KR102595159B1 - 에너지 절감 및 생산효율 향상을 위한 무선 블루투스 메쉬 인공지능 생산시설 제어 시스템 - Google Patents

에너지 절감 및 생산효율 향상을 위한 무선 블루투스 메쉬 인공지능 생산시설 제어 시스템 Download PDF

Info

Publication number
KR102595159B1
KR102595159B1 KR1020210110220A KR20210110220A KR102595159B1 KR 102595159 B1 KR102595159 B1 KR 102595159B1 KR 1020210110220 A KR1020210110220 A KR 1020210110220A KR 20210110220 A KR20210110220 A KR 20210110220A KR 102595159 B1 KR102595159 B1 KR 102595159B1
Authority
KR
South Korea
Prior art keywords
light
control system
artificial intelligence
light source
pump
Prior art date
Application number
KR1020210110220A
Other languages
English (en)
Other versions
KR20230028660A (ko
Inventor
김민영
박성도
이성명
Original Assignee
주식회사 유니크온
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 유니크온 filed Critical 주식회사 유니크온
Priority to KR1020210110220A priority Critical patent/KR102595159B1/ko
Publication of KR20230028660A publication Critical patent/KR20230028660A/ko
Application granted granted Critical
Publication of KR102595159B1 publication Critical patent/KR102595159B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • A01G7/04Electric or magnetic or acoustic treatment of plants for promoting growth
    • A01G7/045Electric or magnetic or acoustic treatment of plants for promoting growth with electric lighting
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/24Devices or systems for heating, ventilating, regulating temperature, illuminating, or watering, in greenhouses, forcing-frames, or the like
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/24Devices or systems for heating, ventilating, regulating temperature, illuminating, or watering, in greenhouses, forcing-frames, or the like
    • A01G9/249Lighting means
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/24Devices or systems for heating, ventilating, regulating temperature, illuminating, or watering, in greenhouses, forcing-frames, or the like
    • A01G9/26Electric devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/26Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R22/00Arrangements for measuring time integral of electric power or current, e.g. electricity meters
    • G01R22/06Arrangements for measuring time integral of electric power or current, e.g. electricity meters by electronic methods
    • G01R22/061Details of electronic electricity meters
    • G01R22/068Arrangements for indicating or signaling faults
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/02Agriculture; Fishing; Mining
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/18Status alarms
    • G08B21/20Status alarms responsive to moisture
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/80Services using short range communication, e.g. near-field communication [NFC], radio-frequency identification [RFID] or low energy communication
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/105Controlling the light source in response to determined parameters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/105Controlling the light source in response to determined parameters
    • H05B47/11Controlling the light source in response to determined parameters by determining the brightness or colour temperature of ambient light

Abstract

에너지 사용을 절감하고 생산효율을 향상시킬 수 있는 무선 블루투스 메쉬 인공지능 생산시설 제어 시스템이 개시된다. 본 발명의 실시예에 따른 무선 블루투스 메쉬 인공지능 생산시설 제어 시스템은: 무선 블루투스 메쉬 네트워크에 연결되어 스마트 팜의 식물 재배를 위한 광을 출력하는 다수의 광원 또는 조명을 제어하는 광원/조명 제어 시스템; 상기 스마트 팜의 펌프의 누액을 감지하여 리크 발생시 알림을 발생하고, 상기 펌프의 사용 유량 또는 압력을 기반으로 사용 상태를 판단하여 펌프 공급 전원을 자동으로 차단하는 리크 모니터링 시스템; 상기 스마트 팜의 에너지 사용량과 재배 환경을 모니터링하여 이상 발생시 알림을 발생하는 생산 모니터링 시스템; 및 재배 레시피 빅데이터를 기초로 인공지능에 의해 상기 광원/조명 제어 시스템, 상기 리크 모니터링 시스템, 및 상기 생산 모니터링 시스템 중의 적어도 하나를 제어하는 인공지능 제어 시스템;을 포함한다.

