KR102599363B1 - Ai energy reduction and demand prediction system for user based - Google Patents

Ai energy reduction and demand prediction system for user based Download PDF

Info

Publication number
KR102599363B1
KR102599363B1 KR1020210016210A KR20210016210A KR102599363B1 KR 102599363 B1 KR102599363 B1 KR 102599363B1 KR 1020210016210 A KR1020210016210 A KR 1020210016210A KR 20210016210 A KR20210016210 A KR 20210016210A KR 102599363 B1 KR102599363 B1 KR 102599363B1
Authority
KR
South Korea
Prior art keywords
energy
neural network
value
controller
user
Prior art date
Application number
KR1020210016210A
Other languages
Korean (ko)
Other versions
KR20220112902A (en
Inventor
박근식
방영철
김용엽
이자훈
Original Assignee
박근식
한성인더스트리 주식회사
(주)체인브리지
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박근식, 한성인더스트리 주식회사, (주)체인브리지 filed Critical 박근식
Priority to KR1020210016210A priority Critical patent/KR102599363B1/en
Publication of KR20220112902A publication Critical patent/KR20220112902A/en
Application granted granted Critical
Publication of KR102599363B1 publication Critical patent/KR102599363B1/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B11/00Automatic controllers
    • G05B11/01Automatic controllers electric
    • G05B11/36Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential
    • G05B11/42Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential for obtaining a characteristic which is both proportional and time-dependent, e.g. P. I., P. I. D.
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0265Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion
    • G05B13/027Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion using neural networks only
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/092Reinforcement learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • G06Q30/0201Market modelling; Market analysis; Collecting market data
    • G06Q30/0202Market predictions or forecasting for commercial activities
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/30State monitoring, e.g. fault, temperature monitoring, insulator monitoring, corona discharge
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/30Smart metering, e.g. specially adapted for remote reading

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Strategic Management (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Economics (AREA)
  • Evolutionary Computation (AREA)
  • Tourism & Hospitality (AREA)
  • Marketing (AREA)
  • Software Systems (AREA)
  • General Health & Medical Sciences (AREA)
  • Development Economics (AREA)
  • General Business, Economics & Management (AREA)
  • Data Mining & Analysis (AREA)
  • Finance (AREA)
  • Accounting & Taxation (AREA)
  • Human Resources & Organizations (AREA)
  • Entrepreneurship & Innovation (AREA)
  • General Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • Automation & Control Theory (AREA)
  • Primary Health Care (AREA)
  • Mathematical Physics (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Game Theory and Decision Science (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

본 발명은 사용자기반의 AI에너지 절감 및 수요예측시스템에 관한 것으로, 더욱 상세하게는 주거지에서 사용자가 사용하는 에너지를 스스로 결정하여 사용할 수 있도록 하고, 이러한 데이터를 수집하여 전체적인 열에너지, 전기에너지 등의 수요예측이 가능하도록 한 사용자기반의 AI에너지 절감 및 수요예측시스템에 관한 것이다.
본 발명의 바람직한 실시예로 형성되는 사용자기반의 AI에너지 절감 및 수요예측시스템에 의하면 사용자가 사용한 에너지패턴을 이용하지 않고, 앞으로 사용할 에너지에 대한 절감을 목표로 선정된 목표치가 예측데이터로 활용될 수 있고, 사용자는 에너지 절감을 선택할 경우 별도의 혜택을 받을 수 있을 뿐만 아니라, 사용금액의 절감을 가져올 수 있어서 확실히 에너지 절감을 이룰 수 있으며, 사용자가 에너지 절감을 위해서 에코모드를 선택하더라도 조절기의 인공지능 제어장치로 인하여 사용자는 최대한 쾌적한 환경을 제공받을 수 있으며, 종래의 사용된 에너지사용량을 이용하여 에너지 수요예측을 하는 것에서 소비자가 직접 에너지사용량을 정하여 사용자로부터 에너지수요예측이 가능하여지기 때문에 국가의 에너지정책에 새로운 변화를 가져올 수 있는 등의 효과가 발생한다.
The present invention relates to a user-based AI energy saving and demand forecasting system. More specifically, it allows users to determine and use the energy they use in their residences, and collects such data to determine the overall demand for heat energy, electric energy, etc. It is about a user-based AI energy saving and demand forecasting system that enables prediction.
According to the user-based AI energy saving and demand forecasting system formed as a preferred embodiment of the present invention, the target value selected for saving energy to be used in the future can be used as predictive data without using the energy pattern used by the user. If the user chooses to save energy, not only can he receive separate benefits, but he can also save money by reducing the amount used, and even if the user selects the eco mode to save energy, the controller's artificial intelligence Due to the control device, users can be provided with the most comfortable environment, and it is possible to predict energy demand from users by directly determining energy consumption, rather than predicting energy demand using conventional energy usage, thereby increasing the national energy level. Effects such as bringing about new changes in policy occur.

Description

사용자기반의 AI에너지 절감 및 수요예측시스템{AI ENERGY REDUCTION AND DEMAND PREDICTION SYSTEM FOR USER BASED}User-based AI energy reduction and demand prediction system {AI ENERGY REDUCTION AND DEMAND PREDICTION SYSTEM FOR USER BASED}

본 발명은 사용자기반의 AI에너지 절감 및 수요예측시스템에 관한 것으로, 더욱 상세하게는 사용자가 사용하고자 하는 에너지 사용량을 스스로 결정하고, 이러한 에너지사용량을 수집하여 전체적인 열에너지, 전기에너지 등의 에너지사용량에 대한 수요예측이 가능하도록 한 사용자기반의 AI에너지 절감 및 수요예측시스템에 관한 것이다.The present invention relates to a user-based AI energy saving and demand forecasting system. More specifically, the user determines the amount of energy he or she wants to use, collects this amount of energy, and provides information on the overall energy use such as heat energy and electric energy. It is about a user-based AI energy saving and demand forecasting system that enables demand forecasting.

중앙정부나 지방자치단체에서는 국민들이 사용하는 전체적인 에너지의 사용량을 예측하고 이를 미리 준비하여 에너지의 공급이 원할하도록 노력하여야 한다. The central government or local governments must predict the overall amount of energy used by the people and prepare in advance to ensure a smooth supply of energy.

