KR102599387B1 - Cooling structure of battery system for electric vehicles - Google Patents

Cooling structure of battery system for electric vehicles Download PDF

Info

Publication number
KR102599387B1
KR102599387B1 KR1020160172005A KR20160172005A KR102599387B1 KR 102599387 B1 KR102599387 B1 KR 102599387B1 KR 1020160172005 A KR1020160172005 A KR 1020160172005A KR 20160172005 A KR20160172005 A KR 20160172005A KR 102599387 B1 KR102599387 B1 KR 102599387B1
Authority
KR
South Korea
Prior art keywords
cooling
battery
cooling air
cover
control unit
Prior art date
Application number
KR1020160172005A
Other languages
Korean (ko)
Other versions
KR20180069988A (en
Inventor
김경호
김병수
서정훈
최준석
Original Assignee
현대자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사 filed Critical 현대자동차주식회사
Priority to KR1020160172005A priority Critical patent/KR102599387B1/en
Publication of KR20180069988A publication Critical patent/KR20180069988A/en
Application granted granted Critical
Publication of KR102599387B1 publication Critical patent/KR102599387B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6563Gases with forced flow, e.g. by blowers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Abstract

본 발명에서는 배터리팩 내부에 배터리모듈과 제어유닛이 구비되고 배터리모듈과 제어유닛의 배치를 통해 블로워유닛에 의한 냉각공기로 효율적인 냉각이 수행되는 전기자동차의 배터리시스템 냉각 구조가 소개된다.The present invention introduces a battery system cooling structure for an electric vehicle in which a battery module and a control unit are provided inside the battery pack, and efficient cooling is performed with cooling air by a blower unit through the arrangement of the battery module and the control unit.

Description

전기자동차의 배터리시스템 냉각 구조 {COOLING STRUCTURE OF BATTERY SYSTEM FOR ELECTRIC VEHICLES}Cooling structure of battery system of electric vehicle {COOLING STRUCTURE OF BATTERY SYSTEM FOR ELECTRIC VEHICLES}

본 발명은 전기자동차의 배터리시스템 냉각 구조에 관한 것으로, 배터리팩 내부에 구비되는 구성들의 효율적인 냉각을 수행하기 위한 전기자동차의 배터리시스템 냉각 구조에 관한 것이다.The present invention relates to a cooling structure for a battery system of an electric vehicle, and to a cooling structure for a battery system of an electric vehicle for efficient cooling of components provided inside a battery pack.

최근에는 환경문제, 고유가 등의 원인으로 환경 차량에 대한 관심이 높아지고 있으며, 전기 에너지를 이용하여 차량이 주행되도록 하는 전기 차량 및 하이브리드 차량이 다양하게 개발되고 있다.Recently, interest in environmentally friendly vehicles is increasing due to environmental problems and high oil prices, and a variety of electric vehicles and hybrid vehicles that enable vehicles to run using electrical energy are being developed.

이러한 전기 차량 및 하이브리드 차량에 적용되는 배터리 모듈은 하나의 배터리 셀을 파우치에 수용하는 파우치 형의 배터리 셀 유닛이 많이 이용되고 있다. 여기서, 배터리 셀 유닛들은 하나의 배터리 팩 케이스 내부에 다수개가 적층되어 수용되며, 요구되는 전력크기에 따라 배터리 셀 유닛의 개수가 결정된다.As a battery module applied to such electric vehicles and hybrid vehicles, a pouch-type battery cell unit that accommodates one battery cell in a pouch is widely used. Here, a plurality of battery cell units are stacked and accommodated inside one battery pack case, and the number of battery cell units is determined according to the required power level.

한편, 종래의 전기 차량 및 하이브리드 차량의 경우 LDC(Low DC-DC Converter)가 엔진룸 내에 위치하여 고전압 배터리와 별도로 장착된다. 이에 따라, 고전압 배터리와 LDC 간의 파워케이블이 복잡하게 연결됨은 물론 작업 공수가 증가되는 문제가 있다.Meanwhile, in the case of conventional electric vehicles and hybrid vehicles, the LDC (Low DC-DC Converter) is located in the engine room and installed separately from the high-voltage battery. Accordingly, there is a problem in that the power cable between the high-voltage battery and the LDC is connected in a complex manner, and the number of working hours increases.

아울러, 엔진룸 내부에 LDC가 적용되어 엔진룸 내부 공간을 차지함으로써 엔진룸 내부의 패키지가 커지는 문제가 있다.In addition, there is a problem that the package inside the engine room becomes larger as the LDC is applied inside the engine room and occupies the space inside the engine room.

또한, 고전압 배터리를 냉각시키기 위한 냉각장치는 냉각팬 릴레이를 통하여 BMS로 신호 제어를 함에 따라 제어 및 구조적으로 복잡해지는 문제가 있다. In addition, the cooling device for cooling the high-voltage battery has the problem of becoming complicated in control and structure as signal control is performed by the BMS through the cooling fan relay.

상기의 배경기술로서 설명된 사항들은 본 발명의 배경에 대한 이해 증진을 위한 것일 뿐, 이 기술분야에서 통상의 지식을 가진자에게 이미 알려진 종래기술에 해당함을 인정하는 것으로 받아들여져서는 안 될 것이다.The matters described as background technology above are only for the purpose of improving understanding of the background of the present invention, and should not be taken as recognition that they correspond to prior art already known to those skilled in the art.

KR 20-1998-0045122 U (1998.09.25)KR 20-1998-0045122 U (1998.09.25)

본 발명은 이러한 문제점을 해결하기 위하여 제안된 것으로, 배터리팩 내부에 배터리모듈과 LDC와 같은 전장부품을 구성하고, 각 전장부품들이 효율적으로 냉각되도록 하는 전기자동차의 배터리시스템 냉각 구조를 제공하는데 그 목적이 있다.The present invention was proposed to solve this problem, and its purpose is to provide a battery system cooling structure for an electric vehicle that configures electrical components such as a battery module and LDC inside a battery pack and allows each electrical component to be efficiently cooled. There is.

상기의 목적을 달성하기 위한 본 발명에 따른 전기자동차의 배터리시스템 냉각 구조는 흡입구와 토출구가 형성된 배터리팩; 배터리팩에서 흡입구에 인접하게 마련되고 흡입구를 통해 유입되는 냉각공기가 통과되도록 구성된 배터리모듈; 배터리모듈에 장착되고 동작시 흡입구를 통해 냉각공기가 유입되도록 하여 배터리모듈이 냉각되도록 하는 블로워유닛; 및 배터리팩의 토출구에 인접하게 마련되고 블로워유닛으로부터 토출되는 냉각공기에 의해 냉각되는 제어유닛;을 포함한다.A cooling structure for a battery system of an electric vehicle according to the present invention to achieve the above object includes a battery pack having an inlet and an outlet; A battery module provided adjacent to the intake port in the battery pack and configured to allow cooling air flowing in through the intake port to pass through; A blower unit that is mounted on the battery module and allows cooling air to flow in through the intake port during operation to cool the battery module; and a control unit provided adjacent to the discharge port of the battery pack and cooled by cooling air discharged from the blower unit.

배터리팩에는 흡입구가 마련된 외측면에 냉각공기가 유입되는 경로를 제공하는 흡입덕트가 설치된 것을 특징으로 한다.The battery pack is characterized by an intake duct installed on the outer side where the intake port is provided, which provides a path for cooling air to flow in.

배터리팩에는 흡입구가 마련된 내측면에 연결덕트가 설치되고, 연결덕트는 배터리모듈의 일측단부를 감싸도록 형성되며 흡입구에 대응되는 유통홀이 형성된 것을 특징으로 한다.The battery pack has a connection duct installed on the inner side where the intake port is provided, and the connection duct is formed to surround one end of the battery module, and a distribution hole corresponding to the intake port is formed.

배터리모듈에는 흡입구를 통해 유입된 냉각공기가 제어유닛으로 유통되도록 하는 냉각유로가 형성된 것을 특징으로 한다.The battery module is characterized by a cooling passage that allows cooling air introduced through the intake port to be distributed to the control unit.

블로워유닛은, 배터리모듈의 타측단부를 감싸도록 형성된 블로워커버; 및 블로워커버에 설치되고 회전에 의해 냉각공기를 흡입하여 토출하는 냉각팬;을 포함하는 것을 특징으로 한다.The blower unit includes a blower cover formed to surround the other end of the battery module; And a cooling fan installed on the blower cover and rotating to suck in cooling air and discharge it.

블로워커버는 중심부에 냉각팬이 설치되도록 형성되고 냉각팬을 통해 흡입된 냉각공기가 제어유닛으로 이동되도록 경로를 제공하는 배출통로가 형성된 것을 특징으로 한다.The blower cover is formed so that a cooling fan is installed at the center and is characterized by an exhaust passage that provides a path for cooling air sucked through the cooling fan to move to the control unit.

제어유닛은, 블로워유닛에 의해 토출된 냉각공기를 유입받는 유입구와 냉각공기가 토출하는 배출구 형성된 냉각커버; 및 배터리모듈 및 블로워유닛을 제어하기 위한 전장부품이 구비되고 냉각커버에 연결되게 설치되어 전장부품에서 발생되는 열이 냉각커버에 유입된 냉각공기에 의해 냉각되는 제어기판;을 포함한다.The control unit includes a cooling cover formed with an inlet that receives cooling air discharged by the blower unit and an outlet that discharges the cooling air; and a control board equipped with electrical components for controlling the battery module and the blower unit and installed to be connected to the cooling cover, so that heat generated from the electrical components is cooled by cooling air flowing into the cooling cover.

제어유닛은 냉각커버와 제어유닛 사이에 설치되어 제어유닛의 열을 흡수하고 냉각커버에 유입된 냉각공기에 의해 냉각 및 방열하는 방열기;를 더 포함하는 것을 특징으로 한다.The control unit further includes a radiator installed between the cooling cover and the control unit to absorb heat from the control unit and cool and dissipate heat by cooling air flowing into the cooling cover.

상술한 바와 같은 구조로 이루어진 전기자동차의 배터리시스템 냉각 구조에 따르면, 배터리팩 내부에 배터리모듈과 제어유닛이 구비되고 배터리모듈과 제어유닛의 배치를 통해 블로워유닛에 의한 냉각공기로 효율적인 냉각이 수행된다.According to the battery system cooling structure of an electric vehicle structured as described above, a battery module and a control unit are provided inside the battery pack, and efficient cooling is performed with cooling air by a blower unit through the arrangement of the battery module and the control unit. .

도 1은 본 발명의 일 실시예에 따른 전기자동차의 배터리시스템 냉각 구조를 나타낸 도면.
도 2 내지 4는 도 1에 도시된 전기자동차의 배터리시스템 냉각 구조를 설명하기 위한 도면.
1 is a diagram showing a cooling structure of a battery system of an electric vehicle according to an embodiment of the present invention.
Figures 2 to 4 are diagrams for explaining the cooling structure of the battery system of the electric vehicle shown in Figure 1.

이하에서는 첨부된 도면을 참조하여 본 발명의 바람직한 실시 예에 따른 전기자동차의 배터리시스템 냉각 구조에 대하여 살펴본다.Hereinafter, with reference to the attached drawings, we will look at the cooling structure of the battery system of an electric vehicle according to a preferred embodiment of the present invention.

도 1은 본 발명의 일 실시예에 따른 전기자동차의 배터리시스템 냉각 구조를 나타낸 도면이고, 도 2 내지 4는 도 1에 도시된 전기자동차의 배터리시스템 냉각 구조를 설명하기 위한 도면이다.Figure 1 is a diagram showing the cooling structure of the battery system of an electric vehicle according to an embodiment of the present invention, and Figures 2 to 4 are diagrams for explaining the cooling structure of the battery system of the electric vehicle shown in Figure 1.

본 발명에 따른 전기자동차의 배터리시스템 냉각 구조는 도 1에 도시된 바와 같이, 흡입구(120)와 토출구(140)가 형성된 배터리팩(100); 배터리팩(100)에서 흡입구(120)에 인접하게 마련되고 흡입구(120)를 통해 유입되는 냉각공기가 통과되도록 구성된 배터리모듈(200); 배터리모듈(200)에 장착되고 동작시 흡입구(120)를 통해 냉각공기가 유입되도록 하여 배터리모듈(200)이 냉각되도록 하는 블로워유닛(300); 및 배터리팩(100)의 토출구(140)에 인접하게 마련되고 블로워유닛(300)으로부터 토출되는 냉각공기에 의해 냉각되는 제어유닛(400);을 포함한다.As shown in FIG. 1, the battery system cooling structure of an electric vehicle according to the present invention includes a battery pack 100 having an inlet 120 and an outlet 140; A battery module 200 provided adjacent to the inlet 120 in the battery pack 100 and configured to allow cooling air flowing in through the inlet 120 to pass through; A blower unit 300 that is mounted on the battery module 200 and allows cooling air to flow in through the intake port 120 during operation to cool the battery module 200; and a control unit 400 provided adjacent to the discharge port 140 of the battery pack 100 and cooled by cooling air discharged from the blower unit 300.

이와 같이, 본 발명은 배터리팩(100)이 구비되는 배터리모듈(200), 블로워유닛(300), 제어유닛(400)이 구성되고, 48V MHEV(Mile Hybrid electric vehicle)에 적용될 수 있다. 여기서, 배터리모듈(200)은 다수개의 배터리 셀 및 카트리지가 구성되어 전기 에너지의 충전 및 생성되도록 구성되고, 블로워유닛(300)은 송풍장치로 이루어져 냉각공기를 흡입 및 토출한다. 특히, 본 발명에서는 블로워유닛(300)의 동작시 흡입되는 냉각공기에 의해 배터리모듈(200)이 냉각되고 배터리모듈(200)을 냉각한 냉각공기로 제어유닛(400)이 냉각되도록 구성된다.As such, the present invention consists of a battery module 200, a blower unit 300, and a control unit 400 equipped with a battery pack 100, and can be applied to a 48V MHEV (Mile Hybrid electric vehicle). Here, the battery module 200 is composed of a plurality of battery cells and cartridges to charge and generate electric energy, and the blower unit 300 is composed of a blower device to suck in and discharge cooling air. In particular, in the present invention, the battery module 200 is cooled by the cooling air sucked when the blower unit 300 operates, and the control unit 400 is cooled by the cooling air cooled by the battery module 200.

즉, 배터리팩(100)에 구비되는 배터리모듈(200), 블로워유닛(300), 제어유닛(400)은 블로워유닛(300) 동작시 배터리모듈(200)이 먼저 냉각된 후 제어유닛(400)이 냉각되도록 배치됨으로써 각 부품의 동작 온도를 고려하여 배터리팩(100)에 배터리모듈(200)과 제어유닛(400)을 배치하더라도 원활한 냉각이 수행될 수 있다.That is, the battery module 200, blower unit 300, and control unit 400 provided in the battery pack 100 are cooled first when the blower unit 300 operates, and then the control unit 400 By being arranged to be cooled, smooth cooling can be performed even if the battery module 200 and the control unit 400 are placed in the battery pack 100 in consideration of the operating temperature of each component.

상세하게, 배터리모듈(200)에 구비되는 배터리 셀의 동작 온도는 -35℃ ~ 60℃이고, 하기 설명할 제어유닛(400)의 전장부품(442)의 동작 온도는 -40℃ ~ 75℃이므로, 동작 온도 범위가 상대적으로 낮은 제어유닛(400)을 배터리모듈(200)보다 공기흐름의 후방에 배치하여 냉각공기가 배터리모듈(200)을 냉각 후 제어유닛(400)을 냉각시키도록 한다.In detail, the operating temperature of the battery cell provided in the battery module 200 is -35°C to 60°C, and the operating temperature of the electrical component 442 of the control unit 400, which will be described below, is -40°C to 75°C. , the control unit 400, which has a relatively low operating temperature range, is placed behind the battery module 200 in the air flow so that the cooling air cools the battery module 200 and then cools the control unit 400.

이렇게, 본 발명에서는 배터리모듈(200)과 제어유닛(400)은 각 부품의 동작 온도를 고려하여 배터리팩(100) 내부에 배치함에 따라 시스템 부피를 최소한으로 줄이면서 효율적인 냉각이 수행될 수 있다.In this way, in the present invention, the battery module 200 and the control unit 400 are placed inside the battery pack 100 in consideration of the operating temperature of each component, so that efficient cooling can be performed while reducing the system volume to a minimum.

상술한 본 발명에 대해서 구체적으로 설명하면, 도 2 내지 3에 도시된 바와 같이, 배터리팩(100)에는 흡입구(120)가 마련된 외측면에 냉각공기가 유입되는 경로를 제공하는 흡입덕트(160)가 설치될 수 있다.Describing the above-described present invention in detail, as shown in FIGS. 2 and 3, the battery pack 100 has a suction duct 160 that provides a path for cooling air to flow into the outer surface of the battery pack 100 provided with an inlet 120. can be installed.

이러한 흡입덕트(160)는 외부의 냉각공기가 배터리팩(100) 내부로 유동할 수 있도록 공기유로의 역할을 수행하며, 차량의 실내공간 또는 공조장치와 연결되어 냉각공기의 이동 경로를 제공한다. 일반적으로 배터리팩(100)은 차량의 하부에 설치되는바, 흡입덕트(160)는 배터리팩(100)에서 상측으로 연장되도록 형성되어 냉각공기가 유통되게 할 수 있다.This suction duct 160 serves as an air passage to allow external cooling air to flow into the battery pack 100, and is connected to the interior space of the vehicle or the air conditioning system to provide a movement path for the cooling air. Generally, the battery pack 100 is installed at the bottom of the vehicle, and the suction duct 160 is formed to extend upward from the battery pack 100 to allow cooling air to circulate.

한편, 배터리팩(100)에는 흡입구(120)가 마련된 내측면에 연결덕트(180)가 설치되고, 연결덕트(180)는 배터리모듈(200)의 일측단부를 감싸도록 형성되며 흡입구(120)에 대응되는 유통홀(182)이 형성될 수 있다.Meanwhile, the battery pack 100 has a connection duct 180 installed on the inner side where the intake port 120 is provided, and the connection duct 180 is formed to surround one end of the battery module 200 and is connected to the intake port 120. A corresponding distribution hole 182 may be formed.

도 1 및 도 3에 도시된 바와 같이, 연결덕트(180)는 배터리팩(100)의 내부에서 흡입구(120)측에 고정 설치되고, 배터리모듈(200)의 일측단부를 감싸도록 형성되어 흡입구(120)를 통해 유입되는 냉각공기가 배터리모듈(200)로 유동되도록 한다. 연결덕트(180)가 배터리모듈(200)의 일측단부를 감싸도록 연결된 상태에서, 연결덕트(180)와 배터리모듈(200)의 연결 부분이 패킹되어 공기가 외부로 새지 않도록 할 수 있다. 이러한 연결덕트(180)에는 배터리팩(100)의 흡입구(120)에 대응되는 유통홀(182)이 형성되어 냉각공기가 흡입구(120) 및 유통홀(182)을 통과하여 배터리모듈(200)로 유동될 수 있다.As shown in Figures 1 and 3, the connection duct 180 is fixedly installed on the side of the inlet 120 inside the battery pack 100 and is formed to surround one end of the battery module 200 to form an inlet ( The cooling air flowing in through 120) is allowed to flow into the battery module 200. With the connection duct 180 connected to surround one end of the battery module 200, the connection portion between the connection duct 180 and the battery module 200 can be packed to prevent air from leaking to the outside. A distribution hole 182 corresponding to the inlet 120 of the battery pack 100 is formed in this connection duct 180, so that cooling air passes through the inlet 120 and the distribution hole 182 to the battery module 200. It can be fluid.

한편, 도 3에 도시된 바와 같이, 배터리모듈(200)에는 흡입구(120)를 통해 유입된 냉각공기가 제어유닛(400)으로 유통되도록 하는 냉각유로(220)가 형성될 수 있다.Meanwhile, as shown in FIG. 3, a cooling passage 220 may be formed in the battery module 200 to allow cooling air introduced through the intake port 120 to flow to the control unit 400.

배터리모듈(200)은 다수개의 배터리 셀 및 카트리지로 구성되는데, 냉각유로(220)는 배터리 셀을 구획하는 카트리지에 형성될 수 있다. 이러한 냉각유로(220)는 배터리모듈(200)의 일측에서 타측으로 관통되게 형성되어 흡입구(120)를 통해 유입된 냉각공기가 블로워유닛(300)을 통과하여 제어유닛(400)으로 유통되도록 할 수 있다. 특히, 냉각유로(220)는 카트리지에 형성됨에 따라 냉각유로(220)를 통과하는 냉각공기가 배터리 셀과 열교환하여 배터리 셀의 냉각이 수행될 수 있다.The battery module 200 is composed of a plurality of battery cells and cartridges, and the cooling passage 220 may be formed in the cartridge dividing the battery cells. This cooling passage 220 is formed to penetrate from one side of the battery module 200 to the other side, so that the cooling air introduced through the intake port 120 can pass through the blower unit 300 and be distributed to the control unit 400. there is. In particular, as the cooling passage 220 is formed in the cartridge, cooling air passing through the cooling passage 220 exchanges heat with the battery cell, thereby cooling the battery cell.

한편, 도 1 내지 3에 도시된 바와 같이, 블로워유닛(300)은, 배터리모듈(200)의 타측단부를 감싸도록 형성된 블로워커버(320); 및 블로워커버(320)에 설치되고 회전에 의해 냉각공기를 흡입하여 토출하는 냉각팬(340);을 포함한다.Meanwhile, as shown in FIGS. 1 to 3, the blower unit 300 includes a blower cover 320 formed to surround the other end of the battery module 200; and a cooling fan 340 that is installed on the blower cover 320 and rotates to suck in and discharge cooling air.

이렇게, 블로워유닛(300)은 블로워커버(320)와 냉각팬(340)으로 구성되며, 블로워커버(320)의 경우 배터리모듈(200)의 타측단부를 감싸도록 형성되어 배터리모듈(200)을 냉각한 냉각공기가 배터리팩(100) 외부로 새지 않고 냉각팬(340)을 통해 제어유닛(400)으로 원활히 유동되도록 할 수 있다. 블로워커버(320)가 배터리모듈(200)의 타측단부를 감싸도록 연결된 상태에서, 블로워커버(320)와 배터리모듈(200)의 연결 부분이 패킹되어 공기가 외부로 새지 않도록 할 수 있다.In this way, the blower unit 300 is composed of a blower cover 320 and a cooling fan 340, and the blower cover 320 is formed to surround the other end of the battery module 200 to cool the battery module 200. Cooling air can be allowed to flow smoothly into the control unit 400 through the cooling fan 340 without leaking out of the battery pack 100. With the blower cover 320 connected to cover the other end of the battery module 200, the connection portion between the blower cover 320 and the battery module 200 can be packed to prevent air from leaking to the outside.

냉각팬(340)의 경우 회전모터가 회전 동작됨에 따라 원심력이 발생되어 냉각공기를 흡입하고 반대편으로 토출되도록 이루어진다. 즉, 냉각팬(340)의 회전 동작시 발생되는 흡입력에 의해 배터리팩(100)의 흡입구(120), 배터리모듈(200)의 냉각유로(220)를 통과하여 냉각공기가 유동되고, 배터리모듈(200)을 냉각한 냉각공기는 제어유닛(400) 측으로 토출되어 제어유닛(400)의 냉각이 수행되는 것이다.In the case of the cooling fan 340, as the rotation motor rotates, centrifugal force is generated to suck in cooling air and discharge it to the other side. That is, the cooling air flows through the intake port 120 of the battery pack 100 and the cooling passage 220 of the battery module 200 due to the suction force generated when the cooling fan 340 rotates, and the battery module ( The cooling air that has cooled 200) is discharged to the control unit 400 to cool the control unit 400.

여기서, 블로워커버(320)는 중심부에 냉각팬(340)이 설치되도록 형성되고 냉각팬(340)을 통해 흡입된 냉각공기가 제어유닛(400)으로 이동되도록 경로를 제공하는 배출통로(322)가 형성될 수 있다.Here, the blower cover 320 is formed so that the cooling fan 340 is installed at the center, and has an exhaust passage 322 that provides a path for the cooling air sucked through the cooling fan 340 to move to the control unit 400. can be formed.

도 3에서 볼 수 있듯이, 블로워커버(320)의 중심부에는 냉각팬(340)이 설치되어 배터리모듈(200)을 통과한 냉각공기가 균일하게 냉각팬(340)으로 유입되도록 할 수 있으며, 냉각팬(340)을 통해 유입된 냉각공기는 블로워커버(320)의 배출통로(322)를 통해 가이드되어 제어유닛(400)으로 유동될 수 있다.As can be seen in Figure 3, a cooling fan 340 is installed in the center of the blower cover 320 to ensure that the cooling air passing through the battery module 200 is uniformly introduced into the cooling fan 340. Cooling air introduced through 340 may be guided through the discharge passage 322 of the blower cover 320 and flow into the control unit 400.

한편, 도 1 및 도 4에 도시된 바와 같이 제어유닛(400)은, 블로워유닛(300)에 의해 토출된 냉각공기를 유입받는 유입구(422)와 냉각공기가 토출하는 배출구(424) 형성된 냉각커버(420); 및 배터리모듈(200) 및 블로워유닛(300)을 제어하기 위한 전장부품(442)이 구비되고 냉각커버(420)에 연결되게 설치되어 전장부품(442)에서 발생되는 열이 냉각커버(420)에 유입된 냉각공기에 의해 냉각되는 제어기판(440);으로 구성된다.Meanwhile, as shown in FIGS. 1 and 4, the control unit 400 has a cooling cover formed with an inlet 422 that receives the cooling air discharged by the blower unit 300 and an outlet 424 through which the cooling air is discharged. (420); And electrical components 442 for controlling the battery module 200 and blower unit 300 are provided and installed to be connected to the cooling cover 420, so that heat generated from the electrical components 442 is transmitted to the cooling cover 420. It consists of a control board 440 that is cooled by the introduced cooling air.

이처럼, 제어유닛(400)은 냉각커버(420)와 제어기판(440)으로 구성되며, 냉각커버(420)의 경우 블로워유닛(300)에서 토출된 냉각공기를 유입받아 제어기판(440)이 냉각되도록 형성된다. 이에 따라, 냉각커버(420)에는 블로워유닛(300)에서 토출된 냉각공기가 유입되는 유입구(422)가 형성되고, 유입된 냉각공기가 제어기판(440)을 냉각 후 배출되도록 형성된 배출구(424)가 형성된다.In this way, the control unit 400 is composed of a cooling cover 420 and a control board 440, and the cooling cover 420 receives the cooling air discharged from the blower unit 300 to cool the control board 440. It is formed as much as possible. Accordingly, an inlet 422 through which the cooling air discharged from the blower unit 300 flows is formed in the cooling cover 420, and an outlet 424 is formed through which the inflow cooling air is discharged after cooling the control board 440. is formed.

제어기판(440)은 배터리모듈(200) 및 블로워유닛(300)을 제어하기 위한 전장부품(442) 외에 LDC를 포함하는 것으로, 각종 유닛 제어 및 전기 제어를 위한 제어기가 구비된다. 이러한 제어기판(440)은 다양한 전자 제어 장치를 제어함에 따라 발열되는데, 냉각커버(420)에 유입된 냉각공기가 제어기판(440)을 냉각함에 따라 적정 수준의 온도가 유지될 수 있다.The control board 440 includes an LDC in addition to electrical components 442 for controlling the battery module 200 and the blower unit 300, and is equipped with a controller for controlling various units and electrical control. The control board 440 generates heat as it controls various electronic control devices, and as the cooling air flowing into the cooling cover 420 cools the control board 440, the temperature can be maintained at an appropriate level.

이와 더불어, 제어유닛(400)은 냉각커버(420)와 제어기판(440) 사이에 설치되어 제어기판(440)의 열을 흡수하고 냉각커버(420)에 유입된 냉각공기에 의해 냉각 및 방열하는 방열기(460);를 더 포함할 수 있다.In addition, the control unit 400 is installed between the cooling cover 420 and the control board 440 to absorb heat from the control board 440 and cool and dissipate heat by the cooling air flowing into the cooling cover 420. It may further include a radiator 460.

도 4에서 볼 수 있듯이, 냉각커버(420)와 제어기판(440) 사이에는 방열기(460)가 개재되도록 설치될 수 있으며, 방열기(460)는 제어기판(440)의 열을 흡수하고 냉각커버(420)에 유입된 냉각공기에 의해 냉각 및 방열하는 히트싱크로 구성될 수 있다.As can be seen in Figure 4, a radiator 460 may be installed between the cooling cover 420 and the control board 440, and the radiator 460 absorbs heat from the control board 440 and cools the cooling cover ( 420) may be composed of a heat sink that cools and dissipates heat by cooling air introduced into the heat sink.

이로 인해, 제어기판(440)에서 발생되는 열은 히트싱크에 흡수되고 히트싱크는 흡수한 열을 냉각공기를 통해 방출시켜, 효율적인 냉각이 수행되도록 할 수 있다.Because of this, the heat generated in the control board 440 is absorbed by the heat sink, and the heat sink releases the absorbed heat through cooling air, enabling efficient cooling.

상술한 바와 같은 구조로 이루어진 전기자동차의 배터리시스템 냉각 구조에 따르면, 배터리팩(100) 내부에 배터리모듈(200)과 제어유닛(400)은 각 부품의 동작 온도를 고려하여 중앙에 배치된 블로워유닛(300)의 동작시 배터리모듈(200)이 먼저 냉각된 후 제어유닛(400)이 배터리모듈(200)을 냉각한 공기에 의해 냉각되도록 함으로써 시스템 부피를 최소함은 물론 효율적인 냉각이 수행되도록 한다.According to the battery system cooling structure of an electric vehicle structured as described above, the battery module 200 and the control unit 400 inside the battery pack 100 are a blower unit disposed at the center in consideration of the operating temperature of each component. When operating 300, the battery module 200 is cooled first and then the control unit 400 cools the battery module 200 with cooled air, thereby minimizing the system volume and performing efficient cooling.

본 발명은 특정한 실시예에 관련하여 도시하고 설명하였지만, 이하의 특허청구범위에 의해 제공되는 본 발명의 기술적 사상을 벗어나지 않는 한도 내에서, 본 발명이 다양하게 개량 및 변화될 수 있다는 것은 당 업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Although the present invention has been shown and described in relation to specific embodiments, it is known in the art that the present invention can be modified and changed in various ways without departing from the technical spirit of the invention as provided by the following claims. This will be self-evident to those with ordinary knowledge.

100:배터리팩 120:흡입구
140:토출구 160:흡입덕트
180:연결덕트 182:유통홀
200:배터리모듈 220:냉각유로
300:블로워유닛 320:블로워커버
322:배출통로 340:냉각팬
400:제어유닛 420:냉각커버
422:유입구 424:배출구
440:제어기판 460:방열기
100: Battery pack 120: Inlet
140: Discharge port 160: Suction duct
180: Connection duct 182: Distribution hole
200: Battery module 220: Cooling passage
300: Blower unit 320: Blower cover
322: Discharge passage 340: Cooling fan
400: Control unit 420: Cooling cover
422: inlet 424: outlet
440: Control board 460: Radiator

Claims (8)

흡입구와 토출구가 형성된 배터리팩;
배터리팩 내부에서 흡입구에 인접하게 마련되고 흡입구를 통해 유입되는 냉각공기가 통과되도록 구성된 배터리모듈;
배터리팩 내부에서 배터리모듈의 타측단부를 감싸도록 형성된 블로워커버가 구비되고, 동작시 흡입구를 통해 냉각공기가 유입되도록 하여 배터리모듈이 냉각되도록 하는 블로워유닛; 및
배터리팩 내부에서 배터리팩의 토출구에 인접하게 마련되고, 블로워유닛에 의해 토출된 냉각공기를 유입받는 유입구와 냉각공기가 토출되는 배출구가 형성된 냉각커버와, 배터리모듈 및 블로워유닛을 제어하기 위한 전장부품이 구비되고 냉각커버에 연결되게 설치되어 전장부품에서 발생되는 열이 냉각커버에 유입된 냉각공기에 의해 냉각되는 제어기판이 구성된 제어유닛;을 포함하며,
블로워커버는 유입된 냉각공기가 제어유닛으로 이동되도록 경로를 제공하는 배출통로가 형성된 것을 특징으로 하는 전기자동차의 배터리시스템 냉각 구조.
A battery pack formed with an inlet and an outlet;
A battery module provided inside the battery pack adjacent to the intake port and configured to allow cooling air flowing in through the intake port to pass through;
A blower unit provided with a blower cover formed to surround the other end of the battery module inside the battery pack and allowing cooling air to flow in through the intake port during operation to cool the battery module; and
A cooling cover provided inside the battery pack adjacent to the outlet of the battery pack and having an inlet for receiving the cooling air discharged by the blower unit and an outlet for discharging the cooling air, and electrical components for controlling the battery module and blower unit. It includes a control unit equipped with a control board installed to be connected to the cooling cover and cooling the heat generated from the electrical components by the cooling air flowing into the cooling cover,
The blower cover is a battery system cooling structure for an electric vehicle, characterized by an exhaust passage that provides a path for the incoming cooling air to move to the control unit.
청구항 1에 있어서,
배터리팩에는 흡입구가 마련된 외측면에 냉각공기가 유입되는 경로를 제공하는 흡입덕트가 설치된 것을 특징으로 하는 전기자동차의 배터리시스템 냉각 구조.
In claim 1,
A cooling structure for the battery system of an electric vehicle, characterized in that the battery pack is equipped with an intake duct that provides a path for cooling air to flow into the outer surface where the intake port is provided.
청구항 1에 있어서,
배터리팩에는 흡입구가 마련된 내측면에 연결덕트가 설치되고,
연결덕트는 배터리모듈의 일측단부를 감싸도록 형성되며 흡입구에 대응되는 유통홀이 형성된 것을 특징으로 하는 전기자동차의 배터리시스템 냉각 구조.
In claim 1,
A connection duct is installed on the inner side of the battery pack where the intake port is provided,
A battery system cooling structure for an electric vehicle, characterized in that the connection duct is formed to surround one end of the battery module and a distribution hole corresponding to the intake port is formed.
청구항 1에 있어서,
배터리모듈에는 흡입구를 통해 유입된 냉각공기가 제어유닛으로 유통되도록 하는 냉각유로가 형성된 것을 특징으로 하는 전기자동차의 배터리시스템 냉각 구조.
In claim 1,
A cooling structure for the battery system of an electric vehicle, characterized in that the battery module is formed with a cooling passage that allows cooling air introduced through the intake port to be distributed to the control unit.
청구항 1에 있어서,
블로워유닛은 냉각팬을 더 포함하고, 냉각팬은 블로워커버에 설치되어 회전에 의해 냉각공기를 흡입하여 토출하는 것을 특징으로 하는 전기자동차의 배터리시스템 냉각 구조.
In claim 1,
A battery system cooling structure for an electric vehicle, wherein the blower unit further includes a cooling fan, and the cooling fan is installed on the blower cover and rotates to suck in and discharge cooling air.
청구항 5에 있어서,
블로워커버는 중심부에 냉각팬이 설치되도록 형성된 것을 특징으로 하는 전기자동차의 배터리시스템 냉각 구조.
In claim 5,
The blower cover is a cooling structure for the battery system of an electric vehicle, characterized in that the cooling fan is installed at the center.
삭제delete 청구항 1에 있어서,
제어유닛은 냉각커버와 제어유닛 사이에 설치되어 제어유닛의 열을 흡수하고 냉각커버에 유입된 냉각공기에 의해 냉각 및 방열하는 방열기;를 더 포함하는 것을 특징으로 하는 전기자동차의 배터리시스템 냉각 구조.
In claim 1,
The control unit is a radiator installed between the cooling cover and the control unit to absorb heat from the control unit and cool and dissipate heat by cooling air flowing into the cooling cover.
KR1020160172005A 2016-12-15 2016-12-15 Cooling structure of battery system for electric vehicles KR102599387B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160172005A KR102599387B1 (en) 2016-12-15 2016-12-15 Cooling structure of battery system for electric vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160172005A KR102599387B1 (en) 2016-12-15 2016-12-15 Cooling structure of battery system for electric vehicles

Publications (2)

Publication Number Publication Date
KR20180069988A KR20180069988A (en) 2018-06-26
KR102599387B1 true KR102599387B1 (en) 2023-11-09

Family

ID=62788454

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160172005A KR102599387B1 (en) 2016-12-15 2016-12-15 Cooling structure of battery system for electric vehicles

Country Status (1)

Country Link
KR (1) KR102599387B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109050289B (en) * 2018-07-26 2021-05-07 重庆工程职业技术学院 Battery charging management method
KR102385145B1 (en) * 2022-01-03 2022-04-11 이진석 Cooling device for battery module

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100783804B1 (en) * 2006-11-09 2007-12-07 박이환 Cooler with a dehumidifying function for control panel
JP2009119936A (en) * 2007-11-12 2009-06-04 Honda Motor Co Ltd Battery cooling device for vehicle
JP2016149841A (en) * 2015-02-10 2016-08-18 日立工機株式会社 Charger

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980045122U (en) 1996-12-27 1998-09-25 양재신 Battery Cooling Structure for Electric Vehicles
KR101283229B1 (en) * 2011-06-16 2013-07-11 기아자동차주식회사 COOLING STRUCTURE FOR Environmental-friendly VEHICLE
KR101272918B1 (en) * 2011-09-02 2013-06-17 기아자동차주식회사 Battery cooling system for hybrid vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100783804B1 (en) * 2006-11-09 2007-12-07 박이환 Cooler with a dehumidifying function for control panel
JP2009119936A (en) * 2007-11-12 2009-06-04 Honda Motor Co Ltd Battery cooling device for vehicle
JP2016149841A (en) * 2015-02-10 2016-08-18 日立工機株式会社 Charger

Also Published As

Publication number Publication date
KR20180069988A (en) 2018-06-26

Similar Documents

Publication Publication Date Title
US9306251B2 (en) Battery pack
US10978756B2 (en) Battery pack
JP6155517B2 (en) Motor cooling system
JP5113198B2 (en) Construction machine cooling structure
JP5776735B2 (en) Battery temperature control device
US8584780B2 (en) Device for cooling the batteries of an especially electric vehicle and vehicle comprising such a device
KR100896777B1 (en) Multiple power supply apparatus with improved installability
CN103682522B (en) Battery system
US9415878B2 (en) Cooling system for components in (airborne) vehicle structures
CN103682521A (en) Battery system
KR102599387B1 (en) Cooling structure of battery system for electric vehicles
KR20140075924A (en) Electrically Driven Oil Pump
CN204956077U (en) Electric automobile's cooling device and electric automobile
CN114502403A (en) Cooling device for a motor vehicle
KR101750069B1 (en) Battery pack with optimized inlet and outlet
JP6206309B2 (en) Battery pack
JP6206255B2 (en) Battery pack
JP5947071B2 (en) Battery cooling system
JP2007253661A (en) Power source device for vehicle of two power source systems and air-cooled type on-vehicle power device
KR100828821B1 (en) Battery and MCU cooling device in hybride electric vehicle
KR100627312B1 (en) Secondary Battery Module
KR20180067118A (en) Interconnection type Cooling System and Eco Vehicle thereby
KR101241220B1 (en) Cooling apparatus for vehicle
KR20230150428A (en) Heat management apparatus of battery for vehicle and heat management method of battery for vehicle
JP2020053223A (en) Battery device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right