Description

에너지 절감 및 생산효율 향상을 위한 무선 블루투스 메쉬 인공지능 생산시설 제어 시스템{WIRELESS BLUETOOTH MESH BASED AI MANUFACTURING FACILITY CONTROL SYSTEM FOR ENERGY SAVING AND MANUFACTURING EFFICIENCY ENHANCEMENT}
본 발명은 에너지 절감 및 생산효율 향상을 위한 무선 블루투스 메쉬 인공지능 생산시설 제어 시스템에 관한 것이다.
전 지구적인 기후변화 대응을 강화하기 위한 파리협정이 체결되어 2016년 발효되고, 2021년부터 신 기후체제로 전환되어 2023년부터 5년 주기로 전 지구적 기후변화 대응 이행 점검이 추진되고 있으며, 지구 평균기온 상승을 산업혁명 이전 대비 2℃ 보다 낮은 수준으로 유지하기 위하여, 선진국과 개도국 모두 자발적 온실가스 감축 의무를 부과하고 있다.
지구 온도 상승을 1.5℃로 제한하려면 2030년까지 2010년 배출량에서 45%를 줄여야 하나, 대부분의 국가가 제출한 최신의 감축 목표는 기후변화 대응에 턱없이 부족한 상황이며, 2010년 대비 2030년의 온실가스 배출량을 1% 밖에 감축하지 못할 것으로 예상되고 있다. 이에 따라 특히 농업 분야의 탄소 배출 저감 기술이 절실히 요구되고 있다.
그러나, 농업 생산 기반 시설의 식물 재배 광원과 공조시설의 에너지 사용이나, 거름 또는 소나 닭과 같은 가축의 배설물에서 발생하는 메탄가스에서 발생하는 온실가스를 해결할 수 있는 감축기술은 부재한 실정이며, 농업지역 탄소 배출 저감 목표 달성에 어려움이 있다. 따라서, 농업 분야에서 탄소 배출 저감 기술을 확보하지 못하면 스마트 팜의 시장 확장에 큰 장애요소로 작용할 수밖에 없다.
다수의 식물 재배용 광원이 적용되는 스마트 팜의 특성상, 광원에 사용되는 전기료와 재배 광원에서 발생하는 열을 낮추기 위한 냉방용 전기료는 전체 비용의 약 40% 수준으로, 인건비 다음으로 높은 비중을 차지하고 있다. 일반적으로 스마트팜의 식물 생장용 광원은 광합성 영역대인 파란색(400~500nm)과 빨강색(600~700nm)의 2개 파장 영역대만을 식물종과 성장 시기에 상관없이 최대 밝기로 사용하고 있고, 광합성에 필요한 광량 이상의 많은 전기에너지를 소모하고 있으며, 이로 인해 광원에서 발생하는 발열 또한 아주 높다.
이는 곧 광원 시설의 발열을 낮추기 위한 냉방 공조시설에서도 많은 전기에너지를 필요로 하게 되며, 냉방시설 역시 자기 발열로 인한 냉방 효율 저하로 스마트 팜 내부를 적정온도를 유지하기 위해서는 점점 더 많은 전기에너지의 소모를 필요로 하게 된다. 이는 식물 재배 광원의 수준 높은 방열기술과 소프트웨어 제어 기술로 해결해야 하나, 방열기술은 기술 한계에 다다른 상태이다.
다른 한편으로, 현재 농장에서 일반적으로 많이 사용하는 펌프는 자동 제어되지 않는 수동 온오프 펌프로, 상시 전원을 인가한 상태에서 수동으로 온오프를 조절하여 사용하고 있다. 이로 인해, 작업자가 퇴근시에 전원을 끄지 않고 가는 경우가 많아, 상시 대기 전력 사용량이 크고, 설정된 압력에 맞추기 위해 반복적으로 모터 구동이 되어 상시 전력 소모량이 큰 단점이 있다. 더불어 작업대기간에도 반복되는 모터 구동 소음으로 인해 작업자의 업무 효율이 저하되고 작업자에게 정신적 고통을 주는 문제도 있다.
또한, 종래에는 펌프의 장시간 사용에 따른 노후화로 인해 리크 발생시에 사용자가 쉽게 인지하지 못하는 경우가 많으며, 리크 발생이 과도하게 발생하여 바람 새는 소리나 뿜어져 나오는 액체에 의해 리크를 인지할 수 있어, 리크 발생을 조기에 인식하기 어려운 문제도 있다. 컴프레셔나 유체 펌프에 누액(누수/누유)가 발생하는 동안 설정 압력을 계속 유지하기 위해 점점 짧은 시간 내 모터를 반복 작동시키게 되고, 이로 인해 상시 전기 사용량이 증가될 수 있다.
뿐만 아니라, 종래에는 다수의 광원과 각종 기기들이 유선 제어 시스템으로 결선되어 잘못된 결선으로 인해 제품이 파손되거나 오동작을 일으키는 등의 문제도 발생되고 있다. 이와 같은 여러 문제점들을 모두 해소할 수 있는 효율적인 식물 재배 광원을 위한 기술과 스마트 팜의 에너지 절감 및 생산 효율 향상을 위한 새로운 기술이 요구되고 있다.
본 발명은 에너지 사용을 절감하고 생산효율을 향상시킬 수 있는 무선 블루투스 메쉬 인공지능 생산시설 제어 시스템을 제공하기 위한 것이다.
또한, 본 발명은 식물 재배 레시피 빅데이타와 각종 센서를 통해 스마트 팜의 재배 환경에서 획득되는 빅데이타를 인공지능에 의해 분석하여 식물 성장에 필요한 제어 기능들을 제공하고, 식물 재배 광원에 대한 무인 자동 제어를 수행하며, 다양한 부가 서비스 및 에너지 절감 시나리오를 제공하기 위한 것이다.
본 발명의 실시예에 따른 에너지 절감 및 생산효율 향상을 위한 무선 블루투스 메쉬 인공지능 생산시설 제어 시스템은: 무선 블루투스 메쉬 네트워크로 스마트 팜의 식물 재배를 위한 광을 출력하는 다수의 광원 또는 조명을 제어하는 광원/조명 제어 시스템; 상기 스마트 팜의 펌프의 누액(누수 또는 누유)를 감지하여 리크 발생시 알림을 발생하고, 상기 펌프의 사용 유량 또는 압력을 기반으로 사용 상태를 판단하여 펌프 공급 전원을 자동으로 차단하는 리크 모니터링 시스템 ; 상기 스마트 팜의 에너지 사용량과 재배 환경을 모니터링하여 이상 발생시 알림을 발생하는 생산 모니터링 시스템; 및 재배 레시피 빅데이터를 기초로 인공지능에 의해 상기 광원/조명 제어 시스템, 상기 리크 모니터링 시스템, 및 상기 생산 모니터링 시스템 중의 적어도 하나를 제어하는 인공지능 제어 시스템;을 포함한다.
상기 리크 모니터링 시스템은: 상기 펌프의 사용 유량 및 압력을 기반으로 상기 펌프의 사용 여부를 판별하여 상기 펌프의 공급 전원을 자동 차단하는 자동 전원 차단부; 상기 펌프의 누액을 감지하여 리크 발생을 감지하는 리크 감지부; 및 상기 펌프의 누액에 해당하는 리크 발생시 알림을 발생하는 리크 알림부;를 포함할 수 있다.
상기 리크 감지부는 상기 펌프를 사용하지 않을 때에 상기 펌프의 전원 차단 직후의 압력 변화를 측정하여 누액(누수 또는 누유) 여부를 판별하고, 펌프 꺼짐 동작 신호 직후 설정 시간 동안 설정 압력 이하로 도달하는지 여부 또는 설정 압력 이하로 도달하는 시간 또는 시간당 압력 변화량(기울기)을 포함하는 측정 변수를 기반으로, 또는 인공지능에 의해 상기 측정 변수에 대해 딥러닝 학습된 정상 패턴과의 비교 분석을 기반으로 누액을 판단할 수 있다. 상기 리크 알림부는 상기 스마트 팜의 사용자 단말기로 리크 발생 알림과, 리크 발생 위치를 표시할 수 있다.
상기 생산 모니터링 시스템은: 상기 스마트 팜의 에너지 사용량을 모니터링하고, 전력 사용량을 분석하여 고장을 예측하는 에너지 모니터링부; 상기 스마트 팜의 작물 재배 환경과 시스템 공급 환경을 모니터링하는 환경 모니터링부; 작물 재배 환경 또는 시스템 공급 환경에 이상 발생시 알림을 발생하는 이상 유무 알림부; 및 클라우드를 이용하여 실시간 카메라와 센서에 의해 수집된 데이터를 기반으로 상기 스마트 팜의 재배 환경을 원격 모니터링하고 제어하는 기능을 제공하는 원격 제어부;를 포함할 수 있다.
상기 인공지능 제어 시스템은: 식물 종별 및 성장 시기별로 필요한 성장 요소들에 관한 재배 레시피 빅데이터와 연동하여, 상기 스마트 팜에서 센서들에 의해 측정되는 데이터를 빅데이터화하여 인공지능 분석 및 딥 러닝을 통해 레시피를 분석하는 인공지능 분석부; 및 재배 환경에 대해 센서들에 의해 획득된 온도, 습도, 이산화탄소, 일사량, 토양함수율, pH, 토양 수분센서, 풍향, 풍속 및 강우 데이터와, 식물 재배용 광원의 광량, 광도, 광포화점, 광보상점, 및 파장 조합 데이터를 기반으로, 양약 공급기, 냉난방 장치, 급수 펌프, 자동 개폐기, 탄산 가스 발생기, 방제기, 식물 재배용 광원, 조명 시설 및 환기 시스템을 포함하는 상기 스마트 팜의 설비 시설을 제어하는 인공지능 제어부;를 포함할 수 있다.
상기 광원/조명 제어 시스템은: 식물 재배에 필요한 광량을 선형적으로 미세 조절하여 식물 성장에 따른 작물 높이 변화, 재배종별 변화, 및 재배 환경의 특성에 따라 최적 광량을 제공하는 광량 미세제어부; 작물 종별 오작동에 의한 식물의 강광 스트레스를 방지하도록 광 포화점을 설정하여 에너지 사용량을 낮추고 광원의 수명을 연장하는 광포화점 설정부; 작물 종별 광보상점의 최소 광량을 설정하여 식물 손상을 방지하는 광보상점 설정부; 다수의 LED 광원을 독립적으로 제어하여 작물 종류별, 성장 시기별 최적 파장의 조합을 포함하는 식물 생장 레시피를 제공하는 다채널 파장제어부; 식물 주변의 햇빛량과 연동되어 재배용 광원의 광량을 자동으로 보상 제어하는 광보상 제어부; 식물의 생장 레시피 빅데이터와 결합되어 작물 종류별, 성장 시기별 최적의 광량과 파장만을 조사하여 광합성에 필요한 빛 이상의 낭비되는 에너지를 저감하는 레시피 제어부; 및 에너지 절감을 위하여 상기 스마트 팜 내의 식물의 명반응시에만 광원을 켜고, 암반응시 광원을 끄는 펄스 제어 기능을 구비하는 펄스 제어부;를 포함할 수 있다.
본 발명의 실시예에 의하면, 에너지 사용을 절감하고 생산효율을 향상시킬 수 있는 무선 블루투스 메쉬 인공지능 생산시설 제어 시스템이 제공된다.
또한, 본 발명의 실시예에 의하면, 식물 재배 레시피 빅데이타와 각종 센서를 통해 스마트 팜의 재배 환경에서 획득되는 빅데이타를 인공지능에 의해 분석하여 식물 성장에 필요한 제어 기능들을 제공하고, 식물 재배 광원에 대한 무인 자동 제어를 수행할 수 있으며, 다양한 부가 서비스 및 에너지 절감 시나리오를 제공할 수 있다.
도 1은 본 발명의 실시예에 따른 무선 블루투스 메쉬 인공지능 생산시설 제어 시스템에 의해 운용되는 스마트 팜의 개략도이다.
도 2는 본 발명의 실시예에 따른 무선 블루투스 메쉬 인공지능 생산시설 제어 시스템의 구성도이다.
도 3은 본 발명의 실시예에 따른 무선 블루투스 메쉬 인공지능 생산시설 제어 시스템을 구성하는 리크 모니터링 시스템의 개념도이다.
도 4는 본 발명의 실시예에 따른 무선 블루투스 메쉬 인공지능 생산시설 제어 시스템을 구성하는 리크 모니터링 시스템의 동작 순서도이다.
도 5는 본 발명의 실시예에 따른 무선 블루투스 메쉬 인공지능 생산시설 제어 시스템을 구성하는 리크 모니터링 시스템의 기능을 설명하기 위한 예시도이다.
도 6은 본 발명의 다른 실시예에 따른 무선 블루투스 메쉬 인공지능 생산시설 제어 시스템을 구성하는 리크 모니터링 시스템의 동작 순서도이다.
도 7은 본 발명의 다른 실시예에 따른 무선 블루투스 메쉬 인공지능 생산시설 제어 시스템을 구성하는 리크 모니터링 시스템의 기능을 설명하기 위한 예시도이다.
도 8 내지 도 11은 본 발명의 다양한 실시예에 따른 무선 블루투스 메쉬 인공지능 생산시설 제어 시스템을 구성하는 광원/조명 제어 시스템을 나타낸 개념도이다.
이하, 본 발명의 실시예를 첨부된 도면들을 참조하여 더욱 상세하게 설명한다. 본 발명의 실시예는 여러 가지 형태로 변형할 수 있으며, 본 발명의 범위가 아래의 실시예들로 한정되는 것으로 해석되어서는 안 된다. 본 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위해 제공되는 것이다. 따라서 도면에서의 요소의 형상은 보다 명확한 설명을 강조하기 위해 과장되었다.
본 발명이 해결하고자 하는 과제의 해결 방안을 명확하게 하기 위한 발명의 구성을 본 발명의 바람직한 실시예에 근거하여 첨부 도면을 참조하여 상세히 설명하되, 도면의 구성요소들에 참조번호를 부여함에 있어서 동일 구성요소에 대해서는 비록 다른 도면상에 있더라도 동일 참조번호를 부여하였으며 당해 도면에 대한 설명 시 필요한 경우 다른 도면의 구성요소를 인용할 수 있음을 미리 밝혀둔다.
도 1은 본 발명의 실시예에 따른 무선 블루투스 메쉬 인공지능 생산시설 제어 시스템에 의해 운용되는 스마트 팜의 개략도이다. 도 2는 본 발명의 실시예에 따른 무선 블루투스 메쉬 인공지능 생산시설 제어 시스템의 구성도이다. 도 1 및 도 2를 참조하면, 본 발명의 실시예에 따른 무선 블루투스 메쉬 인공지능 생산시설 제어 시스템(100)은 스마트 팜(10)의 에너지 절감 및 생산효율 향상을 위한 것으로, 광원/조명 제어 시스템(110), 리크 모니터링 시스템(120), 생산 모니터링 시스템(130), 센서 시스템(140), 및 인공지능 제어 시스템(150)을 포함할 수 있다.
광원/조명 제어 시스템(110)은 무선 블루투스 메쉬 네트워크(Bluetooth mesh network)에 연결되어 스마트 팜(10)의 식물 재배를 위한 광을 출력하는 다수의 광원을 제어할 수 있다. 블루투스 메쉬 무선통신 기술을 이용하면, 무선 통신 거리의 릴레이 연결 확장이 가능하고, 수만여대의 광원/조명을 동시 제어 가능하다. 또한, 사용자의 스마트폰과 직접 통신이 가능하고 비콘 기능을 사용할 수 있으며, 모든 데이터를 암호화하여 높은 보안성을 얻을 수 있는 등의 이점도 있어 유선제어 시스템에서 오는 비용 상의 문제나, 유지보수의 어려움, 공사 기간 증대, 결선문제로 인한 오동작 등의 각종 문제들을 해결하는데 도움을 줄 수 있다.
리크 모니터링 시스템(120)은 스마트 팜(10)의 펌프 및 이와 연결된 (공급)배관의 누액(누수 또는 누유)를 감지하여 리크 발생시 알림을 발생하고, 펌프의 사용 유량 또는 압력을 기반으로 사용 상태를 판단하여 펌프 공급 전원을 자동으로 차단할 수 있다.
생산 모니터링 시스템(130)은 스마트 팜(10)의 에너지 사용량과 재배 환경을 모니터링하여 이상 발생시 알림을 발생할 수 있다.
센서 시스템(140)은 스마트 팜(10)의 재배 환경에 대해 각종 데이터, 예를 들어 온도, 습도, 이산화탄소, 일사량, 토양함수율, pH, 토양 수분센서, 풍향, 풍속, 강우 등의 데이터를 획득하는 센서들을 포함할 수 있다.
이러한 센서 시스템(140)의 센서들은 무선 블루투스 메쉬 네트워크에 연결되어 스마트 팜(10)의 다수의 광원/조명 및 생산시설의 제어를 위한 각종 데이터를 수집하여 인공지능 제어 시스템(150)으로 전송할 수 있다.
인공지능 제어 시스템(150)은 재배 레시피 빅데이터(160)를 기초로 인공지능에 의해 광원/조명 제어 시스템(110), 리크 모니터링 시스템(120), 및 생산 모니터링 시스템(130)을 제어할 수 있다.
리크 모니터링 시스템(120)에 대해 보다 구체적으로 설명하면, 리크 모니터링 시스템(120)은 리크 감지부(121), 리크 알림부(122), 및 자동 전원 차단부(123)를 포함할 수 있다.
리크 감지부(121)는 펌프(예를 들어, 유체 펌프, 에어 컴프레셔 등) 및 이와 연결된 (공급)배관의 누액을 감지하여 리크 발생을 감지할 수 있다. 이때, 리크 감지부(121)는 펌프를 사용하지 않을 때에 펌프의 전원 차단 직후의 압력 변화를 측정하여 누액 여부를 판별할 수 있다.
즉, 리크 감지부(121)는 펌프 꺼짐 동작 신호 직후 설정 시간 동안 설정 압력 이하로 도달하는지 여부 또는 설정 압력 이하로 도달하는 시간 또는 시간당 압력 변화량(기울기)을 포함하는 측정 변수를 기반으로, 또는 인공지능에 의해 상기 측정 변수에 대해 딥러닝 학습된 정상 패턴과의 비교 분석을 기반으로 누액을 판단할 수 있다. 리크 알림부(122)는 펌프의 누액에 해당하는 리크 발생시 스마트 팜의 사용자 단말기로 리크 발생 알림을 발생할 수 있으며, 이때 리크 발생 위치를 함께 표시할 수 있다.
자동 전원 차단부(123)는 펌프에 대해 측정된 사용 유량 및 압력을 기반으로 펌프가 현재 사용 중인지 아닌지를 판별하여, 펌프가 사용되고 있지 않은 동안 펌프의 공급 전원을 자동 차단할 수 있다. 자동 전원 차단부(123)는 펌프가 사용되고 있지 않은 동안, 펌프의 공급 전원을 자동으로 차단하며, 이에 따라 스마트 팜의 펌프 사용에 따른 에너지 소모를 절감하고, 생산성을 제고할 수 있다.
도 3은 본 발명의 실시예에 따른 무선 블루투스 메쉬 인공지능 생산시설 제어 시스템을 구성하는 리크 모니터링 시스템의 개념도이다. 도 1 내지 도 3을 참조하면, 리크 모니터링 시스템(120)은 컨트롤러(200)에 의해 에어 컴프레셔 또는 유체 펌프 등의 펌프(24)리크 및 이와 연결된 (공급)배관의 리크(누액: 누수/누유 등)를 감지하고, 사용 상태에 따라 펌프(24)의 전원을 제어할 수 있다.
컨트롤러(200)에 대해 설명하면, 컨트롤러(200)는 컨트롤러(200)의 외관을 구성하는 하우징(210)을 구비할 수 있다. 하우징(210)은 절연 재질로 이루어질 수 있다. 전원 단자부(220, 230), 광원/조명 단자부(240), 그라운드 단자(250), 및 센서 단자부(260, 270, 280)는 하우징(210)의 일면에 센서 시스템(140)의 각종 센서나, 펌프, 그 밖의 기기와 전기적 접속이 가능하도록 외부로 노출되어 마련될 수 있다.
전원 단자부(220, 230)는 전원의 입력 및 출력을 위한 단자를 포함할 수 있다. 실시예에서, 전원 단자부(220, 230)는 전원 입력 단자(220) 및 전원 출력 단자(230)를 포함할 수 있다. 전원 입력 단자(220; 222, 224)는 AC 전원(즉, 교류 전원)을 입력 받을 수 있다. 예를 들어, 전원 입력 단자(220)는 85 ~ 265 V의 AC 전원을 입력 받을 수 있다. 전원 출력 단자(230; 232, 234)는 AC 전원을 광원/조명 제어를 위한 SMPS(Switching Mode Power Supply) 등에 공급할 수 있고 펌프 등의 다른 기기로 출력할 수 있다.
센서 단자부(260, 270, 280)는 센서 시스템(140)의 각종 센서들, 예를 들어 에어 컴프레셔 또는 유체 펌프 등의 펌프(24)의 유량을 측정하여 유량 신호를 출력하는 유량 측정 센서(142), 펌프의 압력을 측정하여 압력 신호를 출력하는 압력 측정 센서(144) 등의 각종 센서들과 전기적으로 연결될 수 있다.
센서 단자부(260, 270, 280)는 센서 입력 단자(260), 센서 전원 단자(270), 및 확장 커넥터 단자(280)를 포함할 수 있다. 센서 입력 단자(260)는 제1 센서, 예를 들어 유량 측정 센서(142)로부터 펌프(24)에 대해 유량을 측정하여 획득된 유량 신호를 입력 받을 수 있다.
센서 전원 단자(270)는 유량 측정 센서(142), 압력 측정 센서(144) 등의 각종 센서들로, 전원(직류 또는 교류 전원)을 공급할 수 있다. 센서로 직류 전원을 공급하는 경우, 컨트롤러(200)는 AC 전원을 DC 전원으로 변환하는 전원 변환부(미도시)를 포함할 수 있다. 그라운드 단자(250)는 유량 측정 센서(142), 압력 측정 센서(144) 등의 각종 센서들에 그라운드 전원(GND)을 인가할 수 있다.
확장 커넥터 단자(280)는 제2 센서, 예를 들어 압력 측정 센서(144)와 전기적으로 연결될 수 있다. 컨트롤러(280)는 확장 커넥터 단자(280)를 통해 압력 측정 센서(144)와 통신 가능하게 연결될 수 있다. 확장 커넥터 단자(280)는 하우징(210)에 하나 또는 복수개로 마련될 수 있다. 확장 커넥터 단자(280)에 연결되는 제2 센서에는 유량 측정 센서, 압력 측정 센서, 전류 센서, 조도 센서, 모션 센서, 온도 센서, 가스 센서 등이 있으나, 이에 한정되는 것은 아니다.
이와 같이, 컨트롤러(200)는 센서 단자부(260, 270, 280)를 통해 각종 센서와 연결되게 마련됨으로써, 다양한 센서로부터 수신한 센싱 신호(센싱 데이터)를 통해 다양한 기능을 수행할 수 있다. 광원/조명 단자부(240; 242, 244)는 하나 이상의 SMPS에 광원 및/또는 조명에 대한 광원/조명 제어를 위한 신호를 출력하도록 마련될 수 있다. 하우징(210)에는 컨트롤러(200)의 동작 모드를 조절하기 위한 조작부(290)가 마련될 수 있다.
컨트롤러(200)는 유량 측정 센서(142), 압력 측정 센서(144) 등의 유량 신호, 압력 신호 등에 따라 펌프(24)나 이와 연결된 (공급)배관의 누액(누수/누유 등의 리크)를 감지하고, 모터(22), 펌프(24), 밸브(26) 등의 구동(전원 공급)을 제어할 수 있다.
도 4는 본 발명의 실시예에 따른 무선 블루투스 메쉬 인공지능 생산시설 제어 시스템을 구성하는 리크 모니터링 시스템의 동작 순서도이다. 도 5는 본 발명의 실시예에 따른 무선 블루투스 메쉬 인공지능 생산시설 제어 시스템을 구성하는 리크 모니터링 시스템의 기능을 설명하기 위한 예시도이다. 도 2, 도 4 및 도 5를 참조하면, 전원 스위치가 켜지면, 컴프레셔나 펌프 등의 작동을 판단하여 작동하고 있지 않은 경우, 리모터 버튼이나, 컨트롤러 수동 버튼(조작부), 사용자 단말기의 프로그램(앱, PC) 동작 버튼이 실행될 때까지 대기한다(S11, S12).
동작 버튼이 실행되고, 컴프레셔 또는 펌프가 작동되면, 유량 측정 센서에 의해 측정되는 유량 신호를 분석하여, 설정 시간 동안 설정 유량 사용량의 변화가 일어나는지를 판단한다(S13). 이때, 설정 시간 동안 설정 유량 사용량 만큼의 변화가 있는 경우, 컴프레셔 또는 펌프가 동작하는 것으로 판단하며, 다시 설정 시간 동안 설정 사용량의 변화가 일어나는지를 판단하는 과정을 반복한다.
만약, 설정 시간 동안 설정 사용량 만큼의 변화가 없는 경우(도 5의 S21), 컨트롤러(200)에 의해 에어 컴프레셔 또는 유체 펌프의 메인 전원을 차단한다(도 4의 S14). 자동 전원 차단부(123)는 펌프의 사용 유량이 설정 유량(예를 들어, 5 리터/min) 이하이면, 펌프가 사용되지 않는 것으로 판단하여 펌프의 공급 전원을 자동으로 차단할 수 있다. 이때 압력 변화에 대한 설정 시간이나, 설정 유량은 시스템에 미리 설정되어 있거나, 사용자가 단말기를 이용하여 설정할 수도 있고, 인공지능에 의해 설정될 수도 있다.
전원 차단시에 압력 측정 센서에 의해 측정된 컴프레셔 또는 펌프의 압력이 설정 시간 내 설정 압력 이하로 변화하는지 판단하거나, 시간당 압력 변화량(기울기)과 같은 측정 변수를 판단하거나, 인공지능에 의해 측정 변수에 대해 딥러닝 학습된 정상 패턴과의 비교 분석을 수행한다(도 4의 S15, 도 5의 S22). 이때 설정 시간 내 설정 압력 이하로 변화하거나, 시간당 압력 변화량(기울기)이 일정 값 이상 변화하는 경우, 또는 인공지능에 의해 측정 변수에 대해 딥러닝 학습된 정상 패턴과 설정 범위 이상 차이를 보이는 경우(도 5의 34), 컴프레셔 또는 펌프의 누액 알림을 표시한다(도 4의 S16, 도 5의 S23). 설정 시간 내 설정 압력 이하로 변화하지 않거나, 시간당 압력 변화량(기울기)이 일정 값 이상으로 변화하지 않는 경우, 또는 인공지능에 의해 측정 변수에 대해 딥러닝 학습된 정상 패턴과 설정 범위 이상 차이를 보이지 않는 경우(도 5의 32), 다시 동작 버튼 실행(S24) 및 컴프레서/펌프 작동을 판단하는 단계로 되돌아가게 된다.
도 6은 본 발명의 다른 실시예에 따른 무선 블루투스 메쉬 인공지능 생산시설 제어 시스템을 구성하는 리크 모니터링 시스템의 동작 순서도이다. 도 7은 본 발명의 다른 실시예에 따른 무선 블루투스 메쉬 인공지능 생산시설 제어 시스템을 구성하는 리크 모니터링 시스템의 기능을 설명하기 위한 예시도이다. 도 4 및 도 5는 수동 제어 펌프를 제어하기 위한 실시예이고, 도 6 및 도 7은 자동 제어 펌프를 제어하기 위한 실시예이다.
도 6 및 도 7을 참조하면, 펌프 자동 제어 시스템의 동작이 시작되면, 컴프레셔 또는 펌프 컨트롤러의 켜짐 동작 신호가 입력된 순간부터 컴프레셔 또는 펌프 컨트롤러의 꺼짐 동작 신호가 입력될 때까지 펌프가 동작한다(S31, S32). 만약, 컴프레셔 또는 펌프 컨트롤러의 꺼짐 동작 신호가 입력되면, 압력 측정 센서에 의해 측정된 압력이 설정 시간 내 설정 압력 이하에 도달하는지 여부, 또는 설정 압력에 도달하는 시간 또는 시간당 압력 변화량(기울기)과 같은 측정 변수를 판단하거나, 인공지능에 의해 측정 변수에 대해 딥러닝 학습된 정상 패턴과의 비교 분석을 수행하여 컴프레셔 또는 펌프 또는 이들과 연결된 (공급)배관의 누액을 판단한다(도 6의 S33, 도 7의 S42). 일 예로, 펌프 전원 차단 직후의 펌프 압력 변화가 설정 압력 변화율(0.1 bar/Hr) 이상이면, 누액(누수/누유 등의 리크)이 발생한 것으로 판단할 수 있다. 이때 설정 압력 변화율은 시스템에 미리 설정되거나, 사용자가 단말기를 이용하여 설정할 수 있으며, 인공지능에 의해 설정될 수도 있다.
이와 같이, 펌프 전원 차단 직후 설정 시간 내 설정 압력 이하로 또는 일정 시간당 일정 압력 변화량(기울기) 이상으로 변화하는 경우 또는 측정 변수에 대한 측정 결과가 인공지능에 의해 측정 변수에 대해 딥러닝 학습된 정상 패턴과 설정 범위 이상으로 차이를 보이는 경우(도 7의 44), 컴프레셔 또는 펌프의 리크 발생으로 판단하여 누액 알림을 표시하며, 리크 위치를 함께 표시한다(도 6의 S34, 도 7의 S43). 이에 따라, 사용자 단말기의 모바일 앱, 문자나 PC 등을 통해 사용자에게 리크 발생 경고와 함께 리크 발생 위치 정보가 제공되므로, 노후에 따른 펌프 리크나 이와 연결된 (공급)배관의 리크 발생시 사용자가 즉각 인지할 수 있으며, 리크 발생에 따른 에너지 소모를 줄일 수 있다. 설정 시간 내 설정 압력 이하로 변화하지 않으면(도 7의 42), 다시 컴프레셔/펌프 컨트롤러의 켜짐 동작 신호가 켜질 때까지(도 7의 S44), 작동을 정지하게 된다.
다시 도 1 및 도 2를 참조하면, 생산 모니터링 시스템(130)은 에너지 모니터링부(131), 환경 모니터링부(132), 이상 유무 알림부(133), 및 원격 제어부(134)를 포함할 수 있다.
에너지 모니터링부(131)는 스마트 팜(10)의 펌프, 광원/조명, 센서, 기타 각종 생산시설 등의 에너지 사용량을 모니터링하고, 전력 사용량을 분석하여 스마트 팜(10)의 각종 기기의 고장을 예측할 수 있다. 에너지 모니터링부(131)는 예를 들어, 전류 센서 또는 전압 센서로부터 수신한 전력 신호에 기초하여, 각 광원/조명의 에너지 사용량을 모니터링할 수 있다.
이때, 에너지 모니터링부(131)는 기 설정된 단위 기간 별로(예를 들어, 일, 월, 연 단위 별로) 각 광원/조명의 에너지 사용량의 변동량을 모니터링하고, 기 설정된 초과 에너지 사용량에 도달할 경우 광원/조명 에너지 절감을 위한 시나리오를 사용자에게 제공할 수 있다.
환경 모니터링부(132)는 스마트 팜(10)의 작물 재배 환경과 시스템 공급 환경을 모니터링할 수 있다. 이상 유무 알림부(133)는 스마트 팜(10)의 작물 재배 환경 또는 시스템 공급 환경에 이상 발생시 문자발송, 현장 경광등, 모바일 앱 프로그램 등의 다양한 방식으로 알림을 발생할 수 있다.
일 실시예로, 환경 모니터링부(132)는 조명 및 식물생장 광원의 상태를 모니터링 하는 역할을 할 수 있다. 예를 들어, 환경 모니터링부(132)는 조도 센서를 통해 광원/조명의 상태를 모니터링 할 수 있다. 즉, 환경 모니터링부(132)는 조도 센서로부터 수신한 조도 센싱 신호를 확인한 결과, 광원/조명의 깜박거림(flicker) 정도가 기 설정된 임계치를 초과하는 경우 및/또는 광원/조명 밝기가 설정된 밝기와 차이가 임계치 이상 나는 경우, 광원/조명 교체 알림을 생성하여 사용자 단말로 전송할 수 있다.
환경 모니터링부(132)는 인공 지능에 의해 사용자의 평상시 광원/조명사용량을 학습하여 평소 사용 패턴을 분석하고, 전류 센서로부터 수신한 전류 센싱 신호에 기초하여 기 설정된 단위 기간 별로 광원/조명의 에너지 사용량의 변동량을 확인하고, 에너지 사용량의 변동량을 학습을 통해 분석된 평소 사용 패턴과 비교하여 광원/조명 고장 유무를 판별할 수 있다.
즉, 환경 모니터링부(132)는 측정된 에너지 사용량의 변동량이 학습된 평소 사용 패턴과 일정기간 일정치 이상 벗어나는 경우, 광원/조명 고장으로 판단하여 광원/조명 교체 알림을 생성하여 사용자 단말로 전송할 수 있다. 이와 같이, 조도 센서 및 전류 센서를 통해 광원/조명의 고장 확률이 높거나 예상 수명이 얼마 남지 않은 징후를 확인하고, 광원/조명 교체 알림을 전송하여 광원/조명을 미리 교체할 수 있도록 알려줄 수 있다.
예를 들어, 스마트 팜과 같이 광원/조명이 식물 생장에 큰 영향을 미치는 환경이나, 교체를 위해 스케줄 조정이 필요한 환경, 광원/조명 교체가 오래 걸리고 까다로운 환경 등에 있어서, 이러한 환경 모니터링부(132)의 광원/조명 교체 알림 서비스를 이용하면 광원/조명을 제때에 교체하지 못하여 발생하는 손해를 줄이고 손쉽게 광원/조명을 교체할 수 있게 된다.
원격 제어부(134)는 무선 블루투스 메시 네트워크와 클라우드를 이용하여 실시간 카메라와 센서에 의해 수집된 데이터를 기반으로 스마트 팜(10)의 재배 환경을 원격 모니터링하고 제어하는 기능을 제공할 수 있다.
에너지 모니터링부(131)에 의해, 사용자는 원하는 형태로 가공된 에너지 사용 현황을 확인하여 에너지 사용을 관리할 수 있으며, 재배 광원이나 조명 시설, 생산시설의 전력 사용량을 분석하여 고장 예측시 즉시 사용자에게 알려 즉시 조치할 수 있도록 함으로써, 고장 및 오작동 시 발생할 수 있는 치명적인 식물 손상 등을 미연에 방지할 수 있다.
도 8 내지 도 11은 본 발명의 다양한 실시예에 따른 무선 블루투스 메쉬 인공지능 생산시설 제어 시스템을 구성하는 광원/조명 제어 시스템을 나타낸 개념도이다. 도 1, 도 2, 도 8 내지 도 11을 참조하면, 광원/조명 제어 시스템(110)은 광량 미세제어부(111), 광포화점 설정부(112), 광보상점 설정부(113), 다채널 파장제어부(114), 광보상 제어부(115), 레시피 제어부(116), 및 펄스제어부(117)를 포함할 수 있다.
광량 미세제어부(111)는 식물 재배에 필요한 광량을 선형적으로 미세 조절하여 식물 성장에 따른 작물 높이 변화, 재배종별 변화, 및 재배 환경의 특성에 따라 최적 광량을 제공할 수 있다. 광량 미세제어부(111)는 컨트롤러(200)에 의해 SMPS(300)를 제어하여 광원들(30, 32, 34, 36)을 제어할 수 있다.
컨트롤러(200)와 SMPS(300)는 도 8 에 도시된 바와 같이 일대일 연결되어 각 컨트롤러(200)가 대응되는 SMPS(300)를 제어하도록 구성될 수도 있고, 도 11 에 도시된 바와 같이 1개의 컨트롤러(200)가 대응되는 여러 개의 SMPS(300)를 제어하도록 구성될 수도 있고, 도 9 및 도 10에 도시된 바와 같이 하나의 컨트롤러(200)가 여러개의 광원들(30, 32, 34, 36)을 직접 제어하도록 구성될 수도 있다.
또한, 컨트롤러(200)는 도 9에 도시된 바와 같이 SMPS(300)로부터 전원을 공급받을 수도 있으며, 도 8 내지 도 11에 도시된 바와 같이, 각종 측정 센서(140a)에 의해 획득되는 데이터(온도, 습도, CO2, 일사량, 토양함수율, pH+EC, 풍향, 풍속, 강우, 유해가스 등)를 기초로 광원/조명 단자부(240; 242, 244, 246, 248)의 다수의 채널을 통해 광원들(30, 32, 34, 36)을 제어할 수도 있다. 한편, SMPS 스펙에 따라 DALI, I2C, UART 등의 다양한 통신이 사용될 수 있으며, 통신 프로토콜에 따라 결선이 다양하게 변경될 수 있다.
실시예에서, 광원은 식물 재배용 LED 광원일 수 있다. 컨트롤러(200)는 다양한 파장대의 광원들(30, 32, 34, 36), 예를 들어 청색파장(400~500nm), 녹색파장(500nm~600nm), 적색파장(600~700nm) 등의 광원들을 각각 유연하게 독립적으로 제어함으로써 작물종류별, 성장시기별 필요한 최적의 파장을 조합할 수 있다. 이에 따라 종별, 시기별 최적의 파장을 조사할 수 있도록 함으로써 농작물 생산량을 증대시키고 광원의 불필요한 에너지 사용을 절감할 수 있다.
실시예에서, 광원은 조명 시설용 LED 광원일 수 있다. 컨트롤러(200)는 광원들(30, 32, 34, 36)의 밝기 및 색깔, 색 온도를 각각 조절하도록 마련될 수 있다. 광원/조명 단자부(240)는 광원/조명의 밝기 및 색깔, 색온도 조절을 위한 단자를 포함할 수 있다. 실시예에서, 광원/조명 단자부(240)는 다수의 채널 단자(242, 244, 246, 248)를 포함할 수 있다.
다수의 채널 단자(242, 244, 246, 248)는 광원/조명의 밝기 및/또는 색깔, 색온도 조절을 위한 제어 신호(디밍 제어 신호 및/또는 색깔, 색온도 제어 신호)를 출력할 수 있다. 다수의 채널 단자(242, 244, 246, 248)는 각각 독립적으로 SMPS 또는 광원/조명과 전기적으로 연결되어 광원/조명의 밝기 및 색깔(예를 들어, RGBW 광원들의 조합을 통한 16만 가지의 색깔), 색온도(예를 들어 5,000 ~ 8,000K의 차가운 계열의 색온도나, 1,000 ~ 4,000K의 따뜻한 계열의 색온도 등)를 조절할 수 있다. 그라운드 단자(250)는 SMPS 및/또는 광원/조명에 접지 전압을 제공할 수 있다.
광포화점 설정부(112)는 작물 종별 오작동에 의한 식물의 강광 스트레스를 방지하도록 광 포화점을 설정하여 에너지 사용량을 낮추고 광원의 수명을 연장할 수 있다. 식물은 약한 빛에서 강도를 높여나가면 광합성이 촉진되어 생육이 빨라지지만, 광포화점의 강도를 초과하면 광합성에 사용되지 못하고, 오히려 강광 스트레스에 의해 식물이 손상을 입을 수 있다.
한편, LED 광원/조명의 수명은 새 것일 때의 초기 밝기를 기준으로 밝기가 미리 설정된 밝기 비율(예를 들어, 초기 밝기의 70%) 이하로 떨어지는데 걸리는 시간으로 정의될 수 있다. 안정기 및 LED가 발현할 수 있는 최대 기능을 그대로 사용하게 되면 LED 수명이 현저히 빨리 단축될 수 있으므로, 이를 소프트웨어적으로 제한함으로써 부품 수명을 장기간 연장시킬 수 있다.
광포화점 설정부(112)는 광원의 에너지 절감 및 수명 연장, 식물의 생장을 위해, 광원이 인가되는 식물의 광포화점을 초과하지 않도록 광원 강도를 제한하는 광포화점 설정 기능을 구비할 수 있다.
광보상점 설정부(113)는 작물 종별 광보상점(식물 광합성시 필요한 최소 밝기)의 최소 광량을 설정하여 식물 손상을 방지할 수 있다. 즉, 광보상점 설정부(113)는 광원이 인가되는 식물의 광보상점 이하로 낮아지지 않도록 광원 강도의 하한을 제한하는 광보상점 설정 기능을 구비할 수 있다.
식물은 빛의 세기가 0일 때는 광합성이 일어나지 않는 상태에서 세포 호흡만 일어나기 때문에 이산화탄소가 방출되고, 광합성량은 음의 값을 띤다. 즉 광보상점 이하의 빛 조건에서 자라게 되면 광합성량보다 호흡량이 커진다. 이는 곧 식물이 생산하는 에너지의 양보다 소비하는 에너지의 양이 많아짐을 의미하므로 식물이 잘 자라지 못하거나 죽게 된다. 식물에 조사하는 광원 세기가 광보상점 이하로 낮아지게 되면 식물이 생산하는 에너지(이산화탄소 흡수)의 양보다 소비하는 에너지(이산화탄소 배출)의 양이 많아짐을 의미하므로 식물이 잘 자라지 못하거나 죽게 된다. 광포화점과 광보상점은 LED 식물 생장용 광원을 기준으로 아래의 표와 같이 설정될 수 있다.
본 발명의 실시예에 따른 광원 강도 제한 기능(광포화점 설정 기능 및 광보상점 설정 기능)에 의하면, 식물의 광포화점을 초과하거나 광보상점 미만이 되지 않도록 광원 강도를 제한하여 강광 스트레스와 광합성 부진에 의한 식물 손상을 방지하고, 에너지 사용량을 낮추어 탄소배출 저감에 기여할 수 있으며, 식물 재배용 광원의 수명을 연장할 수 있다.한편, 식물의 광합성은 이산화탄소를 이용하여 산소를 배출하는 과정이므로, 광합성에 의해 스마트팜 내의 이산화탄소는 줄고, 산소는 증가하게 된다. 따라서, 이산화탄소 감지 센서 및/또는 산소 감지 센서에 의해 이산화탄소 및/또는 산소의 밀도를 측정하여, 이로부터 식물이 최대의 광합성을 일으키는 때와 광합성이 일어나지 않을 때의 광원 상태를 분석함으로써, 식물의 광합성을 극대화하기 위한 광원 출력 상태를 판단할 수 있다. 이에 따라 식물의 광합성 등의 화학 반응을 효과적으로 제어할 수 있는 광원 레벨을 설정하여 식물의 재배 효율을 높일 수 있다.
뿐만 아니라, 광원 레벨에 따른 식물의 광합성 변화를 분석하여, 광포화점 및 광보상점을 알지 못하는 식물의 광포화점/광보상점을 분석하여 광 포화점/광보상점의 강도를 초과하거나 미만이 되지 않도록 적정 광원 레벨을 설정하는 것도 가능하다. 예를 들어, 광포화점의 강도를 초과하면 광원 레벨을 증가시키더라도 광합성에 사용되지 못하며 오히려 강광 스트레스에 의해 식물이 손상되어 광합성이 저하될 수 있다. 이를 이산화탄소 및/또는 산소의 밀도 변화를 통해 인식하여 식물의 광포화점의 강도를 파악하고 이를 기반으로 광원 레벨을 제한하는 광포화점 설정 기능을 적용함으로써 식물의 생육을 촉진할 수 있는 최적의 광원을 제공하여 식물을 재배할 수 있다.
다채널 파장제어부(114)는 다수의 LED 광원을 유연하게 독립적으로 제어하여 작물 종류별, 주변 환경, 성장 시기별로 식물 성장에 필요한 최적 파장의 조합을 포함하는 식물 생장 레시피를 제공할 수 있다. 다채널 파장제어부(114)는 광원/조명들의 용도에 따라 광원/조명들의 광원 별로 광원/조명 색상 변경 및/또는 광량 조절을 통해 목표로 하는 파장 조합을 만들어 다수의 광원의 파장을 제어하는 파장 제어 기능을 제공할 수 있다. 파장별 적용효과는 예시적으로 아래의 표 2와 같다.
광보상 제어부(115)는 식물 주변의 햇빛량과 연동되어 재배용 광원의 광량을 자동으로 보상 제어할 수 있다. 재배용 광원의 광량 자동 보상 제어를 통해, 식물 성장에 필요한 광량을 일정하게 유지할 수 있으며, 식물 재배 광원/조명 시스템이 태양 스펙트럼의 매일 달라지는 일조량 변화를 반영하여 식물의 24시간 주기에 맞추어 인공 광원/조명 솔루션을 완벽하게 최적화할 수 있다.실시예에서, 광보상 제어부(115)는 실제 광원/조명의 밝기를 조도 센서를 통해 모니터링 하여 해당 광원/조명의 밝기 값을 지속적으로 유지하도록 할 수 있다. 이를 통해, 직접적인 광원/조명의 조도값 센싱에 의해 주변 환경에 영향을 받지 않고 실제 광원/조명의 밝기를 일정하게 유지하는 기능을 제공할 수 있다.
스마트 팜에 사용되는 광원/조명은 정밀하고 정확한 밝기 유지가 중요한 바, 조도 센서 및 광보상제어부(115)를 통해 광원/조명 LED와 SMPS의 노후 및 특성에 상관없이 실제 광원/조명의 밝기를 일정하게 유지시킬 수 있으며, SMPS와 LED 노후로 인한 성능 저하 및 광원/조명 성능에 영향을 줄 수 있는 주변 환경에 영향을 받지 않고 PID 제어 등의 폐루프 제어를 통해 설정한 밝기가 실제 정확히 출력되도록 할 수 있다.
레시피 제어부(116)는 식물의 생장 레시피 빅데이터와 결합되어 작물 종류별, 성장 시기별 최적의 광량과 파장만을 조사하여 광합성에 필요한 빛 이상의 낭비되는 에너지를 저감할 수 있다. 레시피 제어부(116)는 식물 별 성장에 필요한 최적의 파장을 조합하여 제공할 수 있다. 작물 종별, 성장시기별, 그리고 주변환경에 따라 식물 성장에 도움이 되는 파장대가 다르기 때문에, 광원별로 광량을 조절하여 최적의 파장을 맞춰 광원을 출력함으로써 식물 성장에 도움을 줄 수 있다. 이를 토대로 작물의 종류와 성장시기별로 필요한 광 파장을 데이터베이스화하고, 최적의 파장 조합을 레시피화하여 제공할 수 있다.
또한, 레시피 제어부(116)는 식물의 생장 레시피 빅데이타와 결합되어 작물의 종류와 성장시기별 광파장의 데이터베이스 및 레시피를 기초로, 광원들이 설치된 스마트 팜 내에 작물의 종류와 성장시기별로 필요한 광파장이 출력될 수 있도록 복수개의 상이한 파장들의 출력을 조합하여 광원들을 자동 제어하거나 사용자에게 광파장 출력의 조합을 제안할 수 있으며, 작물 종류별, 성장 시기별 최적의 광량과 파장만을 조사하여 작물 성장을 최대화하는 동시에, 광합성에 필요한 빛 이상의 낭비되는 에너지를 최소화하고, 재배 시간을 최소화할 수 있다.
예를 들면, 토마토 재배 시 발아 단계에서는 680nm 파장의 빛의 세기가 식물의 성장 속도에 매우 중요한 역할을 하고, 식물의 생장 단계에서는 650nm의 빛 세기가 성장과 엽록소(색소) 농도를 최적화한다. 이를 고려하여, 식물의 성장 기간에 따라 각 단계(발아, 생장, 과실 단계) 별로 서로 다른 파장의 빛을 조사할 수 있다.
펄스제어부(117)는 에너지 절감을 위하여 스마트 팜 내의 식물의 명반응(빛이 있어야 광합성 진행)시에만 광원을 켜고, 암반응(빛이 없어도 광합성 진행)시 광원을 끄는 펄스 제어 기능을 제공할 수 있다. 한편, 광원을 계속 켜고 있을 때 와 20kHz~1kHz(50% duty cycle) 펄스 제어 광원을 출력하는 경우를 비교하면, 두 경우의 성장정도에 차이가 거의 없으므로, 펄스 형태의 광을 출력하여 불필요한 광의 출력량을 저감하여 에너지 효율을 높일 수 있다.
다시 도 1 및 도 2를 참조하면, 인공지능 제어 시스템(150)은 인공지능 분석부(151)와 인공지능 제어부(152)를 포함할 수 있다. 인공지능 분석부(151)는 식물 종별 및 성장 시기별로 필요한 성장 요소들에 관한 재배 레시피 빅데이터와 연동하여, 스마트 팜(10)에서 센서들에 의해 측정되는 데이터를 빅데이터화하여 인공지능 분석 및 딥 러닝을 통해 레시피를 분석할 수 있다.
인공지능 제어부(152)는 재배 환경에 대해 센서들에 의해 획득된 온도, 습도, 이산화탄소, 일사량, 토양함수율, pH, 토양 수분센서, 풍향, 풍속 및 강우 데이터와, 식물 재배용 광원의 광량, 광도, 광포화점, 광보상점, 및 파장 조합 데이터를 기반으로, 양약 공급기, 냉난방 장치, 급수 펌프, 자동 개폐기, 탄산 가스 발생기, 방제기, 및 식물 재배용 광원, 조명 시설, 환기 시스템을 포함하는 스마트 팜(10)의 설비 시설을 제어할 수 있다.
인공지능 제어 시스템(150)은 식물 종별, 성장시기별 필요한 최적의 성장 요소들에 대한 재배 레시비 빅데이타를 외부에서 가져와 연동할 수 있으며, 내부에서 측정되는 각종 데이타들(온도, 습도, 이산화탄소, 일사량, 토양함수율, pH, 토양 수분센서, 풍향, 풍속, 강우 등)을 빅데이터화하여 인공지능 분석 및 딥러닝을 통하여 최적의 레시피를 찾고, 무인 자동화 제어를 수행할 수 있다.
이상의 상세한 설명은 본 발명을 예시하는 것이다. 또한 전술한 내용은 본 발명의 바람직한 실시 형태를 나타내어 설명하는 것이며, 본 발명은 다양한 다른 조합, 변경 및 환경에서 사용할 수 있다. 즉 본 명세서에 개시된 발명의 개념의 범위, 저술한 개시 내용과 균등한 범위 및/또는 당업계의 기술 또는 지식의 범위내에서 변경 또는 수정이 가능하다.
저술한 실시예는 본 발명의 기술적 사상을 구현하기 위한 최선의 상태를 설명하는 것이며, 본 발명의 구체적인 적용 분야 및 용도에서 요구되는 다양한 변경도 가능하다. 따라서 이상의 발명의 상세한 설명은 개시된 실시 상태로 본 발명을 제한하려는 의도가 아니다. 또한 첨부된 청구범위는 다른 실시 상태도 포함하는 것으로 해석되어야 한다.
10: 스마트 팜
100: 무선 블루투스 메쉬 인공지능 생산시설 제어 시스템
110: 광원/조명 제어 시스템
111: 광량 미세제어부
112: 광포화점 설정부
113: 광보상점 설정부
114: 다채널 파장제어부
115: 광보상 제어부
116: 레시피 제어부
117: 펄스제어부
120: 리크 모니터링 시스템
121: 리크 감지부
122: 리크 알림부
123: 자동 전원 차단부
130: 생산 모니터링 시스템
131: 에너지 모니터링부
132: 환경 모니터링부
133: 이상 유무 알림부
134: 원격 제어부
140: 센서 시스템
142: 유량 측정 센서
144: 압력 측정 센서
150: 인공지능 제어 시스템
151: 인공지능 분석부
152: 인공지능 제어부
160: 재배 레시피 빅데이터
200: 컨트롤러

Claims (17)

  1. 무선 블루투스 메쉬 네트워크에 연결되어 스마트 팜의 식물 재배를 위한 광을 출력하는 다수의 광원 또는 조명을 제어하는 광원/조명 제어 시스템;
    상기 스마트 팜의 펌프의 누액을 감지하여 리크 발생시 알림을 발생하고, 상기 펌프의 사용 유량 또는 압력을 기반으로 사용 상태를 판단하여 펌프 공급 전원을 자동으로 차단하는 리크 모니터링 시스템;
    상기 스마트 팜의 에너지 사용량과 재배 환경을 모니터링하여 이상 발생시 알림을 발생하는 생산 모니터링 시스템; 및
    재배 레시피 빅데이터를 기초로 인공지능에 의해 상기 광원/조명 제어 시스템, 상기 리크 모니터링 시스템, 및 상기 생산 모니터링 시스템 중의 적어도 하나를 제어하는 인공지능 제어 시스템;을 포함하고,
    상기 리크 모니터링 시스템은:
    상기 펌프 및 상기 펌프와 연결된 배관의 누액을 감지하여 리크 발생을 감지하는 리크 감지부;
    상기 펌프 및 상기 펌프와 연결된 배관의 누액에 해당하는 리크 발생시 알림을 발생하는 리크 알림부; 및
    상기 펌프의 사용 유량 및 압력을 기반으로 상기 펌프의 사용 여부를 판별하여 상기 펌프의 공급 전원을 자동 차단하는 자동 전원 차단부;를 포함하고,
    상기 리크 감지부는 상기 펌프를 사용하지 않을 때에 상기 펌프의 전원 차단 직후의 압력 변화를 측정하여 누액을 판별하고,
    상기 리크 감지부는 펌프 꺼짐 동작 신호 직후 설정 시간 동안 설정 압력 이하로 도달하는지 여부, 설정 압력 이하로 도달하는 시간, 및 시간당 압력 변화량을 포함하는 측정 변수와, 인공지능에 의해 상기 측정 변수에 대해 딥러닝 학습된 정상패턴과의 비교 분석을 기반으로 누액을 판단하고,
    상기 리크 알림부는 상기 스마트 팜의 사용자 단말기로 리크 발생 알림과, 리크 발생 위치를 표시하는,
    에너지 절감 및 생산효율 향상을 위한 무선 블루투스 메쉬 인공지능 생산시설 제어 시스템.
  2. 삭제
  3. 삭제
  4. 삭제
  5. 삭제
  6. 삭제
  7. 제1항에 있어서,
    상기 생산 모니터링 시스템은:
    상기 스마트 팜의 에너지 사용량을 모니터링하고, 전력 사용량을 분석하여 고장을 예측하는 에너지 모니터링부;를 포함하는,
    에너지 절감 및 생산효율 향상을 위한 무선 블루투스 메쉬 인공지능 생산시설 제어 시스템.
  8. 제1항에 있어서,
    상기 생산 모니터링 시스템은:
    상기 스마트 팜의 작물 재배 환경과 시스템 공급 환경을 모니터링하는 환경 모니터링부; 및
    작물 재배 환경 또는 시스템 공급 환경에 이상 발생시 알림을 발생하는 이상 유무 알림부;를 포함하는,
    에너지 절감 및 생산효율 향상을 위한 무선 블루투스 메쉬 인공지능 생산시설 제어 시스템.
  9. 제1항에 있어서,
    상기 생산 모니터링 시스템은:
    클라우드를 이용하여 실시간 카메라와 센서에 의해 수집된 데이터를 기반으로 상기 스마트 팜의 재배 환경을 원격 모니터링하고 제어하는 기능을 제공하는 원격 제어부;를 포함하는,
    에너지 절감 및 생산효율 향상을 위한 무선 블루투스 메쉬 인공지능 생산시설 제어 시스템.
  10. 제1항에 있어서,
    상기 인공지능 제어 시스템은:
    식물 종별 및 성장 시기별로 필요한 성장 요소들에 관한 재배 레시피 빅데이터와 연동하여, 상기 스마트 팜에서 센서들에 의해 측정되는 데이터를 빅데이터화하여 인공지능 분석 및 딥 러닝을 통해 레시피를 분석하는 인공지능 분석부;를 포함하는,
    에너지 절감 및 생산효율 향상을 위한 무선 블루투스 메쉬 인공지능 생산시설 제어 시스템.
  11. 제1항에 있어서,
    상기 인공지능 제어 시스템은:
    재배 환경에 대해 센서들에 의해 획득된 온도, 습도, 이산화탄소, 일사량, 토양함수율, pH, 토양 수분센서, 풍향, 풍속 및 강우 데이터와, 식물 재배용 광원의 광량, 광도, 광포화점, 광보상점, 및 파장 조합 데이터를 기반으로, 양약 공급기, 냉난방 장치, 급수 펌프, 자동 개폐기, 탄산 가스 발생기, 방제기, 식물 재배용 광원, 조명 시설 및 환기 시스템을 포함하는 상기 스마트 팜의 설비 시설을 제어하는 인공지능 제어부;를 포함하는,
    에너지 절감 및 생산효율 향상을 위한 무선 블루투스 메쉬 인공지능 생산시설 제어 시스템.
  12. 제1항에 있어서,
    상기 광원/조명 제어 시스템은:
    식물 재배에 필요한 광량을 선형적으로 미세 조절하여 식물 성장에 따른 작물 높이 변화, 재배종별 변화, 및 재배 환경의 특성에 따라 최적 광량을 제공하는 광량 미세제어부;를 포함하는,
    에너지 절감 및 생산효율 향상을 위한 무선 블루투스 메쉬 인공지능 생산시설 제어 시스템.
  13. 제1항에 있어서,
    상기 광원/조명 제어 시스템은:
    작물 종별 오작동에 의한 식물의 강광 스트레스를 방지하도록 광 포화점을 설정하여 에너지 사용량을 낮추고 광원의 수명을 연장하는 광포화점 설정부; 및
    작물 종별 광보상점의 최소 광량을 설정하여 식물 손상을 방지하는 광보상점 설정부;를 포함하는,
    에너지 절감 및 생산효율 향상을 위한 무선 블루투스 메쉬 인공지능 생산시설 제어 시스템.
  14. 제1항에 있어서,
    상기 광원/조명 제어 시스템은:
    다수의 LED 광원을 독립적으로 제어하여 작물 종류별, 성장 시기별 최적 파장의 조합을 포함하는 식물 생장 레시피를 제공하는 다채널 파장제어부;를 포함하는,
    에너지 절감 및 생산효율 향상을 위한 무선 블루투스 메쉬 인공지능 생산시설 제어 시스템.
  15. 제1항에 있어서,
    상기 광원/조명 제어 시스템은:
    식물 주변의 햇빛량과 연동되어 재배용 광원의 광량을 자동으로 보상 제어하는 광보상 제어부;를 포함하는,
    에너지 절감 및 생산효율 향상을 위한 무선 블루투스 메쉬 인공지능 생산시설 제어 시스템.
  16. 제1항에 있어서,
    상기 광원/조명 제어 시스템은:
    식물의 생장 레시피 빅데이터와 결합되어 작물 종류별, 성장 시기별 최적의 광량과 파장만을 조사하여 광합성에 필요한 빛 이상의 낭비되는 에너지를 저감하는 레시피 제어부;를 포함하는,
    에너지 절감 및 생산효율 향상을 위한 무선 블루투스 메쉬 인공지능 생산시설 제어 시스템.
  17. 제1항에 있어서,
    에너지 절감을 위하여 상기 스마트 팜 내의 식물의 명반응시에만 광원을 켜고, 암반응시 광원을 끄는 펄스 제어 기능을 구비하는 펄스 제어부;를 포함하는,
    에너지 절감 및 생산효율 향상을 위한 무선 블루투스 메쉬 인공지능 생산시설 제어 시스템.
KR1020210110220A 2021-08-20 2021-08-20 에너지 절감 및 생산효율 향상을 위한 무선 블루투스 메쉬 인공지능 생산시설 제어 시스템 KR102595159B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210110220A KR102595159B1 (ko) 2021-08-20 2021-08-20 에너지 절감 및 생산효율 향상을 위한 무선 블루투스 메쉬 인공지능 생산시설 제어 시스템

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210110220A KR102595159B1 (ko) 2021-08-20 2021-08-20 에너지 절감 및 생산효율 향상을 위한 무선 블루투스 메쉬 인공지능 생산시설 제어 시스템

Publications (2)

Publication Number Publication Date
KR20230028660A KR20230028660A (ko) 2023-03-02
KR102595159B1 true KR102595159B1 (ko) 2023-10-30

Family

ID=85509023

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210110220A KR102595159B1 (ko) 2021-08-20 2021-08-20 에너지 절감 및 생산효율 향상을 위한 무선 블루투스 메쉬 인공지능 생산시설 제어 시스템

Country Status (1)

Country Link
KR (1) KR102595159B1 (ko)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160108607A1 (en) * 2014-10-17 2016-04-21 Tec Innovators Water Control Products, LLC Water Pump Pressure Switch Providing Automatic Power Shut-Off To A Well Pump
KR101887503B1 (ko) * 2017-06-13 2018-08-10 (주)다온정보 인공지능기술을 이용한 시설하우스 제어장치
KR102109337B1 (ko) * 2018-11-14 2020-05-12 (유)엔티엘 수중 모터 펌프의 지상 모니터링 시스템

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101518212B1 (ko) * 2014-05-26 2015-05-11 공주대학교 산학협력단 Usn 기반 식물공장 에너지 통합관리 시스템 및 그 방법
KR20170105402A (ko) * 2016-12-21 2017-09-19 주식회사 엔씽 사물 인터넷을 활용한 식물 생장 레시피 제공 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160108607A1 (en) * 2014-10-17 2016-04-21 Tec Innovators Water Control Products, LLC Water Pump Pressure Switch Providing Automatic Power Shut-Off To A Well Pump
KR101887503B1 (ko) * 2017-06-13 2018-08-10 (주)다온정보 인공지능기술을 이용한 시설하우스 제어장치
KR102109337B1 (ko) * 2018-11-14 2020-05-12 (유)엔티엘 수중 모터 펌프의 지상 모니터링 시스템

Also Published As

Publication number Publication date
KR20230028660A (ko) 2023-03-02

Similar Documents

Publication Publication Date Title
US9943040B1 (en) Method and apparatus for horticultural lighting and associated optic systems
US20180010817A1 (en) Submerged, self-sustained waterborne data center facility
US10517226B2 (en) Spectral deficiency driven control systems and methods in plant growth automation
US9872357B1 (en) Horticultural luminaire, horticultural lighting arrangement and method for controlling horticultural lighting arrangement
CN105974972A (zh) 一种远程植物生长环境的智能监控系统及其智能监控方法
EP3903567A1 (en) Plant factory
US9955632B1 (en) Method and apparatus for horticultural lighting to better simulate the sun
CN104780693A (zh) 一种大棚智能环保led补光系统及其补光方法
KR101991029B1 (ko) 조명 제어 시스템
US11129248B2 (en) Method and apparatus for an indoor horticultural facility
KR101451701B1 (ko) 광 병용형 식물 재배 시스템
JP2011147413A (ja) 植物工場
US20190320590A1 (en) Adaptive Photosynthetically Active Radiation (PAR) Sensor With Daylight Integral (DLI) Control System Incorporating Lumen Maintenance
KR20140083099A (ko) 양계 사육장의 최적 조명환경을 위한 스마트 제어시스템 및 방법
KR102595159B1 (ko) 에너지 절감 및 생산효율 향상을 위한 무선 블루투스 메쉬 인공지능 생산시설 제어 시스템
KR101368781B1 (ko) 온실 최적 조명시스템
CN205961499U (zh) 具有led精准补光功能的智能大棚
CN203927689U (zh) 自动调节式太阳能led补光灯
KR101394486B1 (ko) 식물 조명용 광조사장치
KR101883264B1 (ko) 식물 공장을 위한 광량 제어 시스템
KR20150017462A (ko) 식물생장 조명 제어 시스템
KR101191618B1 (ko) Led 조명을 이용한 식물 재배 시스템 및 방법, 식물 재배용 led 조명 장치 및 그 장치의 구동 방법
US20210329850A1 (en) Adaptive photosynthetically active radiation (par) sensor with daylight integral (dli) control system incorporating lumen maintenance
KR20150101300A (ko) Led 광원을 이용한 식물 재배 시스템
KR102544094B1 (ko) 조명 컨트롤러

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant