KR102588397B1 - Fluorescent probe for detecting β-galactosidase and medical uses thereof - Google Patents

Fluorescent probe for detecting β-galactosidase and medical uses thereof Download PDF

Info

Publication number
KR102588397B1
KR102588397B1 KR1020210148395A KR20210148395A KR102588397B1 KR 102588397 B1 KR102588397 B1 KR 102588397B1 KR 1020210148395 A KR1020210148395 A KR 1020210148395A KR 20210148395 A KR20210148395 A KR 20210148395A KR 102588397 B1 KR102588397 B1 KR 102588397B1
Authority
KR
South Korea
Prior art keywords
fluorescent probe
cancer
galactosidase
fluorescence
sample
Prior art date
Application number
KR1020210148395A
Other languages
Korean (ko)
Other versions
KR20230063382A (en
Inventor
김환명
이효원
Original Assignee
아주대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 아주대학교산학협력단 filed Critical 아주대학교산학협력단
Priority to KR1020210148395A priority Critical patent/KR102588397B1/en
Publication of KR20230063382A publication Critical patent/KR20230063382A/en
Application granted granted Critical
Publication of KR102588397B1 publication Critical patent/KR102588397B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H15/00Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
    • C07H15/26Acyclic or carbocyclic radicals, substituted by hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/12Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains three hetero rings
    • C07D491/14Ortho-condensed systems
    • C07D491/147Ortho-condensed systems the condensed system containing one ring with oxygen as ring hetero atom and two rings with nitrogen as ring hetero atom
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/34Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/531Production of immunochemical test materials
    • G01N33/532Production of labelled immunochemicals
    • G01N33/533Production of labelled immunochemicals with fluorescent label
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biotechnology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Pathology (AREA)
  • Zoology (AREA)
  • Cell Biology (AREA)
  • Wood Science & Technology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Oncology (AREA)
  • Hospice & Palliative Care (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

본 발명은 β―갈락토시다아제 검출용 형광프로브 및 이를 이용한 의학적 용도에 관한 것으로, 상기 형광프로브는 근적외선 빛을 방출하는 고리형 형광염료이며, 형광현미경과 유체분석기를 이용한 생체 시료 내의 β-갈락토시다아제 검출 방법 및 이를 이용한 암진단 기술에 관한 것이다.
특히, 상기 형광프로브는 시료 내의 β-갈락토시다아제의 가수분해 효소 반응에 의해 Fred/Fyellow (F662/F620) 비율이 증가시켜 620 내지 662 nm에서 안정적인 적색 방출 비율측정(ratiometric) 형광을 나타냄으로써 암질환의 진단 및 암질환의 진행단계의 확인이 가능함에 따라, 본 발명의 형광프로브는 암질환 치료에 있어서 정확하고 효과적인 암질환 진단 정보를 제공할 수 있다.
The present invention relates to a fluorescent probe for detecting β-galactosidase and medical uses using the same. The fluorescent probe is a cyclic fluorescent dye that emits near-infrared light, and contains β-galactosidase in biological samples using a fluorescence microscope and fluid analyzer. It relates to a method for detecting lactosidase and cancer diagnosis technology using the same.
In particular, the fluorescent probe increases the F red /F yellow (F 662 /F 620 ) ratio by the hydrolytic enzyme reaction of β-galactosidase in the sample, resulting in stable red emission ratio measurement (ratiometric) at 620 to 662 nm. Since it is possible to diagnose cancer disease and confirm the progress stage of cancer disease by displaying fluorescence, the fluorescent probe of the present invention can provide accurate and effective cancer disease diagnosis information in cancer disease treatment.

Description

β―갈락토시다아제 검출용 형광프로브 및 이를 이용한 의학적 용도{Fluorescent probe for detecting β-galactosidase and medical uses thereof} Fluorescent probe for detecting β-galactosidase and medical uses thereof}

본 발명은 β-갈락토시다아제 검출용 형광프로브 및 이를 이용한 의학적 용도에 관한 것으로, 상기 형광프로브는 근적외선 빛을 방출하는 고리형 형광염료이며, 형광현미경과 유체분석기를 이용한 생체 시료 내의 β-갈락토시다아제 검출 방법 및 이를 이용한 암진단 기술에 관한 것이다.The present invention relates to a fluorescent probe for detecting β-galactosidase and medical uses using the same. The fluorescent probe is a cyclic fluorescent dye that emits near-infrared light, and contains β-galactosidase in biological samples using a fluorescence microscope and fluid analyzer. It relates to a method for detecting lactosidase and cancer diagnosis technology using the same.

유용한 리포터 효소인 β-갈락토시다아제(β-gal)는 유전자 발현, ELISA(enzyme-linked immunosorbent assay), 전사, 형질감염 및 혼성화 연구에 널리 사용되는 것으로 알려져 있다. β-Galactosidase (β-gal), a useful reporter enzyme, is known to be widely used in gene expression, enzyme-linked immunosorbent assay (ELISA), transcription, transfection, and hybridization studies.

β-갈락토시다아제는 결장직장암 및 난소암을 포함한 다양한 질병에 대한 강력한 바이오마커가 될 수 있어 살아있는 시료에서 β-갈락토시다아제의 분포와 활성을 모니터링하면 진단, 예후 및 치료를 개선할 수 있다. β-Galactosidase can be a powerful biomarker for various diseases, including colorectal cancer and ovarian cancer, so monitoring the distribution and activity of β-galactosidase in living samples can improve diagnosis, prognosis, and treatment. there is.

지난 수십 년 동안 다양한 생체 영상 기술이 세포 내 β-갈락토시다아제 활성을 모니터링하는 데 광범위하게 사용되어 왔으나, 이들 대부분은 효소 반응의 효능과 제한된 시공간적 해상도로 인해 한계가 있었다.Over the past decades, various bioimaging techniques have been widely used to monitor intracellular β-galactosidase activity, but most of them have limitations due to the efficacy of the enzymatic reaction and limited spatiotemporal resolution.

따라서, 현재까지 개발된 β-갈락토시다아제의 활성 측정법은 살아있는 세포 내에서 상기 효소활성만을 특이적으로 검출 및 영상화할 수 없고, 상기 효소의 검출을 위한 형광 표지자의 개발도 전무하므로, 인체 시료 내 β-갈락토시다아제를 비율측정적으로 정량할 수 있는 형광프로브의 개발이 필요한 실정이다. Therefore, the methods for measuring the activity of β-galactosidase developed to date cannot specifically detect and image the enzyme activity in living cells, and there is no development of a fluorescent marker for detection of the enzyme, so human samples There is a need for the development of a fluorescent probe capable of ratiometrically quantifying β-galactosidase.

대한민국 공개특허 제10-2016-0033868호 (2016.03.29)Republic of Korea Patent Publication No. 10-2016-0033868 (2016.03.29)

본 발명의 목적은 인체 시료 내 β-갈락토시다아제를 비율측정적으로 정량할 수 있는 형광프로브의 개발 및 이를 이용한 의학적 용도를 제공하는 데에 있다.The purpose of the present invention is to develop a fluorescent probe capable of ratiometrically quantifying β-galactosidase in human samples and to provide medical uses using the same.

본 발명은 하기 화학식 1 또는 화학식 2로 표시되는 화합물 또는 이의 약학적으로 허용가능한 염을 제공한다:The present invention provides a compound represented by the following Formula 1 or Formula 2, or a pharmaceutically acceptable salt thereof:

[화학식 1][Formula 1]

[화학식 2][Formula 2]

또한, 본 발명은 하기 화학식 1로 표시되는 화합물 또는 이의 약학적으로 허용가능한 염을 포함하는 β-갈락토시다아제 검출용 형광프로브를 제공한다:Additionally, the present invention provides a fluorescent probe for detecting β-galactosidase containing a compound represented by the following formula (1) or a pharmaceutically acceptable salt thereof:

[화학식 1][Formula 1]

또한, 본 발명은 상기 형광프로브를 포함하는 암질환 진단용 조성물 및 키트를 제공한다.Additionally, the present invention provides a composition and kit for diagnosing cancer diseases including the fluorescent probe.

또한, 본 발명은 상기 형광프로브를 이용한 암질환 진단을 위한 정보를 제공하는 방법을 제공한다.Additionally, the present invention provides a method of providing information for diagnosing cancer diseases using the fluorescent probe.

또한, 본 발명은 상기 형광프로브를 이용한 β-갈락토시다아제 활성의 정량적 영상화 방법을 제공한다.Additionally, the present invention provides a method for quantitative imaging of β-galactosidase activity using the fluorescent probe.

본 발명에 따른 형광프로브는 시료 내의 β-갈락토시다아제의 가수분해 효소 반응에 의해 Fred/Fyellow (F662/F620) 비율이 증가시켜 620 내지 662 nm에서 안정적인 적색 방출 비율측정(ratiometric) 형광을 나타냄으로써 암질환의 진단 및 암질환의 진행단계의 확인이 가능함에 따라, 본 발명의 형광프로브는 암질환 치료에 있어서 정확하고 효과적인 암질환 진단 정보를 제공할 수 있다.The fluorescent probe according to the present invention increases the F red / F yellow (F 662 / F 620 ) ratio by the hydrolytic enzyme reaction of β-galactosidase in the sample, measuring stable red emission at 620 to 662 nm (ratiometric). ) Since it is possible to diagnose cancer disease and confirm the progress stage of cancer disease by displaying fluorescence, the fluorescent probe of the present invention can provide accurate and effective cancer disease diagnosis information in cancer disease treatment.

도 1에서 (A) (파란색 및 빨간색) CCGal1 및 (검정색 및 마젠타색) CC1의 정규화된 흡수 및 방출 스펙트럼, (B-D) CCGal1과 β-gal의 효소 반응을 나타내며, (B) PBS에 2.5 U/mL β-gal을 첨가한 후 CCGal1 (2 μM)의 시간 경과 형광 스펙트럼, (C) F662/F620 비율의 평균 시간 경과 및 (D) CCGal1의 효소 동역학 분석 결과를 나타낸다.
도 2는 β-gal에 의한 CCGal1로부터 CC1의 형성을 검증하기 위한 HPLC 분석 결과를 나타낸 것이다.
도 3은 CCGal1로 염색된 SKOV-3 세포의 비율 측정 이미지(Fred/Fyellow)를 나타낸 것이다[(a) 비처리(대조군) 및 (b) 100 mM D-갈락토스(β-gal 억제제)로 전처리. (c) 해당 이미지의 평균 Fred/Fyellow 비율. 스케일 바 = 20 μm]
도 4는 (A) PBS 버퍼(10mM, pH 7.4, 37℃)에서 다양한 물질을 사용한 CCGal1의 평균 형광 비율(Fred/Fyellow) [(1) 대조군; 200 μM ROS/RNS, (2) H2O2, (3) TBHP, (4) OCl-, (5) O2-, (6) NO

Figure 112021125877670-pat00004
, (7)
Figure 112021125877670-pat00005
OtBu, (8)
Figure 112021125877670-pat00006
OH; 1mM 아미노산, (9) Lys, (10) Arg, (11) His, (12) Asp, (13) Glu, (14) GSH; 5 U/mL 효소, (15) ALP, (16) 아미다아제, (17) CE1, (18) CE2, (19) NQO1, (20) GGT, (21) β-gal], (B) 37℃m 2시간 동안 범용 완충액 (0.1M 시트르산, 0.1M KH2PO4, 0.1M Na2B4O7, 0.1M 트리스, 0.1M KCl에서 (빨간색) CCGal1 및 (검정색) CC1의 형광 비율(Fred/Fyellow)에 대한 pH 효과를 나타낸 것이다.
도 5는 MTT 분석을 사용하여 측정한 (A) CCGal1 및 (B) CC1의 존재 하에 SKOV-3 세포의 생존율을 나타낸 것이고, (C) CCGal1 염색 SKOV-3 세포의 형광 이미지, (D) 이미지 C의 영역 a-c에서 형광 강도의 변화를 기록한 것이다.
도 6은 CCGal1 염색 세포의 FACS 분석 결과를 나타낸 것이다[(β-gal 저발현; CCD-18Co, Huh-7, HeLa, β-gal 과발현; HT-29, SKOV-3, OVCAR-3, y축은 적색 형광 강도(Ch2, 660±15nm)를 나타내고 x축은 황색 형광 강도(Ch1, 620±15nm)를 나타냄).
도 7은 CCGal1 염색 세포주의 Fred/Fyellow 비율측정 이미지를 나타낸 것이다[(A) CCD-18Co, (B) HT-29, (C) SKOV-3 및 (D) OVCAR-3 세포의 비율 측정 이미지(Fred/Fyellow), (E) 이미지 A-D의 평균 Fred/Fyellow 비율].
도 8은 CCGal1로 염색된 인간 결장 (A) 정상 조직 및 (B) 암 조직의 비율 측정 이미지(Fred/Fyellow), (C) 평균 Fred/Fyellow 비율을 나타낸 것이다.Figure 1 shows (A) normalized absorption and emission spectra of (blue and red) CCGal1 and (black and magenta) CC1, (BD) enzymatic reaction of CCGal1 with β-gal, and (B) 2.5 U/mL in PBS. The time course fluorescence spectrum of CCGal1 (2 μM) after addition of mL β-gal, (C) average time course of F662/F620 ratio, and (D) enzyme kinetics analysis results of CCGal1 are shown.
Figure 2 shows the results of HPLC analysis to verify the formation of CC1 from CCGal1 by β-gal.
Figure 3 shows ratiometric images (F red / F yellow ) of SKOV-3 cells stained with CCGal1 [(a) untreated (control) and (b) treated with 100 mM D-galactose (β-gal inhibitor). Pretreatment. (c) Average F red /F yellow ratio of the corresponding image. Scale bar = 20 μm]
Figure 4 shows (A) the average fluorescence ratio (F red / F yellow ) of CCGal1 using various substances in PBS buffer (10mM, pH 7.4, 37°C) [(1) control; 200 μM ROS/RNS, (2) H 2 O 2 , (3) TBHP, (4) OCl - , (5) O 2 - , (6) NO
Figure 112021125877670-pat00004
, (7)
Figure 112021125877670-pat00005
OtBu, (8)
Figure 112021125877670-pat00006
OH; 1mM amino acids, (9) Lys, (10) Arg, (11) His, (12) Asp, (13) Glu, (14) GSH; 5 U/mL enzyme, (15) ALP, (16) amidase, (17) CE1, (18) CE2, (19) NQO1, (20) GGT, (21) β-gal], (B) 37 Fluorescence ratio ( F _ This shows the pH effect on red /F yellow ).
Figure 5 shows the survival rate of SKOV-3 cells in the presence of (A) CCGal1 and (B) CC1 measured using MTT assay, (C) fluorescence image of CCGal1 stained SKOV-3 cells, (D) Image C The change in fluorescence intensity in the area ac was recorded.
Figure 6 shows the results of FACS analysis of CCGal1 stained cells [(β-gal low expression; CCD-18Co, Huh-7, HeLa, β-gal overexpression; HT-29, SKOV-3, OVCAR-3, y axis is represents red fluorescence intensity (Ch2, 660 ± 15 nm) and x-axis represents yellow fluorescence intensity (Ch1, 620 ± 15 nm).
Figure 7 shows F red / F yellow ratio measurement images of CCGal1 stained cell lines [ratio measurement of (A) CCD-18Co, (B) HT-29, (C) SKOV-3, and (D) OVCAR-3 cells. Image (F red /F yellow ), (E) average F red /F yellow ratio of image AD].
Figure 8 shows ratiometric images (F red /F yellow ) and (C) average F red /F yellow ratio of human colon (A) normal tissue and (B) cancer tissue stained with CCGal1.

이하, 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명자는 생체 내 시료 내의 β-갈락토시다아제를 비율측정적으로 정량 분석을 할 수 있는 신규 화합물 개발을 위해 예의노력한 결과, 적색 방출 형광단으로서 고리형 시아닌과 자가 희생 절단 가능한 카바메이트 브릿지에 연결된 효소 인식 부분으로서 β-갈락토피라노실 단위로 이루어진 신규 화합물(CCGal1)을 발견하고, 형광 활성화 세포 분류(FACS) 유세포 분석과 결합된 공초점 형광 현미경 비율계측 이미지 분석을 통해 생체 내 시료 내 β-갈락토시다아제를 비율측정적으로 정량 분석을 할 수 있음을 밝혀내어 본 발명을 완성하였다. As a result of our diligent efforts to develop a new compound capable of ratiometrically quantitatively analyzing β-galactosidase in in vivo samples, the present inventors have developed a red-emitting fluorophore with a cyclic cyanine and a carbamate bridge capable of self-sacrificing cleavage. Discovery of a novel compound (CCGal1) consisting of a β-galactopyranosyl unit as a linked enzymatic recognition moiety, and the discovery of β-galactopyranosyl in in vivo samples through confocal fluorescence microscopy ratiometric image analysis coupled with fluorescence-activated cell sorting (FACS) flow cytometry. -The present invention was completed by discovering that galactosidase can be quantitatively analyzed ratiometrically.

이에, 본 발명은 하기 화학식 1 또는 화학식 2로 표시되는 화합물 또는 이의 약학적으로 허용가능한 염을 제공한다:Accordingly, the present invention provides a compound represented by the following Formula 1 or Formula 2, or a pharmaceutically acceptable salt thereof:

[화학식 1][Formula 1]

[화학식 2][Formula 2]

또한, 본 발명은 하기 화학식 1로 표시되는 화합물 또는 이의 약학적으로 허용가능한 염을 포함하는 β-갈락토시다아제 검출용 형광프로브를 제공한다:Additionally, the present invention provides a fluorescent probe for detecting β-galactosidase containing a compound represented by the following formula (1) or a pharmaceutically acceptable salt thereof:

[화학식 1][Formula 1]

반응식 1과 같이, 상기 화합물 또는 이의 약학적으로 허용가능한 염은 세포, 세포 소기관 또는 생체 조직의 β-갈락토시다아제와 반응하여 형광을 나타낼 수 있고, 특히 세포, 세포 소기관 또는 생체 조직의 β-갈락토시다아제와 반응하여 620 내지 662 nm에서 안정적인 적색 방출 비율측정(ratiometric) 형광을 나타낼 수 있다.As shown in Scheme 1, the compound or a pharmaceutically acceptable salt thereof may react with β-galactosidase of cells, organelles, or biological tissues to exhibit fluorescence, and in particular, β-galactosidase of cells, organelles, or biological tissues. It can react with galactosidase to exhibit stable red emission ratiometric fluorescence at 620 to 662 nm.

[반응식 1][Scheme 1]

또한, 본 발명은 상기 형광프로브를 포함하는 암질환 진단용 조성물을 제공한다.Additionally, the present invention provides a composition for diagnosing cancer diseases including the fluorescent probe.

또한, 본 발명은 상기 형광프로브를 포함하는 암질환 진단용 키트를 제공한다.Additionally, the present invention provides a kit for diagnosing cancer diseases including the fluorescent probe.

상기 암질환 진단용 조성물은 약학적으로 허용 가능한 담체를 더 포함한다. 상기 약학적으로 허용가능한 담체는 예를 들어, 부형제, 희석제 등이 있으며, 당해 기술분야에 잘 알려져 있다. 담체의 선택은 제조하고자 하는 구체적인 제형 및 그 조성물의 구체적인 투여방법에 따라 결정될 수 있다. 따라서, 본 발명의 암질환 진단용 조성물은 매우 다양한 형태의 제제로서 존재할 수 있다. 또한, 본 발명의 암질환 진단용 조성물은 그 용도 또는 활성 성분의 종류에 따라 적절한 투여방법으로 투여될 수 있다. The composition for diagnosing cancer disease further includes a pharmaceutically acceptable carrier. The pharmaceutically acceptable carriers include, for example, excipients and diluents, and are well known in the art. The choice of carrier may be determined depending on the specific dosage form to be prepared and the specific administration method of the composition. Therefore, the composition for diagnosing cancer diseases of the present invention may exist as a preparation in a wide variety of forms. Additionally, the composition for diagnosing cancer diseases of the present invention can be administered by an appropriate administration method depending on its purpose or type of active ingredient.

본 발명의 암질환 진단용 조성물의 투여량은 진단 또는 치료하고자 하는 질병의 종류, 질병의 정도, 진단하고자 하는 대상 조직 또는 기관 및 진단장치의 특성에 따라 달라질 수 있으며, 또한 상기 투여량은 투여 대상의 나이, 성별, 체중, 인종 등에 따라 증감할 수 있다.The dosage of the composition for diagnosing cancer diseases of the present invention may vary depending on the type of disease to be diagnosed or treated, the degree of the disease, the target tissue or organ to be diagnosed, and the characteristics of the diagnostic device, and the dosage may vary depending on the subject of administration. It can increase or decrease depending on age, gender, weight, race, etc.

본 발명의 암질환 진단용 조성물의 바람직한 투여방법은 비경구적, 예를 들어 볼루스 주입, 정맥내 주사, 동맥내 주입, 또는 폐가 조영되어야 하는 경우 스프레이, 예를 들어 연무제 분사가 있고, 경구 또는 직장 투여도 이용할 수 있으나, 공지된 조영제 투여방법으로도 가능하다. 비경구적 투여 제제는 무균이어야 하고, 생리학적으로 허용되지 않는 물질 및 상자성, 초상자성, 강자성, 또는 준강자성 오염물질이 없어야 하며, 방부제, 항균제, 비경구적 용액에 통상적으로 사용되는 완충액 및 항산화제, 부형제를 함유할 수 있으며, 분자영상에 방해가 되지 않는 다른 임의의 첨가제를 더 함유할 수도 있다.A preferred method of administration of the composition for diagnosing cancer diseases of the present invention is parenteral, for example, bolus injection, intravenous injection, intra-arterial injection, or, if the lungs are to be contrasted, spray, for example, aerosol spray, orally or rectally. Administration can also be used, but known contrast agent administration methods are also possible. Parenteral administration preparations must be sterile, free from physiologically unacceptable substances and paramagnetic, superparamagnetic, ferromagnetic, or quasi-ferromagnetic contaminants, and contain preservatives, antibacterial agents, buffers and antioxidants commonly used in parenteral solutions, It may contain excipients and may further contain any other additives that do not interfere with molecular imaging.

또한, 본 발명은 상기 형광프로브를 인간으로부터 분리된 시료에 처리하는 단계; 상기 형광프로브가 처리된 시료에 여기광을 조사하는 단계; 및 상기 여기광이 조사된 시료에서 형광프로브로부터 발생하는 색 변화 비율의 증가 수준을 확인하는 단계를 포함하는 것을 특징으로 하는, 암질환 진단을 위한 정보를 제공하는 방법을 제공한다.In addition, the present invention includes the steps of treating a sample isolated from a human with the fluorescent probe; Irradiating excitation light to the sample treated with the fluorescent probe; and confirming the level of increase in the rate of color change occurring from the fluorescent probe in the sample irradiated with the excitation light.

상기 여기광은 620 내지 662 nm 범위의 파장을 가질 수 있다.The excitation light may have a wavelength ranging from 620 to 662 nm.

상기 색 변화 비율은 시료 내 β-갈락토시다아제의 가수분해 효소 반응에 의해 Fred/Fyellow (F662/F620) 비율이 증가할 수 있다.The color change rate may be increased by the F red /F yellow (F 662 /F 620 ) ratio due to the hydrolytic enzyme reaction of β-galactosidase in the sample.

상기 암질환은 대장암, 난소암, 유방암, 간암, 폐암, 자궁암, 췌장암, 신장암, 위암 및 뇌암으로 이루어진 군에서 선택될 수 있지만, 이에 한정되는 것은 아니다.The cancer disease may be selected from the group consisting of colon cancer, ovarian cancer, breast cancer, liver cancer, lung cancer, uterine cancer, pancreatic cancer, kidney cancer, stomach cancer, and brain cancer, but is not limited thereto.

상기 색 변화 비율의 증가 수준을 확인하는 단계는 형광 활성화 세포분류 (FACS) 유세포 분석 및 형광현미경 이미지를 통해 관측할 수 있다.The step of confirming the level of increase in the color change rate can be observed through fluorescence activated cell sorting (FACS) flow cytometry and fluorescence microscopy images.

또한, 본 발명은 상기 형광프로브를 인간으로부터 분리된 시료에 주입하는 단계; 상기 단계에서 시료 내로 주입된 형광프로브가 시료 내의 β-갈락토시다아제와 반응하여 형광을 나타내는 단계; 및 상기 형광을 형광 활성화 세포분류 (FACS) 유세포 분석 및 형광현미경 이미지를 통해 관측하는 단계를 포함하는, β-갈락토시다아제 활성의 정량적 영상화 방법을 제공한다.Additionally, the present invention includes the steps of injecting the fluorescent probe into a sample isolated from a human; The fluorescent probe injected into the sample in the above step reacts with β-galactosidase in the sample to emit fluorescence; and observing the fluorescence through fluorescence activated cell sorting (FACS) flow cytometry and fluorescence microscopy images.

상기 형광프로브는 시료 내의 β-갈락토시다아제와 반응하여 620 내지 662 nm에서 안정적인 적색 방출 비율측정(ratiometric) 형광을 나타낼 수 있고, 시료 내의 β-갈락토시다아제의 가수분해 효소 반응에 의해 Fred/Fyellow (F662/F620) 비율이 증가할 수 있다.The fluorescent probe can react with β-galactosidase in the sample to display stable red emission ratiometric fluorescence at 620 to 662 nm, and F by the hydrolytic enzyme reaction of β-galactosidase in the sample. The red /F yellow (F 662 /F 620 ) ratio may increase.

이하, 본 발명의 이해를 돕기 위하여 실시예를 들어 상세하게 설명하기로 한다. 다만 하기의 실시예는 본 발명의 내용을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.Hereinafter, the present invention will be described in detail through examples to aid understanding. However, the following examples only illustrate the content of the present invention and the scope of the present invention is not limited to the following examples. Examples of the present invention are provided to more completely explain the present invention to those skilled in the art.

<합성예> CCGal1 및 CC1 합성<Synthesis example> Synthesis of CCGal1 and CC1

화합물 D는 이전에 알려진 방법[H. W. Lee, C. H. Heo, D. Sen, H.-O. Byun, I. H. Kwak, G. Yoon and H. M, Kim, Anal. Chem., 86, 10001]에 따라 합성하였고, CCGal1 및 CC1는 다음과 같은 반응식 2에 따라 합성하였다.Compound D was prepared using a previously known method [H. W. Lee, C. H. Heo, D. Sen, H.-O. Byun, I. H. Kwak, G. Yoon and H. M, Kim, Anal. Chem., 86, 10001], and CCGal1 and CC1 were synthesized according to Scheme 2 as follows.

[반응식 2][Scheme 2]

1. 화합물 A 합성1. Synthesis of Compound A

tert-부틸(5-옥소-5,6,7,8-테트라하이드로나프랄렌-2-일)카바메이트 (2.0 g, 7.65 mmol) 및 포타슘 tert-부톡사이드 (3.86g, 34.44 mmol)를 0℃, 2시간 동안 벤젠 (25 mL)에 용해시킨 후, 에틸 포르메이트 (1.55 mL, 19.13 mmol)를 한방울씩 첨가하고 0℃, 4시간 동안 계속 교반하였다. 반응 완료 후, satd. NH4Cl를 첨가하고 DCM(3X)으로 추출하였다. 이렇게 얻은 유기층을 염수로 세정하고, Na2SO4로 건조시키고, 증발건조시켰다. 헥산 내 25% 에틸아세테이트를 이용한 컬럼 크로마토그래피를 통해 82% 수율로 원하는 물질을 얻었다. tert -Butyl(5-oxo-5,6,7,8-tetrahydronapralen-2-yl)carbamate (2.0 g, 7.65 mmol) and potassium tert -butoxide (3.86g, 34.44 mmol) were dissolved in benzene (25 mL) at 0°C for 2 hours, then ethyl formate (1.55 mL, 19.13 mmol) was added dropwise. After addition, stirring was continued at 0°C for 4 hours. After completion of reaction, satd. NH 4 Cl was added and extracted with DCM (3X). The organic layer thus obtained was washed with brine, dried over Na 2 SO 4 , and evaporated to dryness. The desired material was obtained in 82% yield through column chromatography using 25% ethyl acetate in hexane.

1H NMR(chloroform-d, 600 MHz): δ (ppm) 8.00 (d, J = 6.2 Hz, 1H), 7.89 (d, J = 8.3 Hz, 1H), 7.46 (s, 1H), 7.13 (d, J = 9.0 Hz, 1H), 6.63 (s, 1H), 2.85 (t, J = 6.9 Hz, 2H), 2.54 (t, J = 6.9 Hz, 2H), 1.52 (s, 9H). 1 H NMR (chloroform- d , 600 MHz): δ (ppm) 8.00 (d, J = 6.2 Hz, 1H), 7.89 (d, J = 8.3 Hz, 1H), 7.46 (s, 1H), 7.13 (d) , J = 9.0 Hz, 1H), 6.63 (s, 1H), 2.85 (t, J = 6.9 Hz, 2H), 2.54 (t, J = 6.9 Hz, 2H), 1.52 (s, 9H).

2. 화합물 B 합성2. Compound B synthesis

THF (25 mL)에 용해시킨 화합물 A (1.5 g, 5.18 mmol) 및 THF (5.0 mL)에 용해시킨 DDQ (1.8 g, 5.18 mmol)를 0℃에서 천천히 첨가하고, 실온에서 3시간 동안 반응시켰다. 반응 완료 후, 용매를 감압 증발건조시키고, 헥산 내 25% 에틸아세테이트를 이용한 컬럼 크로마토그래피를 통해 61% 수율로 원하는 물질을 얻었다.Compound A (1.5 g, 5.18 mmol) dissolved in THF (25 mL) and DDQ (1.8 g, 5.18 mmol) dissolved in THF (5.0 mL) were slowly added at 0°C and reacted at room temperature for 3 hours. After completion of the reaction, the solvent was evaporated to dryness under reduced pressure, and the desired material was obtained in 61% yield through column chromatography using 25% ethyl acetate in hexane.

1H NMR(chloroform-d, 600 MHz): δ (ppm) 12.67 (s, 1H), 9.88 (s, 1H), 8.32 (d, J = 9.2 Hz, 1H), 8.02 (s, 1H), 7.41 (d, J = 8.0 Hz, 1H), 7.30 (dd, J = 9.2, 2.3 Hz, 1H), 7.25 (d, J = 9.2 Hz, 1H), 6.81 (s, 1H), 1.54 (s, 9H). 1 H NMR (chloroform- d , 600 MHz): δ (ppm) 12.67 (s, 1H), 9.88 (s, 1H), 8.32 (d, J = 9.2 Hz, 1H), 8.02 (s, 1H), 7.41 (d, J = 8.0 Hz, 1H), 7.30 (dd, J = 9.2, 2.3 Hz, 1H), 7.25 (d, J = 9.2 Hz, 1H), 6.81 (s, 1H), 1.54 (s, 9H) .

3. 화합물 C 합성3. Compound C synthesis

화합물 B (1.0 g, 3.48 mmol)와 1-(2-(1,3-디옥솔란-2-일)에틸)-3,3-디메틸-2-메틸렌인돌린 [1-(2-(1,3-dioxolan-2-yl)ethyl)-3,3-dimethyl-2-methyleneindoline; (0.99 g, 3.83 mmol)]을 EtOH (20 mL)에 첨가하고 72℃에서 48시간 동안 가열하였다. 용매를 감압 증발건조시키고, 헥산 내 25%~50% 에틸아세테이트를 이용한 컬럼 크로마토그래피를 통해 68% 수율로 원하는 물질을 얻었다.Compound B (1.0 g, 3.48 mmol) and 1-(2-(1,3-dioxolan-2-yl)ethyl)-3,3-dimethyl-2-methyleneindoline [1-(2-(1,3- dioxolan-2-yl)ethyl)-3,3-dimethyl-2-methyleneindoline; (0.99 g, 3.83 mmol)] was added to EtOH (20 mL) and heated at 72°C for 48 hours. The solvent was evaporated to dryness under reduced pressure, and the desired material was obtained in 68% yield through column chromatography using 25% to 50% ethyl acetate in hexane.

1H NMR (chloroform-d, 600 MHz): δ (ppm) 7.96 (s, 1H), 7.77 (d, J = 9.0 Hz, 1H), 7.16-7.21 (m, 2H), 7.11 (d, J = 8.3 Hz, 1H), 7.07 (d, J = 8.3 Hz, 2H), 6.98 (dd, J = 9.1, 1.9 Hz, 1H), 6.89 (d, J = 10.3 Hz, 1H), 6.83 (t, J = 7.2 Hz, 1H), 6.63 (d, J = 7.6 Hz, 2H), 5.62 (d, J = 10.3 Hz, 1H), 4.83 (t, J = 4.8 Hz, 1H), 3.82-4.04 (m, 7H), 3.44-3.49 (m, 1H), 3.26-3.31 (m, 1H), 1.97-2.01 (m, 1H), 1.87-1.93 (m, 1H), 1.51 (s, 9H), 1.28 (s, 3H), 1.17 (s, 3H). 1 H NMR (chloroform- d , 600 MHz): δ (ppm) 7.96 (s, 1H), 7.77 (d, J = 9.0 Hz, 1H), 7.16-7.21 (m, 2H), 7.11 (d, J = 8.3 Hz, 1H), 7.07 (d, J = 8.3 Hz, 2H), 6.98 (dd, J = 9.1, 1.9 Hz, 1H), 6.89 (d, J = 10.3 Hz, 1H), 6.83 (t, J = 7.2 Hz, 1H), 6.63 (d, J = 7.6 Hz, 2H), 5.62 (d, J = 10.3 Hz, 1H), 4.83 (t, J = 4.8 Hz, 1H), 3.82-4.04 (m, 7H) , 3.44-3.49 (m, 1H), 3.26-3.31 (m, 1H), 1.97-2.01 (m, 1H), 1.87-1.93 (m, 1H), 1.51 (s, 9H), 1.28 (s, 3H) , 1.17 (s, 3H).

4. CC1 합성4. CC1 synthesis

화합물 C (0.2 g, 0.38 mmol)를 DCM (30 mL)에 첨가하고 -78℃로 냉각시키고, DCM에 용해시킨 1.0M BBr3 용액을 15분 기간에 걸쳐 적가하고, -78℃에서 4시간 동안 계속 교반하였다. 천천히, 실온으로 온도를 증가시키고 밤새 계속 교반하였다. 짙은 오렌지색 반응 덩어리에서 과량의 BBr3를 수성 NH4Cl을 사용하여 0℃에서 천천히 켄칭하고 DCM (3X)으로 추출한 짙은 파란색 반응 혼합물을 얻었다. 유기층을 염수로 세척하고 Na2SO4로 건조하고 농축하여 CHCl3 중 3%~20% 메탄올을 사용하는 컬럼 크로마토그래피로 정제하여 원하는 CC1을 진한 파란색 고체로서 15% 수율로 얻었다.Compound C (0.2 g, 0.38 mmol) was added to DCM (30 mL) and cooled to -78°C, 1.0M BBr 3 solution dissolved in DCM was added dropwise over a period of 15 min and stirring continued for 4 h at -78°C. did. Slowly, the temperature was increased to room temperature and stirring was continued overnight. Excess BBr 3 from the dark orange reaction mass was quenched slowly at 0° C. using aqueous NH 4 Cl and extracted with DCM (3X) to obtain a dark blue reaction mixture. The organic layer was washed with brine, dried over Na 2 SO 4 , concentrated, and purified by column chromatography using 3% to 20% methanol in CHCl 3 to obtain the desired CC1 as a dark blue solid in 15% yield.

1H NMR (methanol-d 4,600MHz):δ (ppm) 8.27 (s, 1H), 8.00 (d, J = 9.0 Hz, 1H), 7.67 (d, J = 6.9 Hz, 1H), 7.62 (d, J = 7.6 Hz, 1H), 7.57 (td, J = 7.6, 1.4 Hz, 1H), 7.52 (t, J = 7.9 Hz, 1H), 7.31 (d, J = 9.0 Hz, 1H), 7.13 (d, J = 9.0 Hz, 1H), 6.95 (dd, J = 9.0, 2.1 Hz, 1H), 6.82 (d, J = 2.1 Hz, 1H), 5.54-5.57 (m, 1H), 4.68-4.71 (m, 1H), 4.27 (td, J = 13.9, 4.4 Hz, 1H), 3.00-3.04 (m, 1H), 2.76-2.63 (1H), 1.83 (s, 3H), 1.77 (s, 3H). MS (Q-TOF): m/z calcd. for [C25H23N2O]+:367.1805,found:367.1804. 1H NMR (methanol- d 4,600MHz ): δ (ppm) 8.27 (s, 1H), 8.00 (d, J = 9.0 Hz, 1H), 7.67 (d, J = 6.9 Hz, 1H), 7.62 (d) , J = 7.6 Hz, 1H), 7.57 (td, J = 7.6, 1.4 Hz, 1H), 7.52 (t, J = 7.9 Hz, 1H), 7.31 (d, J = 9.0 Hz, 1H), 7.13 (d , J = 9.0 Hz, 1H), 6.95 (dd, J = 9.0, 2.1 Hz, 1H), 6.82 (d, J = 2.1 Hz, 1H), 5.54-5.57 (m, 1H), 4.68-4.71 (m, 1H), 4.27 (td, J = 13.9, 4.4 Hz, 1H), 3.00-3.04 (m, 1H), 2.76-2.63 (1H), 1.83 (s, 3H), 1.77 (s, 3H). MS (Q-TOF): m/z calcd. for [C 25 H 23 N 2 O] + :367.1805,found:367.1804.

5. CCGal1 합성5. CCGal1 synthesis

1) 1단계1) Step 1

DCM (2.0 mL)에 용해시킨 CC1 (20mg, 54μmol)에 피리딘 6방울을 첨가하였다. 0℃에서 THF (0.5mL)에 용해시킨 p-니트로페닐 클로로포르메이트 (44 mg, 0.2 mmol)를 첨가하고 동일한 온도에서 계속 교반한 후 실온에서 3시간 동안 교반하였다. 다음으로, THF (2.0 mL)에 용해시킨 화합물 D (0.44g, 0.98 mmol)를 실온에서 천천히 첨가하고 8시간 동안 계속 교반하였다. 반응 혼합물을 증발건조시키고 CHCl3 중 3%~15% 메탄올을 사용하는 컬럼 크로마토그래피로 정제하여 원하는 중간체를 암적색 고체로서 45% 수율로 얻었다.Six drops of pyridine were added to CC1 (20 mg, 54 μmol) dissolved in DCM (2.0 mL). p-nitrophenyl chloroformate (44 mg, 0.2 mmol) dissolved in THF (0.5 mL) at 0°C was added, and stirring was continued at the same temperature, followed by stirring at room temperature for 3 hours. Next, Compound D (0.44 g, 0.98 mmol) dissolved in THF (2.0 mL) was slowly added at room temperature and stirring was continued for 8 hours. The reaction mixture was evaporated to dryness and CHCl 3 Purified by column chromatography using 3% to 15% methanol, the desired intermediate was obtained as a dark red solid in 45% yield.

1H NMR (methanol-d 4,600MHz):δ (ppm) 8.35 (s, 1H), 8.16 (d, J = 9.0 Hz, 1H), 8.05 (s, 1H), 7.72 (t, J = 7.2 Hz, 2H), 7.56-7.62 (m, 3H), 7.50 (d, J = 8.3 Hz, 1H), 7.39 (q, J = 4.4 Hz, 3H), 7.02 (d, J = 9.0 Hz, 2H), 5.62 (q, J = 5.5 Hz, 1H), 5.43 (d, J = 3.4 Hz, 1H), 5.33 (dd, J = 10.3, 8.3 Hz, 1H), 5.29 (d, J = 8.3 Hz, 1H), 5.23 (dd, J = 10.0, 3.8 Hz, 1H), 5.16 (s, 2H), 4.78 (dd, J = 15.1, 4.8 Hz, 1H), 4.33-4.38 (m, 1H), 4.27 (t, J = 6.5 Hz, 1H), 4.15 (d, J = 6.2 Hz, 2H), 3.05-3.08 (m, 1H), 2.76 (qd, J = 12.4, 5.5 Hz, 1H), 2.15 (s, 4H), 2.03 (s, 3H), 1.99 (s, 3H), 1.95 (s, 3H), 1.86 (s, 3H), 1.80 (s, 3H). 1H NMR (methanol -d 4,600MHz ): δ (ppm) 8.35 (s, 1H), 8.16 (d, J = 9.0 Hz, 1H), 8.05 (s, 1H), 7.72 (t, J = 7.2 Hz) , 2H), 7.56-7.62 (m, 3H), 7.50 (d, J = 8.3 Hz, 1H), 7.39 (q, J = 4.4 Hz, 3H), 7.02 (d, J = 9.0 Hz, 2H), 5.62 (q, J = 5.5 Hz, 1H), 5.43 (d, J = 3.4 Hz, 1H), 5.33 (dd, J = 10.3, 8.3 Hz, 1H), 5.29 (d, J = 8.3 Hz, 1H), 5.23 (dd, J = 10.0, 3.8 Hz, 1H), 5.16 (s, 2H), 4.78 (dd, J = 15.1, 4.8 Hz, 1H), 4.33-4.38 (m, 1H), 4.27 (t, J = 6.5 Hz, 1H), 4.15 (d, J = 6.2 Hz, 2H), 3.05-3.08 (m, 1H), 2.76 (qd, J = 12.4, 5.5 Hz, 1H), 2.15 (s, 4H), 2.03 (s) , 3H), 1.99 (s, 3H), 1.95 (s, 3H), 1.86 (s, 3H), 1.80 (s, 3H).

2) 2단계2) Step 2

앞서 얻어진 중간체 (10 mg, 11 μmol)를 0℃에서 메탄올 (1.0 mL)에 녹이고 메탄올 (0.11 mL, 0.1 mmol) 중의 1.0M NaOMe 용액을 적가하고 동일한 온도에서 1시간 동안 계속 교반하였다. 조 혼합물을 감압 하에 증발시키고 물 중 30%~70% 아세토니트릴을 사용하는 분취-HPLC에 의해 정제하여 38% 수율의 암적색 고체로서 CCGal1을 얻었다.The previously obtained intermediate (10 mg, 11 μmol) was dissolved in methanol (1.0 mL) at 0°C, a 1.0M NaOMe solution in methanol (0.11 mL, 0.1 mmol) was added dropwise, and stirring was continued at the same temperature for 1 hour. The crude mixture was evaporated under reduced pressure and purified by preparative-HPLC using 30%-70% acetonitrile in water to give CCGal1 as a dark red solid in 38% yield.

1H NMR (methanol-d 4,600MHz):δ (ppm) 8.36 (s, 1H), 8.16 (d, J = 9.0 Hz, 1H), 8.05 (s, 1H), 7.73 (t, J = 7.2 Hz, 2H), 7.61 (q, J = 6.4 Hz, 2H), 7.57 (d, J = 9.6 Hz, 1H), 7.51 (d, J = 9.0 Hz, 1H), 7.40 (d, J = 8.3 Hz, 1H), 7.37 (d, J = 9.0 Hz, 2H), 7.10 (d, J = 8.3 Hz, 2H), 5.63 (q, J = 5.5 Hz, 1H), 5.15 (s, 2H), 4.78 (dd, J = 15.1, 4.8 Hz, 1H), 4.36 (t, J = 14.1 Hz, 1H), 3.88 (d, J = 2.4 Hz, 1H), 3.71-3.79 (m, 4H), 3.67 (t, J = 5.9 Hz, 1H), 3.55 (dd, J = 9.6, 3.4 Hz, 1H), 3.08 (d, J = 6.2 Hz, 1H), 2.76 (qd, J = 12.3, 5.2 Hz, 1H), 1.86 (s, 3H), 1.80 (s, 3H). HRMS (ESI+): m/z calcd. for [C39H39N2O9]+: 679.2650, found: 679.2642. 1H NMR (methanol -d 4,600MHz ): δ (ppm) 8.36 (s, 1H), 8.16 (d, J = 9.0 Hz, 1H), 8.05 (s, 1H), 7.73 (t, J = 7.2 Hz) , 2H), 7.61 (q, J = 6.4 Hz, 2H), 7.57 (d, J = 9.6 Hz, 1H), 7.51 (d, J = 9.0 Hz, 1H), 7.40 (d, J = 8.3 Hz, 1H) ), 7.37 (d, J = 9.0 Hz, 2H), 7.10 (d, J = 8.3 Hz, 2H), 5.63 (q, J = 5.5 Hz, 1H), 5.15 (s, 2H), 4.78 (dd, J = 15.1, 4.8 Hz, 1H), 4.36 (t, J = 14.1 Hz, 1H), 3.88 (d, J = 2.4 Hz, 1H), 3.71-3.79 (m, 4H), 3.67 (t, J = 5.9 Hz) , 1H), 3.55 (dd, J = 9.6, 3.4 Hz, 1H), 3.08 (d, J = 6.2 Hz, 1H), 2.76 (qd, J = 12.3, 5.2 Hz, 1H), 1.86 (s, 3H) , 1.80 (s, 3H). HRMS (ESI + ): m/z calcd. for [C 39 H 39 N 2 O 9 ] + : 679.2650, found: 679.2642.

<실험예> <Experimental example>

하기의 실험예들은 본 발명에 따른 각각의 실시예에 공통적으로 적용되는 실험예를 제공하기 위한 것이다.The following experimental examples are intended to provide experimental examples commonly applied to each embodiment according to the present invention.

1. 사용 물질 및 일반적인 분석 방법1. Materials used and general analysis methods

본 발명의 모든 반응은 화염 건조된 둥근 바닥 플라스크에서 질소 분위기 하에서 수행하였다. 모든 화학 물질은 Sigma-Aldrich에서 구입했으며 용매는 적절하게 증류되었다. 박층 크로마토그래피(TLC) 플레이트(TLC Silica gel 60 F254, 1.05715.0001, Merck)를 사용하여 반응 과정을 모니터링 하였다. 생성물은 일반 범용 또는 C18 컬럼 카트리지가 있는 중압 액체 크로마토그래피(AI-580S, YAMAZEN)를 사용하여 정제되었다. NMR 스펙트럼은 600MHz NMR 분광계(JNM-ECZ 600R, JEOL)를 사용하여 얻었다. 고성능 액체 크로마토그래피(HPLC)는 Waters X-Bridge 컬럼(C18, 5μm, 4.6x250mm)을 사용하여 Waters 2695 모듈(Waters, Milford, MA, USA)을 사용하여 수행되었다. Waters X-Bridge Prep 컬럼(C18, 5μm, 19x250mm)을 사용하여 Waters 2525 Binary Gradient 모듈에서 분취용 HPLC를 수행하고 HRMS 시스템(Accela UPLC/LTQ-Orbitrap XL, Thermo Fisher Scientific) 및 Q-TOF 시스템(Dionex UPLC/TripleTOF 5600+, AB Sciex)을 사용하여 질량 데이터를 얻었다.All reactions of the present invention were performed under a nitrogen atmosphere in a flame-dried round bottom flask. All chemicals were purchased from Sigma-Aldrich and solvents were appropriately distilled. The reaction process was monitored using a thin layer chromatography (TLC) plate (TLC Silica gel 60 F254, 1.05715.0001, Merck). The product was purified using medium pressure liquid chromatography (AI-580S, YAMAZEN) with a general purpose or C18 column cartridge. NMR spectra were obtained using a 600 MHz NMR spectrometer (JNM-ECZ 600R, JEOL). High-performance liquid chromatography (HPLC) was performed using a Waters 2695 module (Waters, Milford, MA, USA) using a Waters X-Bridge column (C18, 5 μm, 4.6x250 mm). Preparative HPLC was performed on a Waters 2525 Binary Gradient module using a Waters Mass data were obtained using UPLC/TripleTOF 5600+, AB Sciex).

2. 분광학 분석2. Spectroscopic analysis

S-3100 UV-Vis 분광 광도계에서 흡수 스펙트럼을 획득하고 테플론 스토퍼가 있는 1.0 cm 광 경로 Hellma 석영 셀을 사용하여 FluoroMate FS-2 형광계로 방출 스펙트럼을 기록하였다. 상대 형광 양자 수율은 기준 화합물로 크레실 바이올렛(메탄올에서 Φ = 0.54)을 사용하여 설정되었다.Absorption spectra were acquired on a S-3100 UV-Vis spectrophotometer and emission spectra were recorded on a FluoroMate FS-2 fluorometer using a 1.0 cm optical path Hellma quartz cell with a Teflon stopper. The relative fluorescence quantum yield was set using cresyl violet (Φ = 0.54 in methanol) as the reference compound.

3. 물 용해도 결정3. Determination of water solubility

각 화합물의 작은 분취량을 DMSO에 용해시켜 화합물 용액의 스톡(10.0 mM)을 얻었다. 스톡 용액을 2.0 mL의 PBS 완충액(10mM, pH 7.4)을 포함하는 석영 셀에서 0.1-10.0 μM로 희석하였다. PBS 완충액에서 DMSO의 농도는 0.1% 미만으로 유지되었다. 형광 강도 대 화합물 농도의 플롯은 낮은 농도에서 선형이었고 일부 특정 농도에서 내림차순 곡률을 나타내었다. 선형 영역에서 가장 높은 농도를 수용해도로 취하였고, PBS 완충액에서 CCGal1 및 CC1의 수용해도는 각각 2.0 및 1.0 μM으로 결정되었다.A small aliquot of each compound was dissolved in DMSO to obtain a stock (10.0 mM) of compound solution. Stock solutions were diluted to 0.1-10.0 μM in a quartz cell containing 2.0 mL of PBS buffer (10 mM, pH 7.4). The concentration of DMSO in the PBS buffer was maintained below 0.1%. The plot of fluorescence intensity versus compound concentration was linear at low concentrations and showed a descending curvature at some specific concentrations. The highest concentration in the linear region was taken as the aqueous solubility, and the aqueous solubilities of CCGal1 and CC1 in PBS buffer were determined to be 2.0 and 1.0 μM, respectively.

4. 세포 배양 조건4. Cell culture conditions

모든 세포를 이미징 전에 2일 동안 유리 바닥 접시(Wuxi NEST Biotechnology)에 분주하고 5/95(v/v)의 가습 분위기에서 37℃의 CO2 인큐베이터(Water Jacketed 3010, Thermo Fisher Sci-entific)에 유지시켰다. 염색 후, 성장배지를 제거하고 무글루코스 배지로 교체하였다. 세포를 추가로 3시간 동안 2.0 μM CCGal1 또는 CC1과 함께 배양시키고 PBS(Gibco, Thermo Fisher Scientific)로 두 번 세척한 다음 이미지화 하였다. 각 세포의 성장 배지는 다음과 같다.All cells were seeded in glass bottom dishes (Wuxi NEST Biotechnology) for 2 days before imaging and maintained in a CO 2 incubator (Water Jacketed 3010, Thermo Fisher Sci-entific) at 37°C in a humidified atmosphere of 5/95 (v/v). I ordered it. After staining, the growth medium was removed and replaced with glucose-free medium. Cells were incubated with 2.0 μM CCGal1 or CC1 for an additional 3 h, washed twice with PBS (Gibco, Thermo Fisher Scientific), and then imaged. The growth medium for each cell is as follows.

CCD-18Co (인간 결장 정상 세포주, CRL-1459, American Type Culture Collection): 10% FBS (WelGene, Korea), 페니실린 (100 units/mL) 및 스트렙토마이신(100 μg/mL)이 첨가된 DMEM (WelGene, Korea).CCD-18Co (human colon normal cell line, CRL-1459, American Type Culture Collection): DMEM (WelGene) supplemented with 10% FBS (WelGene, Korea), penicillin (100 units/mL), and streptomycin (100 μg/mL). , Korea).

Huh-7 (human hepatocellular carcinoma cell line, 60104, Korean Cell Line Bank): 10% FBS (WelGene, Korea), 페니실린 (100 units/mL), 스트렙토마이신 (100 μg/mL)이 첨가된 저포도당 DMEM (WelGene, Korea).Huh-7 (human hepatocellular carcinoma cell line, 60104, Korean Cell Line Bank): low-glucose DMEM supplemented with 10% FBS (WelGene, Korea), penicillin (100 units/mL), and streptomycin (100 μg/mL) WelGene, Korea).

HeLa (인간 자궁경부 선암 세포주, CCL-2, American Type Culture Collection): 10% FBS (WelGene, Korea), 페니실린 (100 units/mL) 및 스트렙토마이신(100 μg/mL)이 첨가된 MEM (WelGene, Korea).HeLa (human cervical adenocarcinoma cell line, CCL-2, American Type Culture Collection): MEM (WelGene, Korea) supplemented with 10% FBS (WelGene, Korea), penicillin (100 units/mL), and streptomycin (100 μg/mL). Korea).

OVCAR-3 (인간 난소 선암 세포주, 30161, 한국세포주은행), SKOV-3 (인간 난소 선암 세포주, 30077, 한국세포주은행), HT-29 (인간 대장직장 선암 세포주, HTB-38, American Type Culture Collection): 10% FBS (WelGene, Korea), 페니실린 (100 units/mL) 및 스트렙토마이신 (100 μg/mL)이 첨가된 RPMI(WelGene, Korea).OVCAR-3 (human ovarian adenocarcinoma cell line, 30161, Korea Cell Line Bank), SKOV-3 (human ovarian adenocarcinoma cell line, 30077, Korea Cell Line Bank), HT-29 (human colorectal adenocarcinoma cell line, HTB-38, American Type Culture Collection ): RPMI (WelGene, Korea) supplemented with 10% FBS (WelGene, Korea), penicillin (100 units/mL), and streptomycin (100 μg/mL).

5. 세포 생존율 분석5. Cell viability analysis

MTT 키트 (AbCareBio CL) 분석을 통해 세포 생존율을 분석하였다. 세포를 96-웰 플레이트 상에서 24시간 동안 배양한 후, 다양한 농도의 화합물을 첨가하였다. 2시간 동안 배양한 후, 배양배지를 10% MTT를 함유하는 무혈청 배지로 교체한 후 2시간 더 배양하였다. MTT 함유 배지를 제거하고 DMSO를 첨가하여 형성된 포마잔 침전물을 용해시킨 후, 600 nm에서 흡광도를 측정하였다.Cell viability was analyzed using the MTT kit (AbCareBio CL) analysis. After the cells were cultured on a 96-well plate for 24 hours, various concentrations of compounds were added. After culturing for 2 hours, the culture medium was replaced with serum-free medium containing 10% MTT and cultured for another 2 hours. The MTT-containing medium was removed, DMSO was added to dissolve the formed formazan precipitate, and the absorbance was measured at 600 nm.

6. 형광 현미경 분석6. Fluorescence microscopy analysis

CCGal1 및 CC1 염색된 세포의 형광 현미경 이미지는 x40 오일 대물렌즈, 1.30의 개구수(NA)를 갖는 분광 공초점 현미경 (Leica TCS SP8 MP)으로 분석하였다. 형광 현미경 이미지는 488 또는 552 nm 레이저로 CCGal1 또는 CC1을 여기하여 DMI6000B 현미경 (Leica)으로 얻었다. 살아있는 세포 영상은 안정적인 세포 환경을 유지하기 위해 살아있는 세포 배양기(Chamlide IC system, Live Cell Instrument, Korea)를 이용하여 수행하였다.Fluorescence microscopy images of CCGal1 and CC1 stained cells were analyzed with a spectroscopic confocal microscope (Leica TCS SP8 MP) with a ×40 oil objective and a numerical aperture (NA) of 1.30. Fluorescence microscopy images were obtained with a DMI6000B microscope (Leica) by exciting CCGal1 or CC1 with a 488 or 552 nm laser. Live cell imaging was performed using a live cell culture device (Chamlide IC system, Live Cell Instrument, Korea) to maintain a stable cell environment.

7. 효소 동역학 분석7. Enzyme kinetic analysis

552 nm 여기에서 Varioskan Flash 다중 검출 마이크로플레이트 판독기(Thermo Fisher Scientific)를 사용하여 형광 기반 효소 동역학 분석을 수행하였다. 다양한 농도(0~50 μM)의 CCGal1 용액을 PBS 완충액(10mM, pH 7.4, 37°C)으로 준비하였다. 최종 농도가 79.4 mg/L인 β-gal을 사용하였으며, 형광 강도는 620 nm와 662 nm에서 0분부터 30분까지 1분 간격으로 기록하였다. 형광 비율 값의 변화를 속도로 변환하고 쌍곡선 함수(OriginPro 8.0, OriginLab)를 사용하여 비선형 피팅으로 플롯하고 Michaelis-Menten 역학의 매개변수를 산출하였다.Fluorescence-based enzyme kinetic analysis was performed using a Varioskan Flash multiple detection microplate reader (Thermo Fisher Scientific) at 552 nm excitation. CCGal1 solutions of various concentrations (0–50 μM) were prepared in PBS buffer (10 mM, pH 7.4, 37°C). β-gal was used at a final concentration of 79.4 mg/L, and fluorescence intensity was recorded at 1-minute intervals from 0 to 30 minutes at 620 nm and 662 nm. Changes in fluorescence ratio values were converted to rates and plotted by nonlinear fitting using the hyperbolic function (OriginPro 8.0, OriginLab), and the parameters of Michaelis-Menten dynamics were calculated.

8. 유세포 분석8. Flow cytometry

FACS 유세포 분석 데이터는 405, 488 및 640 nm에서 작동하는 3개의 레이저가 장착된 Cytek Aurora-3 스펙트럼 유세포 분석기(Cytek Biosciences, USA)에서 획득하였다. 아주대학교 3차원 면역 시스템 이미징 핵심 시설에서 SpectroFlo 소프트웨어(Version 2.2.0, Cytek Bio-sciences, USA)를 사용하여 데이터를 수집하고 분석하였다.FACS flow cytometry data were acquired on a Cytek Aurora-3 spectral flow cytometer (Cytek Biosciences, USA) equipped with three lasers operating at 405, 488, and 640 nm. Data were collected and analyzed using SpectroFlo software (Version 2.2.0, Cytek Bio-sciences, USA) at the 3D Immune System Imaging Core Facility of Ajou University.

<실시예 1> 화합물 설계, 합성 및 특성<Example 1> Compound design, synthesis and properties

1. 화합물 설계 및 합성1. Compound design and synthesis

CCGal1은 적색 방출 형광단으로서 고리형 시아닌과 자가 희생 절단 가능한 카바메이트 브릿지에 연결된 효소 인식 부분으로서 β-갈락토피라노실 단위로 구성되었다. 형광단 (CC1)은 광안정성을 달성하기 위해 C=C 공액 브리지가 사이클 내에 통합된 푸시-풀(push-pull) 시아닌이었다.CCGal1 is composed of a cyclic cyanine as a red-emitting fluorophore and a β-galactopyranosyl unit as the enzymatic recognition moiety linked to a self-immolative cleavable carbamate bridge. The fluorophore (CC1) was a push-pull cyanine with a C=C conjugate bridge incorporated into the cycle to achieve photostability.

도 1에서 (A) (파란색 및 빨간색) CCGal1 및 (검정색 및 마젠타색) CC1의 정규화된 흡수 및 방출 스펙트럼, (B-D) CCGal1과 β-gal의 효소 반응을 나타내며, (B) PBS에 2.5 U/mL β-gal을 첨가한 후 CCGal1 (2 μM)의 시간 경과 형광 스펙트럼, (C) F662/F620 비율의 평균 시간 경과 및 (D) CCGal1의 효소 동역학 분석 결과를 나타낸다.Figure 1 shows (A) normalized absorption and emission spectra of (blue and red) CCGal1 and (black and magenta) CC1, (B-D) enzymatic reaction of CCGal1 with β-gal, and (B) 2.5 U/mL in PBS. The time course fluorescence spectrum of CCGal1 (2 μM) after addition of mL β-gal, (C) average time course of F662/F620 ratio, and (D) enzyme kinetics analysis results of CCGal1 are shown.

2. 화합물의 광물리 데이터 분석2. Analysis of photophysical data of compounds

PBS 완충액 (10 mM, pH 7.4)에서 CCGal1 및 CC1의 수용해도를 형광 적정법으로 측정한 결과, 각각 약 2.0 및 1.0 μM이었다. PBS 버퍼 용액에서 CCGal1과 CC1은 510 nm (몰 흡광 계수, ε = 1.90 × 104 M- 1 cm-1) 및 549 nm (ε = 1.76 × 104 M-1 cm- 1)에서 최대 흡수 파장(λex)을 나타냈었고, 620 nm (상대 형광 양자 수율, Φ = 0.18) 및 662 nm (Φ = 0.10)에서 최대 방출 파장(λem)을 나타내었다(도 1A, B 및 표 1).The water solubilities of CCGal1 and CC1 in PBS buffer (10 mM, pH 7.4) were measured by fluorescence titration and were approximately 2.0 and 1.0 μM, respectively. In PBS buffer solution, CCGal1 and CC1 have maximum absorption wavelengths at 510 nm (molar extinction coefficient, ε = 1.90 × 10 4 M - 1 cm -1 ) and 549 nm (ε = 1.76 × 10 4 M -1 cm -1 ) . λ ex ) and the maximum emission wavelength (λ em ) at 620 nm (relative fluorescence quantum yield, Φ = 0.18) and 662 nm (Φ = 0.10) (Figure 1A, B and Table 1).

[표 1][Table 1]

<실시예 2> CCGal1의 효소 반응<Example 2> Enzymatic reaction of CCGal1

CCGal1과 β-gal 사이의 효소 반응 생성물은 도 1c의 형광 스펙트럼의 변화로 나타난 바와 같이 주로 CC1이었고, 고성능 액체 크로마토그래피(HPLC)를 사용하여 확인하였다(도 2 참조). The enzymatic reaction product between CCGal1 and β-gal was mainly CC1, as shown by the change in fluorescence spectrum in Figure 1c, and was confirmed using high-performance liquid chromatography (HPLC) (see Figure 2).

도 1을 참조하면, PBS에서 2 μM CCGal1에 β-gal(2.5 U/mL)을 첨가하면 형광 스펙트럼은 620 nm 피크에서 점진적인 감소를 보였고 662 nm에서 동시에 증가하였고(도 1c), F662/F620 비율이 3.8배 증가하였다. 형광 비율의 플롯은 시간이 지남에 따라 빠르게 변했고 효소 반응은 15분 이내에 완료되었다(도 1D). Referring to Figure 1, when β-gal (2.5 U/mL) was added to 2 μM CCGal1 in PBS, the fluorescence spectrum showed a gradual decrease at the 620 nm peak and a simultaneous increase at 662 nm (Figure 1c), and the F662/F620 ratio This increased 3.8 times. The plot of fluorescence ratio changed rapidly over time and the enzymatic reaction was completed within 15 min (Figure 1D).

또, 도 3에 따르면, β-gal에 의한 CCGal1의 가수분해는 살아있는 세포에서 알려진 β-gal 억제제인 D-galactose에 의해 강력하게 억제되었으며, 이는 CCGal1의 형광 비율의 이동이 전적으로 β-gal 활성에 기인함을 시사하였다. In addition, according to Figure 3, the hydrolysis of CCGal1 by β-gal was strongly inhibited by D-galactose, a known β-gal inhibitor in living cells, which means that the shift in the fluorescence ratio of CCGal1 is entirely due to β-gal activity. It was suggested that it was caused by

Michaelis-Menten 방정식을 사용하여 계산된 효소 동역학은 CCGal1의 촉매 효율 상수(kcat/Km)가 1.21 x 104 M- 1 s-1이고 Km = 33.1 μM인 것으로 나타났고(도 1E), 상업용 β-gal 프로브인 플루오레세인 디-β-D-갈락토피라노사이드 [fluorescein di-β-D-galactopyranoside; FDG]의 값과 유사하게 확인되었다. Enzyme kinetics calculated using the Michaelis-Menten equation showed that the catalytic efficiency constant (kcat/Km) of CCGal1 was 1.21 The gal probe, fluorescein di-β-D-galactopyranoside [fluorescein di-β-D-galactopyranoside; FDG] was confirmed to be similar to the value of [FDG].

<실시예 3> CCGal1의 선택성 및 안정성 평가<Example 3> Evaluation of selectivity and stability of CCGal1

선택성 및 안정성을 평가하기 위해 CCGal1의 F662/F620 비율을 과량의 활성 산소/질소종, 아미노산, GSH 및 다른 효소에서 모니터링하여 형광 비율이 β-gal이 있는 경우에만 증가한다는 것을 발견하였다(도 4A). CCGal1 및 CC1은 3.5~10.0의 생체적합성 pH 범위에서 매우 안정적이었다(도 4B). CCGal1은 MTT 세포 생존력 분석(도 5A 및 도 5B) 및 재발성 레이저 조사(도 5C 및 도 5D) 결과, 낮은 세포독성과 높은 광안정성을 나타내었다. β-gal에 대한 CCGal1에 대한 검출 한계(LOD)는 다양한 농도의 β-gal에서 F662/F620 비율의 변화를 플로팅한 후 0.24 nM인 것으로 확인되었다. 따라서 CCGal1은 탁월한 선택성, 안정성 및 감도로 살아있는 세포에서 β-gal 활성을 정량적으로 모니터링하는 데 사용할 수 있음을 확인하였다.To assess selectivity and stability, the F 662 /F 620 ratio of CCGal1 was monitored in excess of reactive oxygen/nitrogen species, amino acids, GSH and other enzymes and found that the fluorescence ratio increased only in the presence of β-gal (Figure 4A). CCGal1 and CC1 were highly stable in the biocompatible pH range of 3.5–10.0 (Figure 4B). CCGal1 showed low cytotoxicity and high photostability in the MTT cell viability assay (Figures 5A and 5B) and recurrent laser irradiation (Figures 5C and 5D). The limit of detection (LOD) for CCGal1 relative to β-gal was found to be 0.24 nM after plotting the change in the F 662 /F 620 ratio at various concentrations of β-gal. Therefore, it was confirmed that CCGal1 can be used to quantitatively monitor β-gal activity in living cells with excellent selectivity, stability, and sensitivity.

<실시예 4> 유세포 분석을 이용한 정상세포로부터 암세포 감별<Example 4> Distinguishing cancer cells from normal cells using flow cytometry

유세포 분석을 이용한 CCGal1의 호환성을 확인하기 위해 FACS를 사용하여 β-gal 발현 수준이 다른 다양한 세포주를 분석하였다. 도 6에서 Ch1(Fyellow, 오른쪽 하단) 및 Ch2(Fred, 왼쪽 위)에 대한 분석 게이트는 해당 채널의 우세를 반영하기 위해 다각형으로 할당되었다. 따라서 Ch2의 밀도가 높을수록 β-gal의 발현이 높고 Ch1의 밀도가 낮을수록 발현이 낮았다. 형광 비율과 유사하게, FACS 결과는 Ch2에서 상향 조절된 β-gal 발현이 있는 세포의 뚜렷한 분포 (HT-29에서 92.61%, SKOV-3에서 35.03%, OVCAR-3에서 77.25%)를 나타내었고, 이전 연구와 동일하게 CCD-18Co, Huh-7 및 HeLa 세포에서는 낮거나 중간 정도의 β-gal 발현 (Ch2에서 1.5% 미만)을 나타내었다.To confirm the compatibility of CCGal1 using flow cytometry, various cell lines with different levels of β-gal expression were analyzed using FACS. In Figure 6, the analysis gates for Ch1 (F yellow , bottom right) and Ch2 (F red , top left) were assigned polygons to reflect the dominance of the corresponding channels. Therefore, the higher the Ch2 density, the higher the expression of β-gal, and the lower the Ch1 density, the lower the expression. Similar to the fluorescence ratio, FACS results showed a distinct distribution of cells with upregulated β-gal expression in Ch2 (92.61% in HT-29, 35.03% in SKOV-3, and 77.25% in OVCAR-3); Consistent with previous studies, CCD-18Co, Huh-7, and HeLa cells showed low to moderate β-gal expression (less than 1.5% in Ch2).

<실시예 5> 형광 현미경을 이용한 정상 및 암세포의 비율측정 이미지 분석<Example 5> Ratio measurement image analysis of normal and cancer cells using a fluorescence microscope

형광 현미경을 사용하여 정상 세포와 암세포를 구별하는 CCGal1의 가능성을 확인하기 위해, CCD-18Co (인간 결장 정상) 세포는 β-gal 음성 세포로 사용되었고, HT-29 (인간 결장암), SKOV-3, OVCAR-3 (인간 난소암) 세포는 β-gal 양성 세포로 사용되었다. To confirm the potential of CCGal1 to distinguish between normal and cancer cells using fluorescence microscopy, CCD-18Co (human colon normal) cells were used as β-gal negative cells, HT-29 (human colon cancer), SKOV-3 , OVCAR-3 (human ovarian cancer) cells were used as β-gal positive cells.

도 7과 같이, CCGal1의 Fred/Fyellow(F662/F620) 비율은 정상 세포에서 0.79 ± 0.06, 암세포 (HT-29, SKOV-3, OVCAR-3)에서 1.74 ± 0.21, 1.75 ± 0.16, 1.79 ± 0.22로 나타났다. 이러한 결과는 CCGal1이 비율측정 형광 현미경에서 높은 Fred/Fyellow 비율로 암세포와 정상 세포를 구별할 수 있음을 나타낸 것이다.As shown in Figure 7, the F red /F yellow (F 662 /F 620 ) ratio of CCGal1 was 0.79 ± 0.06 in normal cells, 1.74 ± 0.21, and 1.75 ± 0.16 in cancer cells (HT-29, SKOV-3, OVCAR-3). , was found to be 1.79 ± 0.22. These results indicate that CCGal1 can distinguish cancer cells from normal cells with a high F red / F yellow ratio in ratiometric fluorescence microscopy.

<실시예 6> 비율측정 이미징을 이용한 인간 결장 정상 및 암 조직의 감별<Example 6> Differentiation of normal and cancerous human colon tissues using ratiometric imaging

살아있는 샘플에서 β-gal 활성의 실시간 모니터링을 추가로 검증하기 위해 환자의 동의 하에 아주대학교 병원에서 정상 및 인간 대장암 조직을 획득하였다. To further verify real-time monitoring of β-gal activity in living samples, normal and human colon cancer tissues were obtained from Ajou University Hospital with patient consent.

도 8과 같이, 비율측정 형광 이미징을 통해 결장암의 분화된 단계에서 β-gal 활성을 시각화할 수 있었다. CCGal1으로 염색된 대장암 조직은 정상 조직에 비해 Fred/Fyellow 비율이 2배 이상 증가하였고, CCGal1의 비율은 정상 조직에서 0.80, 암 조직에서 1.72로 나타났다(도 8C). 이러한 결과는 CCGal1이 형광현미경과 유세포분석 모두에 유용하고 결장암의 다양한 단계를 정확하게 결정할 수 있음을 시사한다.As shown in Figure 8, β-gal activity could be visualized in differentiated stages of colon cancer through ratiometric fluorescence imaging. Colon cancer tissue stained with CCGal1 had an F red / F yellow ratio more than twice that of normal tissue, and the ratio of CCGal1 was 0.80 in normal tissue and 1.72 in cancer tissue (Figure 8C). These results suggest that CCGal1 is useful for both fluorescence microscopy and flow cytometry and can accurately determine various stages of colon cancer.

이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.As the specific parts of the present invention have been described in detail above, it is clear to those skilled in the art that these specific techniques are merely preferred embodiments and do not limit the scope of the present invention. something to do. Accordingly, the actual scope of the present invention will be defined by the appended claims and their equivalents.

Claims (14)

하기 화학식 1 또는 화학식 2로 표시되는 화합물 또는 이의 약학적으로 허용가능한 염:
[화학식 1]

[화학식 2]
A compound represented by Formula 1 or Formula 2 below, or a pharmaceutically acceptable salt thereof:
[Formula 1]

[Formula 2]
하기 화학식 1로 표시되는 화합물 또는 이의 약학적으로 허용가능한 염을 포함하는 β-갈락토시다아제 검출용 형광프로브:
[화학식 1]
Fluorescent probe for detecting β-galactosidase containing a compound represented by the following formula (1) or a pharmaceutically acceptable salt thereof:
[Formula 1]
청구항 2에 있어서, 상기 화합물 또는 이의 약학적으로 허용가능한 염은 세포, 세포 소기관 또는 생체 조직의 β-갈락토시다아제와 반응하여 형광을 나타내는 것을 특징으로 하는 형광프로브.The fluorescent probe according to claim 2, wherein the compound or a pharmaceutically acceptable salt thereof reacts with β-galactosidase of cells, organelles, or biological tissues to exhibit fluorescence. 청구항 2에 있어서, 상기 화합물 또는 이의 약학적으로 허용가능한 염은 세포, 세포 소기관 또는 생체 조직의 β-갈락토시다아제와 반응하여 620 내지 662 nm에서 안정적인 적색 방출 비율측정(ratiometric) 형광을 나타내는 것을 특징으로 하는 형광프로브.The method of claim 2, wherein the compound or a pharmaceutically acceptable salt thereof reacts with β-galactosidase of cells, organelles, or biological tissues to exhibit stable red emission ratiometric fluorescence at 620 to 662 nm. Characterized by a fluorescent probe. 청구항 2에 따른 형광프로브를 포함하는 암질환 진단용 조성물.A composition for diagnosing cancer diseases comprising a fluorescent probe according to claim 2. 청구항 2에 따른 형광프로브를 포함하는 암질환 진단용 키트.A kit for diagnosing cancer disease comprising a fluorescent probe according to claim 2. 청구항 2에 따른 형광프로브를 인간으로부터 분리된 시료에 처리하는 단계;
상기 형광프로브가 처리된 시료에 여기광을 조사하는 단계; 및
상기 여기광이 조사된 시료에서 형광프로브로부터 발생하는 색 변화 비율의 증가 수준을 확인하는 단계를 포함하는 것을 특징으로 하는, 암질환 진단을 위한 정보를 제공하는 방법.
Processing a sample isolated from a human with the fluorescent probe according to claim 2;
Irradiating excitation light to the sample treated with the fluorescent probe; and
A method of providing information for diagnosing a cancer disease, comprising the step of confirming an increase in the rate of color change occurring from a fluorescent probe in a sample irradiated with the excitation light.
청구항 7에 있어서, 상기 여기광은 620 내지 662 nm 범위의 파장을 갖는 것을 특징으로 하는 방법.The method according to claim 7, wherein the excitation light has a wavelength ranging from 620 to 662 nm. 청구항 7에 있어서, 상기 색 변화 비율은 시료 내 β-갈락토시다아제의 가수분해 효소 반응에 의해 Fred/Fyellow (F662/F620) 비율이 증가하는 것을 특징으로 하는 방법. The method of claim 7, wherein the color change rate is characterized in that the F red / F yellow (F 662 / F 620 ) ratio increases by the hydrolytic enzyme reaction of β-galactosidase in the sample. 청구항 7에 있어서, 상기 암질환은 대장암, 난소암, 유방암, 간암, 폐암, 자궁암, 췌장암, 신장암, 위암 및 뇌암으로 이루어진 군에서 선택되는 것을 특징으로 하는 방법.The method of claim 7, wherein the cancer disease is selected from the group consisting of colon cancer, ovarian cancer, breast cancer, liver cancer, lung cancer, uterine cancer, pancreatic cancer, kidney cancer, stomach cancer, and brain cancer. 청구항 7에 있어서, 상기 색 변화 비율의 증가 수준을 확인하는 단계는 형광 활성화 세포분류 (FACS) 유세포 분석 및 형광현미경 이미지를 통해 관측하는 것을 특징으로 하는 방법.The method according to claim 7, wherein the step of confirming the level of increase in the color change rate is observed through fluorescence activated cell sorting (FACS) flow cytometry and fluorescence microscopy images. 청구항 2에 따른 형광프로브를 인간으로부터 분리된 시료에 주입하는 단계;
상기 단계에서 시료 내로 주입된 형광프로브가 시료 내의 β-갈락토시다아제와 반응하여 형광을 나타내는 단계; 및
상기 형광을 형광 활성화 세포분류 (FACS) 유세포 분석 및 형광현미경 이미지를 통해 관측하는 단계
를 포함하는, β-갈락토시다아제 활성의 정량적 영상화 방법.
Injecting the fluorescent probe according to claim 2 into a sample isolated from a human;
The fluorescent probe injected into the sample in the above step reacts with β-galactosidase in the sample to emit fluorescence; and
Observing the fluorescence through fluorescence activated cell sorting (FACS) flow cytometry and fluorescence microscopy images
Quantitative imaging method of β-galactosidase activity, including.
청구항 12에 있어서, 상기 형광프로브는 시료 내의 β-갈락토시다아제와 반응하여 620 내지 662 nm에서 안정적인 적색 방출 비율측정(ratiometric) 형광을 나타내는 것을 특징으로 하는 방법.The method of claim 12, wherein the fluorescent probe reacts with β-galactosidase in the sample and exhibits stable red emission ratiometric fluorescence at 620 to 662 nm. 청구항 13에 있어서, 상기 형광프로브는 시료 내의 β-갈락토시다아제의 가수분해 효소 반응에 의해 Fred/Fyellow (F662/F620) 비율이 증가하는 것을 특징으로 하는 방법.The method of claim 13, wherein the F red / F yellow (F 662 / F 620 ) ratio of the fluorescent probe increases due to the hydrolytic enzyme reaction of β-galactosidase in the sample.
KR1020210148395A 2021-11-02 2021-11-02 Fluorescent probe for detecting β-galactosidase and medical uses thereof KR102588397B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210148395A KR102588397B1 (en) 2021-11-02 2021-11-02 Fluorescent probe for detecting β-galactosidase and medical uses thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210148395A KR102588397B1 (en) 2021-11-02 2021-11-02 Fluorescent probe for detecting β-galactosidase and medical uses thereof

Publications (2)

Publication Number Publication Date
KR20230063382A KR20230063382A (en) 2023-05-09
KR102588397B1 true KR102588397B1 (en) 2023-10-12

Family

ID=86408946

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210148395A KR102588397B1 (en) 2021-11-02 2021-11-02 Fluorescent probe for detecting β-galactosidase and medical uses thereof

Country Status (1)

Country Link
KR (1) KR102588397B1 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101653581B1 (en) 2014-09-18 2016-09-05 아주대학교산학협력단 - - ratiometric two-photon fluorescent probes for -galactosidase synthesis method of the same and quantitative imaging method of senescence-associated -galactosidase in vivo using the same

Also Published As

Publication number Publication date
KR20230063382A (en) 2023-05-09

Similar Documents

Publication Publication Date Title
Wang et al. A novel DCM-NBD conjugate fluorescent probe for discrimination of Cys/Hcy from GSH and its bioimaging applications in living cells and animals
Dias et al. Quinone-based fluorophores for imaging biological processes
Qian et al. Rationally modifying the dicyanoisophorone fluorophore for sensing cysteine in living cells and mice
Li et al. Development of a red-emissive two-photon fluorescent probe for sensitive detection of beta-galactosidase in vitro and in vivo
Yang et al. Hydroxyphenylquinazolinone-based turn-on fluorescent probe for β-galactosidase activity detection and application in living cells
Xu et al. Endoplasmic reticulum-targeted two-photon turn-on fluorescent probe for nitroreductase in tumor cells and tissues
CN109836394B (en) Near-infrared fluorescent probe for identifying hydrogen sulfide and preparation method and application thereof
Wang et al. Chemiluminescence molecular sensor for endogenous HOCl in vivo
Liu et al. Lysosome-targeted near-infrared fluorescent dye and its application in designing of probe for sensitive detection of cysteine in living cells
Zhang et al. A near-infrared fluorescent probe for the ratiometric detection and living cell imaging of β-galactosidase
Rong et al. Double-channel based fluorescent probe for differentiating GSH and H2Sn (n> 1) via a single-wavelength excitation with long-wavelength emission
Zhou et al. Fluorescent probe for highly selective detection of cysteine in living cells
Bao et al. NIR absorbing DICPO derivatives applied to wide range of pH and detection of glutathione in tumor
CN111875561A (en) Naphthalene derivative two-photon probe for specifically recognizing selenocysteine and preparation and application thereof
Wu et al. Novel near-infrared frequency up-conversion luminescence probe for monitoring biothiols in vitro and in vivo
Mei et al. A novel cysteine fluorescent probe based on benzothiazole and quinoline with a large stokes shift and application in living cell and mice
Qiao et al. Long wavelength emission fluorescent probe for highly selective detection of cysteine in living cells
Chen et al. Near-infrared fluorescent probe with a large Stokes shift for bioimaging of β-galactosidase in living cells and zebrafish develop at different period
CN114539183A (en) Lipid drop targeting and biological thiol sensitive fluorescent probe for cancer cell tissue diagnosis, preparation and application
US9636021B2 (en) Flavonoid compounds of low toxicity for biological imaging applications
Yan et al. Simultaneous discrimination of Cys/Hcy and GSH with simple fluorescent probe under a single-wavelength excitation and its application in living cells, tumor tissues, and zebrafish
KR102588397B1 (en) Fluorescent probe for detecting β-galactosidase and medical uses thereof
CN109796966B (en) Hypochlorous acid ratiometric fluorescent probe and application thereof
EP3551637B1 (en) A compound for the detection of hno in biological systems
Wang et al. Visual monitoring of the mitochondrial pH changes during mitophagy with a NIR fluorescent probe and its application in tumor imaging

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right