즉, 열에너지의 경우, 지역난방에서 어느정도 예측가능한 정도의 열에너지를 준비하여야 하고, 전기에너지의 경우, 냉방기의 사용이 급증하여 갑자기 전기에너지를 소비하더라도 단전되지 않도록 발전량을 조절해야 한다.In other words, in the case of thermal energy, a somewhat predictable level of thermal energy must be prepared for district heating, and in the case of electrical energy, the amount of power generation must be adjusted so that there is no power outage even if the use of air conditioners increases rapidly and electric energy is suddenly consumed.

현대사회는 도시화가 진행되면서 인구의 집중도가 높아지게 되고, 인구밀도가 높아질수록 집합건물등이 많이 만들어지고, 이러한 집합건물에서는 많은 양의 에너지를 사용하게 된다.In modern society, as urbanization progresses, the concentration of population increases. As population density increases, more complex buildings are built, and these complex buildings use a large amount of energy.

이러한 집합건물은 열에너지, 전기에너지, 물에너지 등의 에너지를 사용하고, 이러한 에너지는 쾌적한 주거환경을 위해서 제공되어야만 한다.These residential buildings use energy such as heat energy, electric energy, and water energy, and this energy must be provided for a comfortable residential environment.

상기 집합건물의 에너지 사용에 있어서 각 단위세대별로 설치되는 단위세대별시설과, 공용으로 설치되는 공용시설이 존재하게 된다.In terms of energy use in the complex building, there are unit-specific facilities installed for each unit household and common facilities installed in common.

종래의 집합건물의 에너지를 관리하기 위한 다양한 기술과 제어방법이 제공되는데, 대한민국특허청 공개특허공보 제2014-0141923호에는 '복합적인 조건에서의 건물 에너지 시스템 최적화를 위한 설계 방법'이 개시된 바 있고, 공개특허공보 제2018-0138463호에는 'AI 기반으로 대상 건물의 냉방 시스템을 최적 제어하는 클라우드 서버 및 방법, 냉방 시스템 제어 장치'를 제공한 바있다. A variety of technologies and control methods are provided to manage the energy of conventional multi-unit buildings. In the Republic of Korea Patent Office Publication No. 2014-0141923, 'Design method for optimizing building energy system under complex conditions' is disclosed. Published Patent Publication No. 2018-0138463 provides 'a cloud server and method for optimally controlling the cooling system of a target building based on AI, and a cooling system control device.'

상기 종래의 공개특허공보의 '에너지 관리 시스템, 에너지 관리방법 및 에너지 수요예측방법'(도 1참조)에서는 커뮤니티를 구성하고, 커뮤니티의 수요반응용량에 대한 가격정책을 포함하여 건물에너지사용량데이터와 커뮤니티수용반응인센티브정책을 입력데이터를 포함하는 구성이다. In the 'Energy Management System, Energy Management Method, and Energy Demand Prediction Method' (see Figure 1) of the above-described conventional published patent publication, a community is formed, and building energy usage data and the community are collected, including a pricing policy for the demand response capacity of the community. It is a configuration that includes input data for the acceptance response incentive policy.

도 2는 종래의 집합건물에 적용되는 단위세대장치, 환경관리시스템, 계량기 및 이에 대한 데이터를 수집하여 판단 및 제어하는 통합시스템(AI서버)으로 구성되고, 상기 통합시스템에는 빅데이터를 기반으로 인공지능(AI)이 딥러닝하고, 제어할 수 있도록 형성된다.Figure 2 is composed of a unit household device, environmental management system, meter, and an integrated system (AI server) that collects, judges, and controls data related to the units applied to conventional complex buildings, and the integrated system includes artificial intelligence based on big data. Intelligence (AI) is formed to enable deep learning and control.

대한민국특허청 등록특허공보 제1908515호에는 '에너지 관리 시스템, 에너지 관리 방법 및 에너지 수요 예측 방법'이라는 제목으로 건물에 대한 에너지수요예측방법을 제공하고 있다. Korea Intellectual Property Office Registered Patent Publication No. 1908515 provides an energy demand prediction method for buildings under the title ‘Energy management system, energy management method, and energy demand prediction method.’

(특허문헌 1) KR10-2014-0141923 A (Patent Document 1) KR10-2014-0141923 A

(특허문헌 2) KR10-2018-0138463 A (Patent Document 2) KR10-2018-0138463 A

(특허문헌 3) KR10-2016-0136965 A (Patent Document 3) KR10-2016-0136965 A

(특허문헌 4) KR10-1908515 B1 (Patent Document 4) KR10-1908515 B1

그러나, 종래에는 에너지관리시스템 및 에너지수요예측방법은 다음과 같은 문제점이 있었다.However, conventional energy management systems and energy demand forecasting methods had the following problems.

(1) 종래에 에너지사용량에 대한 수요예측을 하는 방법은 사용자에 의해서 사용된 에너지사용량을 수집, 통계하여 에너지사용량을 예측할 수 밖에 없어서 정확하거나, 확실한 에너지 수요예측이 어려웠다.(1) In the past, the method of predicting demand for energy usage was to collect and statistics the energy usage used by users to predict energy usage, making it difficult to accurately or reliably predict energy demand.

(2) 사용자가 개별적으로 에너지를 절감하여도 특별한 혜택이 없고, 정확하게 에너지를 어떻게 절감해야할지 등의 계획을 세울 수 없다.(2) Even if users individually save energy, there is no special benefit, and it is impossible to plan exactly how to save energy.

(3) 에너지 절감을 위해서 무조건 에너지의 사용을 줄인다면 사용자가 쾌적한 환경에서 생활할 수 없다.(3) If energy use is unconditionally reduced in order to save energy, users will not be able to live in a comfortable environment.

상기한 문제점을 해결하기 위해서, 본 발명은 전열교환기, 공기청정기, 주방후드를 포함하는 각 단위세대장치와, 온수분배기, 차압유량조절밸브, 누수감지센서 및 PTS센서와, 온수, 급탕, 가스, 난방의 사용량을 각각 계량하는 계량기와 연결되되, 내부에 온도센서, 습도센서, 미세먼지농도센서 및 이산화탄소농도측정센서가 형성되며, PID제어장치가 형성되고, 인공지능신경망으로 데이터를 딥러닝할 수 있는 제어장치가 형성되고, 네트워크에 연결가능하도록 형성되는 조절기가 각 세대에 설치되고, 각 조절기, 사용자단말기 및 메인서버가 인터넷에 연결된 상태에서,In order to solve the above problems, the present invention provides each unit household device including a total heat exchanger, air purifier, and kitchen hood, a hot water distributor, a differential pressure flow control valve, a water leak detection sensor, and a PTS sensor, and hot water, domestic hot water, gas, It is connected to a meter that measures the amount of heating used, and a temperature sensor, humidity sensor, fine dust concentration sensor, and carbon dioxide concentration measurement sensor are formed inside. A PID control device is formed, and the data can be deep-learned using an artificial intelligence neural network. A control device is formed, a controller capable of connecting to a network is installed in each household, and each controller, user terminal, and main server are connected to the Internet,

메인서버가 각 조절기를 등록하는 등록단계와;A registration step in which the main server registers each controller;

상기 메인서버가 각 조절기가 자동제어모드, 수동제어모드 또는 에코제어모드중 어느 한 모드를 사용하고 있는 지를 파악하여 에코제어모드가 설정된 각 조절기를 추적하는 추적단계와;A tracking step in which the main server determines whether each controller is using one of the automatic control mode, manual control mode, or eco control mode and tracks each controller in which the eco control mode is set;

상기 메인서버가 추적한 각 조절기에 부착된 에너지사용장치들을 구분하여 에너지사용량별로 분류하는 분류단계와;a classification step of classifying energy-using devices attached to each controller tracked by the main server by energy usage;

상기 메인서버가 분류단계 후에 각 조절기로부터 목표에너지절감량(목표치)을 입력받는 목표치설정단계와;a target value setting step in which the main server receives a target energy saving amount (target value) from each controller after the classification step;

상기 메인서버가 목표치를 토대로 에너지를 절감할 경우에 줄 수 있는 혜택을 사용자단말기에 알려주는 통지단계와;a notification step of notifying the user terminal of benefits that can be provided when the main server saves energy based on the target value;

상기 메인서버가 각 조절기에서 사용될 수 있는 해당 에너지 수요를 예측하는 예측단계로 구성되는 것을 특징으로 한다.It is characterized in that it consists of a prediction step in which the main server predicts the corresponding energy demand that can be used in each controller.

본 발명의 바람직한 실시예로 형성되는 사용자기반의 AI에너지 절감 및 수요예측시스템에 의하면 다음과 같은 효과가 발생한다.According to the user-based AI energy saving and demand forecasting system formed as a preferred embodiment of the present invention, the following effects occur.

(1) 사용자가 사용한 에너지패턴을 활용함과 동시에 앞으로 사용할 에너지에 대한 절감을 목표로 선정된 목표치가 예측데이터로 활용될 수 있다.(1) The target value selected to reduce future energy use while utilizing the energy pattern used by the user can be used as predictive data.

(2) 사용자는 에너지 절감을 선택할 경우 별도의 혜택을 받을 수 있을 뿐만 아니라, 사용금액의 절감을 가져올 수 있어서 에너지 절감을 확실히 이룰 수 있다.(2) When users choose to save energy, not only can they receive separate benefits, but they can also reduce the amount used, thereby ensuring energy savings.

(3) 사용자가 에너지 절감을 위해서 에코모드를 선택하더라도 조절기의 인공지능 제어장치로 인하여 사용자는 최대한 쾌적한 환경을 제공받을 수 있다.(3) Even if the user selects eco mode to save energy, the user can be provided with the most comfortable environment due to the controller's artificial intelligence control device.

(4) 종래의 사용된 에너지사용량을 이용하여 에너지 수요예측을 하는 것에서 소비자가 직접 에너지사용량을 정하여 에너지사용량을 미리 예측할 수 있기 때문에 국가의 에너지정책에 새로운 변화를 가져올 수 있다.(4) Instead of predicting energy demand using conventional energy usage, consumers can directly determine energy usage and predict energy usage in advance, which can bring about new changes in national energy policy.

도 1은 종래의 에너지 관리시스템, 에너지 관리방법 및 에너지 수요예측방법에 사용되는 개념도.
도 2는 종래의 단위세대장치와 환경관리시스템 및 계량기서버 등을 나타낸 개념도.
도 3은 본 발명의 바람직한 실시예로 형성된 사용자기반의 AI에너지 절감 및 수요예측시스템의 순서도.
도 4는 본 발명의 바람직한 실시예로 형성된 사용자기반의 AI에너지 절감 및 수요예측시스템의 지역별 수요예측개념도.
도 5는 본 발명의 바람직한 실시예로 형성된 사용자기반의 AI에너지 절감 및 수요예측시스템의 조절기의 인공지능 알고리즘 상태도.
도 6은 본 발명의 바람직한 실시예로 형성된 사용자기반의 AI에너지 절감 및 수요예측시스템의 조절기의 인공지능 알고리즘 순서도.
도 7은 본 발명의 바람직한 실시예로 형성된 사용자기반의 AI에너지 절감 및 수요예측시스템에 의한 에너지 절감 흐름도.
1 is a conceptual diagram used in a conventional energy management system, energy management method, and energy demand forecasting method.
Figure 2 is a conceptual diagram showing a conventional unit household device, environmental management system, and meter server.
Figure 3 is a flowchart of a user-based AI energy saving and demand forecasting system formed in a preferred embodiment of the present invention.
Figure 4 is a regional demand forecasting conceptual diagram of a user-based AI energy saving and demand forecasting system formed as a preferred embodiment of the present invention.
Figure 5 is a state diagram of the artificial intelligence algorithm of the controller of the user-based AI energy saving and demand forecasting system formed in a preferred embodiment of the present invention.
Figure 6 is a flowchart of the artificial intelligence algorithm of the controller of the user-based AI energy saving and demand forecasting system formed in a preferred embodiment of the present invention.
Figure 7 is a flowchart of energy saving by a user-based AI energy saving and demand forecasting system formed in a preferred embodiment of the present invention.

본 발명의 구체적인 실시예를 설명하기에 앞서, 본원 명세서의 도면은 본 발명을 보다 명확하게 설명하기 위해서 사용된 도면에 도시된 구성요소의 크기나 형상 등은 설명이 명확하게 하도록 하기 위해서 다소 과장되거나 단순화되어 표시될 수 있다.Before describing specific embodiments of the present invention, the drawings of the present specification are used to more clearly explain the present invention, and the sizes and shapes of components shown in the drawings are somewhat exaggerated or exaggerated to make the description clear. It can be displayed simplified.

또한, 본 발명을 명확하게 설명하기 위해서 본 발명의 기술적 사상과는 관계없는 부분의 설명은 생략하였고, 본원 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조부호를 붙여서 설명하였다.In addition, in order to clearly explain the present invention, descriptions of parts unrelated to the technical idea of the present invention have been omitted, and identical or similar components have been described with the same reference numerals throughout the specification.

본 발명에서 정의된 용어 및 부호들은 사용자, 운용자 및 작성자에 의해서 임의로 정의되거나, 선택적으로 사용된 용어이기 때문에, 이러한 용어들은 본원 명세서의 전반에 걸친 내용을 토대로 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야 하고, 용어자체의 의미로 한정하여서는 안된다.Since the terms and symbols defined in the present invention are terms arbitrarily defined or selectively used by users, operators, and authors, these terms have meanings that are consistent with the technical idea of the present invention based on the entire contents of the specification and It should be interpreted as a concept and should not be limited to the meaning of the term itself.

본 발명은 전열교환기, 공기청정기, 주방후드를 포함하는 각 단위세대장치와, 온수분배기, 차압유량조절밸브, 누수감지센서 및 PTS센서와, 온수, 급탕, 가스, 난방의 사용량을 각각 계량하는 계량기와 연결되되, 내부에 온도센서, 습도센서, 미세먼지농도센서 및 이산화탄소농도측정센서가 형성되며, PID제어장치가 형성되고, 인공지능신경망으로 데이터를 딥러닝할 수 있는 제어장치가 형성되고, 네트워크에 연결가능하도록 형성되는 조절기(200)가 각 세대에 설치된 환경에서, 각 조절기(200), 사용자단말기(300) 및 메인서버(100)가 인터넷에 연결된 상태에서,The present invention provides each unit household device including a total heat exchanger, air purifier, and kitchen hood, a hot water distributor, a differential pressure flow control valve, a water leak detection sensor, and a PTS sensor, and a meter that measures the usage of hot water, hot water, gas, and heating, respectively. connected, a temperature sensor, humidity sensor, fine dust concentration sensor, and carbon dioxide concentration measurement sensor are formed inside, a PID control device is formed, a control device capable of deep learning data with an artificial intelligence neural network is formed, and a network In an environment where a controller 200 capable of being connected to is installed in each household, with each controller 200, user terminal 300, and main server 100 connected to the Internet,

메인서버(100)가 각 조절기(200)를 등록하는 등록단계와;A registration step in which the main server 100 registers each controller 200;

상기 메인서버(100)가 각 조절기(200)가 자동제어모드, 수동제어모드 또는 에코제어모드중 어느 한 모드를 사용하고 있는 지를 파악하여 에코제어모드가 설정된 각 조절기(200)를 추적하는 추적단계와;A tracking step in which the main server 100 determines whether each controller 200 is using one of the automatic control mode, manual control mode, or eco control mode and tracks each controller 200 in which the eco control mode is set. and;

상기 메인서버(100)가 추적한 각 조절기(200)에 부착된 에너지사용장치들을 구분하여 에너지사용량별로 분류하는 분류단계와;A classification step of classifying energy usage devices attached to each controller 200 tracked by the main server 100 by energy usage;

상기 메인서버(100)가 분류단계 후에 각 조절기(200)로부터 목표에너지절감량(목표치)을 입력받는 목표치설정단계와;A target value setting step in which the main server 100 receives a target energy saving amount (target value) from each controller 200 after the classification step;

상기 메인서버(100)가 목표치를 토대로 에너지를 절감할 경우에 줄 수 있는 혜택을 사용자단말기(300)에 알려주는 통지단계와;A notification step where the main server 100 informs the user terminal 300 of benefits that can be provided when energy is reduced based on the target value;

상기 메인서버(100)가 각 조절기(200)에서 사용될 수 있는 해당 에너지 수요를 예측하는 예측단계로 구성된다.It consists of a prediction step in which the main server 100 predicts the corresponding energy demand that can be used by each controller 200.

상기 메인서버(100)는 에너지 수요예측을 필요로 하는 중앙정부, 지방자치단체 혹은 에너지생산처(발전소 등)의 서버로, 필요에 따라서 에너지를 공급하는 범위에 따라서 각 조절기(200)의 적용범위와 예측범위를 정할 수 있다.The main server 100 is a server of the central government, local governments, or energy producers (power plants, etc.) that requires energy demand forecasting, and the application range of each regulator 200 and the range of energy supply as needed. The prediction range can be determined.

상기 추적단계는 메인서버(100)가 각 조절기(200) 중 에코제어모드를 사용하는지를 파악하는 단계로, 에코제어모드일 경우에만 목표치를 설정할 수 있기 때문에 이를 파악하는 단계이다.The tracking step is a step in which the main server 100 determines whether each controller 200 uses the eco control mode. This is a step in which the target value can be set only in the eco control mode.

상기 목표치설정단계는 각 조절기(200)로부터 목표에너지절감량(목표치)를 입력받는 단계로, 목표치는 금액으로 환산된 에너지 사용량에서 어느정도 기간(목표기간)동안 어느 정도 에너지절감(목표절감량)을 설정하는 단계이다. The target value setting step is a step in which a target energy reduction amount (target value) is input from each controller 200. The target value is to set a certain amount of energy savings (target reduction amount) for a certain period (target period) from the energy usage converted into money. It's a step.

상기 목표기간과 목표절감량은 예측단계에서 중요한 데이터로 사용된다.The target period and target reduction amount are used as important data in the prediction stage.

상기 통지단계는 메인서버(100)가 사용자단말기(300)에 목표치를 토대로 에너지를 절감할 경우에 줄 수 있는 혜택을 알려주는 단계이다.The notification step is a step in which the main server 100 informs the user terminal 300 of the benefits that can be provided when energy is saved based on the target value.

상기 예측단계는 메인서버(100)가 각 조절기(200)에서 사용될 수 있는 해당 에너지 수요를 예측하여 통계를 바탕으로 에너지 수요를 예측하여 적용하는 단계이다.The prediction step is a step in which the main server 100 predicts the energy demand that can be used in each controller 200 and predicts and applies the energy demand based on statistics.

상기 조절기(200)는 전열교환기, 공기청정기, 주방후드를 포함하는 각 단위세대장치와, 온수분배기, 차압유량조절밸브, 누수감지센서 및 PTS센서와, 온수, 급탕, 가스, 난방의 사용량을 각각 계량하는 계량기와 연결되되,The controller 200 controls each unit household device including a heat exchanger, air purifier, and kitchen hood, a hot water distributor, differential pressure flow control valve, water leak detection sensor, and PTS sensor, and the usage of hot water, hot water, gas, and heating, respectively. Connected to the weighing meter,

내부에 온도센서, 습도센서, 미세먼지농도센서 및 이산화탄소농도측정센서가 형성되며, PID제어장치가 형성되고, 인공지능신경망으로 데이터를 딥러닝할 수 있는 제어장치가 구성되고, 네트워크에 연결가능하도록 형성된다.A temperature sensor, humidity sensor, fine dust concentration sensor, and carbon dioxide concentration measurement sensor are formed inside, a PID control device is formed, a control device capable of deep learning data with an artificial intelligence neural network is configured, and a network connection is possible. is formed

상기 단위세대장치는 전열교환기, 공기청정기, 주방후드에 국한되지 않고, 환기 및 배기시스템에 관련된 모든 장치가 이에 속할 수 있다. The unit household devices are not limited to total heat exchangers, air purifiers, and kitchen hoods, and may include all devices related to ventilation and exhaust systems.

상기 온수분배기, 차압유량조절밸브, 누수감지센서 및 PTS센서는 온수 및 급수시스템에 관련된 센서들로, 밸브는 조절기(200)에 의해서 조절될 수 있도록 구성된다. The hot water distributor, differential pressure flow control valve, water leak detection sensor, and PTS sensor are sensors related to the hot water and water supply system, and the valve is configured to be controlled by the regulator 200.

상기 각 계량기는 그 사용량을 측정하여 조절기(200)로 사용량 데이터가 측정되면 이는 에너지사용량으로 변환하고, 이를 금액으로 환산하여 데이터로 활용한다.Each meter measures its usage, and when the usage data is measured by the controller 200, it is converted into energy usage, converted into money, and used as data.

상기 온도센서, 습도센서, 미세먼지농도센서 및 이산화탄소농도측정센서는 각 데이터가 시간대별, 일자별로 데이터가 계속적으로 저장되고, 이러한 데이터를 토대로 인공지능신경망으로 자동제어한다.The temperature sensor, humidity sensor, fine dust concentration sensor, and carbon dioxide concentration measurement sensor continuously store data by time and date, and are automatically controlled by an artificial intelligence neural network based on these data.

상기 조절기(200)에는 인체접근센서(근접센서)가 설치되어, 사용자가 거주하고 있는 상황인지 아닌지를 파악할 수 있도록 하여 에너지 절감에 활용할 수 있도록 인공지능신경망에 제공한다.A human proximity sensor (proximity sensor) is installed in the controller 200 to determine whether the user is living there or not and provides the information to the artificial intelligence neural network so that it can be used to save energy.

상기 인공지능신경망은 제어알고리즘을 사용하는데, 상기 제어알고리즘은 특정 단위세대에서 입력된 상태값(s)이 심층강화학습신경망, 보상예측신경망 및 PID제어신경망으로 전송되는 상태값전송단계와;The artificial intelligence neural network uses a control algorithm, which includes a state value transmission step in which the state value (s) input from a specific unit generation is transmitted to a deep reinforcement learning neural network, a reward prediction neural network, and a PID control neural network;

상기 보상예측신경망은 최적온도예측신경망과 에너지예측신경망으로 구성되고, 최적온도예측신경망과 에너지예측신경망은 상태값(s)에 대하여 학습한 후에 보상값(γ)을 결정하여 전송하는 보상값전송단계와;The compensation prediction neural network is composed of an optimal temperature prediction neural network and an energy prediction neural network, and the optimal temperature prediction neural network and the energy prediction neural network learn about the state value (s) and then determine and transmit the compensation value (γ). and;

상기 심층강화학습신경망은 Actor신경망과 Critic신경망으로 구성되고, Critic신경망은 전송된 상태값(s)과 기대된 액션값(A)을 보상값(γ)과 함께 상태-가치함수를 통하여 가치값(Q)을 산출하여 Actor신경망으로 전송하고, Actor신경망은 가치값(Q)과 상태값(s)을 활용하여 최적의 액션값(A)을 산출하는 액션값산출단계와; The deep reinforcement learning neural network consists of an actor neural network and a critical neural network. The critical neural network combines the transmitted state value (s) and the expected action value (A) with the reward value (γ) and the value value ( An action value calculation step in which Q) is calculated and transmitted to the Actor neural network, and the Actor neural network uses the value value (Q) and the state value (s) to calculate the optimal action value (A);

상기 PID제어신경망에서는 액션값(A)을 학습데이터로 저장하고, 머신러닝기법을 사용하여 최적의 PID값(K)을 산출하고, 제어장치로 송출하는 PID산출단계로 구성된다.The PID control neural network consists of a PID calculation step in which the action value (A) is stored as learning data, the optimal PID value (K) is calculated using a machine learning technique, and the optimal PID value (K) is calculated and transmitted to the control device.

상기 제어알고리즘은 지도학습알고리즘을 사용하고 훈련세트(학습데이터)를 이용하여 기본 알고리즘을 최적화 한 상태로 운영된다. The control algorithm uses a supervised learning algorithm and operates with the basic algorithm optimized using a training set (learning data).

상기 학습데이터는 단위세대장치(11) 및 컨트롤러(피제어부)에서 수집하여 왔던 세대별 각 세대별데이터(온도, 습도, Co2농도, 태양복사량 등)을 시간대별, 일자별로 분류한 데이터이다. The learning data is data classified by time period and date for each household (temperature, humidity, Co2 concentration, solar radiation, etc.) collected from the unit household device 11 and the controller (controlled unit).

상기 세대별데이터는 축적된 기간이 길면 길수록 좋지만, 축적된 데이터가 전혀 없는 건물에는 유사한 환경의 세대별데이터를 모아서 최적값을 산출한 데이터세트를 활용하여 산출할 수 있다.The longer the period of accumulation of the above-mentioned household data, the better, but for buildings without any accumulated data, it can be calculated by using a dataset that calculates the optimal value by collecting household data in similar environments.

상기 알고리즘의 보상예측신경망과 심층강화학습신경망은 모두 기본 알고리즘이 최적화된 상태에서 수행되는 것이 적당하다.It is appropriate that both the reward prediction neural network and the deep reinforcement learning neural network of the above algorithm are performed with the basic algorithm optimized.

상기 보상예측신경망은 최적온도예측신경망과 에너지예측신경망으로 구성되고, 최적온도예측신경망은 온도와 습도의 변화에 대한 보상값을 산출할 수 있도록 보상함수를 적용하고, 에너지예측신경망은 전기에너지사용량, 열에너지사용량의 변화에 대한 보상값을 산출할 수 있도록 보상함수를 적용한다.The compensation prediction neural network consists of an optimal temperature prediction neural network and an energy prediction neural network. The optimal temperature prediction neural network applies a compensation function to calculate compensation values for changes in temperature and humidity, and the energy prediction neural network calculates electrical energy usage, A compensation function is applied to calculate compensation for changes in heat energy usage.

상기 보상예측신경망에는 스케줄러가 포함될 수 있는데, 사용자의 사용패턴을 인식하여 이를 스케쥴링 하는 보상값을 전달할 수 있도록 형성될 수 있다.The reward prediction neural network may include a scheduler, which may be configured to recognize the user's usage pattern and transmit a compensation value for scheduling it.

상기 보상예측신경망에 사용되는 보상함수의 예로는 Examples of reward functions used in the reward prediction neural network include:

를 사용할 수 있는데, 특정 순간(t)에 상태값(s)과 액션값(A)일 때 보상값(γ)을 기대값으로 학습 산출한다.can be used, and when the state value (s) and action value (A) are at a specific moment (t), the reward value (γ) is learned and calculated as the expected value.

상기 보상예측신경망은 최적온도예측신경망과 에너지예측신경망에서 평가된 보상값의 평균으로 최종 보상값(γ)으로 결정하여 심층강화학습신경망으로 전송한다.The compensation prediction neural network determines the final compensation value (γ) as the average of the compensation values evaluated in the optimal temperature prediction neural network and the energy prediction neural network and transmits it to the deep reinforcement learning neural network.

상기 심층강화학습신경망은 Actor신경망과 Critic신경망으로 구성되는데, Critic신경망은 상태값(s)과 보상값(γ)을 활용하여 가치값(Q)을 학습산출한다.The deep reinforcement learning neural network consists of an actor neural network and a critical neural network. The critical neural network learns and calculates the value value (Q) using the state value (s) and reward value (γ).

상기 가치값(Q)에 사용되는 방정식의 예로는An example of the equation used for the above value (Q) is

의 벨만기대방정식을 사용할 수 있다.You can use the Bellman expectation equation.

상기 Actor신경망은 상태값(s)과 가치값(Q)을 사용하여 최적의 액션값(A)을 학습산출한다. The Actor neural network learns and calculates the optimal action value (A) using the state value (s) and value value (Q).

상기 Actor신경망에서 생성된 액션값(A)은 Critic신경망으로 전송되어 새로운 직전 상태값으로 저장한다.The action value (A) generated by the Actor neural network is transmitted to the Critic neural network and stored as the new previous state value.

상기 PID값은 액션값(A)에 따른 조작량을 제어하도록 하는 값으로, 비례, 적분항, 미분항을 포함하여 제어량(조작량)을 결정한다.The PID value is a value that controls the manipulated amount according to the action value (A), and determines the control amount (manipulated amount) including the proportional, integral, and differential terms.

상기 PID제어신경망은 상태값(a) 및 액션값(A)에 따른 PID값을 학습데이터로 각각 저장하였다가 이를 학습하여 PID값의 최적값을 예측하는 것으로, 몬테카를로 학습기법, Q-learning 기법 등을 사용하여도 무방하다.The PID control neural network stores PID values according to the state value (a) and action value (A) as learning data and learns them to predict the optimal value of the PID value, such as Monte Carlo learning technique, Q-learning technique, etc. You may also use .

상기 인공지능신경망의 PID제어신경망을 통해서 단위세대에 PID값이 조절기(200)에 전달되어 자동으로 컨트롤할 수 있다.Through the PID control neural network of the artificial intelligence neural network, the PID value of each unit generation is transmitted to the controller 200 and can be automatically controlled.

본 발명의 조절기(200)에는 3가지 모드가 형성될 수 있는데, 자동제어모드, 수동제어모드 및 에코제어모드로 구성될 수 있다.Three modes can be formed in the controller 200 of the present invention, which can be configured as an automatic control mode, manual control mode, and eco control mode.

상기 자동제어모드는 인공지능신경망을 완전히 사용하여 환경이 제어되도록 하는 모드이고, 수동제어모드는 사용자가 직접 제어할 수 있도록 하는 모드이다. The automatic control mode is a mode that completely uses an artificial intelligence neural network to control the environment, and the manual control mode is a mode that allows the user to directly control the environment.

상기 에코제어모드는 사용자가 에너지 절약을 위한 목표를 설정해두고, 인공지능신경망이 사용자가 쾌적하면서도 에너지를 절감할 수 있도록 단위세대장치들 및 밸브들을 제어하도록 한다.The eco control mode allows the user to set a goal for energy saving, and the artificial intelligence neural network controls unit generation devices and valves so that the user can save energy while being comfortable.

상기한 본 발명은 사용자가 조절기(200)를 통해서 에너지 절감 목표치를 설정하면 이는 메인서버(100)에 통지가 되고, 메인서버(100)는 사용자에게 혜택을 줄 수 있는 것이다.In the present invention described above, when a user sets an energy saving target through the controller 200, this is notified to the main server 100, and the main server 100 can provide benefits to the user.

또한, 메인서버(100)는 이러한 에너지 절감 목표치 데이터를 수집하여 안정적으로 향후 에너지 수요를 예측할 수있게 된다.In addition, the main server 100 collects this energy saving target data and can stably predict future energy demand.

인공지능신경망의 보상예측신경망은 최적온도예측신경망과 에너지예측신경망으로 구성되어, 온도 뿐만 아니라, 에너지 사용량데이터를 고려하여 보상값을 산출할 수 있도록 하기 때문에 쾌적한 환경을 만들 수 있음은 물론 고효율 에너지 절감효과가 발생한다.The compensation prediction neural network of the artificial intelligence neural network is composed of an optimal temperature prediction neural network and an energy prediction neural network, and allows calculation of compensation values by considering not only temperature but also energy usage data, thereby creating a comfortable environment as well as highly efficient energy savings. The effect occurs.

본 발명의 바람직한 실시예로 형성되는 사용자기반의 AI에너지 절감 및 수요예측시스템에 의하면 사용자가 사용한 에너지패턴을 이용하지 않고, 앞으로 사용할 에너지에 대한 절감을 목표로 선정된 목표치가 예측데이터로 활용될 수 있고, 사용자는 에너지 절감을 선택할 경우 별도의 혜택을 받을 수 있을 뿐만 아니라, 사용금액의 절감을 가져올 수 있어서 확실히 에너지 절감을 이룰 수 있으며, 사용자가 에너지 절감을 위해서 에코모드를 선택하더라도 조절기의 인공지능 제어장치로 인하여 사용자는 최대한 쾌적한 환경을 제공받을 수 있는 등의 효과가 발생한다.According to the user-based AI energy saving and demand forecasting system formed as a preferred embodiment of the present invention, the target value selected for saving energy to be used in the future can be used as predictive data without using the energy pattern used by the user. If the user chooses to save energy, not only can he receive separate benefits, but he can also save money by reducing the amount used, and even if the user selects the eco mode to save energy, the controller's artificial intelligence The control device provides the user with the most comfortable environment possible.

본 발명은 첨부된 도면을 참조하여 바람직한 실시 예를 중심으로 기술되었지만 당업자라면 이러한 기재로부터 후술하는 특허청구범위에 의해 포괄되는 본 발명의 범주를 벗어남이 없이 다양한 변형이 가능하다는 것은 명백하다.Although the present invention has been described with a focus on preferred embodiments with reference to the accompanying drawings, it is clear to those skilled in the art that various modifications can be made without departing from the scope of the present invention encompassed by the claims described later from this description.

100 : 메인서버(100) 200 : 조절기(200)
300 : 사용자단말기(300)
100: Main server (100) 200: Controller (200)
300: User terminal (300)

Claims (4)

삭제delete 삭제delete 삭제delete 각 조절기가 각 세대에 설치되고, 각 조절기, 사용자단말기 및 메인서버가 인터넷에 연결된 환경에서, 메인서버가 각 조절기를 등록하는 등록단계와; 상기 메인서버가 각 조절기가 자동제어모드, 수동제어모드 또는 에코제어모드중 어느 한 모드를 사용하고 있는 지를 파악하여 에코제어모드가 설정된 각 조절기를 추적하는 추적단계와; 상기 메인서버가 추적한 각 조절기에 부착된 에너지사용장치들을 구분하여 에너지사용량별로 분류하는 분류단계와; 상기 메인서버가 분류단계 후에 각 조절기로부터 목표에너지절감량(목표치)을 입력받는 목표치설정단계와; 상기 메인서버가 목표치를 토대로 에너지를 절감할 경우에 줄 수 있는 혜택을 사용자단말기에 알려주는 통지단계와; 상기 메인서버가 각 조절기에서 사용될 수 있는 해당 에너지 수요를 예측하는 예측단계로 구성되되,
상기 조절기는 열교환기, 공기청정기, 주방후드를 포함하는 각 단위세대장치와, 온수분배기, 차압유량조절밸브, 누수감지센서 및 PTS센서와, 온수, 급탕, 가스, 난방의 사용량을 각각 계량하는 계량기와 연결되고, 상기 조절기의 내부에는 온도센서, 습도센서, 미세먼지농도센서 및 이산화탄소농도측정센서가 형성되며, PID제어장치가 형성되고, 인공지능신경망으로 데이터를 딥러닝할 수 있는 제어장치가 형성되는데,
상기 조절기의 인공지능신경망은 제어알고리즘을 사용하고, 상기 제어알고리즘은 특정 단위세대에서 입력된 상태값(s)이 심층강화학습신경망, 보상예측신경망 및 PID제어신경망으로 전송되는 상태값전송단계와;
상기 보상예측신경망은 최적온도예측신경망과 에너지예측신경망으로 구성되고, 최적온도예측신경망과 에너지예측신경망은 상태값(s)에 대하여 학습한 후에 보상값(γ)을 결정하여 전송하는 보상값전송단계와;
상기 심층강화학습신경망은 Actor신경망과 Critic신경망으로 구성되고, Critic신경망은 전송된 상태값(s)과 기대된 액션값(A)을 보상값(γ)과 함께 상태-가치함수를 통하여 가치값(Q)을 산출하여 Actor신경망으로 전송하고, Actor신경망은 가치값(Q)과 상태값(s)을 활용하여 액션값(A)을 산출하는 액션값산출단계와;
상기 PID제어신경망에서는 액션값(A)을 학습데이터로 저장하고, 머신러닝기법을 사용하여 PID값(K)을 산출하고, 제어장치로 송출하는 PID산출단계로 구성되는 것을 특징으로 하는 사용자기반의 AI에너지 절감 및 수요예측시스템.
In an environment where each controller is installed in each household and each controller, user terminal, and main server are connected to the Internet, a registration step in which the main server registers each controller; A tracking step in which the main server determines whether each controller is using one of the automatic control mode, manual control mode, or eco control mode and tracks each controller in which the eco control mode is set; a classification step of classifying energy-using devices attached to each controller tracked by the main server by energy usage; a target value setting step in which the main server receives a target energy saving amount (target value) from each controller after the classification step; a notification step of notifying the user terminal of benefits that can be provided when the main server saves energy based on the target value; It consists of a prediction step in which the main server predicts the corresponding energy demand that can be used in each controller,
The controller includes each unit household device including a heat exchanger, air purifier, and kitchen hood, a hot water distributor, differential pressure flow control valve, water leak detection sensor, and PTS sensor, and a meter that measures the usage of hot water, domestic hot water, gas, and heating, respectively. It is connected to the controller, and a temperature sensor, humidity sensor, fine dust concentration sensor, and carbon dioxide concentration measurement sensor are formed inside the controller, a PID control device is formed, and a control device capable of deep learning data using an artificial intelligence neural network is formed. It works,
The artificial intelligence neural network of the controller uses a control algorithm, and the control algorithm includes a state value transmission step in which the state value (s) input from a specific unit generation is transmitted to a deep reinforcement learning neural network, a compensation prediction neural network, and a PID control neural network;
The compensation prediction neural network is composed of an optimal temperature prediction neural network and an energy prediction neural network, and the optimal temperature prediction neural network and the energy prediction neural network learn about the state value (s) and then determine and transmit the compensation value (γ). and;
The deep reinforcement learning neural network consists of an Actor neural network and a Critic neural network. The Critic neural network combines the transmitted state value (s) and the expected action value (A) with the reward value (γ) and the value value ( An action value calculation step in which Q) is calculated and transmitted to the Actor neural network, and the Actor neural network uses the value value (Q) and the state value (s) to calculate the action value (A);
In the PID control neural network, the user-based PID calculation step is comprised of storing the action value (A) as learning data, calculating the PID value (K) using a machine learning technique, and transmitting it to the control device. AI energy saving and demand forecasting system.
KR1020210016210A 2021-02-04 2021-02-04 Ai energy reduction and demand prediction system for user based KR102599363B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210016210A KR102599363B1 (en) 2021-02-04 2021-02-04 Ai energy reduction and demand prediction system for user based

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210016210A KR102599363B1 (en) 2021-02-04 2021-02-04 Ai energy reduction and demand prediction system for user based

Publications (2)

Publication Number Publication Date
KR20220112902A KR20220112902A (en) 2022-08-12
KR102599363B1 true KR102599363B1 (en) 2023-11-09

Family

ID=82803797

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210016210A KR102599363B1 (en) 2021-02-04 2021-02-04 Ai energy reduction and demand prediction system for user based

Country Status (1)

Country Link
KR (1) KR102599363B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014219907A (en) 2013-05-10 2014-11-20 富士ゼロックス株式会社 Power management system, electronic device, and program
JP2015023745A (en) 2013-07-23 2015-02-02 富士ゼロックス株式会社 Power management system and program
KR101698264B1 (en) 2015-03-11 2017-01-19 엘지전자 주식회사 Network system and a method controlling the same
JP2020017030A (en) * 2018-07-24 2020-01-30 エンコアードジャパン株式会社 Demand response management system including scheduling function

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6277537B2 (en) * 2012-04-09 2018-02-14 パナソニックIpマネジメント株式会社 Energy management apparatus, energy management system, energy management method, and program
KR102348141B1 (en) * 2014-11-20 2022-01-10 한국전기연구원 Apparatus for Decision of Energy Device in Demand Response Service and Method using thereof
KR20180044700A (en) * 2016-10-24 2018-05-03 한국전력공사 Demand response management system and method for managing customized demand response program
JP6926203B2 (en) * 2016-11-04 2021-08-25 ディープマインド テクノロジーズ リミテッド Reinforcement learning with auxiliary tasks
KR101908515B1 (en) * 2016-11-11 2018-10-18 한국에너지기술연구원 Energy management system, method for managing energy and method for predicting energy demand
KR102211157B1 (en) * 2018-11-13 2021-02-02 주식회사 에코시안 optimaized water cooling apparatus and method for solar photovoltatic power generation module using rain water
KR20200068070A (en) * 2018-11-27 2020-06-15 주식회사 케이엘넷 System and method for classifying household appliance from the total power consumption by using non-intrusive load monitoring based on denoising autoencoder recurrent neural network

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014219907A (en) 2013-05-10 2014-11-20 富士ゼロックス株式会社 Power management system, electronic device, and program
JP2015023745A (en) 2013-07-23 2015-02-02 富士ゼロックス株式会社 Power management system and program
KR101698264B1 (en) 2015-03-11 2017-01-19 엘지전자 주식회사 Network system and a method controlling the same
JP2020017030A (en) * 2018-07-24 2020-01-30 エンコアードジャパン株式会社 Demand response management system including scheduling function

Also Published As

Publication number Publication date
KR20220112902A (en) 2022-08-12

Similar Documents

Publication Publication Date Title
Finck et al. Economic model predictive control for demand flexibility of a residential building
Stavrakas et al. A modular high-resolution demand-side management model to quantify benefits of demand-flexibility in the residential sector
Korkas et al. Grid-connected microgrids: Demand management via distributed control and human-in-the-loop optimization
Kim Optimal price based demand response of HVAC systems in multizone office buildings considering thermal preferences of individual occupants buildings
Macarulla et al. Implementation of predictive control in a commercial building energy management system using neural networks
Balint et al. Determinants of energy flexibility in residential hot water systems
Ahn et al. Anti-logic or common sense that can hinder machine’s energy performance: Energy and comfort control models based on artificial intelligence responding to abnormal indoor environments
Heidari et al. Reinforcement Learning for proactive operation of residential energy systems by learning stochastic occupant behavior and fluctuating solar energy: Balancing comfort, hygiene and energy use
Shi et al. Building energy management decision-making in the real world: A comparative study of HVAC cooling strategies
Merabti et al. A review of control systems for energy and comfort management in buildings
Pandey et al. A thermal comfort-driven model predictive controller for residential split air conditioner
Wang et al. Comparison of reinforcement learning and model predictive control for building energy system optimization
de Chalendar et al. Unlocking demand response in commercial buildings: Empirical response of commercial buildings to daily cooling set point adjustments
Ra et al. Real-time model predictive cooling control for an HVAC system in a factory building
Wang et al. An occupant-centric control strategy for indoor thermal comfort, air quality and energy management
Cooperman et al. Using weather data for predictive control
Javaid et al. Comfort evaluation of seasonally and daily used residential load in smart buildings for hottest areas via predictive mean vote method
Heidari et al. DeepValve: Development and experimental testing of a Reinforcement Learning control framework for occupant-centric heating in offices
Thilker et al. Non-linear model predictive control for smart heating of buildings
Yang et al. Strategy of constructing virtual peaking unit by public buildings' central air conditioning loads for day-ahead power dispatching
Morovat et al. Heuristic model predictive control implementation to activate energy flexibility in a fully electric school building
KR102599363B1 (en) Ai energy reduction and demand prediction system for user based
Kim et al. Optimization of supply air flow and temperature for VAV terminal unit by artificial neural network
KR20220066212A (en) For high efficency energy saving buildings management system using the artificial intelligent sever
KR20220067605A (en) Control method for building high efficency energy management system using artificial intelligent server

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)