KR102599482B1 - Sulfur-resistant catalyst for water gas shift reaction of waste-derived synthesis gas - Google Patents

Sulfur-resistant catalyst for water gas shift reaction of waste-derived synthesis gas Download PDF

Info

Publication number
KR102599482B1
KR102599482B1 KR1020210077664A KR20210077664A KR102599482B1 KR 102599482 B1 KR102599482 B1 KR 102599482B1 KR 1020210077664 A KR1020210077664 A KR 1020210077664A KR 20210077664 A KR20210077664 A KR 20210077664A KR 102599482 B1 KR102599482 B1 KR 102599482B1
Authority
KR
South Korea
Prior art keywords
catalyst
catalyst composition
sulfur
reaction
ceo
Prior art date
Application number
KR1020210077664A
Other languages
Korean (ko)
Other versions
KR20220168086A (en
Inventor
노현석
이열림
김경진
홍가람
안선용
김범준
Original Assignee
연세대학교 원주산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 연세대학교 원주산학협력단 filed Critical 연세대학교 원주산학협력단
Priority to KR1020210077664A priority Critical patent/KR102599482B1/en
Publication of KR20220168086A publication Critical patent/KR20220168086A/en
Application granted granted Critical
Publication of KR102599482B1 publication Critical patent/KR102599482B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0983Additives
    • C10J2300/0986Catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

본 발명은 황을 포함하는 폐기물 가스화 합성가스의 WGS 반응(Water-Gas Shift) 반응을 위한 금속 및 지지체를 포함하는 촉매에 관한 것으로, 상세하게는 Pt, Ni, Co, Fe, La 및 Mo로 구성된 군으로부터 선택된 1종 이상의 금속; 및 CeO2, ZrO2, MgO 및 Al2O3로 구성된 군으로부터 선택된 1종 이상의 지지체를 포함하는 수성가스 전이반응용 촉매 조성물을 통해, 우수한 업사이클 효율, 내황성, 장기안정성을 확보하여, 폐기물 가스화 합성가스로부터 지속가능하고 경제적인 방법으로 수소를 생산할 수 있는 발명에 관한 것이다.The present invention relates to a catalyst containing a metal and a support for the WGS reaction (Water-Gas Shift) reaction of waste gasification synthesis gas containing sulfur, and in particular, a catalyst consisting of Pt, Ni, Co, Fe, La and Mo. one or more metals selected from the group; and CeO 2 , ZrO 2 , MgO, and Al 2 O 3 , through a catalyst composition for water gas transfer reaction containing one or more supports selected from the group consisting of This relates to an invention that can produce hydrogen from gasification synthesis gas in a sustainable and economical manner.

Description

폐기물 가스화 합성가스의 수성가스전이 반응용 내황성 촉매 {Sulfur-resistant catalyst for water gas shift reaction of waste-derived synthesis gas}Sulfur-resistant catalyst for water gas shift reaction of waste-derived synthesis gas}

본 발명은 황을 포함하는 폐기물 가스화 합성가스의 수성가스전이 반응(Water-Gas Shift, WGS) 반응을 위한 금속 및 지지체를 포함하는 촉매에 관한 것이다.The present invention relates to a catalyst containing a metal and a support for the water-gas shift (WGS) reaction of waste gasification synthesis gas containing sulfur.

최근 환경문제를 고려한 지속 가능성 연구에 대한 관심이 높아지고 있다. 환경 문제 중 폐기물은 꾸준한 증가로 인해 폐기물 처리에 대한 연구가 광범위하게 진행되고 있다. 도시 고형 폐기물의 경우, 폐기물 자체를 유용한 원료로 재활용하는 방법에 대한 연구가 증가하였으며, 이를 통해 지속가능하고 경제적으로 실현가능한 ‘폐기물 에너지화 기술’로 널리 알려졌다. 따라서, 폐기물 에너지화 기술은 폐기물 관련 문제를 해결하기에 가장 적합한 방법에 해당한다. 폐기물의 에너지화는 예를 들면, 소각, 열분해, 가스화 등의 열변환 기술로 열에너지, 연료 또는 합성가스로 변환시키는 기술을 사용한다. 또한, 폐기물을 유용한 공급 원료로 업사이클(upcycle)하기 위해 CO와 H2를 주로 포함하는 합성가스를 생산하는 방법도 선택되고 있다. 다만, 폐기물에서 파생된 합성가스는 기존의 천연 가스 개질 합성가스(~10 vol%)에 비해 더 높은 농도의 CO(~40 vol%)가 포함되어 있고, CH4, CO2, N2, 황 등의 불순물이 포함되어 있어 표적 촉매 전환 반응이 쉽지 않다. 이에, 적절한 화학 반응을 적용하고, 촉매를 표적화하여 폐기물 가스화 합성가스를 업사이클하기 위한 노력이 요구되고 있다.Recently, interest in sustainability research that considers environmental issues has been increasing. Among environmental problems, waste is steadily increasing, and research on waste disposal is being conducted extensively. In the case of municipal solid waste, research on how to recycle the waste itself into useful raw materials has increased, and through this, it has become widely known as a sustainable and economically feasible 'waste-to-energy technology'. Therefore, waste-to-energy technology is the most suitable method to solve waste-related problems. Waste-to-energy uses, for example, thermal conversion technologies such as incineration, pyrolysis, and gasification to convert it into heat energy, fuel, or synthetic gas. Additionally, a method of producing syngas mainly containing CO and H 2 is being chosen to upcycle waste into useful feedstock. However, synthetic gas derived from waste contains a higher concentration of CO (~40 vol%) compared to existing natural gas reformed synthetic gas (~10 vol%), CH 4 , CO 2 , N 2 , and sulfur. Target catalytic conversion reaction is not easy because it contains impurities such as Accordingly, efforts are required to upcycle waste gasification synthesis gas by applying appropriate chemical reactions and targeting catalysts.

폐기물 가스화 합성가스가 CO의 농도가 높다는 점을 고려할 때, 수성가스 전이반응(Water Gas Shift, WGS // CO + H2O *?* H2 + CO2, △H = -41.2 kJ/mol)을 통해 CO를 H2로 업사이클할 수 있다. Considering that waste gasification synthesis gas has a high concentration of CO, water gas shift (WGS // CO + H 2 O *?* H 2 + CO 2 , △H = -41.2 kJ/mol) CO can be upcycled to H 2 through .

황(sulfur)는 WGS 반응에서 촉매에 독으로 작용하고 있어 이를 해결하기 위한 방법이 요구되고 있다. 구체적으로, 촉매의 활성 부위에 강하게 흡착한 후, 탈착되지 않아 촉매를 비활성화시키며, 이를 해결하기 위하여 하이드로탈황(hydro-desulfurization), 바이오탈황(bio-desulfurization), 추출탈황(extractive desulfurization), 흡착 탈황(adsorptive desulfurization) 등의 방법이 개발된 바 있다. 다만, 폐기물 가스화 단계와 WGS 단계 사이에서 상기 탈황 기술을 사용하려는 경우 상대적으로 낮은 온도에서 진행되어 전체 폐기물 업사이클 공정의 열 효율이 크게 떨어진다는 문제가 있다.Sulfur acts as a poison to the catalyst in the WGS reaction, and a method to solve this problem is required. Specifically, after strongly adsorbing to the active site of the catalyst, it is not desorbed, deactivating the catalyst. To solve this problem, hydro-desulfurization, bio-desulfurization, extractive desulfurization, and adsorption desulfurization are used. Methods such as (adsorptive desulfurization) have been developed. However, when using the desulfurization technology between the waste gasification step and the WGS step, there is a problem that the thermal efficiency of the entire waste upcycle process is greatly reduced because it is carried out at a relatively low temperature.

알칼리 금속 담지 Co-Mo 또는 Ni-Mo 기반 촉매는 황화물 상이 WGS 반응의 활성 상에 해당하기 때문에 황으로 오염된 공급 원료의 WGS에 효과적인 것으로 알려져 있다. 이로 인해 Co-Mo 또는 Ni-Mo 지지체 재료 및 첨가제 개질에 대한 연구가 광범위하게 진행되어 왔으나, 상기 촉매는 반응 전 활성 황화물 상을 형성하기 위해 사전 황화 단계를 필수로 요구하고 있고, 이를 위해 1,000 ppm 이상의 황 농도가 요구된다. 이에 따라 공급 가스의 황 농도 변동을 고려하기 어렵다는 문제가 있어 내황성 촉매의 개발이 요구되고 있다. 일반적으로 활성 황화물 상과 관련 없는 대부분의 내황성 촉매는 귀금속으로 구성되고, 이를 이용하여 내황성을 향상시키기 위한 노력이 있어왔다. 다만, 대부분의 연구에서 가혹한 반응 조건으로 인해 H2S 존재하에서 실제 CO 전환율을 추정하지 않고 촉매의 성능을 전환 빈도 값과 비교하였다는 한계점이 있다. Alkali metal supported Co-Mo or Ni-Mo based catalysts are known to be effective for WGS of sulfur-contaminated feedstocks because the sulfide phase corresponds to the active phase of the WGS reaction. For this reason, extensive research has been conducted on Co-Mo or Ni-Mo support materials and additive modifications, but the catalyst essentially requires a pre-sulfide step to form an active sulfide phase before reaction, and for this, 1,000 ppm A higher sulfur concentration is required. Accordingly, there is a problem that it is difficult to consider changes in sulfur concentration in the supply gas, so the development of a sulfur-resistant catalyst is required. In general, most sulfur-resistant catalysts that are not related to the active sulfide phase are composed of noble metals, and efforts have been made to improve sulfur resistance by using them. However, due to the harsh reaction conditions in most studies, there is a limitation in that the actual CO conversion rate in the presence of H 2 S was not estimated and the performance of the catalyst was compared with the conversion frequency value.

상기 문제를 해결하고자, 본 발명자는 폐기물 가스화 합성가스와 WGS 반응을 통해 지속가능하고 경제적인 수소생산공정을 구축하기 위하여 WGS용 촉매를 연구를 진행하였고, 구체적으로 황내성 및 재생률을 가지며 업사이클 공정 효율이 우수한 촉매를 제조하였음을 밝힘에 따라 본 발명을 완성하였다.In order to solve the above problem, the present inventor conducted research on a catalyst for WGS to build a sustainable and economical hydrogen production process through the reaction of waste gasification synthesis gas and WGS. Specifically, it has sulfur resistance and regeneration rate and upcycle process efficiency. By discovering that this excellent catalyst was prepared, the present invention was completed.

본 발명은 종래 폐기물 가스화 합성가스의 업사이클시 발생하는 문제로서, 황 농도 조절이 요구된다거나, 열 효율이 낮은 문제를 해결하고자 한다.The present invention seeks to solve problems that arise when upcycling conventional waste gasification synthesis gas, such as requiring sulfur concentration control or low thermal efficiency.

상기 목적을 달성하기 위하여, 본 발명은 Pt, Ni, Co, Fe, La 및 Mo로 구성된 군으로부터 선택된 1종 이상의 금속; 및 CeO2, ZrO2, MgO 및 Al2O3로 구성된 군으로부터 선택된 1종 이상의 지지체를 포함하는 수성가스 전이반응용 촉매 조성물을 제공한다.In order to achieve the above object, the present invention includes at least one metal selected from the group consisting of Pt, Ni, Co, Fe, La and Mo; and CeO 2 , ZrO 2 , MgO, and Al 2 O 3 It provides a catalyst composition for water gas transfer reaction comprising one or more supports selected from the group consisting of.

본 발명의 일 양태에서, 상기 촉매 조성물은 폐기물 가스화 합성가스의 수성가스 전이반응에 사용된다.In one aspect of the present invention, the catalyst composition is used in the water gas shift reaction of waste gasification synthesis gas.

본 발명의 일 양태에서, 상기 금속은 Pt이다.In one aspect of the invention, the metal is Pt.

본 발명의 일 양태에서, 상기 지지체는 CeO2이다.In one aspect of the invention, the support is CeO 2 .

본 발명의 일 양태에서, 상기 금속은 촉매 조성물 전체 중량 대비 0.5 내지 10 wt%이다. In one aspect of the present invention, the metal is contained in an amount of 0.5 to 10 wt% based on the total weight of the catalyst composition.

구체적인 본 발명의 일 양태에서, 상기 금속은 촉매 조성물 전체 중량 대비 1 내지 3 wt%이다.In one specific aspect of the present invention, the metal is present in an amount of 1 to 3 wt% based on the total weight of the catalyst composition.

본 발명의 일 양태에서, 상기 촉매 조성물은 H2S 미투입 조건 및 200 ℃이상에서 CO 전환율이 60% 이상이다.In one aspect of the present invention, the catalyst composition has a CO conversion rate of 60% or more under conditions without H 2 S input and at 200° C. or higher.

구체적인 본 발명의 일 양태에서, 상기 촉매 조성물은 H2S 미투입 조건 및 250 ℃이상에서 CO 전환율이 80% 이상이다. In one specific aspect of the present invention, the catalyst composition has a CO conversion rate of 80% or more under conditions without H 2 S input and at 250° C. or higher.

또한, 구체적인 본 발명의 일 양태에서, 상기 촉매 조성물은 H2S 미투입 조건 및 400 ℃ 이상에서 CO 전환율이 90% 이상이다. Additionally, in one specific aspect of the present invention, the catalyst composition has a CO conversion rate of 90% or more under conditions without H 2 S input and at 400° C. or higher.

본 발명의 일 양태에서, 상기 촉매 조성물은 황 피독 전후 CO 전환율의 차이가 0.1 내지 30%이다.In one aspect of the present invention, the catalyst composition has a difference in CO conversion rate of 0.1 to 30% before and after sulfur poisoning.

본 발명의 일 양태에서, 상기 촉매 조성물은 황 피독 후 60% 이상의 촉매활성을 유지한다. In one aspect of the present invention, the catalyst composition maintains 60% or more of catalytic activity after sulfur poisoning.

구체적인 본 발명의 일 양태에서, 상기 촉매 조성물은 500 ppm 이상의 H2S로 인한 황 피독 후 60% 이상의 촉매활성을 유지한다. In one specific aspect of the present invention, the catalyst composition maintains catalytic activity of 60% or more after sulfur poisoning due to 500 ppm or more of H 2 S.

본 발명의 일 양태에서, 상기 촉매 조성물은 표면적이 100 m2/g 이하이고, 금속 분산이 60% 이상이다.In one aspect of the invention, the catalyst composition has a surface area of 100 m 2 /g or less and a metal dispersion of 60% or more.

본 발명의 일 양태에서, 상기 촉매 조성물은 산소 저장 용량이 4 × 10-4 gmol/gcat 이상이다.In one aspect of the invention, the catalyst composition has an oxygen storage capacity of at least 4 × 10 -4 gmol/gcat.

본 발명의 일 양태에서, 상기 촉매 조성물은 황 탈착 재생이 가능하다.In one aspect of the present invention, the catalyst composition is capable of sulfur desorption and regeneration.

본 발명의 일 양태에서, 상기 촉매 조성물은 60 시간 이상 촉매활성을 나타낼 수 있다.In one aspect of the present invention, the catalyst composition may exhibit catalytic activity for more than 60 hours.

본 발명은 내황성이 우수함에 따라 폐기물 가스화 합성가스의 업사이클의 효율이 우수하며, 이를 통해 폐기물 가스화 합성가스로부터 지속가능하고 경제적인 방법으로 수소를 생산할 수 있다는 이점이 있다.The present invention has the advantage of having excellent upcycling efficiency of waste gasification synthesis gas due to its excellent sulfur resistance, and thereby producing hydrogen from waste gasification synthesis gas in a sustainable and economical manner.

도 1은 CeO2 지지체에 함침된 다양한 금속의 CO 전환율을 나타낸 도이다.
도 2a 내지 2c는 20 ppm 주입에서 시간 및 온도 함수에 따른 CO 전환을 나타낸 도이다. ((a): 10 wt% Co/CeO2, (b): 10 wt% Ni/CeO2, (c): 10 wt% Pt/CeO2)
도 3은 다양한 지지체에 함침된 Pt 기반 촉매의 시간 함수에 따른 CO 전환을 나타낸 도이다.
도 4a 내지 4c는 다양한 지지체에 함침된 Pt 기반 촉매의 XRD 패턴을 나타낸 도이다. ((a): 환원 (b): 피독 (c): 재생)
도 5는 다양한 지지체에 함침된 Pt 기반 촉매의 H2-TPR profile을 나타낸 도이다.
도 6a 내지 6d는 다양한 지지체에 함침된 Pt 기반 촉매의 XPS Pt 4f 스펙트럼을 나타낸 도이다. ((a): Pt/CeO2, (b): Pt/ZrO2, (c): Pt/MgO, (d): Pt/Al2O3)
도 7a 내지 7d는 다양한 지지체에 함침된 Pt 기반 촉매의 TEM 및 EDX 매핑 이미지를 나타낸 도이다. ((a): Pt/CeO2, (b): Pt/ZrO2, (c): Pt/MgO, (d): Pt/Al2O3)
도 8은 H2S 주입 농도에 따른 Pt/CeO2 촉매의 장기안정성 및 재생 테스트 결과를 나타낸 도이다.
도 9는 산화 환원 특성, 산소 저장 용량(OSC) 및 촉매 성능 간의 관계를 나타낸도이다.
도 10은 본 발명 내황성 WGS 촉매 실험 정보를 간단히 나타낸 도이다.
도 11은 CeO2에서 유래된 이동산소와의 반응을 통한 Pt/CeO2 촉매 재생 메커니즘을 나타낸 도이다.
Figure 1 is a diagram showing the CO conversion rate of various metals impregnated in a CeO 2 support.
Figures 2A-2C show CO conversion as a function of time and temperature at 20 ppm injection. ((a): 10 wt% Co/CeO 2, (b): 10 wt% Ni/CeO 2, (c): 10 wt% Pt/CeO 2 )
Figure 3 is a diagram showing CO conversion as a function of time for Pt-based catalysts impregnated on various supports.
Figures 4a to 4c show XRD patterns of Pt-based catalysts impregnated on various supports. ((a): reduction (b): poisoned (c): play)
Figure 5 is a diagram showing the H 2 -TPR profile of a Pt-based catalyst impregnated on various supports.
Figures 6a to 6d show XPS Pt 4f spectra of Pt-based catalysts impregnated on various supports. ((a): Pt/CeO 2, (b): Pt/ZrO 2, (c): Pt/MgO , (d): Pt/Al 2 O 3 )
Figures 7a to 7d show TEM and EDX mapping images of Pt-based catalysts impregnated on various supports. ((a): Pt/CeO 2, (b): Pt/ZrO 2, (c): Pt/MgO , (d): Pt/Al 2 O 3 )
Figure 8 is a diagram showing the long-term stability and regeneration test results of the Pt/CeO 2 catalyst according to the H 2 S injection concentration.
Figure 9 is a diagram showing the relationship between redox characteristics, oxygen storage capacity (OSC), and catalyst performance.
Figure 10 is a diagram briefly showing experimental information on the sulfur-resistant WGS catalyst of the present invention.
Figure 11 is a diagram showing the Pt/CeO 2 catalyst regeneration mechanism through reaction with mobile oxygen derived from CeO 2 .

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명의 명세서 전체에서, 어떤 부분이 어떤 구성 요소를 “포함”한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.Throughout the specification of the present invention, when a part is said to “include” a certain component, this means that it may further include other components rather than excluding other components unless specifically stated to the contrary.

본 발명은 Pt, Ni, Co, Fe, La 및 Mo로 구성된 군으로부터 선택된 1종 이상의 금속; 및 CeO2, ZrO2, MgO 및 Al2O3로 구성된 군으로부터 선택된 1종 이상의 지지체를 포함하는 수성가스 전이반응용 촉매 조성물에 관한 것이다.The present invention relates to at least one metal selected from the group consisting of Pt, Ni, Co, Fe, La and Mo; And CeO 2 , ZrO 2 , MgO, and Al 2 O 3 It relates to a catalyst composition for water gas shift reaction comprising at least one support selected from the group consisting of.

본 발명의 일 양태에서, 상기 촉매 조성물은 폐기물 가스화 합성가스의 수성가스 전이반응에 사용될 수 있다. 여기에서, 폐기물 가스화 합성가스는 통상적으로 알려진 폐기물 처리 과정에서 형성되는 가스를 의미하는 것으로, 예를 들면 합성가스는 CO, H2, CO2, N2, CH4, H2S 등올 포함한다. 또한, 이에 한정되는 것은 아니나 합성가스의 조성은 예를 들면, CO 30 내지 40 %, H2 25 내지 40 %, CO2 15 내지 30 %, N2 5 내지 15 %, CH4 1 내지 5 %, H2S 0.1 내지 5 %일 수 있다. 또한, 폐기물 가스화 합성가스에서 H2O / (CH4 + CO + CO2)의 비율이 약 2.0에 해당할 수 있다. 다만, 이는 예시적인 것으로 이에 한정되는 것은 아니다.In one aspect of the present invention, the catalyst composition can be used in the water gas shift reaction of waste gasification synthesis gas. Here, waste gasification synthesis gas refers to a gas formed during a commonly known waste treatment process. For example, synthesis gas includes CO, H 2 , CO 2 , N 2 , CH 4 , H 2 S, etc. In addition, although not limited thereto, the composition of the synthesis gas is, for example, 30 to 40% CO, 25 to 40% H 2 , 15 to 30% CO 2 , 5 to 15% N 2, 1 to 5% CH 4 , H 2 S may be 0.1 to 5%. Additionally, the ratio of H 2 O / (CH 4 + CO + CO 2 ) in waste gasification synthesis gas may be approximately 2.0. However, this is an example and is not limited thereto.

본 발명에서, 상기 촉매 조성물은 폐기물 가스화 합성가스의 수성가스 전이반응에 사용됨에 따라, 보다 구체적으로 폐기물 가스화 합성가스 업사이클용 촉매 조성물로 사용될 수 있다.In the present invention, the catalyst composition is used in the water gas transfer reaction of waste gasification synthesis gas, and can be more specifically used as a catalyst composition for waste gasification synthesis gas upcycling.

본 발명의 일 양태에서, 상기 금속은 Pt이다.In one aspect of the invention, the metal is Pt.

본 발명의 일 양태에서, 상기 지지체는 CeO2이다.In one aspect of the invention, the support is CeO 2 .

구체적인 본 발명의 일 양태에서, 상기 촉매 조성물은 금속 Pt와 지지체 CeO2로 구성되는 촉매 조성물일 수 있다.In one specific aspect of the present invention, the catalyst composition may be a catalyst composition composed of metal Pt and support CeO 2 .

본 발명의 일 양태에서, 상기 금속은 촉매 조성물 전체 중량 대비 0.5 내지 10 wt%이다. 구체적인 본 발명의 일 양태에서, 상기 금속은 촉매 조성물 전체 중량 대비 1 내지 3 wt%이다.In one aspect of the present invention, the metal is contained in an amount of 0.5 to 10 wt% based on the total weight of the catalyst composition. In one specific aspect of the present invention, the metal is present in an amount of 1 to 3 wt% based on the total weight of the catalyst composition.

본 발명에서, 금속, 지지체 및 이의 중량부가 상기 범위에 해당하는 경우, 타 금속 또는 타 지지체와 비교하여 현저하게 높은 내황성 및 재생성을 나타낼 수 있다. 또한, 재생이 용이하고, 높은 기체 공간 속도(Gas Hourly Space Velocity, GHSV)에서도 안정성을 나타내어 촉매를 장기간 사용 시 유리한 효과가 있다.In the present invention, when the metal, support, and weight portion thereof fall within the above range, it can exhibit significantly higher sulfur resistance and reproducibility compared to other metals or other supports. In addition, it is easy to regenerate and shows stability even at high gas hourly space velocity (GHSV), which has an advantageous effect when using the catalyst for a long period of time.

본 발명의 일 양태에서, 상기 촉매 조성물은 H2S 미투입 조건, 200 ℃이상에서 CO 전환율이 60% 이상이다. In one aspect of the present invention, the catalyst composition has a CO conversion rate of 60% or more at 200° C. or higher under conditions without H 2 S input.

구체적인 본 발명의 일 양태에서, 상기 촉매 조성물은 H2S 미투입 조건, 250 ℃이상에서 CO 전환율이 80% 이상이다. 또한, 구체적인 본 발명의 일 양태에서, 상기 촉매 조성물은 H2S 미투입 조건, 400 ℃ 이상에서 CO 전환율이 90% 이상이다. 본 발명 촉매 조성물은 높은 CO 전환율을 나타냄에 따라 폐기물 가스화 합성가스의 업사이클에 우수한 효과가 있다.In one specific aspect of the present invention, the catalyst composition has a CO conversion rate of 80% or more at 250° C. or higher under conditions without H 2 S input. Additionally, in one specific aspect of the present invention, the catalyst composition has a CO conversion rate of 90% or more at 400° C. or higher under conditions without H 2 S input. The catalyst composition of the present invention has a high CO conversion rate and is therefore effective in upcycling waste gasification synthesis gas.

또한, 일반적으로 CO의 증가에 따라 촉매의 비활성화가 가속되나, 본 발명은 높은 CO 전환율로 인해 CO가 반응조건 내에서 약 2배 이상 높음에도 불구하고, 우수한 촉매활성을 나타낼 수 있다.In addition, generally, deactivation of the catalyst accelerates as CO increases, but the present invention can exhibit excellent catalytic activity due to the high CO conversion rate even though CO is about two times higher within the reaction conditions.

본 발명의 일 양태에서, 상기 촉매 조성물은 황 피독 전후 CO 전환율의 차이가 30% 이하이다.In one aspect of the present invention, the catalyst composition has a difference in CO conversion rate before and after sulfur poisoning of 30% or less.

구체적으로, 상기 촉매 조성물은 100 ppm 이하의 H2S로 인한 황 피독 후에는 성능의 저하가 없어 CO 전환율에 차이가 나타나지 않고, 100 ppm 초과의 H2S로 인한 황 피독 후에도 성능의 저하가 거의 없어 CO 전환율의 차이가 0.1 내지 30% 이하이다. 또한, CO 전환율의 차이는 H2S의 농도에 따라 달라질 수 있으나, 상기 촉매 조성물은 100 ppm 이상 1,500 ppm 미만, 보다 구체적으로 200 내지 1,300 ppm, 300 내지 1,200 ppm, 400 내지 1,100 ppm, 500 내지 1,500 ppm의 H2S로 인한 황 피독 후에도 CO 전환율 차이가 0.1 내지 30 %에 해당한다.Specifically, the catalyst composition shows no decrease in performance after sulfur poisoning due to less than 100 ppm of H 2 S, so there is no difference in CO conversion rate, and there is almost no decrease in performance even after sulfur poisoning due to more than 100 ppm of H 2 S. There is no difference in CO conversion rate of 0.1 to 30% or less. In addition, the difference in CO conversion rate may vary depending on the concentration of H 2 S, but the catalyst composition is 100 ppm or more and less than 1,500 ppm, more specifically 200 to 1,300 ppm, 300 to 1,200 ppm, 400 to 1,100 ppm, 500 to 1,500 ppm. Even after sulfur poisoning due to ppm H 2 S, differences in CO conversion correspond to 0.1 to 30%.

또한, 본 발명의 일 양태에서, 상기 촉매 조성물은 황 피독 후 60% 이상의 촉매활성을 나타낸다. 보다 구체적으로, 상기 촉매 조성물은 500 ppm 이상, 600 ppm 이상, 700 ppm 이상, 800 ppm 이상, 900 ppm 이상, 1000 ppm 이상의 H2S로 인한 황 피독 후 60% 이상의 촉매활성을 유지한다.Additionally, in one aspect of the present invention, the catalyst composition exhibits a catalytic activity of 60% or more after sulfur poisoning. More specifically, the catalyst composition maintains a catalytic activity of 60% or more after sulfur poisoning due to 500 ppm or more, 600 ppm or more, 700 ppm or more, 800 ppm or more, 900 ppm or more, and 1000 ppm or more of H 2 S.

또한, 본 발명의 일 양태에서, 상기 촉매 조성물은 황 탈착 재생이 가능하다. Additionally, in one aspect of the present invention, the catalyst composition is capable of sulfur desorption and regeneration.

구체적으로, 황은 일반적으로 촉매의 표면에 흡착되어 촉매의 활성을 저하시키나, 본 발명 촉매 조성물은 황 피독 전후 CO 전환율 차이가 거의 적고, 황 피독 후에도 높은 CO 전환율을 나타내어 우수한 내황성을 나타내며, 황이 줄어듦에 따라 황 탈착이 스스로 일어나 촉매활성재생이 가능하다.Specifically, sulfur is generally adsorbed on the surface of the catalyst and reduces the activity of the catalyst, but the catalyst composition of the present invention has almost no difference in CO conversion before and after sulfur poisoning, and shows a high CO conversion rate even after sulfur poisoning, showing excellent sulfur resistance and reducing sulfur. Accordingly, sulfur desorption occurs on its own and catalyst activity can be regenerated.

본 발명의 일 양태에서, 상기 촉매 조성물은 표면적이 100 m2/g 이하이고, 금속 분산이 65% 이상이다. 구체적으로, 상기 촉매 조성물은 표면적은 90 m2/g 이하, 80 m2/g 이하이다. 또한, 상기 촉매 조성물은 금속 분산이 70% 이상, 75% 이상이다.In one aspect of the invention, the catalyst composition has a surface area of 100 m 2 /g or less and a metal dispersion of 65% or more. Specifically, the catalyst composition has a surface area of 90 m 2 /g or less and 80 m 2 /g or less. Additionally, the catalyst composition has a metal dispersion of 70% or more and 75% or more.

본 발명의 일 양태에서, 상기 촉매 조성물은 산소 저장 용량이 4 × 10-4 gmol/gcat 이상이다. 구체적으로, 상기 촉매 조성물은 산소 저장 용량이 4.5 × 10-4 gmol/gcat 이상, 5 × 10-4 gmol/gcat 이상, 5.5 × 10-4 gmol/gcat 이상, 6 × 10-4 gmol/gcat 이상이다.In one aspect of the invention, the catalyst composition has an oxygen storage capacity of at least 4 × 10 -4 gmol/gcat. Specifically, the catalyst composition has an oxygen storage capacity of 4.5 × 10 -4 gmol/gcat or more, 5 × 10 -4 gmol/gcat or more, 5.5 × 10 -4 gmol/gcat or more, 6 × 10 -4 gmol/gcat or more. am.

구체적으로, 본 발명 촉매 조성물의 표면적, 금속 분산 및 산소 저장 용량이 상기 범위에 해당함에 따라, WGS 반응의 산화 환원 반응을 가속화하여 높은 WGS 활성을 나타낸다.Specifically, as the surface area, metal dispersion, and oxygen storage capacity of the catalyst composition of the present invention fall within the above range, the redox reaction of the WGS reaction is accelerated and high WGS activity is exhibited.

본 발명의 일 양태에서, 상기 촉매 조성물은 60 시간 이상 촉매활성을 나타낸다. 구체적으로, 상기 촉매 조성물은 60 시간 이상, 60 % 이상의 활성을 유지할 수 있다. 보다 더 구체적으로, 상기 촉매 조성물은 70 시간 이상, 80 시간 이상, 90 시간 이상, 100 시간 이상 60 % 이상의 촉매활성을 유지할 수 있다.In one aspect of the present invention, the catalyst composition exhibits catalytic activity for more than 60 hours. Specifically, the catalyst composition can maintain activity of 60% or more for more than 60 hours. More specifically, the catalyst composition can maintain catalytic activity of 60% or more for 70 hours or more, 80 hours or more, 90 hours or more, and 100 hours or more.

더 구체적으로, 상기 촉매 조성물은 기체 공간 속도(Gas Hourly Space Velocity, GHSV) 40,000 h-1 이상에서 60 시간 이상, 60 % 이상의 촉매활성을 유지할 수 있다. 보다 더 구체적으로, 상기 촉매 조성물은 GHSV 42,000 h-1, 45,000 h-1 이상에서 100시간 이상, 60% 이상의 촉매활성을 유지할 수 있다.More specifically, the catalyst composition can maintain catalytic activity of 60% or more for 60 hours or more at a gas hourly space velocity (GHSV) of 40,000 h -1 or more. More specifically, the catalyst composition can maintain catalytic activity of more than 60% for more than 100 hours at GHSV of 42,000 h -1 and 45,000 h -1 or more.

또한, 상기 촉매 조성물은 높은 황 농도에서도 상기 촉매활성이 유지가능하여, 장기 안정성이 우수하다.In addition, the catalyst composition can maintain its catalytic activity even at high sulfur concentrations and has excellent long-term stability.

이하, 본 발명을 실시예 및 실험예에 의해 상세히 설명한다.Hereinafter, the present invention will be described in detail through examples and experimental examples.

단, 하기 실시예 및 실험예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예 및 실험예에 한정되는 것은 아니다.However, the following examples and experimental examples only illustrate the present invention, and the content of the present invention is not limited to the following examples and experimental examples.

<실시예 1> 촉매 제조<Example 1> Catalyst preparation

<실시예 1-1> 다양한 금속에 함침된 CeO<Example 1-1> CeO impregnated with various metals 2 2 담지 금속 촉매 제조Manufacture of supported metal catalyst

CeO2 지지체 귀금속(Pt, 2 wt%) 또는 비-귀금속(Ni, Co, Fe, La, Mo; 10 wt%) 금속 촉매를 내황성을 나타내는 활성 금속을 스크리닝 하기 위하여, 함침법(incipient wetness impregnation method)에 의해 준비하였다. CeO2 지지체는 침전법에 의해 미리 제조하였다.CeO 2 support noble metal (Pt, 2 wt%) or non-noble metal (Ni, Co, Fe, La, Mo; 10 wt%) metal catalyst was used to screen active metals showing sulfur resistance, using an incipient wetness impregnation method. It was prepared by method. CeO 2 support was previously prepared by precipitation method.

Ce(NO3)3·6H2O (Sigma Aldrich, 99%) 전구체를 탈이온수에 용해시키고 80 ℃로 가열시켰다. 침전제(15wt% KOH (Samchun, 95%))를 pH 값 10.5에 도달할 때 까지 일정한 속도로 첨가하였다. 생성된 침전물을 80 ℃에서 72시간 동안 분해한 후, 탈 이온수로 5회 여과 반복하여 불순물을 제거하였다. 여과된 물질을 100 ℃에서 12시간 동안 건조시키고, 공기 조건 및 500 ℃에서 6시간 동안 소성시켰다. Ce(NO 3 ) 3 ·6H 2 O (Sigma Aldrich, 99%) precursor was dissolved in deionized water and heated to 80 °C. The precipitant (15 wt% KOH (Samchun, 95%)) was added at a constant rate until the pH value of 10.5 was reached. The resulting precipitate was decomposed at 80°C for 72 hours, and then filtered five times with deionized water to remove impurities. The filtered material was dried at 100°C for 12 hours and calcined under air conditions and at 500°C for 6 hours.

CeO2 지지체 촉매의 활성 금속으로 귀금속 2 wt%, 비-귀금속 10 wt%를 담지하였다. 금속전구체 [Pt(NH3)4](NO3)2 (Sigma Aldrich, 50% Pt basis), Ni(NO3)2·6H2O (Sigma Aldrich, 99%), Co(NO3)2·6H2O (Sigma Aldrich, 99%), Fe(NO3)3·9H2O (Sigma Aldrich, 99%), La(NO3)3·xH2O (Sigma Aldrich, 99%) 및 (NH4)6Mo7O24·4H2O (Sigma Aldrich, 99%) 각각을 탈이온수에 용해시키고 함침법에 의해 CeO2 지지체에 함침시켰다. 분쇄 후 얻어진 혼합물을 공기조건 100 ℃에서 12시간 동안 건조시키고, 공기조건 및 500 ℃에서 6시간 동안 소성하여 안정한 산화물 형태 촉매를 수득하였다.As the active metal of the CeO 2 support catalyst, 2 wt% of noble metal and 10 wt% of non-noble metal were supported. Metal precursor [Pt(NH 3 ) 4 ](NO 3 ) 2 (Sigma Aldrich, 50% Pt basis), Ni(NO 3 ) 2 ·6H 2 O (Sigma Aldrich, 99%), Co(NO 3 ) 2 · 6H 2 O (Sigma Aldrich, 99%), Fe(NO 3 ) 3 ·9H 2 O (Sigma Aldrich, 99%), La(NO 3 ) 3 ·xH 2 O (Sigma Aldrich, 99%) and (NH 4 ) 6 Mo 7 O 24 ·4H 2 O (Sigma Aldrich, 99%) were each dissolved in deionized water and impregnated into the CeO 2 support by the impregnation method. After grinding, the obtained mixture was dried at 100°C in air for 12 hours and calcined at 500°C in air for 6 hours to obtain a stable oxide catalyst.

<실시예 1-2> 다양한 지지체에 함침된 Pt 기반 촉매 제조<Example 1-2> Preparation of Pt-based catalyst impregnated on various supports

다양한 지지체에 함침된 Pt 기반 촉매는 수성가스 전이반응(Water Gas Shift Reaction, WGS) 반응에서 Pt 기반 촉매의 내황성에 대한 지지체의 효과를 비교하기 위하여 함침법에 의해 제조하였다.Pt-based catalysts impregnated with various supports were prepared by an impregnation method to compare the effect of the supports on the sulfur resistance of Pt-based catalysts in the Water Gas Shift Reaction (WGS) reaction.

각 지지체 (CeO2, ZrO2, MgO, Al2O3)는 전구체 Ce(NO3)3·6H2O (Sigma Aldrich, 99%), Zr(NO3)4 (MEL Chemicals, 20wt% ZrO2 basis), Mg(NO3)2·6H2O (Sigma Aldrich, 99%), 및 Al(NO3)3·9H2O (Sigma Aldrich, 98%)로부터 상기 침전법에 의해 제조되었다. 함침법에 의하여, 2 wt%의 Pt가 상기 지지체에 적재되었다.Each support (CeO 2 , ZrO 2 , MgO, Al 2 O 3 ) is a precursor Ce(NO 3 ) 3 6H 2 O (Sigma Aldrich, 99%), Zr(NO 3 ) 4 (MEL Chemicals, 20wt% ZrO 2 basis), Mg(NO 3 ) 2 ·6H 2 O (Sigma Aldrich, 99%), and Al(NO 3 ) 3 ·9H 2 O (Sigma Aldrich, 98%) by the above precipitation method. By impregnation method, 2 wt% of Pt was loaded onto the support.

<실험예 1> 실험 방법<Experimental Example 1> Experimental method

<실험예 1-1> 촉매 반응 방법<Experimental Example 1-1> Catalytic reaction method

내황성 활성을 갖는 CeO2에 담지된 활성 금속(Pt, Ni, Co, Fe, La, Mo)의 스크리닝을 위해, 상기 촉매를 프로그램 온도 제어가 가능한 가열로(furnace)를 사용하여 주변 압력 및 200-500 ℃의 온도범위에서 시험하였다. 최상의 활성을 갖는 금속을 Pt로 선별한 후, 다양한 지지체(CeO2, ZrO2, MgO, Al2O3)가 있는 Pt 기반 촉매의 내황성을 400 ℃에서 500 ppm의 H2S를 주입하여 평가하였다. 본 실험에서 사용된 모의 폐기물 가스화 합성가스의 조성은 다음과 같다.For screening of active metals (Pt, Ni, Co, Fe, La, Mo) supported on CeO 2 with sulfur resistance activity, the catalyst was heated to ambient pressure and 200 °C using a furnace with programmable temperature control. Tested in a temperature range of -500°C. After selecting Pt as the metal with the highest activity, the sulfur resistance of Pt-based catalysts with various supports (CeO 2 , ZrO 2 , MgO, Al 2 O 3 ) was evaluated by injecting 500 ppm of H 2 S at 400 °C. did. The composition of the simulated waste gasification synthesis gas used in this experiment is as follows.

- 합성가스 조성: [CO 37.99%, H2 29.34%, CO2 21.28%, N2 9.08%, CH4 2.31%] / 상기 조성은 종전 보고된 폐기물 유래 가스값과 유사함. 탄소형성을 피하기 위해 H2O / (CH4 + CO + CO2)의 비율을 2.0으로 설정하였음.- Synthesis gas composition: [CO 37.99%, H 2 29.34%, CO 2 21.28%, N 2 9.08%, CH 4 2.31%] / The composition is similar to the previously reported waste-derived gas values. To avoid carbon formation, the ratio of H 2 O / (CH 4 + CO + CO 2 ) was set to 2.0.

모든 경우에서, 촉매 0.03g을 쿼츠 울(quartz wool)을 사용하여 고정층 마이크로-튜불라 쿼츠 반응기(Fixed bed micro-tubular quartz reactor / 내경 4mm)의 중앙에 배치하였다. 또한, 이는 WGS 반응 중에 가열로 내부에 설치하고 가열하였다. 촉매 층의 온도를 정확하게 측정하기 위해 상기 반응기 바닥에서부터 촉매층을 통과할 수 있도록 열전대(thermocouple)를 설계하였다.In all cases, 0.03 g of catalyst was placed in the center of a fixed bed micro-tubular quartz reactor (internal diameter 4 mm) using quartz wool. Additionally, it was installed inside a heating furnace and heated during the WGS reaction. In order to accurately measure the temperature of the catalyst layer, a thermocouple was designed to pass through the catalyst layer from the bottom of the reactor.

촉매 반응 전, 촉매를 활성화하기 위해 400 ℃에서 5 % H2/N2에서 1시간 동안 in-situ 환원 공정을 수행하였다. 촉매활성화 후, 금속 스크리닝을 위해 촉매층의 온도를 200 ℃로 변경하여 WGS 반응을 시작하였다. 반응온도 시스템은 100 ℃ 단위로 200 ℃에서 500 ℃로 상승시키도록 프로그래밍 하였으며, 각 온도 단계는 총 50분 동안 유지하였다. 50분 동안 촉매층의 배출 가스(outlet gas)가 마이크로 가스 크로마토그래프(micro-GC, Agilent 3000)에 도달할 때까지 35분 동안 유지하였으며, 나머지 15분 동안 CO 전환율을 3분 간격으로 5회 분석하였다.Before the catalytic reaction, an in-situ reduction process was performed at 400°C in 5% H 2 /N 2 for 1 hour to activate the catalyst. After catalyst activation, the WGS reaction was started by changing the temperature of the catalyst layer to 200 °C for metal screening. The reaction temperature system was programmed to increase from 200 ℃ to 500 ℃ in 100 ℃ increments, and each temperature step was maintained for a total of 50 minutes. It was maintained for 35 minutes until the outlet gas from the catalyst layer reached the micro gas chromatograph (micro-GC, Agilent 3000) for 50 minutes, and the CO conversion rate was analyzed five times at 3-minute intervals for the remaining 15 minutes. .

CO 전환율은 각 온도 단계에서 하기 식 1에 의해 계산하였다.CO conversion rate was calculated by Equation 1 below at each temperature step.

CO2 및 CH4\의 선택성은 하기 식 2, 3에 의해 계산하였다. The selectivity of CO 2 and CH 4\ was calculated using Equations 2 and 3 below.

(다만, 모든 반응 샘플은 100 % CO2 선택성을 보여 WGS 반응 동안 부반응이 없으므로 하기에 기재하지는 않음.)(However, all reaction samples showed 100% CO 2 selectivity and there were no side reactions during the WGS reaction, so they are not described below.)

- 식 1: - Equation 1:

- 식 2: - Equation 2:

- 식 3: - Equation 3:

폐기물 가스화 합성가스의 황 성분을 고려하여, 금속 스크리닝 연구의 경우 1.0 % H2S/Ar 가스를 20 ppm으로 별도로 주입하였다. 그 후, Pt 기반 촉매에서 지지체의 스크리닝을 위해 500 ppm을 주입하였다. 또한, 장기 안정성 테스트를 위해 H2S의 농도를 0에서 1,000 ppm까지 다양하게 설정하였다.Considering the sulfur content of the waste gasification synthesis gas, 1.0% H 2 S/Ar gas was separately injected at 20 ppm for the metal screening study. Afterwards, 500 ppm was injected for screening of supports on Pt-based catalysts. Additionally, for long-term stability tests, the concentration of H 2 S was set at various levels from 0 to 1,000 ppm.

기체 공간 속도(Gas Hourly Space Velocity, GHSV)는 1 % H2S/Ar 가스의 주입량에 따라 45,000 ~ 47,000 h-1로 설정하였다. 시린지 펌프(syringe pump)를 이용하여 일정한 속도로 증기를 주입한 후 예열기(180 ℃)를 통해 증기로 전환시켰다.Gas Hourly Space Velocity (GHSV) was set at 45,000 to 47,000 h -1 depending on the injection amount of 1% H 2 S/Ar gas. Steam was injected at a constant rate using a syringe pump and then converted to steam through a preheater (180°C).

WGS 반응 후, 마이크로-GC에 도달하기 전에 냉각기(chiller)와 건조제(desiccant) (Drierite®)를 통과시켜, 배출 가스의 잔류 증기 및 황 성분을 제거하였다.After the WGS reaction, the residual vapor and sulfur components of the exhaust gas were removed by passing it through a chiller and a desiccant (Drierite ® ) before reaching the micro-GC.

<실험예 1-2> 특성 분석 방법<Experimental Example 1-2> Characteristic analysis method

- BET 표먼적 측정- BET standard measurement

촉매의 BET 표면적은 ASAP 2010 (Micromeritics)을 사용하여 -196 ℃에서 N2 흡착/탈착 등온선에 의해 결정되었다. The BET surface area of the catalyst was determined by N 2 adsorption/desorption isotherm at -196 °C using ASAP 2010 (Micromeritics).

- Pt 분산 측정- Pt dispersion measurement

Pt의 분산(dispersion)을 결정하기 위하여, CO 화학흡착(chemisorption)은 Autochem 2920 기기 (Micromeritics)를 사용하여 소성된 촉매에서 50 ℃로 수행하였다. 분석 전 400 ℃, 5 % H2/Ar에서 1시간 동안 in-situ 환원 과정을 수행하고, 50 ℃로 냉각하였다. 그 후, CO로 포화될 때 까지 10 % CO/He의 CO 펄스(pulse)를 촉매 표면에 통과시켰다. 촉매 표면의 Pt에 흡착된 CO 양은 촉매에 CO가 흡착되어 발생하는 CO의 피크 면적 차이를 계산하여 결정하였다.To determine the dispersion of Pt, CO chemisorption was performed on the calcined catalyst at 50 °C using an Autochem 2920 instrument (Micromeritics). Before analysis, an in-situ reduction process was performed at 400 °C in 5% H 2 /Ar for 1 hour and cooled to 50 °C. Afterwards, a CO pulse of 10% CO/He was passed through the catalyst surface until it was saturated with CO. The amount of CO adsorbed on Pt on the catalyst surface was determined by calculating the peak area difference of CO generated by CO adsorption on the catalyst.

- XRD 패턴 측정- XRD pattern measurement

Ni 필터링 된 Cu-Kα 방사선 (40 kV, 100 mA)을 사용하여 회절장치 (Rigaku D/MAX-IIIC)를 사용하여, 20-80 °의 2θ 값에 대해 XRD(X-ray diffraction) 패턴을 기록하였다.X-ray diffraction (XRD) patterns were recorded for 2θ values of 20–80° using a diffractometer (Rigaku D/MAX-IIIC) using Ni-filtered Cu-Kα radiation (40 kV, 100 mA). did.

- H- H 22 -TPR 측정-TPR measurement

수소 온도 프로그램 환원(hydrogen-temperature programmed redeuction, H2-TPR)은 Autochem 2920 (Micromeritics)을 사용하여, 10 ℃/min의 승온 속도로 온도를 50 ℃에서 500 ℃로 증가시키며 10 % H2/Ar 가스를 사용하여 수행하였다. 검출기의 감도는 NiO 환원으로 보정되었다.Hydrogen-temperature programmed reduction (H 2 -TPR) was performed using Autochem 2920 (Micromeritics), increasing the temperature from 50 ℃ to 500 ℃ at a heating rate of 10 ℃/min and 10 % H 2 /Ar. This was carried out using gas. The sensitivity of the detector was calibrated by NiO reduction.

- 산소 저장 용량(OSC) 측정- Measurement of oxygen storage capacity (OSC)

산소 저장 용량(Oxygen Storage Capacity)을 확인하기 위하여 Autochem 2920 (Micromeritics)를 사용하여 H2-O2 펄스 반응을 수행하였다. H2-O2 펄스 반응에 앞서 촉매를 50 ~ 400 ℃에서 2시간 동안 He 가스로 처리하고, 이동성 산소와 반응시키기 위하여 400 ℃에서 10 % H2/Ar을 사용하여 H2 펄스에 노출시켰다. 그 후, 10 % O2/Ar을 사용하는 O2 펄스를 주입하여, 소모된 O2의 양으로부터 OSC를 계산하였다.To confirm the oxygen storage capacity, H 2 -O 2 pulse reaction was performed using Autochem 2920 (Micromeritics). Prior to the H 2 -O 2 pulse reaction, the catalyst was treated with He gas at 50 to 400 °C for 2 hours and exposed to H 2 pulses using 10% H 2 /Ar at 400 °C to react with mobile oxygen. Afterwards, O 2 pulses using 10% O 2 /Ar were injected, and OSC was calculated from the amount of O 2 consumed.

- Pt 4f XPS 측정- Pt 4f XPS measurement

Pt 4f XPS 스펙트럼은 레퍼런스 결합 에너지로 C 1s (284.6 eV)를 취하고, 단색 Al Kα X-ray 소스를 사용하여, K-α 분광계(Spectrometer) (Thermo Scientific)로 측정하였다.The Pt 4f XPS spectrum was measured with a K-α Spectrometer (Thermo Scientific) using C 1s (284.6 eV) as the reference binding energy and a monochromatic Al Kα

- 촉매의 표면 형태 및 원소 분포 측정- Measurement of catalyst surface morphology and element distribution

촉매의 표면 형태 및 원소 분포는 JEM-F200 (JEOL)을 사용하여 투과 전자 현미경(transmission electron microscopy, TEM) 및 에너지 분산형 X-ray 분광법(energy dispersive X-ray spectroscopy, EDX)를 통해 분석하였다.The surface morphology and element distribution of the catalyst were analyzed through transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX) using JEM-F200 (JEOL).

<실험예 2> 측정 결과<Experimental Example 2> Measurement results

<실험예 2-1> 내황성 WGS 촉매용 Pt 계 촉매 선정<Experimental Example 2-1> Selection of Pt-based catalyst for sulfur-resistant WGS catalyst

황은 촉매의 활성 부위에 강하게 흡착되고, 탈착되지 않아 촉매가 비활성화 된다. 내황성을 나타내는 활성 금속을 스크리닝하기 위해, 다양한 종류의 활성 금속을 우수한 산화환원 특성으로 인해 WGS 반응에서 널리 사용되는 지지체 물질인 CeO2 지지체에 함침시켰다. 내황성을 확인하기 위하여, WGS의 활성 금속으로 귀금속(Pt)과 비-귀금속(Ni, Co, Fe, La, Mo)를 선택하였다. 귀금속은 2 wt%, 비-귀금속은 10 wt%로 함침하였다.Sulfur is strongly adsorbed to the active site of the catalyst and does not desorb, deactivating the catalyst. To screen for active metals exhibiting sulfur resistance, various types of active metals were impregnated into CeO 2 supports, which are widely used support materials in WGS reactions due to their excellent redox properties. To confirm sulfur resistance, noble metals (Pt) and non-precious metals (Ni, Co, Fe, La, Mo) were selected as active metals for WGS. Precious metals were impregnated at 2 wt% and non-precious metals were impregnated at 10 wt%.

제조된 촉매를 황을 주입하지 않은 상태에서 폐기물 가스화 합성가스를 WGS 반응에 적용하여 상기 반응 조건에서 고유 활성을 확인하였다. WGS 반응 결과를 CO 전환율에 의해 평가한 결과는 도 1에 나타난 바와 같다. 측정 결과, CeO2 지지체 촉매 중 Pt, Ni 및 Co 함침 촉매는 상기 반응 조건에서 촉매 활성을 나타내었다.Waste gasification synthesis gas was applied to the WGS reaction without injecting sulfur into the manufactured catalyst, and the intrinsic activity was confirmed under the above reaction conditions. The results of evaluating the WGS reaction results by CO conversion rate are as shown in Figure 1. As a result of the measurement, the Pt, Ni, and Co impregnated catalyst among the CeO 2 support catalysts showed catalytic activity under the above reaction conditions.

촉매 활성을 확인한 후, 20 ppm의 H2S를 주입하여 상기 세 촉매(Pt, Ni 및 Co 함침 촉매)의 내황성을 테스트하였다. 측정 결과는 도 2에 나타난 바와 같다. 도 2a에 나타난 바와 같이, 10 wt% Co/CeO2 촉매가 20 ppm의 H2S만 주입해도 매우 낮은 촉매활성을 나타내는 것을 확인하였다. 또한, 도 2b에 나타난 바와 같이, 10 wt% Ni/CeO2 촉매가 낮은 촉매활성을 나타내는 것을 확인하였다. 이와 반대로, 도 2c에 나타난 바와 같이 2 wt% Pt/CeO2 촉매는 H2S를 주입하지 않았을 때와 거의 유사한 촉매활성을 나타내 강한 내황성을 나타내는 것을 확인하였다.After confirming the catalyst activity, 20 ppm of H 2 S was injected to test the sulfur resistance of the three catalysts (Pt, Ni, and Co-impregnated catalysts). The measurement results are as shown in Figure 2. As shown in Figure 2a, it was confirmed that the 10 wt% Co/CeO 2 catalyst showed very low catalytic activity even when only 20 ppm of H 2 S was injected. Additionally, as shown in Figure 2b, it was confirmed that the 10 wt% Ni/CeO 2 catalyst exhibited low catalytic activity. On the contrary, as shown in Figure 2c, it was confirmed that the 2 wt% Pt/CeO 2 catalyst showed a catalytic activity almost similar to that when H 2 S was not injected, showing strong sulfur resistance.

<실험예 2-2> 다양한 지지체에 함침된 Pt 계 촉매의 성능 확인<Experimental Example 2-2> Confirmation of performance of Pt-based catalysts impregnated on various supports

Pt계 촉매의 내황성에 영향을 미치는 인자를 확인하기 위해 CeO2, ZrO2, MgO, Al2O3 지지체에 2 wt%의 Pt를 함침시키고, 500 ppm의 H2S와 함께 폐기물 가스화 합성가스를 주입하여 WGS 반응에 적용하였으며, 그 결과는 도 3에 나타난 바와 같다.To determine the factors affecting the sulfur resistance of Pt-based catalysts, CeO 2 , ZrO 2 , MgO, Al 2 O 3 supports were impregnated with 2 wt% of Pt, and waste gasification synthesis gas was mixed with 500 ppm of H 2 S. was injected and applied to the WGS reaction, and the results are as shown in Figure 3.

먼저, H2S를 주입하지 않고 초기 촉매활성을 확인하였다. 그 후, 500 ppm의 H2S를 12시간 동안 주입하여 촉매의 내황성을 테스트하였다. 마지막으로, H2S 주입을 중단하고 5시간 동안 촉매활성재생률을 평가하였다.First, the initial catalytic activity was confirmed without injecting H 2 S. Afterwards, 500 ppm of H 2 S was injected for 12 hours to test the sulfur resistance of the catalyst. Finally, H 2 S injection was stopped and the catalyst activity regeneration rate was evaluated for 5 hours.

측정결과, 도 3에 나타난 바와 같이 Pt/CeO2 촉매만 황에 피독된 상태에서도 60 % 이상의 촉매활성을 나타내었다. 또한, Pt/CeO2 촉매가 H2S 주입을 중단한 후 95 % 이상의 촉매 활성 재생률을 나타내었다. 다른 촉매의 경우, H2S 주입 후에 황 피독으로 20 % 미만의 촉매활성을 나타내었으며, H2S 주입 중단 후 초기 촉매활성으로 완전히 회복되지 않는 것을 확인하였다.As a result of the measurement, as shown in Figure 3, only the Pt/CeO 2 catalyst showed a catalytic activity of more than 60% even when poisoned with sulfur. In addition, the Pt/CeO 2 catalyst showed a catalytic activity regeneration rate of more than 95% after stopping H 2 S injection. In the case of other catalysts, the catalytic activity was less than 20% due to sulfur poisoning after H 2 S injection, and it was confirmed that the initial catalytic activity was not completely recovered after stopping H 2 S injection.

<실험예 2-3> 촉매 특성 분석 결과<Experimental Example 2-3> Catalyst characteristics analysis results

상기 실험예 1-2에 기재된 방법에 따라 촉매 특성을 분석하였다.Catalyst properties were analyzed according to the method described in Experimental Example 1-2.

- BET 표먼적 및 분산 측정 결과- BET standard product and variance measurement results

소성된 촉매의 비표면적 및 분산 측정 결과는 표 1에 나타난 바와 같다.The specific surface area and dispersion measurement results of the calcined catalyst are shown in Table 1.

촉매 catalyst 표면적 (m2/g)a Surface area (m 2 /g) a Pt0 분산(%)b Pt 0 variance (%) b Pt/CeO2 Pt/ CeO2 7777 76.2976.29 Pt/ZrO2 Pt/ ZrO2 284284 59.1459.14 Pt/MgO Pt/MgO 167167 76.1876.18 Pt/Al2O3 Pt/Al 2 O 3 202202 61.1061.10

[a: -196 ℃에서 N2 흡착으로 측정][a: Measured by N 2 adsorption at -196°C]

[b: CO 화학 흡착으로 측정][b: Measured by CO chemical adsorption]

측정결과, Pt/ZrO2 촉매가 284 m2/g으로 가장 높은 값을 보였고, Pt/CeO2 촉매가 77 m2/g으로 가장 낮은 값을 나타내었다. Pt0 분산의 경우, Pt/CeO2 및 Pt/MgO는 76 % 이상 유사한 값을 보였고, Pt/ZrO2 및 Pt/Al2O3는 약 60 %를 나타내었다. 상기 나타난 바와 같이, Pt/CeO2 촉매는 비표면적이 가장 낮음에도 가장 높은 분산을 나타내는 것을 확인하였다. 이는 Pt에 대한 앵커링 사이트(anchoring sites)를 제공하는 CeO2의 다량의 결함 산소(defect oxygen)에 의한 것일 수 있다.As a result of the measurement, the Pt/ZrO 2 catalyst showed the highest value at 284 m 2 /g, and the Pt/CeO 2 catalyst showed the lowest value at 77 m 2 /g. In the case of Pt 0 dispersion, Pt/CeO 2 and Pt/MgO showed similar values of over 76%, and Pt/ZrO 2 and Pt/Al 2 O 3 showed approximately 60%. As shown above, it was confirmed that the Pt/CeO 2 catalyst showed the highest dispersion even though it had the lowest specific surface area. This may be due to the large amount of defect oxygen in CeO 2 that provides anchoring sites for Pt.

- XRD 패턴 측정 결과- XRD pattern measurement results

촉매의 XRD 패턴을 측정한 결과는 도 4a 내지 도 4c(a: 환원 / b: 피독 / c: 재생)에 나타난 바와 같다. 모든 촉매는 각각의 함침된 지지체의 패턴을 나타내었으며, Pt의 낮은 담지량(2 wt%)과 높은 분산으로 인해 Pt 종과 관련된 특징적인 피크는 검출되지 않았다. Pt/CeO2 촉매의 경우, CeO2의 fcc(face centered cubic)의 특징적인 피크를 나타내었다. Pt/MgO 촉매는 MgO의 전형적인 페리클레이스-타입(periclase-type) 산화물 구조의 피크를 나타내었다. Pt/Al2O3 촉매는 촉매가 500 ℃에서 소성되어 γ-Al2O3 피크를 나타내었다. ZrO2 지지체는 비결정질 특성으로 인해 넓은 피크를 나타내었다. (a) 환원, (b) 피독, (c) 재생의 세 가지 조건에서 측정하였으나, 약 2 wt%만 함침된 활성 금속에 황이 부착되므로 모든 촉매에서 유사한 결과가 나타났다. 이는 황이 지지체 재료의 결정도에 영향을 미치지 않음을 나타낸 것이다.The results of measuring the XRD pattern of the catalyst are as shown in Figures 4a to 4c (a: reduction / b: poisoning / c: regeneration). All catalysts showed patterns of their respective impregnated supports, and no characteristic peaks related to Pt species were detected due to the low loading amount (2 wt%) and high dispersion of Pt. In the case of the Pt/CeO 2 catalyst, a characteristic peak of fcc (face centered cubic) of CeO 2 was exhibited. The Pt/MgO catalyst showed peaks of the typical periclase-type oxide structure of MgO. The Pt/Al 2 O 3 catalyst showed a γ-Al 2 O 3 peak when the catalyst was calcined at 500°C. The ZrO 2 support showed a broad peak due to its amorphous nature. Measurements were made under three conditions: (a) reduction, (b) poisoning, and (c) regeneration. However, since sulfur attached to the active metal impregnated with only about 2 wt%, similar results were obtained for all catalysts. This indicates that sulfur does not affect the crystallinity of the support material.

- H- H 22 -TPR 측정 결과-TPR measurement results

고온 범위에서 WGS의 주요 반응 메커니즘은 산화 환원 메커니즘이므로 촉매의 산화 환원 특성은 촉매 활성과 관련이 있다. H2-TPR은 촉매의 환원성을 조사하기 위해 수행되었으며, 측정결과는 도 5에 나타난 바와 같다. 상기 촉매 중 Pt/CeO2 촉매만이 100 ℃ 이하에서 다량의 H2 소모량을 나타내었다. 지지체와 약하게 상호 작용하는 PtOx 종은 실온 이하에서 환원될 수 있고, 많은 양의 H2 소모는 H2의 스필오버(spillover)를 통한 CeO2 지지체의 환원으로 인해 나타난다. In the high temperature range, the main reaction mechanism of WGS is the redox mechanism, so the redox properties of the catalyst are related to the catalytic activity. H 2 -TPR was performed to investigate the reducibility of the catalyst, and the measurement results are as shown in FIG. 5. Among the catalysts, only the Pt/CeO 2 catalyst showed a large amount of H 2 consumption at temperatures below 100°C. PtO _ _ _

반면, 다른 촉매는 Pt/CeO2에 비해 매우 약한 피크 강도를 나타내었다. 또한, Pt/ZrO2 보다 Pt/CeO2에서 훨씬 더 많은 양의 실제 수소 소모를 나타내었다.On the other hand, other catalysts showed very weak peak intensity compared to Pt/CeO 2 . In addition, the actual hydrogen consumption was much higher in Pt/CeO 2 than in Pt/ZrO 2 .

- 산소 저장 용량(OSC) 측정 결과- Oxygen storage capacity (OSC) measurement results

촉매에 H2-O2 펄스 반응을 수행하여 측정한 결과는 표 2에 나타난 바와 같다.The results measured by performing H 2 -O 2 pulse reaction on the catalyst are shown in Table 2.

촉매 catalyst 산소 저장 용량(OSC)
(10-4 gmol/gcat)
Oxygen Storage Capacity (OSC)
(10 -4 gmol/gcat)
Pt/CeO2 Pt/ CeO2 6.666.66 Pt/ZrO2 Pt/ ZrO2 2.042.04 Pt/MgO Pt/MgO 0.860.86 Pt/Al2O3 Pt/Al 2 O 3 1.871.87

측정결과, 환원성 지지체(CeO2, ZrO2)는 비환원성 지지체(MgO, Al2O3)에 비해 산소 저장 용량이 높으며, CeO2 지지체 촉매는 타 촉매보다 현저하게 우수한 산소 저장 용량을 나타내는 것을 확인하였다. As a result of the measurement, it was confirmed that the reducing support (CeO 2 , ZrO 2 ) had a higher oxygen storage capacity than the non-reducing support (MgO, Al 2 O 3 ), and that the CeO 2 support catalyst had a significantly better oxygen storage capacity than other catalysts. did.

CeO2의 높은 산소 저장 용량은 WGS 반응의 산화 환원 메커니즘을 가속화 한다. 구체적으로, CO는 금속 지지체 계면에 흡착되고, 활성 금속은 지지체에서 이동성 산소를 통해 CO2를 생성한다. 결과적으로, CeO2 표면에 산소 빈자리(vacancy)를 형성하고, 그 후 증기의 해리가 일어나고 증기에서 발생하는 산소가 이동식 산소가 빠져나간 산소 빈자리를 채우고 결과적으로 H2를 생성한다. 이를 통해 Pt/CeO2 촉매의 높은 내황성 WGS 활성의 이유를 설명할 수 있다.The high oxygen storage capacity of CeO 2 accelerates the redox mechanism of the WGS reaction. Specifically, CO is adsorbed at the metal support interface, and the active metal generates CO 2 through mobile oxygen in the support. As a result, oxygen vacancies are formed on the surface of CeO 2 , and then the vapor dissociates and the oxygen generated from the vapor fills the oxygen vacancies left by the mobile oxygen, resulting in the production of H 2 . This can explain the reason for the high sulfur resistance and WGS activity of the Pt/CeO 2 catalyst.

- Pt 4f XPS 측정 결과- Pt 4f XPS measurement results

환원, 피독 및 재생된 촉매의 XPS Pt 4f 스펙트럼을 각 촉매에서 비교하여 황의 효과를 확인하였으며, 그 결과는 도 6에 나타난 바와 같다.The effect of sulfur was confirmed by comparing the XPS Pt 4f spectra of the reduced, poisoned, and regenerated catalysts for each catalyst, and the results are shown in Figure 6.

측정 결과, Pt/CeO2, Pt/ZrO2 촉매에서 Pt 종은 반응 전 사전환원 단계 후 Pt0로 환원된 것이 확실하고, Pt/MgO 촉매에서 Pt 종은 넓은 피크로 인해 환원 되었는지 여부가 명확하지 않았으며, Pt/Al2O3 촉매에서는 Pt 4f와 Al 3d 피크가 겹치고 Al 3d의 피크강도가 강하게 나타나 Pt 종의 산화수를 구별하기 어려웠다. (Pt 4f 스펙트럼의 디컨벌루션(deconvolution)은 황의 흡착 및 탈착의 효과를 고려하기 어려워 수행되지 않음.)As a result of the measurement, it is clear that the Pt species in the Pt/CeO 2 and Pt/ZrO 2 catalysts were reduced to Pt 0 after the pre-reduction step before the reaction, and it is not clear whether the Pt species in the Pt/MgO catalyst were reduced due to the wide peak. In the Pt/Al 2 O 3 catalyst, the Pt 4f and Al 3d peaks overlapped and the peak intensity of Al 3d was strong, making it difficult to distinguish the oxidation number of the Pt species. (Deconvolution of the Pt 4f spectrum was not performed because it was difficult to consider the effects of sulfur adsorption and desorption.)

Pt/CeO2 및 Pt/ZrO2에서는 황 피독 후 Pt0의 강도가 감소하는 것으로 나타났다. 이는 H2S 주입에 의한 반응 중 활성종(Pt0)에 황이 흡착되기 때문에 나타나는 것일 수 있다. 두 촉매에서 피크 강도는 재생된 샘플에서 회복되며, 이는 황의 탈착 때문일 수 있다. 다만, 피독된 촉매에서 Pt/CeO2는 Pt/ZrO2에서 관찰되지 않은 Pt0 피크를 나타내는 것을 확인하였다. 이를 통해, 촉매의 비활성화는 황의 흡착에 의한 것이고 촉매의 재생은 황의 탈착으로 인한 것임을 확인하였다.In Pt/CeO 2 and Pt/ZrO 2 , the strength of Pt 0 was found to decrease after sulfur poisoning. This may occur because sulfur is adsorbed on the active species (Pt 0 ) during the reaction by H 2 S injection. The peak intensity for both catalysts is recovered in the regenerated sample, which may be due to desorption of sulfur. However, it was confirmed that in the poisoned catalyst, Pt/CeO 2 showed a Pt 0 peak that was not observed in Pt/ZrO 2 . Through this, it was confirmed that deactivation of the catalyst was due to adsorption of sulfur and regeneration of the catalyst was due to desorption of sulfur.

또한, Pt/CeO2는 피독된 촉매 중 가장 많은 Pt0 종을 나타내어 우수한 내황성을 나타내는 것을 확인하였다.In addition, it was confirmed that Pt/CeO 2 showed the largest amount of Pt 0 species among the poisoned catalysts, showing excellent sulfur resistance.

- 촉매의 표면 형태 및 원소 분포 측정 결과- Measurement results of catalyst surface morphology and element distribution

황에 의해 피독된 촉매와 재생된 촉매의 TEM 및 EDX 맵핑 이미지는 도 7에 나타난 바와 같다. 황에 의해 피독된 촉매와 재생된 촉매 모두에서 황이 관찰되었으며, 노란색으로 표시 되어있다. 황의 분포 형태는 Pt와 거의 동일하여 황이 Pt에 흡착되었음을 확인하였다. 또한, 모든 재생 촉매에서 황이 관찰되어, 재생 단계(H2S 주입 중지)가 흡착된 황을 완전히 제거할 수 없음을 보여준다. 다만, Pt/CeO2 촉매의 경우에만 재생된 촉매에서의 황 흡착량이 피독된 촉매에서의 황 흡착량보다 적어, 타 촉매에 비해 우수한 재생성이 있음을 확인하였다.TEM and EDX mapping images of the catalyst poisoned by sulfur and the regenerated catalyst are shown in Figure 7. Sulfur was observed in both the catalyst poisoned by sulfur and the regenerated catalyst, and is indicated in yellow. The distribution form of sulfur was almost the same as that of Pt, confirming that sulfur was adsorbed on Pt. Additionally, sulfur was observed in all regenerated catalysts, showing that the regeneration step (stopping H 2 S injection) was unable to completely remove the adsorbed sulfur. However, only in the case of the Pt/CeO 2 catalyst, the amount of sulfur adsorption in the regenerated catalyst was lower than that in the poisoned catalyst, confirming that it had excellent regeneration compared to other catalysts.

이러한 특성은 Pt/CeO2 촉매의 우수한 OSC를 나타냄에 따라 흡착된 황과 CeO2 지지체에서 기인하는 이동성 산소의 반응(S + mobile O → SO2)을 통해 나타날 수 있다. 상기 반응을 통해 활성 Pt 종 표면에 흡착된 황이 탈착되어 촉매가 재생될 수 있고, 생성된 산소 빈자리는 Pt/CeO2 촉매의 계면에서 해리된 후 H2O 분자에서 발생하는 산소로 채워져 산화환원 사이클을 마칠 수 있다.These characteristics can be achieved through the reaction of adsorbed sulfur and mobile oxygen originating from the CeO 2 support (S + mobile O → SO 2 ), as the Pt/CeO 2 catalyst exhibits excellent OSC. Through the above reaction, the sulfur adsorbed on the surface of the active Pt species is desorbed, allowing the catalyst to be regenerated, and the created oxygen vacancy is dissociated at the interface of the Pt/CeO 2 catalyst and then filled with oxygen generated from the H 2 O molecule, leading to a redox cycle. can be completed.

<실험예 3> Pt/CeO<Experimental Example 3> Pt/CeO 22 촉매의 장기 안정성 측정 Determination of long-term stability of catalysts

폐기물 가스화 합성가스에 포함된 황의 농도는 매우 다양하고, 농도의 변동은 항상 발생된다. 이에 장기 안정성을 측정하기 위하여, H2S의 농도를 0 ~ 1,000 ppm으로 변화시키고 폐기물 가스화 합성가스를 이용하여 WGS 반응의 장기 안정성 시험을 실시하여 실제 조건에서 촉매의 유효성을 확인하였으며, 측정결과는 도 8에 나타난 바와 같다.The concentration of sulfur contained in waste gasification synthesis gas is very diverse, and fluctuations in concentration always occur. Therefore, in order to measure long-term stability, the concentration of H 2 S was changed from 0 to 1,000 ppm and a long-term stability test of the WGS reaction was conducted using waste gasification synthesis gas to confirm the effectiveness of the catalyst under actual conditions. The measurement results were As shown in Figure 8.

도 8에 나타난 바와 같이, H2S를 100 ppm 미만으로 주입된 경우, Pt/CeO2 촉매의 CO 전환율은 100시간 동안 비활성화없이 열역학적 평형에 도달하였다. H2S를 500 ppm으로 주입된 경우 촉매 활성이 감소하였으나 46,000 h-1 이상의 매우 높은 GHSV에서도 100시간 동안 60 % 이상의 활성을 유지하는 것을 확인하였다. 이는 H2S를 1,000 ppm으로 주입된 경우에도 유사하게 나타났다.As shown in Figure 8, when H 2 S was injected at less than 100 ppm, the CO conversion rate of the Pt/CeO 2 catalyst reached thermodynamic equilibrium without deactivation for 100 hours. When H 2 S was injected at 500 ppm, the catalyst activity decreased, but it was confirmed that more than 60% of the activity was maintained for 100 hours even at a very high GHSV of 46,000 h -1 or more. This was similar even when H 2 S was injected at 1,000 ppm.

또한, Pt/CeO2 촉매는 H2S 주입량에 관계없이 H2S 주입이 중단되었을 때 촉매활성을 거의 초기 활성으로 회복시킬 수 있는 것을 확인하였다.In addition, it was confirmed that the Pt/CeO 2 catalyst can restore the catalytic activity to almost the initial activity when H 2 S injection is stopped, regardless of the H 2 S injection amount.

Claims (15)

촉매 조성물 전체 중량 대비 1 내지 3 wt%의 Pt; 및
CeO2 지지체를 포함하고, H2S를 500ppm 이상 첨가한 경우에 황피독 후 60% 이상 CO 전환율을 유지하며, 산소 저장 용량이 4 × 10-4 gmol/gcat 이상인 것을 특징으로 하는, 수성가스 전이반응용 촉매 조성물.
1 to 3 wt% of Pt based on the total weight of the catalyst composition; and
A water gas transition comprising a CeO 2 support, maintaining a CO conversion rate of 60% or more after sulfur poisoning when 500 ppm or more of H 2 S is added, and having an oxygen storage capacity of 4 × 10 -4 gmol/gcat or more. Catalyst composition for reaction.
제1항에 있어서,
상기 촉매 조성물은 폐기물 가스화 합성가스의 수성가스 전이반응에 사용되는 것인, 수성가스 전이반응용 촉매 조성물.
According to paragraph 1,
The catalyst composition is a catalyst composition for water gas shift reaction, which is used in the water gas shift reaction of waste gasification synthesis gas.
삭제delete 삭제delete 삭제delete 삭제delete 제1항에 있어서,
상기 촉매 조성물은 H2S 미투입 조건 및 200 ℃이상에서 CO 전환율이 60% 이상인, 수성가스 전이반응용 촉매 조성물.
According to paragraph 1,
The catalyst composition is a catalyst composition for water gas transfer reaction, which has a CO conversion rate of 60% or more under conditions of not adding H 2 S and above 200 ° C.
제1항에 있어서,
상기 촉매 조성물은 H2S 미투입 조건 및 250 ℃이상에서 CO 전환율이 80% 이상인, 수성가스 전이반응용 촉매 조성물.
According to paragraph 1,
The catalyst composition is a catalyst composition for water gas transfer reaction, which has a CO conversion rate of 80% or more under conditions without H 2 S input and at 250 ° C. or higher.
제1항에 있어서,
상기 촉매 조성물은 H2S 미투입 조건 및 400 ℃ 이상에서 CO 전환율이 90% 이상인, 수성가스 전이반응용 촉매 조성물.
According to paragraph 1,
The catalyst composition is a catalyst composition for water gas transfer reaction, which has a CO conversion rate of 90% or more under conditions without H 2 S input and at 400 ° C. or higher.
제1항에 있어서,
상기 촉매 조성물은 황 피독 전후 CO 전환율의 차이가 0.1 내지 30%인, 수성가스 전이반응용 촉매 조성물.
According to paragraph 1,
The catalyst composition is a catalyst composition for water gas transfer reaction, wherein the difference in CO conversion rate before and after sulfur poisoning is 0.1 to 30%.
삭제delete 제1항에 있어서,
상기 촉매 조성물은 표면적이 100 m2/g 이하이고, 금속 분산이 60% 이상인, 수성가스 전이반응용 촉매 조성물.
According to paragraph 1,
The catalyst composition has a surface area of 100 m 2 /g or less and a metal dispersion of 60% or more.
삭제delete 제1항에 있어서,
상기 촉매 조성물은 황 탈착 재생이 가능한, 수성가스 전이반응용 촉매 조성물.
According to paragraph 1,
The catalyst composition is a catalyst composition for water gas transfer reaction capable of sulfur desorption and regeneration.
제1항에 있어서,
상기 촉매 조성물은 60 시간 이상 촉매활성을 나타내는 것인, 수성가스 전이반응용 촉매 조성물.
According to paragraph 1,
The catalyst composition exhibits catalytic activity for more than 60 hours.
KR1020210077664A 2021-06-15 2021-06-15 Sulfur-resistant catalyst for water gas shift reaction of waste-derived synthesis gas KR102599482B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210077664A KR102599482B1 (en) 2021-06-15 2021-06-15 Sulfur-resistant catalyst for water gas shift reaction of waste-derived synthesis gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210077664A KR102599482B1 (en) 2021-06-15 2021-06-15 Sulfur-resistant catalyst for water gas shift reaction of waste-derived synthesis gas

Publications (2)

Publication Number Publication Date
KR20220168086A KR20220168086A (en) 2022-12-22
KR102599482B1 true KR102599482B1 (en) 2023-11-06

Family

ID=84578204

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210077664A KR102599482B1 (en) 2021-06-15 2021-06-15 Sulfur-resistant catalyst for water gas shift reaction of waste-derived synthesis gas

Country Status (1)

Country Link
KR (1) KR102599482B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030064887A1 (en) 2000-09-25 2003-04-03 Engelhard Corporation Suppression of methanation activity by a water gas shift reaction catalyst
JP2009501078A (en) 2005-07-12 2009-01-15 エクソンモービル リサーチ アンド エンジニアリング カンパニー Improved sulfur oxide / nitrogen oxide trap system and method for protecting NOx storage reduction catalyst from sulfur poisoning
KR102023267B1 (en) 2017-02-10 2019-09-19 연세대학교 원주산학협력단 Preparation of alkali metal or alkaline earth metal promoted Co-based catalysts for the water gas shift reaction

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2976083A1 (en) * 2015-02-09 2016-08-18 Basf Corporation Diesel oxidation catalyst
WO2018025047A1 (en) * 2016-08-05 2018-02-08 Johnson Matthey Public Limited Company Diesel oxidation catalyst having a capture region for sulfur containing impurities
KR20180135339A (en) * 2017-06-12 2018-12-20 주식회사 대화알로이테크 Manufacturing method porus metal supporter using metal injection molding and uniaxial compression molding

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030064887A1 (en) 2000-09-25 2003-04-03 Engelhard Corporation Suppression of methanation activity by a water gas shift reaction catalyst
JP2009501078A (en) 2005-07-12 2009-01-15 エクソンモービル リサーチ アンド エンジニアリング カンパニー Improved sulfur oxide / nitrogen oxide trap system and method for protecting NOx storage reduction catalyst from sulfur poisoning
KR102023267B1 (en) 2017-02-10 2019-09-19 연세대학교 원주산학협력단 Preparation of alkali metal or alkaline earth metal promoted Co-based catalysts for the water gas shift reaction

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
A.R. de la Osa et al., Kinetic models discrimination for the high pressure WGS reaction over a commercial CoMo catalyst, Int. J. Hydrogen Energy, 36 (2011), 9673~9684쪽
A.R. De La Osa et al., Performance of a sulfur-resistant commercial WGS catalyst employing industrial coal-derived syngas feed, Int. J. Hydrogen Energy, 36 (2011), 44~51쪽
Bing Liu et al., Sour water-gas shift reaction over Pt/CeO2 catalysts, Catalysis Today, 171, 1, 304~311쪽, 2011.5.4.발행*
K.Y. Koo et al., Coke study on MgO-promoted Ni/Al2O3 catalyst in combined H2O and CO2 reforming of methane for gas to liquid (GTL) process, Appl. Catal. Gen., 340 (2008), 183~190쪽
Kyoung-Jin Kim et al, Efficient Waste to Energy Conversion Based on Co-CeO2 Catalyzed Water-Gas Shift Reaction, Catalysts 2020, 10, 420, 1~14쪽, 2020.4.12.발행
Ludmila P.C.Silva et al., Sour water-gas shift reaction over Pt/CeZrO2 catalysts, Journal of Catalysis, 341, 1~12쪽, 2016.6.30.발행*
S.S. Hla, et al., Investigation into the performance of a Co-Mo based sour shift catalyst using simulated coal-derived syngases Int. J. Hydrogen Energy, 36 (2011), 6638~6645쪽
Yeol-Lim Lee et al., Comparison of the effects of the catalyst preparation method ~ for the water-gas shift reaction, Catal. Sci. Technol., 2020, 10, 6299~6308쪽, 2020.7.31.발행*
Yeol-Lim Lee et al., Highly sulfur tolerant and regenerable Pt/CeO2 catalyst for waste to energy, Renewable Energy, 178, 334-343쪽, 2021.6.25.발행
Yeol-Lim Lee et al., Sulfur-Tolerant Pt/CeO2 Catalyst with Enhanced Oxygen Storage Capacity ~ for the Waste-to-hydrogen process, ACS Sustainable Chem. Eng. 2021, 9, 15287~15293쪽, 2021.11.4.발행*

Also Published As

Publication number Publication date
KR20220168086A (en) 2022-12-22

Similar Documents

Publication Publication Date Title
Dama et al. Active and durable alkaline earth metal substituted perovskite catalysts for dry reforming of methane
Marinho et al. Highly active and stable Ni dispersed on mesoporous CeO2-Al2O3 catalysts for production of syngas by dry reforming of methane
Iglesias et al. Zr promotion effect in CO2 methanation over ceria supported nickel catalysts
Frusteri et al. Stepwise tuning of metal-oxide and acid sites of CuZnZr-MFI hybrid catalysts for the direct DME synthesis by CO2 hydrogenation
Garbarino et al. A study of Ni/Al2O3 and Ni–La/Al2O3 catalysts for the steam reforming of ethanol and phenol
Barroso-Quiroga et al. Catalytic activity and effect of modifiers on Ni-based catalysts for the dry reforming of methane
Garbarino et al. Steam reforming of ethanol–phenol mixture on Ni/Al2O3: effect of Ni loading and sulphur deactivation
Yi et al. Effects of preparation conditions for active carbon-based catalyst on catalytic hydrolysis of carbon disulfide
Ma et al. Methanol synthesis from sulfur-containing syngas over Pd/CeO2 catalyst
Kraleva et al. Catalytic performance of CoAlZn and NiAlZn mixed oxides in hydrogen production by bio-ethanol partial oxidation
Dai et al. Ni-Based catalysts supported on natural clay of attapulgite applied in the dry reforming of methane reaction
Shah et al. Exsolution of Embedded Ni–Fe–Co Nanoparticles: Implications for Dry Reforming of Methane
Li et al. Effect of Ce/Ca ratio in Ni/CeO2-ZrO2-CaO catalysts on high-purity hydrogen production by sorption-enhanced steam reforming of acetic acid and bio-oil
Crocella et al. On the role of morphology of CoFeO4 spinel in methanol anaerobic oxidation
Luo et al. Highly efficient steam reforming of ethanol (SRE) over CeOx grown on the nano NixMgyO matrix: H2 production under a high GHSV condition
Zeng et al. The effect of different atmosphere treatments on the performance of Ni/Nb–Al2O3 catalysts for methane steam reforming
Bezerra et al. Biogas reforming over Ni catalysts dispersed in different mixed oxides containing Zn2+, Al3+ and Zr4+ cations
Shi et al. Improving the coking resistance of Ni/Al2O3 modified by promoter (Ce, Zr, or Mg) under ethanol steam reforming: Perspective from growth sites of coking
Ruhswurmova et al. Nickel supported on low-rank coal for steam reforming of ethyl acetate
Utsis et al. Performance of Reverse Water Gas Shift on Coprecipitated and C‐Templated BaFe‐Hexaaluminate: The Effect of Fe Loading, Texture, and Promotion with K
KR102599482B1 (en) Sulfur-resistant catalyst for water gas shift reaction of waste-derived synthesis gas
Roussière Catalytic reforming of methane in the presence of CO2 and H2O at high pressure
KR102023267B1 (en) Preparation of alkali metal or alkaline earth metal promoted Co-based catalysts for the water gas shift reaction
Ribeiro et al. Low temperature water–gas shift: Differences in oxidation states observed with partially reduced Pt/MnOX and Pt/CeOX catalysts yield differences in OH group reactivity
Maziviero et al. Influence of Mn, Mg, Ce and P promoters on Ni-X/Al2O3 catalysts for dry reforming of methane

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant