KR102585028B1 - 3차원 처리 기반 대상체 비파괴 검사 방법, 장치 및 시스템 - Google Patents

3차원 처리 기반 대상체 비파괴 검사 방법, 장치 및 시스템 Download PDF

Info

Publication number
KR102585028B1
KR102585028B1 KR1020210169108A KR20210169108A KR102585028B1 KR 102585028 B1 KR102585028 B1 KR 102585028B1 KR 1020210169108 A KR1020210169108 A KR 1020210169108A KR 20210169108 A KR20210169108 A KR 20210169108A KR 102585028 B1 KR102585028 B1 KR 102585028B1
Authority
KR
South Korea
Prior art keywords
processing
image
area
defect
detector
Prior art date
Application number
KR1020210169108A
Other languages
English (en)
Other versions
KR20230081913A (ko
Inventor
임태규
전석원
민병석
김형철
Original Assignee
(주)자비스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)자비스 filed Critical (주)자비스
Priority to KR1020210169108A priority Critical patent/KR102585028B1/ko
Publication of KR20230081913A publication Critical patent/KR20230081913A/ko
Priority to KR1020230129092A priority patent/KR20230143598A/ko
Application granted granted Critical
Publication of KR102585028B1 publication Critical patent/KR102585028B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/18Investigating the presence of flaws defects or foreign matter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/046Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using tomography, e.g. computed tomography [CT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/003Reconstruction from projections, e.g. tomography
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/40Imaging
    • G01N2223/401Imaging image processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/40Imaging
    • G01N2223/414Imaging stereoscopic system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/40Imaging
    • G01N2223/419Imaging computed tomograph
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/646Specific applications or type of materials flaws, defects

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Pulmonology (AREA)
  • Computer Graphics (AREA)
  • Geometry (AREA)
  • Software Systems (AREA)
  • Quality & Reliability (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

3D 처리 기반 대상체 비파괴 검사 방법, 장치 및 시스템이 제공된다. 상기 3D 처리를 통한 대상체의 비파괴 검사를 수행하는 전자 장치는, 획득되는 상기 대상체의 2D 이미지로부터 2D 결함 후보군을 검출하고, 검출된 2D 이미지 내 2D 결함 후보군에 기초하여 3D 처리 영역을 설정하여 설정된 3D 처리 영역에 대응하는 검출기를 선별적으로 선택하여 3D 처리 및 처리 결과를 제공하는 프로세서를 포함한다.

Description

3차원 처리 기반 대상체 비파괴 검사 방법, 장치 및 시스템{METHOD, APPARATUS AND SYSTEM FOR NON-CONSTRUCTIVE INSPECTION OF OBJECT BASED ON THREE-DIMENSIONAL PROCESS}
발명은 대상체 비파괴 검사에 관한 것으로, 보다 자세하게는 CT(Computed Tomography) 촬영의 특성에 따라 선택적 검출기를 이용하여 3차원 CT 운용 및 처리하여 대상체에 대한 비파괴 검사를 수행하는 방법, 장치 및 시스템에 관한 것이다.
제품의 불량은 공급망 서비스의 저하, 자동화 설비의 손실 등을 발생시킬 수 있다. 그러므로 제품의 불량 여부를 제대로 검사하는 것이 매우 중요하다.
방사선 특히, 엑스레이(X-ray)를 활용하여 대상체(object)를 파괴하지 않는 즉, 비파괴 검사가 품질 검사에 활용되고 있는데, 종래 방사선 비파괴 검사는 단일 기술을 적용하여 대상체에 대한 엑스레이 영상 내 불량 여부를 검출하였다. 더불어, 정밀 검사에는 CT(Computed Tomography) 촬영이 필수적으로 이용되는데, 이 과정에서 3D 재구성(reconstruction)이 이루어지나 높은 처리 시간이 요구되었다. 특히, 광범위한 영역에 대해 CT 촬영을 하는 경우, 종래에는 단일 디텍터(detector)가 이용되었으나, 상기 광범위한 영역을 전수 CT 검사를 진행하려면 해당 영역을 일정하게 나눈 후 반복 촬영하는 방식을 이용하였다. 다만, 이러한 종래 기술에 따를 경우, 많은 검사 시간의 소요와 함께 생산성이 저하되는 문제점이 있었다.
대한민국 등록특허공보 제10-2249836호 (2021.05.03)
본 발명이 해결하고자 하는 과제는, 검사 대상체에 대한 CT(Computed Tomography) 촬영의 특성에 따라 선택적 검출기를 이용하여 3D CT 운용 및 처리하여 비파괴 검사를 수행하는 방법, 장치 및 컴퓨터 프로그램을 제공하는 것이다.
본 발명이 해결하고자 하는 과제들은 이상에서 언급된 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.
상술한 과제를 해결하기 위한 본 발명의 일 면에 따른 3D 처리를 통한 대상체의 비파괴 검사를 수행하는 전자 장치는, 획득되는 상기 대상체의 2D 이미지로부터 2D 결함 후보군을 검출하고, 검출된 2D 이미지 내 2D 결함 후보군에 기초하여 3D 처리 영역을 설정하여 설정된 3D 처리 영역에 대응하는 검출기를 선별적으로 선택하여 3D 처리 및 처리 결과를 제공하는 프로세서를 포함한다.
본 발명의 일 면에 따른 전자 장치에 의해 3D 처리를 통한 대상체의 비파괴 검사를 수행하는 방법은, 상기 대상체의 2D 이미지를 획득하는 단계; 상기 대상체의 2D 이미지로부터 2D 결함 후보군을 검출하는 단계; 상기 검출된 2D 이미지 내 2D 결함 후보군에 기초하여 3D 처리 영역을 설정하는 단계; 상기 설정된 3D 처리 영역에 대응하는 검출기를 선별적으로 선택하여 3D 처리하는 단계; 및 상기 3D 처리 결과를 제공하는 단계를 포함한다.
본 발명의 일면에 따른 3D 처리를 통한 대상체 비파괴 검사 수행 시스템은, 단말; 및 전자 장치를 포함하되, 상기 전자 장치는, 획득되는 상기 대상체의 2D 이미지로부터 2D 결함 후보군을 검출하고, 검출된 2D 이미지 내 2D 결함 후보군에 기초하여 3D 처리 영역을 설정하여 설정된 3D 처리 영역에 대응하는 검출기를 선별적으로 선택하여 3D 처리 및 처리 결과를 상기 단말로 제공하는 프로세서를 포함한다.
본 발명의 기타 구체적인 사항들은 상세한 설명 및 도면들에 포함되어 있다.
본 발명에 따르면, 다음과 같은 효과들을 가질 수 있다.
본 발명에 따르면, 검사 대상체에 대한 비파괴 검사에서 특히, CT 촬영에 소요되는 시간과 비용을 줄이고 동시에 생산성을 높일 수 있다.
본 발명의 효과들은 이상에서 언급된 효과로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.
도 1 은 본 발명의 일 실시 예에 따른 고속 CT 처리를 통한 대상체 비파괴 시스템을 도시한 블록도이다.
도 2는 본 발명의 일 실시 예에 따른 전자 장치의 구성 블록도이다.
도 3은 본 발명의 일 실시 예에 따른 고속 CT 처리를 통한 대상체 비파괴 검사 방법을 설명하기 위해 도시한 흐름도이다.
도 4와 5는 본 발명의 일 실시 예에 따른 고속 CT 처리를 통한 대상체 비파괴 검사 과정을 설명하기 위해 도시한 도면이다.
도 6은 본 발명의 일 실시 예에 따른 고속 CT 처리를 통한 대상체 비파괴 검사 결과 제공 화면을 설명하기 위해 도시한 도면이다.
도 7은 본 발명의 다른 일 실시 예에 따른 고속 CT 처리를 통한 대상체 비파괴 검사 방법을 설명하기 위해 도시한 흐름도이다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나, 본 발명은 이하에서 개시되는 실시예들에 제한되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술 분야의 통상의 기술자에게 본 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.
본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 "포함한다(comprises)" 및/또는 "포함하는(comprising)"은 언급된 구성요소 외에 하나 이상의 다른 구성요소의 존재 또는 추가를 배제하지 않는다. 명세서 전체에 걸쳐 동일한 도면 부호는 동일한 구성 요소를 지칭하며, "및/또는"은 언급된 구성요소들의 각각 및 하나 이상의 모든 조합을 포함한다. 비록 "제1", "제2" 등이 다양한 구성요소들을 서술하기 위해서 사용되나, 이들 구성요소들은 이들 용어에 의해 제한되지 않음은 물론이다. 이들 용어들은 단지 하나의 구성요소를 다른 구성요소와 구별하기 위하여 사용하는 것이다. 따라서, 이하에서 언급되는 제1 구성요소는 본 발명의 기술적 사상 내에서 제2 구성요소일 수도 있음은 물론이다.
다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술분야의 통상의 기술자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또한, 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않는 한 이상적으로 또는 과도하게 해석되지 않는다.
공간적으로 상대적인 용어인 "아래(below)", "아래(beneath)", "하부(lower)", "위(above)", "상부(upper)" 등은 도면에 도시되어 있는 바와 같이 하나의 구성요소와 다른 구성요소들과의 상관관계를 용이하게 기술하기 위해 사용될 수 있다. 공간적으로 상대적인 용어는 도면에 도시되어 있는 방향에 더하여 사용시 또는 동작시 구성요소들의 서로 다른 방향을 포함하는 용어로 이해되어야 한다. 예를 들어, 도면에 도시되어 있는 구성요소를 뒤집을 경우, 다른 구성요소의 "아래(below)"또는 "아래(beneath)"로 기술된 구성요소는 다른 구성요소의 "위(above)"에 놓여질 수 있다. 따라서, 예시적인 용어인 "아래"는 아래와 위의 방향을 모두 포함할 수 있다. 구성요소는 다른 방향으로도 배향될 수 있으며, 이에 따라 공간적으로 상대적인 용어들은 배향에 따라 해석될 수 있다.
이하, 첨부된 도면을 참조하여 본 발명의 실시예를 상세하게 설명한다.
본 명세서에서 '이미지 또는 이미지 데이터(image data)'는 방사선을 이용하는 튜브(Tube), 디텍터(Detector) 등을 통해 얻어진 정지 영상(still image)이나 동영상(video) 데이터를 의미한다. 일 실시 예로, 상기 이미지는 X-ray 튜브나 X-ray 디텍터를 통해 대상체(object)에 대한 X-ray 이미지일 수 있다. 이 때, 상기 X-ray 이미지는 예를 들어, 2D(Dimensional) 이미지와 연속적인 2D 이미지 집합(image aggregation)으로부터 재구성(reconstruction)된 CT(Computed Tomography) 이미지, 재구성된 CT 볼륨(volume) 데이터의 단면(slice) 이미지를 포함할 수 있다.
본 명세서에서 '결함'은 본 발명에 따른 인공 지능 기반으로 결함 검사의 대상이 되는 대상체에 대한 비파괴 검사시, 상기 대상체에 대하여 정상(normal)으로 정의된 또는 정의될 수 있는 부분이 아닌 부분을 나타내는 것으로, 이는 불량 또는 오류 등 다양한 명칭으로 표현할 수도 있다. 실시 예에 따라, 본 발명은 그러한 표현에 한정되지 않고, 통상적인 의미에서의 결함과 동일 또는 유사한 의미도 포함할 수 있다.
도 1 은 본 발명의 일 실시 예에 따른 고속 CT 처리를 통한 대상체 비파괴 시스템을 도시한 블록도이다.
도 1을 참조하면, 본 발명의 일 실시 예에 따른 고속 CT 처리를 통한 대상체 비파괴 검사를 수행하는 시스템은, 전자 장치(100)와 영상 획득 장치(150)를 포함하여 구성될 수 있다. 이 때, 도 1에 도시된 전자 장치(100)와 영상 획득 장치(150)의 구성은 일 실시 예로서 이에 한정되지 않으며, 본 발명에 따른 동작 수행과 관련하여 하나 또는 그 이상의 구성요소가 추가되어 구성될 수도 있고, 그 반대일 수도 있다.
전자 장치(100)는 메모리(memory)와 프로세서(processor)를 포함하여 구성될 수 있으며, 상기 메모리는 도 1에 도시된 데이터베이스(120)에 대응되거나 그를 포함할 수 있고, 상기 프로세서는 제어부(110)와 AI 엔진(130) 중 적어도 하나를 포함할 수 있다. 이 때, AI 엔진(130)은 딥러닝 네트워크를 포함하나, 이에 한정되는 것은 아니다.
상기 전자 장치(100)는, 상기 영상 획득 장치(150)와 네트워크를 통해 연결되어 대상체에 대한 이미지 데이터를 수신할 수 있다.
영상 획득 장치(150)는 디텍터(160), 엑스레이 튜브(170) 및 광원(lighting source)(미도시)를 포함하여 구성될 수 있으며, 상기 디텍터(160)는 2D 디텍터와 3D 디텍터 중 적어도 하나일 수 있다. 상기에서, 디텍터(160) 및 엑스레이 튜브(170)는 각각 대상체에 대한 엑스레이 영상 획득 장치로, 이는 기존의 공지된 구성으로 이루어질 수 있다. 이외에도, 영상 획득 장치(150)는 이동 대상체의 움직임(motion)을 촬영할 수 있는 장치 및 CT 디텍터(미도시)를 추가로 구비할 수도 있다. 광원은 투과성 광원인 테라헤르츠(terahertz)를 포함하나, 이에 한정되는 것은 아니다.
전자 장치(100)의 일 구성요소로서, 제어부(110)는 전자 장치(100)에서 수행되는 동작을 제어하며, 데이터베이스(120)는 영상 획득 장치(150)로부터 수신되는 대상체의 이미지, 상기 대상체에 대한 결함 검사에 이용되는 학습 데이터셋(learning dataset), 상기 학습 데이터셋에 대응되는 학습 모델(learning model) 등 전자 장치(100)에 의해 수신, 처리 등이 이루어지는 데이터를 저장할 수 있다.
제어부(110)는 대상체의 이미지 데이터를 입력으로 고속 CT 운용 및 처리를 통한 비파괴 검사를 수행하는 다양한 기계학습 모델(Machine-learning model)의 알고리즘 및 관련 애플리케이션을 수행하는 연산 능력이 있는 하드웨어 유닛(hardware unit)을 포함할 수 있다. 예를 들어, 제어부(110)는 중앙 처리 장치(Central Processing Unit), 마이크로 프로세서(microprocessor) 및 그래픽 프로세서(Graphic Processing Unit) 중 적어도 하나를 포함할 수 있다. 또한, 제어부(110)는 기계학습 모델 알고리즘 또는 애플리케이션을 저장하는 별도의 메모리(미도시)를 더 포함할 수 있다.
전자 장치(100)는 결함 검사를 위하여 대상체에 대한 이미지 데이터를 학습시켜서, AI 엔진(130)에 입력하여 (고화질 또는 개선된) 대상체 이미지 데이터를 획득할 수 있다. 이 때, AI 엔진(130)을 통해 획득된 이미지는 일반적인 의미에서 영상 획득 장치(150)로부터 입력된 대상체 이미지 데이터보다 전체적으로 고화질이거나 개선된 이미지 데이터뿐만 아니라 인공 지능 기반으로 대상체에 대한 비파괴 검사시 결함 검사의 관점에서 전부 또는 일부 개선된 또는 새로운 이미지 데이터를 나타낼 수 있다.
한편, 본 발명과 관련하여 전자 장치(100)로 입력되는 대상체의 엑스레이 이미지는 검사 장비 예를 들어, 반도체 불량 검출, PCB 기판 불량 검출, 식품 및 제약 분야의 이물질 검출 등의 다양한 분야의 검사에 활용될 수 있다.
도 2는 본 발명의 일 실시 예에 따른 전자 장치(100)의 구성 블록도이다. 도 3은 본 발명의 일 실시 예에 따른 고속 CT 처리를 통한 대상체 비파괴 검사 방법을 설명하기 위해 도시한 흐름도이다. 도 4와 5는 본 발명의 일 실시 예에 따른 고속 CT 처리를 통한 대상체 비파괴 검사 과정을 설명하기 위해 도시한 도면이다. 도 6은 본 발명의 일 실시 예에 따른 고속 CT 처리를 통한 대상체 비파괴 검사 결과 제공 화면을 설명하기 위해 도시한 도면이다. 도 7은 본 발명의 다른 일 실시 예에 따른 고속 CT 처리를 통한 대상체 비파괴 검사 방법을 설명하기 위해 도시한 흐름도이다.
도 2 및 도 7의 동작들은 도 1의 전자 장치(100)를 통해 수행될 수 있다. 여기서, 도 2 및 도 7의 동작들을 도 1 내지 2에 도시된 전자 장치(100)의 구성을 참조하여 설명한다.
먼저, 엑스레이를 활용한 대상체 비파괴 검사에서, 결함에 대한 정밀 검사를 위해 CT 촬영과 3D CT 재구성 과정이 필수적이다. 특히, 대상체의 CT 촬영시, 상기 대상체의 검사 대상 영역 즉, CT 촬영 영역의 특성에 따라 고속 CT 처리가 요구되는데, 이를 위해 본 발명에서는 상기 특성에 따라 다수의 검출기를 활용한다.
도 2를 참조하면, 전자 장치(100)는 2D 입력부(210), 2D 검사부(220), 영역 계산부(230), 영역 선택부(240), 검출기 선택부(250), 3D 처리부(260), 및 출력부(270)를 포함하여 구성될 수 있으며, 실시 예에 따라서 도시되지 않은 하나 또는 그 이상의 구성요소가 추가되거나 반대일 수 있다. 한편, 실시 예에 따라서, 도 2에 도시된 적어도 둘 이상의 구성요소는 모듈화되거나 반대일 수도 있다.
이하 도 3 내지 4를 도 2의 구성요소를 참조하여 설명한다.
동작 11에서, 전자 장치(100)는 대상체의 2D 이미지를 획득할 수 있다. 상기 대상체의 2D 이미지 획득을 위해, 2D 입력부(210)는 고속 촬영이 가능한 2D 방사선 장비를 이용하여 대상체의 검사 대상을 직접 촬영할 수 있다. 실시 예에 따라서, 2D 입력부(210)는 도 1의 영상 획득 장치(150)에서 방사선 조사를 통해 획득한 대상체의 이미지 데이터를 수신하여, 상기 촬영을 대신하여 2D 이미지를 획득할 수도 있다.
동작 12에서, 전자 장치(100)는 대상체의 2D 이미지 내 2D 결함을 검출할 수 있다. 2D 검사부(220)는, 상기 2D 입력부(210)로부터 입력되는 대상체의 2D 이미지로부터 결함을 검출하는데 이 때, 상기 대상체의 2D 이미지 내 적어도 하나의 결함 정보를 획득할 수 있다. 상기 적어도 하나의 결함 정보는, 대상체 2D 이미지 내 결함 발생 위치 정보 즉, 결함 발생 좌표 또는 영역에 대한 정보가 포함될 수 있다.
실시 예에 따라서, 2D 검사부(220)는, 상기 결함 검사를 위한 알고리즘 또는 방법으로, Rule-기반의 방법과 딥 러닝(Deep Learning)을 활용한 기법들이 복합적으로 이용할 수 있다.
동작 13에서, 전자 장치(100)는 CT 촬영 영역을 설정할 수 있다. 상기 동작 13와 관련하여 동작 12와 함께 도 7을 참조하여 상세 동작 수행 과정을 설명하면, 다음과 같다.
동작 12와 관련하여, 전자 장치(100)는 동작 21에서 대상체의 2D 이미지 내 2D 결함 후보군을 검출한다.
이후, 동작 13과 관련하여, 전자 장치(100)는 동작 22에서 검출된 2D 결함 후보군에 대한 영역을 계산하고, 동작 23에서 2D 결함 검출을 위한 최적의 영역을 선택하고, 동작 24에서 선택 영역의 특성을 판단한다. 전자 장치(100)는 판단된 선택 영역의 특성에 따라 제1 검출기(25-1) 또는 제2 검출기(25-2) 중 어느 하나를 선택한다. 설명의 편의상, 동작 24 내지 25와 관련하여 상기 특성과 대응되는 검출기는 비록 2개만 도시하였으나, 본 발명은 이에 한정되지 않고, n개(여기서, n은 양의 정수)가 이용될 수 있다.
영역 계산부(230)는, 상기 2D 검사부(220)에서 판단된 대상체 내 결함 영역 정보를 산출하는데, 이 때 산출되는 결함 영역 정보는 상기 2D 검사부(220)에서 획득된 결함 정보 예를 들어, 결함들 사이의 인접성, 결함들의 특징 등이 참조 이용될 수 있다.
영역 선택부(240)는, 상기 영역 계산부(230)에서 산출된 결함들에 대한 영역 정보에 기초하여 고속 CT 촬영 운용 및 처리가 가능하도록 결함 영역을 선택할 수 있다.
실시 예에 따라서, 영역 선택부(240)는, 상기 영역 계산부(230)에서 산출된 결함들에 대한 영역 정보에 기초할 때, 해당 대상체에 대한 결함 검사를 위한 고속 CT 촬영의 횟수를 최소로 할 수 있도록 영역을 도 5의 (a)에 도시된 바와 같이 선택할 수 있다. 즉, 영역 선택부(240)는 최소 촬영을 위한 최적의 영역(군집)에 대한 계산을 수행하고, 수행된 계산에 기초하여 최적의 영역(군집)을 선택할 수 있다. 이 때, 상기 선택된 영역(군집)의 최대 개수는, 도 5의 (b)에 도시된 바와 같이 대상체의 결함 검사 영역을 균등 분할하였을 때 발생하는 영역의 수와 같거나 작다.
검출기 선택부(250)는, 복수의 검출기 중에서 상기 영역 선택부(240)에서 선택된 대상체 내 검사 영역(군집) 특성에 적합한 검출기(디텍터)를 선택할 수 있다.
이 때, 상기 검출기와 관련하여, 본 발명에서는 FPD(Flat Panel X-ray Detector)와 I.I(Image Intensifier) 검출기 2개를 이용하는 것을 예로 하나, 이에 한정되는 것은 아니다. 도 7을 참조하면, 제1 검출기는 FPD 검출기로 정의할 수 있으며, 제2 검출기는 I.I 검출기로 정의할 수 있다.
한편, 동작 24와 관련하여, 선택 영역의 특성은 예를 들어, 결함 후보 영역이 결함 후보군이 밀집한 광범위한 영역인지 아닌지에 대한 판단일 수 있으며, 동작 25에서 상기 판단 결과를 참조하여 적합한 검출기를 선택한다. 이와 같이, 본 발명은 대상체의 결함 검사에 검출기를 복합적으로 이용할 수 있다.
도 4의 (a)는 2D 입력 이미지이며, 도 4의 (b)와 (c)는 2D 범프(bump) 검출 이미지를 나타낸 것이다. 도 4의 (d)에서는 CT 촬영 영역을 설정하게 되는데, 이 때 도 4의 (c)를 참조하면 대상체에 대한 결함 후보군(411 내지 415)에서 영역 특성 즉, 결함 후보군의 밀집도에 따라 2개의 결함 후보 영역(421, 422)을 설정(도 4의 (c)에서 윗부분)하거나 모든 결함 후보군이 포함된 1개의 결함 후보 영역(423) 설정(도 4의 (c)에서 아랫부분)할 수 있다.
전자에서 밀집도에 따라, 제1 결함 후보 영역(421)은 3개의 결함 후보군(412 내지 413)을 포함하고, 제2 결함 후보 영역(422)는 2개의 결함 후보군(414 내지 415)를 포함한다. 도 4의 (c)는 이렇게 밀집도에 따라 도 4의 (d) 윗부분과 같이 복수의 밀집된 결함 후보군을 군집한 형태로 분류하여 군집 단위로 처리할 것인지 아니면 도 4의 (d) 아랫부분과 같이 결함 후보군의 밀집도가 낮아 군집한 형태로 보기 어려우므로 하나의 결함 영역으로 보고 처리할 것인지 판단할 수 있다.
상기에서 도 4의 (d)의 윗부분에 대한 결함 후보 영역에 대해서는, 포인트 기반 방식으로 상대적으로 작은 크기의 FoV(Field of View)를 가지나 고속 처리가 가능한 I.I가 검출기로 이용될 수 있다. 반면, 도 4의 (d)의 아랫부분의 결함 후보 영역에 대해서는, 영역(region) 기반 방식으로 상대적으로 큰 크기의 FoV를 가지나 저속인 FPD가 검출기로 이용될 수 있다.
한편, 상기에서, 밀집도는 전자 장치(100)의 설정, 사용자나 단말의 요청이나 설정, 인공지능 기반 대상체에 특성에 따라 다양하게 정의될 수 있다. 예를 들어, 전자 장치(100)는 복합 이용하는 검출기의 성능에 대하여 미리 알 수 있거나 학습이나 결함 검사 이후에 인지할 수 있다. 따라서, 전자 장치(100)는 각 검출기에 대하여 처리 가능한 밀집도를 미리 설정할 수 있다. 만약 보다 많은 수의 검출기가 복합 이용된다면, 전자 장치(100)는 도 4에 도시된 것보다 더욱 세분하여 촬영 영역을 설정할 수 있다.
일반적으로, 출력부(270)는 대상체에 대한 결함 검사의 최종 결과 즉, 도 4의 (e) 후 도 4의 (f)와 같은 화면을 제공한다. 다만, 실시 예에 따라, 출력부(270)는 도 4의 (c)와 같은 2D 범프 결함 검출 이미지를 미리 제공하고, 사용자의 촬영 영역 선택에 따라 밀집도 내지 최적 성능의 검출기를 판단하여, 해당 검출기를 이용할 수도 있다.
도 5의 (a)를 참조하면, 3개의 결함 후보군(521)이 밀집한 광범위한 영역(520)에 대해서는 FPD를 검출기로 선택하여 이용할 수 있다. 반면, 도 5의 (a)에서 2개의 결함 후보군(510)은 밀집하지 않은 영역에 해당하므로 이 경우에는 I.I를 이용하여 고속 처리할 수 있다. 이와 같이, 결함 후보군의 특성, 즉 결함 후보군의 밀집도를 참조하여 적합한 검출기를 선택할 수 있다.
상기에서, 영역 선택부(240)와 검출기 선택부(250)는, 각각 복수 개의 영역 모듈과 검출기를 포함하여 구현될 수 있다. 이 때, 상기 영역 선택부(240) 내 개별 영역 모듈과 상기 검출기 선택부(250) 내 개별 검출기는, 그 개수와 특징에 따라 미리 대응되도록 매칭되었을 수 있다. 예를 들어, 개별 영역 모듈은 인공지능 기반 미리 훈련 데이터셋을 이용하여 학습 모델을 생성하고, 생성된 학습 모델에 따라 영역의 특성에 맞는 영역이 선택될 수 있도록 할 수 있다. 즉, 상기 영역 계산부(230)에서 산출된 영역의 특성이 제1 특성이면, 영역 선택부(240)는 그에 대응하는 제1 영역 모듈을 선택하고, 검출기 선택부(250)는 상기 선택된 제1 영역 모듈에 대응하는 제1 검출기를 선택하는 것이다. 실시 예에 따라, 상기 영역 계산부(230)에서 산출된 영역의 특성에 따라서, 선택되는 영역 모듈과 대응하는 검출기는 복수 개일 수도 있다.
도 3 및 도 7의 동작 14에서, 전자 장치(100)는 동작 13에서 설정된 촬영역 영역에 대하여 3D CT 처리를 수행한다. 도 2를 참조하면, 3D 처리부(260)는 3D CT 스캔부(261), 3D CT 재구성부(262), 및 3D CT 검사부(263)을 포함하여 구성되어, 상기 영역 선택부(240)와 검출기 선택부(250)에서 선택된 영역과 검출기를 통하여 정밀 CT를 촬영 및 검사를 수행할 수 있다. 여기서, 각 검출기는, 선택된 영역의 개수에 따라 반복적으로 CT 처리를 수행할 수 있다.
동작 15에서, 전자 장치(100)는 3D CT 처리된 대상체에 대한 결함 검사 결과 데이터를 제공한다. 이 때, 단말에서 대상체에 대한 결함 검사가 요청되었으면, 전자 장치(100)는 해당 단말로 3D CT 처리된 대상체 결함 검사 결과 데이터를 제공하여 출력되도록 제어할 수 있다. 예를 들어, 출력부(270)는 도 6에 도시된 바와 같이, 대상체에 대해 최종적으로 3D CT 처리까지 수행된 결함 검사 결과 데이터를 제공할 수 있다. 실시 예에 따라서, 출력부(270)는 도 4의 (a) 내지 (f)에 도시된 전체 과정 또는 그 중 일부 과정(도 4의 (c) 내지 (f) 중 적어도 하나 이상)에 대한 데이터를 제공하거나 도 5의 (a)에 도시된 결함 정보 포함 데이터를 제공할 수도 있다. 한편, 본 명세서에서, '제공'이라 함은, 디스플레이를 통한 직접 또는 간접 출력, 대상 단말로의 전송 및/또는 출력 제어 등 상기 대상체에 대한 결함 검사 결과의 출력과 관련된 다양한 의미로 정의될 수 있다.
실시 예에 따라서, 도 3 또는 도 7에 도시된 동작들 중 일부는 그 동작 순서가 도시된 바와 다르게 수행될 수도 있다.
본 발명의 실시예와 관련하여 설명된 방법 또는 알고리즘의 단계들은 하드웨어로 직접 구현되거나, 하드웨어에 의해 실행되는 소프트웨어 모듈로 구현되거나, 또는 이들의 결합에 의해 구현될 수 있다. 소프트웨어 모듈은 RAM(Random Access Memory), ROM(Read Only Memory), EPROM(Erasable Programmable ROM), EEPROM(Electrically Erasable Programmable ROM), 플래시 메모리(Flash Memory), 하드 디스크, 착탈형 디스크, CD-ROM, 또는 본 발명이 속하는 기술 분야에서 잘 알려진 임의의 형태의 컴퓨터 판독가능 기록매체에 상주할 수도 있다.
이상, 첨부된 도면을 참조로 하여 본 발명의 실시예를 설명하였지만, 본 발명이 속하는 기술분야의 통상의 기술자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며, 제한적이 아닌 것으로 이해해야만 한다.
100 : 전자 장치
150 : 이미지 획득 장치
210 : 2D 입력부
220 : 2D 검사부
230 : 영역 계산부
240 : 영역 선택부
250 : 검출기 선택부
260 : 3D 처리부
270 : 출력부

Claims (10)

  1. 3D 처리를 통한 대상체의 비파괴 검사를 수행하는 전자 장치에 있어서,
    획득되는 상기 대상체의 2D 이미지로부터 2D 결함 후보군을 검출하고, 검출된 2D 이미지 내 2D 결함 후보군에 기초하여 3D 처리 영역을 설정하여 설정된 3D 처리 영역에 대응하는 검출기를 선별적으로 선택하여 3D 처리 및 처리 결과를 제공하는 프로세서를 포함하고,
    상기 프로세서는,
    상기 대상체의 2D 이미지 내 결함 후보군의 위치 정보에 기초하여 검출 후보 영역을 계산하고, 상기 계산한 검출 후보 영역 정보에 기초하여 최소 촬영이 가능한 최적 군집을 계산하는,
    전자 장치.
  2. 삭제
  3. 삭제
  4. 제1항에 있어서,
    상기 계산된 최적 군집의 개수는, 상기 대상체의 검사 영역을 균등 분할 시의 개수와 같거나 작은,
    전자 장치.
  5. 제1항에 있어서,
    상기 프로세서는,
    상기 계산된 최적 군집의 특성에 따라 복수의 검출기 중 미리 설정된 적어도 하나의 검출기를 선택하는,
    전자 장치.
  6. 제5항에 있어서,
    상기 프로세서는,
    상기 계산된 최적 군집의 특성이 결함 후보군이 밀집된 제1 특성이면 영역 기반의 방식의 FPD(Flat Panel Detector) 검출기를 선택하는,
    전자 장치.
  7. 제5항에 있어서,
    상기 프로세서는,
    상기 계산된 최적 군집의 특성이 결함 후보군이 밀집되지 않은 제2 특성이면 포인트 기반 방식의 I.I (Image Intensifier) 검출기를 선택하는,
    전자 장치.
  8. 제1항에 있어서,
    상기 프로세서는,
    3D CT 스캔 처리, 3D CT 재구성 및 3D CT 결함 검사 구성을 이용하여 상기 3D 처리를 수행하는,
    전자 장치.
  9. 전자 장치에 의해 3D 처리를 통한 대상체의 비파괴 검사를 수행하는 방법에 있어서,
    상기 대상체의 2D 이미지를 획득하는 단계;
    상기 대상체의 2D 이미지로부터 2D 결함 후보군을 검출하는 단계;
    상기 검출된 2D 이미지 내 2D 결함 후보군에 기초하여 3D 처리 영역을 설정하는 단계;
    상기 설정된 3D 처리 영역에 대응하는 검출기를 선별적으로 선택하여 3D 처리하는 단계; 및
    상기 3D 처리 결과를 제공하는 단계를 포함하고,
    상기 3D 처리 영역을 설정하는 단계는,
    상기 대상체의 2D 이미지 내 결함 후보군의 위치 정보에 기초하여 검출 후보 영역을 계산하고, 상기 계산한 검출 후보 영역 정보에 기초하여 최소 촬영이 가능한 최적 군집을 계산하는,
    전자 장치에 의해 3D 처리를 통한 대상체 비파괴 검사 수행 방법.
  10. 단말; 및
    전자 장치를 포함하되, 상기 전자 장치는,
    획득되는 대상체의 2D 이미지로부터 2D 결함 후보군을 검출하고, 검출된 2D 이미지 내 2D 결함 후보군에 기초하여 3D 처리 영역을 설정하여 설정된 3D 처리 영역에 대응하는 검출기를 선별적으로 선택하여 3D 처리 및 처리 결과를 상기 단말로 제공하고, 상기 3D 처리 영역을 설정 시에, 상기 대상체의 2D 이미지 내 결함 후보군의 위치 정보에 기초하여 검출 후보 영역을 계산하고, 상기 계산한 검출 후보 영역 정보에 기초하여 최소 촬영이 가능한 최적 군집을 계산하는 프로세서를 포함하는,
    3D 처리를 통한 대상체 비파괴 검사 수행 시스템.
KR1020210169108A 2021-11-30 2021-11-30 3차원 처리 기반 대상체 비파괴 검사 방법, 장치 및 시스템 KR102585028B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020210169108A KR102585028B1 (ko) 2021-11-30 2021-11-30 3차원 처리 기반 대상체 비파괴 검사 방법, 장치 및 시스템
KR1020230129092A KR20230143598A (ko) 2021-11-30 2023-09-26 대상체의 비파괴 검사를 위한 3d 영상 처리 방법 및 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210169108A KR102585028B1 (ko) 2021-11-30 2021-11-30 3차원 처리 기반 대상체 비파괴 검사 방법, 장치 및 시스템

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020230129092A Division KR20230143598A (ko) 2021-11-30 2023-09-26 대상체의 비파괴 검사를 위한 3d 영상 처리 방법 및 장치

Publications (2)

Publication Number Publication Date
KR20230081913A KR20230081913A (ko) 2023-06-08
KR102585028B1 true KR102585028B1 (ko) 2023-10-10

Family

ID=86766025

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020210169108A KR102585028B1 (ko) 2021-11-30 2021-11-30 3차원 처리 기반 대상체 비파괴 검사 방법, 장치 및 시스템
KR1020230129092A KR20230143598A (ko) 2021-11-30 2023-09-26 대상체의 비파괴 검사를 위한 3d 영상 처리 방법 및 장치

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020230129092A KR20230143598A (ko) 2021-11-30 2023-09-26 대상체의 비파괴 검사를 위한 3d 영상 처리 방법 및 장치

Country Status (1)

Country Link
KR (2) KR102585028B1 (ko)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004516461A (ja) * 2000-12-15 2004-06-03 ケイエルエイ−テンコー コーポレイション 基板を検査するための方法及び装置
US20160070004A1 (en) 2014-09-05 2016-03-10 General Electric Company Digital Flat Panel Detector with Squircle Shape
JP2019191105A (ja) * 2018-04-27 2019-10-31 株式会社Ihi 検査システム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102249836B1 (ko) 2019-08-26 2021-05-10 레이디소프트 주식회사 투과영상 기반의 비파괴검사 기능을 제공하기 위한 방법 및 컴퓨터 판독 가능한 저장 매체
KR20210038143A (ko) * 2019-09-30 2021-04-07 (주)쎄미시스코 인공지능(ai) 기반 대상물 검사 시스템 및 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004516461A (ja) * 2000-12-15 2004-06-03 ケイエルエイ−テンコー コーポレイション 基板を検査するための方法及び装置
US20160070004A1 (en) 2014-09-05 2016-03-10 General Electric Company Digital Flat Panel Detector with Squircle Shape
JP2019191105A (ja) * 2018-04-27 2019-10-31 株式会社Ihi 検査システム

Also Published As

Publication number Publication date
KR20230143598A (ko) 2023-10-12
KR20230081913A (ko) 2023-06-08

Similar Documents

Publication Publication Date Title
KR100954703B1 (ko) 결함을 검출하는 방법 및 시스템
US6813374B1 (en) Method and apparatus for automatic image quality assessment
EP3407793B1 (en) Medical imaging system with a fixed array of x-ray detectors and method of using the same
KR20210049086A (ko) 투영각의 동적 선택에 의한 물품 검사
KR20010081097A (ko) 비파괴 테스트용 컴퓨터 단층 촬영법 및 장치
CN103714513B (zh) Ct成像中的伪影校正方法以及设备
US20220244194A1 (en) Automated inspection method for a manufactured article and system for performing same
JP2018128458A (ja) 画像表示方法
CN111476776B (zh) 胸部病灶位置确定方法、系统、可读存储介质和设备
KR102585028B1 (ko) 3차원 처리 기반 대상체 비파괴 검사 방법, 장치 및 시스템
US10209205B2 (en) System and method for tire inspection
KR20220111214A (ko) 인공지능 기반 제품 결함 검사 방법, 장치 및 컴퓨터 프로그램
CN117237269A (zh) 基于多尺度裁剪和自监督重建的肺部ct异常检测方法
US10140707B2 (en) System to detect features using multiple reconstructions
KR102602559B1 (ko) 선택적 인공 지능 엔진 기반 대상체 비파괴 검사 방법, 장치 및 시스템
KR102597081B1 (ko) 인공 지능 기반 대상체 앙상블 비파괴 검사 방법, 장치 및 시스템
JP2014171487A (ja) 体動表示装置および方法
KR102640093B1 (ko) 대상체 이미지 내 결함 보정 방법, 장치 및 컴퓨터 프로그램
KR102454975B1 (ko) 딥러닝 기반 고화질 엑스레이 영상 생성 방법, 장치 및 프로그램
US11480533B1 (en) Multi-scan computed tomography defect detectability
US20230046611A1 (en) X-ray inspection apparatus, x-ray inspection system, image management method and program
US20240068962A1 (en) X-ray imaging system and learned model production method
US20230394718A1 (en) Segmentation of computed tomography voxel data using machine learning
US10194874B2 (en) Computed tomography method, computer software, computing device and computed tomography system for determining a volumetric representation of a sample
CN115452328A (zh) 一种vcsel半导体激光器阵列近场发光孔检测装置及方法

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
A107 Divisional application of patent