는 플레어 가스의 밀도를 측정하는 제2센서부(231);를 포함할 수 있다.
상기 제3배관(L3)과 상기 제4배관(L4)도, 상기 샘플링바(210)의 내부에서 상기 샘플링바(210)의 길이방향을 따라 마련될 수 있다.
상기 제3배관(L3)의 길이방향 일단, 즉, 하단은, 전술한 바와 같이 상기 가스 유입구(h1)와 연통가능하게 연결되고, 길이방향 타단, 즉, 상단은 상기 제2센서부(231)와 연결될 수 있다.
상기 제4배관(L4)의 길이방향 일단, 즉, 하단은, 전술한 바와 같이 상기 가스 배출구(111c)와 연통 가능하게 연결되고, 길이방향 타단, 즉, 상단은 상기 제2센서부(231)와 연결될 수 있다.
따라서, 상기 가스 유입구(h1)로 유입된 플레어 가스는 상기 제3배관(L3)을 통해 상기 제2센서부(231)로 전달될 수 있으며, 상기 제2센서부(231)를 경유한 플레어 가스는 상기 제4배관(L4)을 통해 상기 가스 배출구(111c)로 배출될 수 있다.
여기서, 상기 가스 배출구(111c)로 통해 배출되는 플레어 가스가 상기 수직면(113)에 형성된 제2압력구(113a)로 유입되지 않도록, 상기 가스 배출구(111c)는 상기 수직면(113)의 상부에 배치된 샘플링바(210)의 둘레면 부위에 마련되는 것이 바람직하다.
상기 제2센서부(231)는, 플레어 가스를 매질로 하여 진동되는 공지의 수정 진동식 가스 센서(quartz oscillator gas sensor)라 할 수 있으며, 플레어 가스의 밀도를 측정하고 그 측정값을 상기 유량 분석부(240)로 전달할 수 있다.
한편, 연소부(300)는, 도 2에 도시된 바와 같이, 밀도 측정부(230)를 경유한 플레어 가스를 전달받아 플레어 가스를 연소시킬 수 있다.
정유공장 또는 석유화학공장에 마련되는 플레어 시스템의 파이프(P)는 다양한 형태와 개수를 가진 채로 광범위하게 배관되는데, 이와 같이 배관된 파이프(P)에서 플레어 가스의 발열량을 정확하게 산출하기 위해서는 한 지점에서 측정되는 플레어 가스의 유량값을 정확하게 측정하는 것이 바람직하다. 그리고, 이와 같이 측정된 플레어 가스의 유량값 및 열량값은 파이프(P)의 또 다른 다양한 지점에서 측정된 유량값 및 열량값들과 비교 분석되는 데이터로 활용될 수 있다.
상기 유량 분석부(240)는, 도시되지 않은 전원 공급부로부터 전력을 공급받을 수 있으며, 속도 측정부(220), 밀도 측정부(230)로 전달할 수 있다.
또한, 유량 분석부(240)는, 전술한 바와 같이, 속도 측정부(220)와 밀도 측정부(230)로부터 측정된 데이터 값을 전달받아 플레어 가스의 유량을 산출하고 저장 및 분석하며, 또한, 그 데이터를 상기 교정부(600)로 전달할 수 있다.
그러면 교정부(600)는, 유량 분석부(240)에서 전달되는 플레어 가스의 유량 데이터를 바탕으로 상기 발열량 산출부(500)의 교정값을 산출할 수 있다.
한편, 상기 샘플링바(210)가 곡관 형태이거나 곡관에 의한 불균일 유동의 영향을 받는 위치에 있는 경우에는, CFD(Computational fluid dynamics)를 통하여 플레어 가스의 유동 프로파일을 우선적으로 파악하고, 상기 플레어 가스의 유동 프로파일을 보정후 플레어 가스의 속도 및 밀도를 측정하는 것이 바람직하다.
즉, 플레어 가스가 유동되는 파이프(P)의 여러 구간들 중, 유체가 흐름의 저항을 받지 않고 균일하게 흐를 수 있는 직관의 경우에는, 관 내의 플레어 가스의 속도 분포가 거의 균일한 형태를 가진다(중앙지점이 가장 빠르고 파이프 내측에 접하는 지점이 가장 느린 정규 분포 그래프와 같은 형태). 따라서, 이러한 위치에서는 삽입되는 샘플링바(210)의 길이와 파이프(P)의 직경과의 관계에서 측정되는 플레어 가스의 속도가 해당 단면에서의 유체 평균 속도와 어떤 관계를 가지는지 정확하게 파악할 수 있지만, 관 내의 유속 분포가 균일하게 예측되지 않는 곡관, 또는 곡관의 영향을 받는 위치의 지점에서 상기 샘플링바(210)에 의해 측정된 속도가 해당 지점의 속도와 어떤 관계를 가지는지를 파악하기가 어렵다.
이러한 문제점을 해결하기 위해, 샘플링바(210)가 설치된 파이프(P) 내의 속도 분포를 정확하게 파악하면, 해당 지점에서의 측정된 값과 평균 속도와의 관계를 명확하게 파악할 수 있다.
다시 말해, 샘플링바(210)가 곡관의 형태를 가지는 파이프(P)의 지점에 삽입되거나, 또는 직선의 형태를 가지는 파이프(P)의 지점에 삽입되더라도 그 지점이 파이프(P)의 곡관 부위와 근접하게 배치되어 불균일 유체 유동의 영향을 받을 경우에는, CFD(Computational fluid dynamics)를 통하여 플레어 가스의 유동 프로파일을 파악후 보정할 수 있다. 즉, 보정은 3차원 스캔이나 실측, 또는 설계 도면상의 값 등을 통해 파이프의 3차원 데이터를 확보함으로써 이루어 질 수 있으며, CFD를 수행하기 위한 상용 프로그램인 STAR-CCM+ 를 이용할 수 있다.
따라서, 샘플링바(210)가 삽입된 지점이 파이프(P)의 곡선 부위이거나 곡선 부위와 근접하게 배치된 직선 부위일 경우에는 플레어 가스의 유동 프로파일을 보정한 후 속도와 밀도를 측정하는 것이 바람직하다.
상기와 같이 구성된 추출부(200)는, 플레어 가스의 유속에 따른 난류/층류에 영향을 받지 않는 압력산출 방식으로 플레어 가스의 속도를 측정하고, 그 속도값을 이용하여 플레어 가스의 유량을 산출하므로, 파이프를 따라 흐르는 플레어 가스의 유량을 높은 정확도로 측정할 수 있다.
따라서, 추출부(200)는 연소부(300)에서 연소될 플레어 가스를 추출함과 동시에 이 추출된 플레어 가스를 이용하여 유량값도 산출할 수 있으므로, 플레어 시스템에 마련된 파이프 라인의 각 구간별 유량, 발열량, 압력 변동을 정확하게 파악하고, 그에 따른 플레어 시스템의 운영 조건을 변경할 수 있다.
한편, 본 발명의 일 실시예에 따른 플레어 가스의 직접 연소식 열량 측정 시스템(100)은, 도 7에 도시된 바와 같이, 상기 추출부(200)에 의하여 추출된 플레어 가스의 성분을 검출하는 검출부(700) 및 상기 검출부(700)와 상기 추출부(200)의 유량 분석부(240)에서 측정된 데이터를 바탕으로 상기 플레어 가스의 전체 열량을 산출하는 열량 분석부(800);를 더 포함할 수 있다.
상기 검출부(700)는, 파이프(P)를 따라 유동되는 플레어 가스의 성분을 검출하는 구성요소라 할 수 있다. 다시 말해, 검출부(700)는 플레어 가스를 구성하는 각 성분 및 해당 성분의 농도를 검출하는 구성요소라 할 수 있다.
검출부(700)에서 검출되는 성분별 농도는 상기 플레어 가스의 전체 부피에서 상기 성분이 차지하고 있는 상대 부피 농도(volumn percent)이다.
이러한 검출부(700)는, 플레어 가스에 포함된 특정 성분과 해당 성분의 농도를 검출하는 메스 스펙트로미터(mass spectrometer, 질량 분석계)로 구성될 수 있으며, 전술한 추출부(200)의 밀도 측정부(230)를 경유한 플레어 가스를 전달받을 수 있다. 참고로, 메스 스펙트로미터는, 물질의 조성 분석에 사용되는 공지의 장치이므로 그 구체적인 구성설명이 본 발명의 명세서상에서는 생략된다.
또한, 상기 검출부(700)는, 사전 조사, 또는 실험에 의해 파악된 플레어 가스의 구성 성분을 바탕으로 특정 성분에 반응하여 검출 농도를 파악하는 공지의 분석장치로 구성될 수 있으며, 플레어 가스를 구성하는 다양한 성분들의 수와 대응되거나 그 이상의 개수를 가진 채 마련될 수도 있다.
또한, 검출부(700)에 의하여 검출되는 성분의 농도는, 전술한 바와 같이, 파이프(P)를 따라 유동되는 플레어 가스의 전체 부피에서 검출된 가스가 차지하고 있는 상대 부피 농도(volume percent)라 할 수 있으며, 이 데이터는 후술할 발열량 분석부(800)에서 플레어 가스의 전체 열량을 산출하는데 활용될 수 있다.
상기 발열량 분석부(800)는, 전술한 바와 같이, 검출부(700)와 추출부(200)의 유량 분석부(240)에서 측정된 데이터를 기초로 하여 플레어 가스의 전체 열량을 산출할 수 있다.
다시 말해, 발열량 분석부(800)는, 검출부(700)에서 검출된 플레어 가스의 성분과 그 성분의 농도 데이터를 바탕으로 플레어 가스의 유량값에서 상기 성분이 차지하고 있는 유량값을 산출한 뒤, 그 성분 유량값에 해당 성분의 단위 발열량을 곱하여 플레어 가스의 전체 열량을 산출할 수 있다.
예컨대, 플레어 가스를 이루고 있는 성분이 검출부(700)에 의해 메탄, 에탄, 프로판, 부탄, 수소, 질소라고 가정하면, 상기 발열량 분석부(800)는 각 가스에 대한 농도 데이터를 바탕으로 하여 상기 추출부(200)의 유량 분석부(240)에 의해 측정된 플레어 가스의 유량값에서 가스 각각이 차지하고 있는 성분 유량값을 산출한 뒤, 그 성분 유량값에 해당 가스의 단위 발열량을 곱하여 단일 가스에 대한 열량을 산출할 수 있다. 그 다음 단일 가스들에 대한 열량을 모두 합하여 플레어 가스의 전체 열량을 산출 할 수 있다.
이와 같이 산출된 플레어 가스 전체 열량은, 플레어 스택에서 배출되는 배출가스의 열량을 산출하는 하나의 데이터로서 활용될 수 있다. 즉, 플레어 스택에서 배출되는 플레어 가스의 열량은, 다양한 파이프(P)의 지점에서 각각 산출된 플레어 가스의 열량값 데이터를 이용하여 산출될 수도 있다.
더불어, 발열량 분석부(800)에서 산출된 플레어 가스의 전체 열량은, 상기 발열량 산출부(500)에서 산출된 플레어 가스의 발열량 데이터와 비교 분석될 수 있다.
즉, 연소부(300)에서 플레어 가스를 연소시키기 위하여 사용되는 에너지를 줄이는 측면에서 상기 검출부(700)와 발열량 분석부(800)가 사용되어 플레어 가스의 발열량을 산출할 수도 있다.
아울러, 연소부(300)에서 연소된 플레어 가스의 발열량을 상기 발열량 산출부(500)에 의하여 산출하고, 이 산출된 데이터로 상기 검출부(700)와 상기 발열량 분석부(800)의 이상 유무를 판단할 수 있다.
반대뢰, 상기 검출부(700)와 상기 발열량 분석부(800)에서 산출된 데이터를 바탕으로 상기 발열량 산출부(500)의 이상 유무를 판단할 수도 있다.
즉, 연소부(300)에서 연소된 플레어 가스의 발열량을 산출하는 발열량 산출부(500)와, 상기 검출부(700)와 상기 추출부(200)의 유량 분석부(240)에서 측정된 데이터를 바탕으로 플레어 가스의 발열량을 산출하는 발열량 분석부(800)는, 서로 비교 분석되어 진단 역할을 수행할 수 있다.
예컨대, 상기 발열량 산출부(500)의 산출되는 발열량 또는 발열량 분석부(700)에서 산출되는 발열량이 높은 정확도로 측정되는지 여부는 상기 연소부(300)로 공급되어 연소되는 교정용 가스의 발열량에 의하여 비교분석될 수 있다.
다시 말해, 발열량 산출부(500)에서 측정된 플레어 가스의 발열량, 발열량 산출부(500)에서 측정된 교정용 가스의 발열량, 그리고, 발열량 분석부(800)에서 산출된 플레어 가스의 발열량을 상호 비교분석하여 각각의 구성요소들의 이상 유무를 정확하게 판단할 수 있다.
전술한 바와 가이, 플레어 가스를 연소시키는데 사용되는 에너지와 작업상의 번거로움을 줄이는 측면에서는 상기 발열량 분석부(800)에서 플레어 가스의 발열량을 산출하는것이 바람직하다. 그러나, 플레어 가스를 직접적으로 연소시켜 발열량을 측정하는 것보다는 측정 정확도가 떨어질 우려가 있기 때문에 플레어 가스의 발열량을 높은 정확도로 측정하는 측면에서는 연소부(300)와 교정용 가스 공급부(400)와 발열량 산출부(500) 및 교정부(600)를 이용하여 플레어 가스의 발열량을 측정하는 것이 바람직하다. 두 가지의 방식을 적절히 활용하여 플레어 가스의 발열량을 높은 정확도로 측정할 수 있을 뿐만 아니라 에너지를 절감하고 작업의 편의성도 도모할 수 있다.
지금까지 본 발명에 따른 구체적인 실시예에 관하여 설명하였으나, 본 발명의 범위에서 벗어나지 않는 한도 내에서는 여러 가지 변형이 가능함은 물론이다.
그러므로, 본 발명의 범위는 설명된 실시예에 국한되어 정해져서는 안되며, 후술하는 특허 청구의 범위뿐 아니라 이 특허 청구의 범위와 균등한 것들에 의해 정해져야 한다.
100 : 열량 측정 시스템
200 : 추출부 210 : 샘플링바
220 : 속도 측정부 230 : 밀도 측정부
240 : 유량 분석부 300 : 연소부
400 : 교정용 가스 공급부
500 : 발열량 산출부
600 : 교정부
700 : 검출부
800 : 발열량 분석부

Claims (5)

  1. 플레어 가스가 유동되는 파이프에 마련되어 상기 플레어 가스를 샘플링하는 추출부;
    상기 추출부에 의하여 추출된 플레어 가스를 전달받아 연소시키는 연소부; 및
    상기 연소부에서 연소된 플레어 가스의 발열량을 산출하는 발열량 산출부;를 포함하며,
    상기 추출부는, 상기 파이프에 마련된 가스 노즐에 장착된 상태에서 플레어 가스를 추출하고,
    상기 추출부는,
    상기 파이프로 길이방향 하단부위가 삽입되는 샘플링바;
    상기 샘플링바에 연결된 상태로 플레어 가스의 속도를 측정하는 속도 측정부;
    상기 샘플링바와 연결된 상태로 플레어 가스의 밀도를 측정하는 밀도 측정부; 및
    상기 속도 측정부와 상기 밀도 측정부에 의해 측정된 값을 기초로 플레어 가스의 유량을 산출하고, 그 산출된 유량을 저장 및 분석하는 유량 분석부;를 포함하는 플레어 가스의 직접 연소식 열량 측정 시스템.
  2. 제 1 항에 있어서,
    상기 샘플링바는,
    상기 플레어 가스의 유동방향과 마주하게 배치되는 라운드면;
    상기 라운드면의 배면측에 마련되는 면취부; 및
    상기 면취부를 구획하되 상기 라운드면의 폭방향 양단을 서로 연결하는 수직면;을 포함하는 것을 특징으로 하는 플레어 가스의 직접 연소식 열량 측정 시스템.
  3. 제 2 항에 있어서,
    상기 속도 측정부에 의하여 측정되는 상기 플레어 가스의 속도는,
    상기 플레어 가스의 유동으로 인해 발생하는 압력 차이를 이용하여 산출되며,
    상기 속도 측정부는,
    상기 라운드면에 형성된 제1압력구에 길이방향 일단이 연통 가능하게 연결되는 제1배관;
    상기 수직면에 형성된 제2압력구에 길이방향 일단이 연통 가능하게 연결되는 제2배관; 및
    상기 제1배관의 길이방향 타단 및 상기 제2배관의 길이방향 타단과 연통 가능하게 연결되며, 상기 제1배관에서 발생되는 압력과 상기 제2배관에서 발생되는 압력의 차압을 이용하여 플레어 가스의 속도를 측정하는 제1센서부;를 포함하는 것을 특징으로 하는 플레어 가스의 직접 연소식 열량 측정 시스템.
  4. 제 2 항에 있어서,
    상기 밀도 측정부는,
    상기 라운드면에 형성된 가스 유입구에 길이방향 일단이 연통 가능하게 연결되는 제3배관;
    상기 샘플링바의 둘레면에 형성된 가스 배출구에 길이방항 일단이 연통 가능하게 연결되는 제4배관; 및
    상기 제3배관의 길이방향 타단 및 상기 제4배관의 길이방향 타단과 연통 가능하게 연결되며, 상기 제3배관을 통하여 유입되는 플레어 가스의 밀도를 측정하는 제2센서부;를 포함하는 것을 특징으로 하는 플레어 가스의 직접 연소식 열량 측정 시스템.
  5. 제 4 항에 있어서,
    상기 연소부는,
    상기 밀도 측정부를 경유한 플레어 가스를 전달받아 연소시키는 것을 특징으로 하는 플레어 가스의 직접 연소식 열량 측정 시스템.
KR1020220159673A 2021-01-13 2022-11-24 플레어 가스의 직접 연소식 열량 측정 시스템 KR102603251B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220159673A KR102603251B1 (ko) 2021-01-13 2022-11-24 플레어 가스의 직접 연소식 열량 측정 시스템

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210004727A KR102473977B1 (ko) 2021-01-13 2021-01-13 플레어 가스의 직접 연소식 열량 측정 시스템
KR1020220159673A KR102603251B1 (ko) 2021-01-13 2022-11-24 플레어 가스의 직접 연소식 열량 측정 시스템

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020210004727A Division KR102473977B1 (ko) 2021-01-13 2021-01-13 플레어 가스의 직접 연소식 열량 측정 시스템

Publications (2)

Publication Number Publication Date
KR20230002114A KR20230002114A (ko) 2023-01-05
KR102603251B1 true KR102603251B1 (ko) 2023-11-16

Family

ID=81791476

Family Applications (4)

Application Number Title Priority Date Filing Date
KR1020210004727A KR102473977B1 (ko) 2021-01-13 2021-01-13 플레어 가스의 직접 연소식 열량 측정 시스템
KR1020220159674A KR102603252B1 (ko) 2021-01-13 2022-11-24 플레어 가스의 직접 연소식 열량 측정 시스템
KR1020220159673A KR102603251B1 (ko) 2021-01-13 2022-11-24 플레어 가스의 직접 연소식 열량 측정 시스템
KR1020220159675A KR102603253B1 (ko) 2021-01-13 2022-11-24 플레어 가스의 직접 연소식 열량 측정 시스템

Family Applications Before (2)

Application Number Title Priority Date Filing Date
KR1020210004727A KR102473977B1 (ko) 2021-01-13 2021-01-13 플레어 가스의 직접 연소식 열량 측정 시스템
KR1020220159674A KR102603252B1 (ko) 2021-01-13 2022-11-24 플레어 가스의 직접 연소식 열량 측정 시스템

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020220159675A KR102603253B1 (ko) 2021-01-13 2022-11-24 플레어 가스의 직접 연소식 열량 측정 시스템

Country Status (1)

Country Link
KR (4) KR102473977B1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108037236B (zh) * 2017-11-21 2023-03-03 中国科学院西北生态环境资源研究院 火炬排放中甲烷转化率定量分析气体收集实验装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008089553A (ja) 2006-10-05 2008-04-17 Chugoku Electric Power Co Inc:The 火力発電所の排ガス監視システム
CN101178321A (zh) 2007-12-11 2008-05-14 郑侠 一种可转动的多参数气体采集装置
US20080115594A1 (en) 2006-11-16 2008-05-22 Mangan, Inc. High temperature enclosure system for flare gas sampling
JP2010276549A (ja) 2009-05-29 2010-12-09 Horiba Ltd 排ガス分析装置及びプローブユニット

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS593315A (ja) * 1982-06-30 1984-01-10 Nikken Syst Kk 流体流速計測用棒型検出端
EP0304266A3 (en) * 1987-08-17 1991-01-09 Hart Scientific, Incorporated Catalytic gas calorimeter systems and methods
JPH04158246A (ja) * 1990-10-22 1992-06-01 Kansai Electric Power Co Inc:The 灰中未燃焼分の連続分析計
US20140119400A1 (en) * 2012-10-25 2014-05-01 Axetris Ag Method and device for measurement of the heating value of a gas stream
KR101777192B1 (ko) * 2016-02-15 2017-09-11 필즈엔지니어링 주식회사 플로우미터

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008089553A (ja) 2006-10-05 2008-04-17 Chugoku Electric Power Co Inc:The 火力発電所の排ガス監視システム
US20080115594A1 (en) 2006-11-16 2008-05-22 Mangan, Inc. High temperature enclosure system for flare gas sampling
CN101178321A (zh) 2007-12-11 2008-05-14 郑侠 一种可转动的多参数气体采集装置
JP2010276549A (ja) 2009-05-29 2010-12-09 Horiba Ltd 排ガス分析装置及びプローブユニット

Also Published As

Publication number Publication date
KR20230002116A (ko) 2023-01-05
KR102473977B1 (ko) 2022-12-05
KR102603252B1 (ko) 2023-11-16
KR20230002114A (ko) 2023-01-05
KR20220069768A (ko) 2022-05-27
KR20230002115A (ko) 2023-01-05
KR102603253B1 (ko) 2023-11-16

Similar Documents

Publication Publication Date Title
US20020059033A1 (en) Emission monitoring system and method
KR102603251B1 (ko) 플레어 가스의 직접 연소식 열량 측정 시스템
US10788475B2 (en) Method for determining properties of a hydrocarbon containing gas mixture and apparatus therefor
EP3540430B1 (en) Apparatus and method for evaluating response time of gas sensor
US20190360990A1 (en) Method for determining properties of a hydrocarbon-containing gas mixture and device for the same
CN203849138U (zh) 一种烟尘浓度检测装置
CN107677774A (zh) 一种锅炉烟气中co浓度的测量方法
NO302444B1 (no) Apparat og fremgangsmåte for måling av varmeverdien i en brennstoffström
Bourguignon et al. The use of a closed-loop wind tunnel for measuring the combustion efficiency of flames in a cross flow
US20140047899A1 (en) Device for determining a composition of fuel in a combustion chamber of a power station
Nguyen et al. The impact of geometric parameters of a S-type Pitot tube on the flow velocity measurements for greenhouse gas emission monitoring
CN102288263A (zh) 在线校准管道中气体流量计的装置
CN104458149A (zh) 一种空气预热器漏风计算方法
KR102368668B1 (ko) 플레어 스택 배출가스의 열량 측정 시스템
US20180280746A1 (en) Combustion arrester quantification systems and methods
Brohez et al. Fire calorimetry relying on the use of the fire propagation apparatus. Part I: early learning from use in Europe
Taplin Combustion efficiency tables
CN105954465A (zh) 一种新型烟气在线取样方法
US8531653B2 (en) Apparatus for the analysis of a fluid
KR20220034328A (ko) 플레어 가스의 열량 측정 시스템
KR102158083B1 (ko) 플로우 미터 교정장치 및 이 장치에 의한 플로우 미터 교정방법
CN205561940U (zh) 圆形管道全截面流量测量装置
CN101871874B (zh) 一种爆破片流阻系数测试方法
KR102124570B1 (ko) 벤트 노즐을 이용한 유량 측정방법
Bellani et al. Experimental assessment of an indirect method to measure the post-combustion flue gas flow rate in waste-to-energy plant based on multi-point measurements

Legal Events

Date Code Title Description
A107 Divisional application of patent
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant