KR102583958B1 - 개별 회전형 방사 소자 및 이를 이용하여 기계적 각 위상 변화를 갖는 배열 안테나 - Google Patents

개별 회전형 방사 소자 및 이를 이용하여 기계적 각 위상 변화를 갖는 배열 안테나 Download PDF

Info

Publication number
KR102583958B1
KR102583958B1 KR1020210091309A KR20210091309A KR102583958B1 KR 102583958 B1 KR102583958 B1 KR 102583958B1 KR 1020210091309 A KR1020210091309 A KR 1020210091309A KR 20210091309 A KR20210091309 A KR 20210091309A KR 102583958 B1 KR102583958 B1 KR 102583958B1
Authority
KR
South Korea
Prior art keywords
unit
ground plate
feed pin
array
array antenna
Prior art date
Application number
KR1020210091309A
Other languages
English (en)
Other versions
KR20220061834A (ko
Inventor
엄순영
Original Assignee
한국전자통신연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전자통신연구원 filed Critical 한국전자통신연구원
Priority to US17/519,807 priority Critical patent/US11715875B2/en
Publication of KR20220061834A publication Critical patent/KR20220061834A/ko
Application granted granted Critical
Publication of KR102583958B1 publication Critical patent/KR102583958B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/22Antenna units of the array energised non-uniformly in amplitude or phase, e.g. tapered array or binomial array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/267Phased-array testing or checking devices

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

단위 회전 방사 소자의 기계적 회전 운동에 의해 전기적 위상 변화를 얻는 개별 회전형 방사 소자 및 이를 이용하여 기계적인 각 위상 변화를 갖는 배열 안테나가 개시된다. 개별 회전형 방사 소자는, 유전체로 이루어진 보조 구조체, 보조 구조체의 측면 나선형 홈에 삽입되는 헬릭스 소자, 보조 구조체의 하부면에 결합하는 접지판, 접지판이 안착되는 개구부를 구비하고 접지판과 함께 헬릭스 소자가 삽입되어 있는 보조 구조체를 회전시키는 단위 구동체, 및 단위 구동체의 하부에 결합하고 헬릭스 소자의 일단에 연결되는 제1 급전 핀이 접지판의 중심을 관통하여 상부면에서 삽입되고, 급전 시에 제1 급전 핀과 전자기 결합하는 제2 급전 핀이 상부면과 내부 공간을 사이에 두고 이격된 하부면을 관통하여 삽입되는 공간적 전자기 결합 구조물을 포함한다.

Description

개별 회전형 방사 소자 및 이를 이용하여 기계적 각 위상 변화를 갖는 배열 안테나{INDIVIDUAL ROTATING RADIATION DEVICE AND ARRAY ANTENNA HAVING MECHANICAL ANGULAR PHASE CHANGES USING THE SAME}
본 발명은 배열 안테나에 관한 것으로, 보다 상세하게는, 단위 회전 방사 소자의 기계적 회전 운동에 의해 전기적 위상 변화를 얻는 개별 회전형 방사 소자 및 이를 이용하여 기계적인 각 위상 변화를 갖는 배열 안테나에 관한 것이다.
종래의 무선 통신 및 레이다용 배열 안테나는, 도 1에 도시한 바와 같이, 고속 전자 빔을 형성하기 위해, 전력 합성기(power combiner)에 연결된 단위 능동 채널 블록(active channel block, ACB) 내에 아날로그 또는 디지털 위상 천이기(phase shifter) 소자를 사용하고, 외부 제어에 따라 방사 소자(radiating elements, RE)를 통해 고속 전자 빔을 형성한다.
그러나, 이러한 종래의 배열 안테나는 위상 천이기 소자의 비용이 비싸고 추가적인 위상 제어 회로 장치가 필요하며, 높은 삽입 손실로 인하여 출력단이나 입력단에 종단 고출력 또는 저잡음 증폭기가 필요하고, 또한 고전력 소모에 따른 열방출 시스템 비용 등 추가적인 부대 비용으로 인하여 위상 배열 안테나 시스템의 가격이 증가하는 단점이 있다.
또한, 종래의 배열 안테나에서는 광범위 전자 빔을 형성하기 위해 위상 제어가 가능한 배열 단위인 단위 부-배열의 크기가 작아야 하므로 동일 크기의 배열 안테나에 사용되는 전체 부-배열의 개수가 증가하게 되며, 따라서 위상 천이기 개수의 증가와 회로의 집적화 및 열 방출 해결 비용 등이 증가하여 전체 안테나 시스템 가격이 증가하는 단점이 있다.
또한, 종래의 전체 안테나가 움직이는 기계적인 안테나는 크고 무거우며 저속의 기계적인 빔 형성을 제공하므로 목표물 추적 성능이 우수하지 못한 단점이 있다.
본 발명은 전술한 종래 기술의 단점들을 극복하기 위해 도출된 것으로, 본 발명의 목적은, 공진형 방사 소자를 좌측 또는 우측 방향으로 회전하여 전기적 위상 앞섬 또는 위상 지연 현상을 발생시킬 수 있는 개별 회전 방사 소자 및 이에 의한 기계적 각 위상 변화를 갖는 배열 안테나를 제공하는데 있다.
본 발명의 다른 목적은, 기계적 회전체로 구성된 개별 방사 소자를 갖는 위상 배열 안테나로서 경량의 단위 방사 소자들만 고속으로 회전하도록 제어하고 이를 통해 각 위상을 제어함으로써, 종래의 기계식 배열 안테나와 비교하여 상대적으로 고속 안테나 추적 빔을 형성할 수 있는 배열 안테나와 이를 위한 개별 회전 방사 소자를 제공하는데 있다.
상기 기술적 과제를 해결하기 위한 본 발명의 일 측면에 따른 개별 회전형 방사 소자는, 유전체로 이루어진 보조 구조체; 보조 구조체의 측면 나선형 홈에 삽입되는 헬릭스 소자; 상기 보조 구조체의 하부면에 결합하는 접지판; 상기 접지판이 안착되는 개구부를 구비하고 상기 접지판과 함께 상기 헬릭스 소자가 삽입되어 있는 보조 구조체를 회전시키는 단위 구동체; 및 상기 단위 구동체의 하부에 결합하고 상기 헬릭스 소자의 일단에 연결되는 제1 급전 핀이 상기 접지판의 중심을 관통하여 상부면에서 삽입되고, 급전 시에 상기 제1 급전 핀과 전자기 결합하는 제2 급전 핀이 상기 상부면과 내부 공간을 사이에 두고 이격된 하부면을 관통하여 삽입되는 공간적 전자기 결합 구조물을 포함한다.
일실시예에서, 상기 제2 급전 핀은 상기 제1 급전 핀의 말단부를 둘러싸는 중공 원통 형태를 구비할 수 있다.
일실시예에서, 상기 제2 급전 핀은 급전 시에 상기 제1 급전 핀의 말단부와 전자기 결합하도록 일정 간격 이격되어 일측에 배치될 수 있다.
일실시예에서, 상기 공간적 전자기 결합 구조물은 그 상부면 상에 설치되는 하부 요철부를 구비하며, 상기 요철부는 상기 보조 구조체의 개구부 내에서 상기 접지판의 하부의 상부 요철부와 일정 간격 이격되어 맞춰지거나 삽입 결합될 수 있다.
일실시예에서, 상기 간격은 상하 접지 면들의 간격으로 낮은 손실의 무선주파수 신호의 전달을 위한 용량성 전자기 결합의 설계 변수로써 설계 주파수 대역에 따라 결정될 수 있다.
일실시예에서, 상기 헬릭스 소자의 직경은 상기 보조 구조체의 직경과 동일하고 상기 접지판의 직경보다 작다.
일실시예에서, 상기 헬릭스 소자의 높이는 상기 헬릭스 소자의 직경보다 크고 상기 접지판의 직경보다 작다.
일실시예에서, 상기 공간적 전자기 결합 구조물의 내부 공간의 크기와 상기 제1 급전 핀과 상기 제2 급전 핀 간의 결합 길이 및 간격은, 설계 주파수 대역에 따라 결정될 수 있다.
상기 기술적 과제를 해결하기 위한 본 발명의 다른 측면에 따른 배열 안테나는, 서로 이격 배열되는 복수의 단위 방사 소자들; 상기 복수의 단위 방사 소자들 각각을 지지하는 구동체 배열; 및 상기 복수의 단위 방사 소자들과 공간적 전자기 결합하는 공간 급전 구조체 배열을 포함한다. 여기서 상기 복수의 단위 방사 소자들 각각은, 유전체로 이루어진 보조 구조체, 상기 보조 구조체의 측면 나선형 홈에 삽입되는 헬릭스 소자, 및 상기 보조 구조체의 하부면에 결합하는 접지판을 구비한다. 상기 구동체 배열은 상기 접지판이 안착되는 개구부를 구비하고 상기 접지판과 함께 상기 헬릭스 소자가 삽입되어 있는 상기 보조 구조체를 회전시키는 단위 구동체 복수개를 구비한다. 그리고 상기 공간 급전 구조체 배열은 상기 구동체 배열의 하부에 결합하고 상기 헬릭스 소자의 일단에 연결되는 제1 급전 핀이 상기 접지판의 중심을 관통하여 상부면에서 삽입되고, 급전 시에 상기 제1 급전 핀과 전자기 결합하는 제2 급전 핀이 상기 상부면과 내부 공간을 사이에 두고 이격된 하부면을 관통하여 삽입되는 적어도 하나 이상의 공간적 전자기 결합 구조물을 구비한다.
일실시예에서, 배열 안테나는, 상기 공간 급전 구조체 배열에 결합하는 급전 회로망을 더 포함할 수 있다. 여기서 상기 급전 회로망은 배열 안테나 개구면의 진폭 제어를 위한 개구면 테이퍼링을 구비할 수 있다.
일실시예에서, 배열 안테나는, 상기 구동체 배열 및 상기 급전 회로망에 연결되는 안테나 주변 유니트를 더 포함할 수 있다. 여기서 상기 안테나 주변 유니트는 미리 계산된 기계적 위상 제어 데이터에 기초하여 상기 구동체 배열 내 복수의 단위 구동체의 동작을 개별 제어하는 안테나 제어 유니트를 구비할 수 있다.
일실시예에서, 상기 안테나 주변 유니트는 개방 루프 제어용 센서 유니트를 더 포함하고, 상기 센서 유니트에서 검출되는 신호는 상기 안테나 제어 유닛에 전달될 수 있다.
일실시예에서, 상기 공간 급전 구조체 배열은 상기 제1 급전 핀 복수개와 상기 제2 급전 핀 하나가 전자기 결합하는 하나의 내부 공간을 구비할 수 있다.
본 발명에 의하면, 외부 제어 회로를 통하여 각회전을 갖는 원형 편파의 단위 방사 소자를 사용하고, 이를 배열 소자로 사용한 선형 또는 평면 배열에서 독립적인 제어를 통하여 위상을 제어하고, 단순 저손실 급전 회로망 내에서 균일 또는 비균일 진폭 분배 또는 결합을 통하여 안테나 방사 빔을 제어하는 수동 위상 배열 안테나 장치를 제공할 수 있다.
또한, 본 발명에 의하면, 종래의 위상 배열 안테나에서 요구하는 별도의 위상 천이기 소자들을 사용하지 않고 배열 안테나의 전자 빔 형성 기능을 구현할 수 있으므로 종래의 송신 또는 수신 위상 배열 안테나와 비교할 때 배열 안테나의 부피, 무게, 소모 전력, 안테나 제작 비용을 크게 줄일 수 있는 장점이 있다.
또한, 본 발명에 의하면, 저가, 저전력 전자 빔 스캔이 가능한 소형 혹은 휴대용 위상 배열 안테나 장치를 효과적으로 개발할 수 있으므로, 위성 통신, 이동 통신 등의 무선 통신 분야의 응용에서 고가의 능동 위상 배열 안테나 장치를 대체할 수 있고 그에 의해 배열 안테나 시장에 대한 경제적 파급 효과가 클 것으로 기대된다.
도 1은 위상 천이기 소자를 사용자여 전자 빔을 형성하는 비교예의 배열 안테나를 도시한 도면이다.
도 2는 본 발명의 제1 실시예에 따른 개별 회전형 방사 소자(이하 간략히 '단위 방사 소자'라고 한다)에 대한 사시도이다.
도 3은 도 2의 단위 방사 소자의 횡단면도이다.
도 4는 도 2의 단위 방사 소자의 분해 사시도 및 분해 부품의 각 단면도를 함께 나타낸 도면이다.
도 5는 도 2의 단위 방사 소자의 주요 구성요소들 간의 결합 관계를 설명하기 위한 도면이다.
도 6은 도 4의 단위 방사 소자에 대한 분해 사시도이다.
도 7은 도 6의 단위 방사 소자인 회전체의 설계 변수를 나타낸 도면이다.
도 8은 도 2의 단위 방사 소자에서 단위 방사 소자의 접지판과 공간적 자기결합 구조물의 결합 구조를 나타낸 사시도이다.
도 9는 도 8의 단위 방사 소자의 일부 구성에 대한 횡단면도이다.
도 10은 도 9의 단위 방사 소자의 일부 구성에 대한 설계 변수를 나타낸 도면이다.
도 11은 도 2의 단위 방사 소자의 위상 변환 상태를 나타낸 도면이다.
도 12a 내지 도 12d는 도 2의 단위 방사 소자의 개별 위상 변환을 이용한 방사 패턴의 특성을 설명하기 위한 그래프들이다.
도 13은 본 발명의 제2 실시예에 따른 각 회전 기능을 가진 단위 방사 소자에 대한 정면도이다.
도 14는 도 13의 단위 방사 소자의 횡단면도이다.
도 15는 도 14의 단위 방사 소자의 사시도이다.
도 16은 본 발명의 제3 실시예에 따른 배열 안테나로서 안테나 소자의 각위상 제어가 가능한 급전회로망을 구비하는 수동형 위상 배열 안테나의 개략적인 구성 블럭도이다.
도 17은 본 발명의 제4 실시예에 따른 배열 안테나에 대한 사시도이다.
도 18은 도 17의 배열 안테나의 저면측 사시도이다.
도 19는 도 17의 배열 안테나의 저면도이다.
도 20은 본 발명의 제5 실시예에 따른 배열 안테나에 대한 사시도이다.
도 21은 도 20의 배열 안테나의 저면측 사시도이다.
도 22는 도 20의 배열 안테나의 횡단면도이다.
도 23은 도 20의 배열 안테나의 분해 사시도이다.
도 24는 도 20의 배열 안테나의 저면측 분해 사시도이다.
도 25는 도 20의 배열 안테나의 작동 상태에 대한 예시도이다.
도 26은 본 발명의 제6 실시예에 따른 배열 안테나에 대한 사시도이다.
도 27은 도 26의 배열 안테나의 저면측 사시도이다.
도 28은 도 26의 배열 안테나의 정면도이다.
도 29는 도 28의 배열 안테나의 횡단면도이다.
도 30은 도 26의 배열 안테나의 빔 스캐닝 작동 상태에 대한 예시도이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. 및/또는 이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가진 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
본 발명에 따른 실시예들이 적용되는 통신 시스템(communication system) 또는 메모리 시스템(memory system)이 설명될 것이다. 본 발명에 따른 실시예들이 적용되는 통신 시스템 또는 메모리 시스템은 아래 설명된 내용에 한정되지 않는다. 본 발명에 따른 실시예들은 다양한 통신 시스템에 적용될 수 있고, 여기서 통신 시스템은 통신 네트워크(network)와 동일한 의미로 사용될 수 있다.
이하, 첨부한 도면들을 참조하여, 본 발명의 바람직한 실시예를 보다 상세하게 설명하고자 한다.
도 2는 본 발명의 제1 실시예에 따른 개별 회전형 방사 소자(이하 간략히 '단위 방사 소자'라고 한다)에 대한 사시도이다. 도 3은 도 2의 단위 방사 소자의 횡단면도이다. 도 4는 도 2의 단위 방사 소자의 분해 사시도 및 각 분해 부품의 단면도를 함께 나타낸 도면이다. 그리고 도 5는 도 2의 단위 방사 소자의 주요 구성요소들 간의 결합 관계를 나타낸 도면이다.
도 2 내지 도 5를 참조하면, 단위 방사 소자(10A)는, 단위 회전 방사 소자(100), 단위 회전 방사 소자(100)를 구동하기 위한 단위 구동체(200) 그리고 단위 회전 방사 소자(100)에 RF(radio frequency) 신호를 효율적으로 전달하기 위한 공간적 전자기 결합 구조물(300)을 구비한다. 단위 회전 방사 소자(100)는 회전체이고, 단위 구동체(200)와 공간적 전자기 결합 구조물(300)은 비회전체이다.
단위 회전 방사 소자(100)는 도 4에 도시한 바와 같이 보조 구조체(120)에 의해 지지되는 헬릭스 소자(helix unit, 110)와 보조 구조체(120)의 하부를 지지하는 접지판(130)이 결합된 형태를 구비한다.
헬릭스 소자(110)는 보조 구조체(120)의 측면 둘레의 나선형 홈에 삽입되고 일단이 접지판(130)의 중공홀을 통해 보조 구조체(120)의 중앙에 위치하는 개구부를 관통하도록 형성된다. 보조 구조체(120)의 재료는 유전체이고, 접지판(130)은 금속 또는 금속성 재료나 도전성 재료로 형성된다. 그리고 접지판(130)은 그 하부 중심부에 돌출 형성되는 하부 요철부를 구비할 수 있다.
단위 구동체(200)는 도 4의 (a) 및 (b)에 도시한 바와 같이 그 중심부에 단위 회전 방사 소자(100) 또는 단위 회전 방사 소자(100)의 접지판(200)이 안착되는 오목 개구부 또는 단차를 가진 개구부(230)를 구비할 수 있다.
또한, 단위 구동체(200)는 도 5에 도시한 바와 같이 그 내부에 스테이터(210)를 구비할 수 있다. 스테이터(210)는 서로 다른 위상을 형성하기 위한 철심과 코일 쌍을 복수개 구비할 수 있다. 이러한 스테이터(210)는 외부 제어에 의해 교번 자계를 형성할 수 있고, 주변의 로터(rotor, 210)를 회전시킬 수 있다. 로터(210)는 단위 구동체(200)에 형성될 수 있으나, 이에 한정되지 않고, 후술하는 공간적 전자기 결합 구조물(300)의 상부 구조물(310)의 상부 요철부 등에 삽입 설치될 수 있다.
또한 단위 구동체(200)는, 안테나 배열 확장시, 제어 및 제작 구현을 용이하기 위하여 얇은 인쇄회로기판(printed circuit board, PCB)에 다수의 단위 구동체들이 배열되는 구동체 어레이 형태로 제작될 수 있다.
공간적 전자기 결합 구조물(300)은 도 3 및 도 4에 도시한 바와 같이 전자기 결합 급전기를 가진 하부 구조물(320)과, 하부 구조물(320) 상에 결합하는 상부 구조물(310)을 구비할 수 있다. 상부 구조물(310)은 단위 구동체(200)의 개구부(230)에 삽입되는 상부 요철부(312)를 구비할 수 있다. 이때, 단위 구동체(200)의 개구부 내에서 상부 요철부(312)의 중앙 오목부에는 접지판(130)의 하부 요철부가 삽입될 수 있다.
전자기 결합 급전기는 중공 원통 형태의 급전 공급부(330)를 구비하고, 급전 공급부(330)의 하부측 일단부는 하부 구조물(320) 하부 중앙부를 관통하여 연장하며, 이때 하부 구조물(320)와 급전 공급부(330)의 하부측 일단부와의 사이에는 외부 유전체가 게재될 수 있다.
단위 회전 방사 소자(100)는 도 5에 도시한 바와 같이 단위 구동체(200) 내의 스테이터(stator, 210)와 로터(rotor, 220)의 상호 작용에 의해 로터(210)가 회전할 때 함께 회전할 수 있다.
전술한 구성에 의하면, 단위 구동체(200) 내부의 회전자(220)가 외부 제어에 의해 왼쪽 도는 오른쪽 방향으로 회전할 때, 회전자(220) 상부에 플로팅(floating) 형태로 놓여있는 단위 회전 방사 소자(100)가 회전자(220)의 회전에 따라 왼쪽 또는 오른쪽 방향으로 회전할 수 있다.
도 6은 도 2의 단위 회전 방사 소자에 대한 분해 구조를 설명하기 위한 도면이다. 도 7은 도 6의 회전체인 단위 회전 방사 소자의 설계 변수를 나타낸 도면이다.
도 6을 참조하면, 단위 회전 방사 소자(100)는, 원형 편파를 생성하기 위한 헬릭스 소자(110), 헬릭스 소자(110)를 일정한 형태로 유지하기 위한 보조 구조체(120) 및 헬릭스 소자(110)의 중심에 위치하는 급전 핀(112)의 전기적 통로(132)를 제공하는 접지판(130)을 구비한다.
헬릭스 소자(110)는 헬릭스 구조체로서 일정한 전기적 위상 변화를 제공하기 위하여 정중앙 혹은 그 중심부에서 급전되며, 최적의 방사 소자의 방사 성능을 제공하기 위하여 미리 설계된 헬릭스 직경, 경사각 그리고 헬릭스 회전수(높이)를 가질 수 있다. 헬릭스 소자(110)는 비회전체로부터 공간적으로 공급되는 RF 신호를 최적으로 공급받기 위하여 급전 핀(112)의 최적 길이를 구비할 수 있다.
보조 구조체(120)는 헬릭스 소자(110)의 효율적인 방사를 위하여 낮은 유전율의 물질을 사용한다. 보조 구조체(120)는 그 외측면에서 나선형 홈(122)을 구비한다.
접지판(130)은 헬릭스 소자(110)의 급전 핀의 전기적 통로(132)을 제공하는 것으로써 예를 들어, 50Ω 동축 선로를 제공하기 위한 전기적 도체 성질을 갖는다.
헬릭스 소자(110)와 보조 구조체(120)은 서로 결합한 후 접지판(130)의 상부에 체결될 수 있다. 체결 방법에는 접착제, 나사 등이 사용될 수 있다.
조립된 단위 회전 방사 소자(100)는 외부 즉, 급전 핀(112)가 연장되는 하부측의 단위 구동체 내에서 제어되는 회전체에 의해 일정한 속도로 좌회전 또는 우회전함으로써 전기적으로 위상 변화를 생성할 수 있다.
전술한 단위 회전 방사 소자(100)의 설계 변수는, 도 7의 (a)에서 헬릭스 소자(110) 및 접지판(130)에 대하여, 도 7의 (b)에서 보조 구조체(120)에 대하여 각각 나타낸 바와 같이, 헬릭스 직경(D), 피치 간격(α), 헬릭스 높이(H), 헬릭스 회전수(N), 도선 직경(d), 입력 급전 길이(L1), 접지판 직경(GD), 유전체인 보조 구조체의 직경(Dd), 보조 구조체의 높이(Hd) 등을 포함한다.
본 실시예에 따른 단위 회전 방사 소자(100)는 그 기능 및 전기적 성능을 검증하기 위하여 Ku 대역(11.75~12.75 GHz)에서 우현 편파를 갖도록 설계될 수 있으나, 이에 한정되지는 않는다. 단위 회전 방사 소자(100)는 다른 실시예에서 Ku 대역 외의 다른 RF 대역에서 우현 편파나 좌현 편파를 갖도록 설계될 수 있다.
최적 설계된 단위 회전 방사 소자 즉, 헬릭스 방사 소자의 설계 변수를 나타내면 표 1과 같다.
표 1에 나타낸 바와 같이, 헬릭스 방사 소자의 설계 변수에 있어서, 헬릭스 소자(110)의 헬릭스 직경(D)은 6.0㎜, 피치 간격(α)은 2.65㎜, 헬릭스 높이(H)는 7.95㎜, 헬릭스 회전수(N)는 3턴, 도선 직경(d)은 0.7㎜, 그리고 입력 급전 길이(L1)는 0.9㎜인 것이 바람직하고, 접지판(130)의 직경(GD)은 10.3㎜인 것이 바람직하다. 또한, 원통형 유전체인 보조 구조체(120)의 직경(Dd)은 6.0㎜, 보조 구조체의 높이(Hd)는 9.9㎜, 유전율(εr)은 3.0, 그리고 손실 탄젠트(tanδ)는 0.025인 것이 바람직하다.
한편, 전술한 단위 회전 방사 소자(100)의 각 설계 변수의 설계값은 일정 범위 내에서 상대적인 비율을 갖는 크기로 확대되거나 감소될 수 있다.
그리고 회전체와 비회전체 간을 연결하는 로터리 조인트 즉, 단위 구동체는 그 기능 및 전기적 성능을 검증하기 위하여 혹은 실제 사용을 위하여 Ku 대역(11.75~12.75 GHz)에서 설계될 수 있으나, 이에 한정되지는 아니한다.
도 8은 도 2의 단위 방사 소자에서 단위 회전 방사 소자의 접지판과 공간적 자기결합 구조물의 결합 구조를 나타낸 사시도이다. 도 9는 도 8의 단위 방사 소자의 일부 구성에 대한 횡단면도이다. 그리고 도 10은 도 9의 단위 방사 소자의 일부 구성에 대한 설계 변수를 나타낸 도면이다.
도 8 및 도 9를 참조하면, 단위 회전 방사 소자의 공간적 자기결합 구조물(300)은 헬릭스 소자(110)의 급전 핀(112)이 연장하는 방향에 대하여 축 대칭인 형태를 구비할 수 있다.
즉, 본 실시예의 단위 회전 방사 소자는 축 대칭(axial symmetry) 형태의 공간적 전자기 결합 구조물(300)을 구비한다. 공간적 전자기 결합 구조물(300)은 비회전체이다.
공간적 전자기 결합 구조물(300)의 상부 구조물(310)은 그 상부에 위치하는 회전체의 접지판(130)과 전기적으로 개방 혹은 비접촉된다. 한편, 회전 운동을 하는 헬릭스 방사 소자의 급전 핀(112)은 상부 구조물(310) 안으로 일직선으로 연결되어 있다. 하부 구조물(320)은 그 중심부의 정중앙에 동축 급전을 위한 급전 공급부(330)와 외부 유전체(340)를 구비하고, 회전 운동을 하는 헬릭스 방사 소자의 급전 핀(112)과의 효율적인 용량성 전자기 결합을 위해 그 내부가 공동형 구조를 갖는다.
급전 공급부(330)와 외부 유전체(340)는 비회전체 구조물이고, 급전 핀(112)은 원판형 구조물인 급전 공급부(330)와 일정한 간격을 둔 용량성 전자기 결합 구조를 가질 수 있다.
전술한 급전 핀(112)은 제1 급전 핀 또는 상부 급전 핀으로, 급전 공급부(330)는 제2 급전 핀 또는 하부 급전 핀으로 지칭될 수 있다.
비회전체와 회전체간의 최적의 RF 신호 전달을 위해, 요구되는 설계 주파수에 따라 공간적 전자기 결합 구조물(300)의 내부 공동 크기와 상하부 급전 핀들 간의 결합 길이, 간격 그리고 공동형 급전 핀의 구조 치수를 결정할 수 있다.
전술한 단위 회전 방사 소자의 공간적 전자기 결합 구조물(300)의 설계 변수 즉, 최적 설계된 로터리 조인트의 설계 변수를 나타내면 도 10과 같으며, 이 설계 변수에 대한 특정 조건에서의 최적 설계값을 나타내면 아래의 표 2와 같다.
표 2에 나타낸 바와 같이, 공간적 전자기 결합 구조물(330)의 설계 변수에 있어서, 로터리 조인트의 내부 공동 직경(Dc)은 7.5㎜, 내부 공동 높이(Hc)는 8.0㎜, 입출력 급전 핀들간 결합길이(Lc)는 3.43㎜, 입력 급전 핀 내부 직경(dc)은 2.4㎜, 입력 급전 핀 직경(do)은 0.5㎜, 입력 급전 핀 길이 1(Lf1)은 1.0㎜, 입력 급전 핀 길이 2(Lf2)는 1.17㎜, 입력 급전 핀 외부 도체 두께(T1)는 0.3㎜, 출력 급전 핀 길이(Lf3)는 2.25㎜인 것이 바람직하고, 그리고 입출력 동축 임피던스의 입력(Zi)은 50Ω, 출력(Zo)은 50Ω인 것이 바람직하다.
로터리 조인트(300 참조)에 단위 회전 방사 소자(100) 및 단위 구동체(200)를 결합한 후, RF에서의 위상 변환 기능 및 전기적 성능을 검증하기 위하여 Ku 대역(11.75~12.75 GHz)에서 최적화 시뮬레이션을 수행하였다. 시뮬레이션 결과, 로터리 조인트(300)가 안테나 장치의 부품으로써 유용한 것을 확인할 수 있었다.
도 11은 도 2의 단위 방사 소자의 위상 변환 상태를 나타낸 도면이다. 도 12a 내지 도 12d는 도 2의 단위 방사 소자의 개별 위상 변환을 이용한 방사 패턴의 특성을 설명하기 위한 그래프들이다.
도 11의 (a) 및 (b)에 도시한 바와 같이, 0은 X-축 기준으로 반시계 방향으로 45°만큼씩 각 회전에 따른 방사 패턴의 위상 변환 상태를 각각 나타낸다. 각 회전 범위는 좌우 반바퀴 즉, ±180°이내이다.
도 11의 (a)에 도시한 바와 같이, 정면에서 관측 또는 안테나 방사 소자를 바라보면서 관측하는 경우를 가정할 때, 우현 편파(right hand circular polarization, RHCP)를 갖는 방사 소자(radiator)인 경우에는 반시계 방향 또는 오른쪽 방향으로 움직일 때 위상 앞섬(phase lead) 특성을 보이고, 시계 방향 또는 왼쪽 방향으로 움직일 때 위상 지연(phase lag) 특성을 보인다.
반면에, 도 11의 (b)에 도시한 바와 같이, 좌현 편파(left hand circular polarization, LHCP)를 갖는 방사 소자(radiator)인 경우에는 반시계 방향 또는 오른쪽 방향으로 움직일 때 위상 지연(phase lag) 특성을 보이고, 시계 방향 또는 왼쪽 방향으로 움직일 때 위상 앞섬(phase lead) 특성을 보인다.
Ku 대역(11.7~12.75 GHz)에서 각 회전을 갖는 단위 방사 소자(도 2 참조)를 최적화 설계한 안테나 소자에서 그 전기적인 특성을 시뮬레이션한 결과를 도 12a 내지 도 12d에 나타내었다.
도 12a 내지 도 12d에 나타낸 바와 같이 각 회전에 따른 전기적인 특성이 매우 양호함을 알 수 있고, 특히 방사 소자의 각 회전에 따른 45o 간격의 위상 변화 특성이 우수함을 알 수 있다.
단위 방사 소자에서 헬릭스 방사 소자의 최적화 설계 변수 및 로터리 조인트의 최적화 설계 변수는 전술한 표 1 및 표 2를 각각 참조할 수 있다.
전술한 실시예에 의하면, 공진형 방사 소자를 좌현 또는 우현으로 회전시키면서 전기적 위상 앞섬 또는 위상 지연 현상을 발생시키는 안테나 장치로 저가, 경량의 수동형 위상 배열 안테나 장치를 제공할 수 있다. 또한, 종래의 안테나 구조 전체가 움직이는 기계적인 안테나는 크고 무거워 고속을 빔 형성을 제공할 수 없어 저속의 기계적인 빔 형성만을 제공해야 하므로 목표물 추적 성능이 우수하지 않았으나, 본 실시예에 의하면, 회전체인 개별 방사 소자를 이용하여 배열 안테나를 형성할 수 있으므로, 경량의 단일 방사 소자들만 고속으로 회전시켜 위상을 제어하여 종래의 기계식 안테나 대비 상대적으로 고속 안테나 추적 빔을 형성할 수 있는 배열 안테나를 제공할 수 있다.
도 13은 본 발명의 제3 실시예에 따른 각 회전 기능을 가진 단위 방사 소자의 일부 구성에 대한 사시도이다. 도 14는 도 13의 단위 방사 소자의 횡단면도이다. 그리고 도 15는 도 14의 단위 방사 소자의 정면도이다.
도 13 및 도 14를 참조하면, 본 실시예의 단위 방사 소자(10B)의 일부 구성은 접지판(130)과 공간적 전자기 결합 구조물(300)을 포함한다. 즉, 단위 방사 소자(10B)는 축 비대칭(axial asymmetry) 형태의 공간적 전자기 결합 구조물(300)을 구비한다. 공간적 전자기 결합 구조물(300)은 비회전체이다.
공간적 전자기 결합 구조물(300)의 상부 구조물(310)과 그 상부에 위치하는 회전체의 접지판(130)은 전기적으로 개방 혹은 비접촉된다. 한편, 회전 운동을 하는 헬릭스 방사 소자(110)의 일단부인 급전 핀은 상부 구조물(310) 안으로 일직선으로 연결되어 있다. 하부 구조물(320)의 중심부의 정중앙에서 오프셋(off-set)되어 동축 급전되는 급전 공급부(335)과 외부 유전체(340)은 비회전체 구조물로서, 회전 운동을 하는 헬릭스 방사 소자의 급전 핀(110 참조)과의 효율적인 용량성 전자기 결합을 위해 오프셋 간격이 최적으로 결정된다. 외부 유전체(340)의 길이도 전기적 특성 설계 변수로서 조정될 수 있다.
비회전체와 회전체간의 최적의 RF 신호 전달을 위해, 요구되는 설계 주파수에 따라 공간적 전자기 결합 구조물의 상부 구조물(310)과 하부 구조물(320)에 의해 형성되는 내부 공동의 크기와 상하부 급전 핀들 간의 결합 길이 및 오프셋 간격은 최적화되도록 결정될 수 있다.
회전체 및 비회전체간의 RF적 연결 구성은 도 15을 참조할 수 있다. 도 15에 도시한 바와 같이, 헬릭스 방사 소자(110)의 일단부 혹은 헬릭스 방사 소자와 연결된 상부 급전 핀은 상부 구조물(310)의 중심에서 일직선으로 연장하고 동축 급전 선로의 내부 도체에 해당된다. 또한, 회전체의 접지판(130)은 공간적 전자기 결합 구조물(300)의 상부 구조물(310)과 일정한 간격(dgap)을 두고 분리되어 있으며, 따라서 동축 급전 선로의 비접촉 외부 도체에 해당된다.
전술한 구성에 의하면, 상하 접지 면들의 일정한 간격 및 전기적인 접촉 면적은 저손실 RF 신호 전달 즉, 용량성 전자기 결합을 위한 중요한 설계 변수로써, 본 실시예에서는 접지 면들 간의 일정한 간격을 단위 구동체(도 2의 200 참조)에 의해 유지하도록 한다.
도 16은 본 발명의 제4 실시예에 따른 배열 안테나로서 안테나 소자의 각위상 제어가 가능한 급전회로망을 구비하는 구성의 개략적인 블럭도이다.
도 16을 참조하면, 위상 배열 안테나는 수동형 배열 안테나로서 송신 배열 안테나 및 수신 배열 안테나로 각각 분리하여 독립적으로 동작할 수 있으며, 또한 송수신 겸용 배열 안테나로 동작할 수 있다. 송수신 겸용 배열 안테나로 동작하는 경우, 입력단 또는 출력단에 송수신 분리용 소자 예를 들어, 서큘레이터 또는 직교 모드 트랜스듀서 등이 사용될 수 있다.
위상 배열 안테나는 개별 회전 운동을 갖는 단위 방사 소자들(100)이 일차원적 또는 이차원적으로 배열된 다수개의 방사 배열(1000)과, 외부 제어에 의해 단위 방사 소자들(100) 각각을 개별적으로 기계적으로 좌현 또는 우현 회전 운동시키기 위한 단위 구동체들(200)이 일차원적 또는 이차원적으로 배열된 구동체 배열(2000)과, 단위 구동체들(200) 각각의 하부에 공간적 전자기 결합을 갖는 단위 공간 급전 구조체 즉, 공간적 전자기 결합 구조체들(300)이 일차원적 또는 이차원적으로 배열된 공간 급전 구조체 배열(3000)을 구비한다.
또한, 위상 배열 안테나의 각 입력 또는 출력 단자들은 공간적 전자기 결합 구조체에 결합하는 급전 회로망(4000)의 출력 또는 입력 단자에 연결되어 저손실 급전 회로망(4000)과 전력 결합 또는 전력 분배된다. 단순 저손실 급전 회로망(4000)은 사이드로브(side lobe)의 레벨 제어 등 배열 안테나의 방사 패턴 성형을 위해 배열 안테나 개구면의 진폭 제어 예를 들어, 개구면 테이퍼링(tapering)을 위한 기능을 제공할 수 있다.
안테나 주변 유니트(5000)는 안테나 제어 유니트(antenna control unit, 400)와 능동 소자 및 프로세서에 전원을 공급하기 위한 전원 공급 유니트(poswer supply unit, 500) 그리고 다양한 개방 루프 제어용 센서 유니트(sensor unit, 600)을 포함할 수 있다.
안테나 제어 유니트(400)는 개방 및 폐루프 추적 등이 가능한 목표물 추적 알고리즘을 통해 획득한 정보를 기반으로 계산되는 기계적 위상 제어 데이터, 전원 등을 구동체 배열(200)의 각 단위 구동체(200)에 공급한다.
전술한 안테나 주변 유니트(5000) 중 적어도 일부는 하드웨어 구성요소, 소프트웨어 구성요소, 및/또는 하드웨어 구성요소 및 소프트웨어 구성요소의 조합으로 구현될 수 있다. 예를 들어, 프로세서, 컨트롤러, ALU(arithmetic logic unit), 디지털 신호 프로세서(digital signal processor), 마이크로컴퓨터, FPA(field programmable array), PLU(programmable logic unit), 마이크로프로세서, 또는 명령(instruction)을 실행하고 응답할 수 있는 다른 어떠한 장치와 같이, 하나 이상의 범용 컴퓨터 또는 특수 목적 컴퓨터를 이용하여 구현될 수 있다.
특히 안테나 제어 유니트(400)는 운영 체제(OS) 및 운영 체제 상에서 수행되는 하나 이상의 소프트웨어 애플리케이션을 탑재할 수 있다. 또한, 안테나 제어 유니트(400)는 소프트웨어의 실행에 응답하여, 데이터를 접근, 저장, 조작, 처리 및 생성할 수 있다. 안테나 제어 유니트(400)는 복수 개의 처리 요소(processing element) 및/또는 복수 유형의 처리 요소를 포함할 수 있다. 예를 들어, 복수 개의 프로세서 또는 하나의 프로세서 및 하나의 콘트롤러를 포함할 수 있고, 병렬 프로세서(parallel processor)와 같은, 다른 처리 구성(processing configuration)도 포함할 수 있다.
본 실시예의 기계식 수동형 위상 배열 안테나는 단위 방사 소자들이 경량이므로 비교적 고속 회전 운동 기반으로 운용될 수 있으며, 따라서 저전력, 낮은 외형, 경량화, 저가의 수동 위상 배열 안테나 시스템을 효과적으로 구현할 수 있다(도 25 및 도 30의 개별 회전 방사 소자를 이용한 이차원 수동 위상 배열 안테나의 형상 및 빔 스캐닝 참조).
도 17은 본 발명의 제5 실시예에 따른 배열 안테나에 대한 사시도이다. 도 18은 도 17의 배열 안테나의 저면측 사시도이다. 그리고 도 19는 도 17의 배열 안테나의 저면도이다.
도 17 내지 도 19를 참조하면, 본 실시예에 따른 그룹 방사 소자(20A)는 4개의 단위 회전 방사 소자들(100), 4개의 단위 회전 방사 소자들(100)을 개별적으로 혹은 적어도 하나 이상의 그룹으로 구동하기 위한 단위 구동체(200), 및 단위 회전 방사 소자들(100) 각각에 RF 신호를 전달하는 공간적 전자기 결합 구조물(300)을 구비한다.
각 단위 회전 방사 소자(100)는 헬릭스 소자(110), 보조 구조체(120) 및 접지판(130)을 구비하고, 공간적 전자기 결합 구조물(300)은 상부 구조물(310) 및 하부 구조물(320)을 구비한다.
또한, 단위 방사 소자(20A)는 단위 회전 방사 소자들(100) 각각을 소정 높이의 원형 측벽 내에 가두고 이들 사이의 이격 거리를 유지하기 위한 상부 지지프레임(150)을 더 구비할 수 있다.
또한, 단위 방사 소자(20A)는 공간적 전자기 결합 구조물(300) 또는 하부 구조물(320)의 외측 바닥면에 급전을 위한 마이크로스트립라인(337)을 구비할 수 있다.
마이크로스트립라인(337)은 도 19에 도시한 바와 같이 전원공급장치 측에 연결되는 일단부(338)와 급전 공급부(330)에 연결되는 4개의 타단부들을 구비할 수 있다. 각 타단부에는 급전 공급부(330)의 타단부가 점 용접 등의 형태로 각각 연결될 수 있다.
도 20은 본 발명의 제6 실시예에 따른 배열 안테나에 대한 사시도이다. 도 21은 도 20의 배열 안테나의 저면측 사시도이다. 도 22는 도 20의 배열 안테나의 횡단면도이다. 도 23은 도 20의 배열 안테나의 분해 사시도이다. 도 24는 도 20의 배열 안테나의 저면측 분해 사시도이다. 그리고 도 25는 도 20의 배열 안테나의 작동 상태에 대한 예시도이다.
도 20 내지 도 24를 참조하면, 본 실시예에 따른 배열 안테나(20B)는 16개의 단위 회전 방사 소자들(100) 또는 4개의 그룹 방사 소자들(100)을 구비하고, 또한 16개의 단위 회전 방사 소자들(100)을 개별적으로 혹은 적어도 하나 이상의 그룹으로 구동하기 위한 구동체 배열(2000), 및 단위 회전 방사 소자들(100) 각각에 RF 신호를 전달하는 공간 급전 구조체 배열(300)을 구비한다. 구동체 배열(2000)은 16개의 단위 구동체들을 구비할 수 있고, 공간 급전 구조체 배열(3000)은 16개의 공간적 전자기 결합 구조물을 구비할 수 있다.
각 단위 회전 방사 소자(100)는 헬릭스 소자(110), 보조 구조체(120) 및 접지판(130)을 구비하고, 공간적 전자기 결합 구조물(300)은 상부 구조물(310) 및 하부 구조물(320)을 구비한다.
또한, 배열 안테나(20B)는 단위 회전 방사 소자들(100) 각각을 소정 높이의 원형 측벽 내에 가두고 이들 사이의 이격 거리를 유지하기 위한 상부 지지프레임(150)을 더 구비할 수 있다.
또한, 배열 안테나(20B)는 도 21에 도시한 바와 같이 공간 급전 구조체 배열(3000)의 외측 바닥면에 급전을 위한 마이크로스트립라인(337)을 구비할 수 있다. 마이크로스트립라인(337)은 전원공급장치 측에 연결되는 일단부(338)와 급전 공급부(330)에 연결되는 16개의 타단부들(337a)을 구비할 수 있다. 각 타단부(337a)에는 급전 공급부(330)의 타단부가 점 용접 등의 형태로 각각 연결될 수 있다.
구동체 배열(2000)은 16개의 헬릭스 소자(110)의 급전 핀(112)이 각각 관통하는 16개의 관통홀이 배열될 수 있다. 구동체 배열은 각 관통홀 주위에 배치되는 회전자와, 회전자의 주변에 전자기 결합가능하게 배치되는 스테이터를 내장할 수 있다.
공간 급전 구조체 배열(3000)은 16개의 공간적 전자기 결합 구조물을 위한 상부 구조물 배열(3100)과 하부 구조물 배열(3200)을 구비할 수 있다. 상부 구조물 배열(3100)에는 16개의 헬릭스 소자(110)의 급전 핀(112)이 각각 관통하는 16개의 관통홀이 배열될 수 있다.
상부 구조물 배열(3100)와 하부 구조물 배열(3200) 사이에는 16개의 단위 회전 방사 소자들(100) 각각에 공간적 전자기 결합을 위해 16개의 단위 급전 공간들이 배열될 수 있다. 그리고 각 단위 급전 공간에는 하부 급전 핀에 대응하는 급전 공급부(330)가 급전 분위기에서 상부 급전 핀에 대응하는 헬릭스 소자(110)의 급전 핀(112)에 공간적으로 전자기 결합될 수 있도록 배치되어 있다.
본 실시예에 의하면, 도 25에 도시한 바와 같이 16개의 개별 회전 방사 소자들을 이용하는 이차원 수동 위상 배열 안테나(20B)는 임의의 방향으로 방사 패턴(B1)을 성형하면서 빔 스캐닝을 수행할 수 있다.
도 26은 본 발명의 제7 실시예에 따른 배열 안테나에 대한 사시도이다. 도 27은 도 26의 배열 안테나의 저면측 사시도이다. 도 28은 도 26의 배열 안테나의 정면도이다. 도 29는 도 28의 배열 안테나의 횡단면도이다. 그리고 도 30은 도 26의 배열 안테나의 빔 스캐닝 작동 상태에 대한 예시도이다.
도 26을 참조하면, 본 실시예에 따른 배열 안테나(20C)는 37개의 단위 회전 방사 소자들(100), 37개의 단위 회전 방사 소자들(100)을 개별적으로 혹은 적어도 하나 이상의 그룹으로 구동하기 위한 구동체 배열, 및 단위 회전 방사 소자들(100) 각각에 RF 신호를 전달하는 공간 급전 구조체 배열을 구비한다. 구동체 배열은 37개의 단위 구동체들을 구비할 수 있고, 공간 급전 구조체 배열은 37개의 공간적 전자기 결합 구조물이나 전자기 결합을 위한 내부 공간들을 구비할 수 있다.
또한, 배열 안테나(20C)는 단위 회전 방사 소자들(100) 각각을 소정 높이의 원형 측벽 내에 가두고 이들 사이의 이격 거리를 유지하기 위한 지지프레임(350)을 더 구비할 수 있다.
지지프레임(350)은 구동체 배열과 공간적 전자기 결합 구조물과 일체로 형성될 수 있고, 추가로 급전을 위한 마이크로스트립라인을 내장할 수 있으나, 이에 한정되지는 아니하고, 단일 급전 공급부를 통해 37개의 단위 회전 방사 소자들(100)에 급전하도록 구성될 수 있다.
또한, 지지프레임(350)은, 도 27 내지 29에 도시한 바와 같이, 그 바닥면에는 급전 공급부(330a)의 일단이 노출되고, 지지프레임(350)의 바닥에서 지지프레임(350)과 급전 공급부(330a) 사이에는 외부 유전체(340)가 배치될 수 있다. 급전 공급부(330a)는 지지프레임(350) 내부의 전자기 결합 공간에 37개의 단위 회전 방사 소자들(100)의 급전 핀들(112)과 함께 노출되어 급전 시 전자기 결합될 수 있다.
또한 지지프레임(350)은 구동체 배열의 기능을 겸비하며, 37개의 헬릭스 소자(110)의 급전 핀(112)이 각각 관통하는 37개의 관통홀을 구비할 수 있다. 지지프레임(350)은 각 관통홀 주위에 배치되는 회전자와, 회전자의 주변에 전자기 결합가능하게 배치되는 스테이터를 내장할 수 있다.
배열 안테나(20C)에 있어서, 회전체와 비회전체 사이에는 이들 사이의 이격 또는 전기적인 분리를 위한 이격프레임(160)이 삽입 설치될 수 있다. 이격프레임(160)은 37개의 단위 회전 방사 소자들(100) 각각의 측면을 둘러싸도록 독립적으로 설치되거나, 서로 연결되어 그물 또는 망(network) 형태를 구비할 수 있다.
본 실시예에 의하면, 도 30에 도시한 바와 같이 37개의 개별 회전 방사 소자들을 이용하는 이차원 수동 위상 배열 안테나(20C)는 임의의 방향으로 방사 패턴(B2)을 성형하면서 빔 스캐닝을 수행할 수 있다.
이상 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.
100 : 단위 회전 방사 소자(회전체)
110 : 헬릭스 소자
120 : 보조 구조체(유전체)
130 : 접지판(도체)
200 : 단위 구동체(비회전체)
300 : 공간적 전자기 결합 구조물(비회전체)
310 : 공간적 전자기 결합 구조물의 상부 구조물
320 : 공간적 전자기 결합 구조물의 하부 구조물
330 : 동축 급전되는 급전 핀 또는 상부 급전 핀
340 : 오프셋(off-set)되어 동축 급전되는 급전 공급부 또는 하부 급전 핀
345 : 동축 급전의 외부 유전체
400 : 안테나 제어 유니트
500 : 전원 공급 유니트
600 : 센서 유니트
1000 : 일차원적 또는 이차원적으로 배열된 다수개의 방사 배열
2000 : 단위 구동체 배열
3000 : 단위 공간 급전 구조체 배열
4000 : 단순 저손실 급전 회로망
5000 : 안테나 주변 유니트

Claims (20)

  1. 유전체로 이루어진 보조 구조체;
    보조 구조체의 측면 나선형 홈에 삽입되는 헬릭스 소자;
    상기 보조 구조체의 하부면에 결합하는 접지판;
    상기 접지판이 안착되는 개구부를 구비하고 상기 접지판과 함께 상기 헬릭스 소자가 삽입되어 있는 보조 구조체를 회전시키는 단위 구동체; 및
    상기 단위 구동체의 하부에 결합하고 상기 헬릭스 소자의 일단에 연결되는 제1 급전 핀이 상기 접지판의 중심을 관통하여 상부면에서 삽입되고, 급전 시에 상기 제1 급전 핀과 전자기 결합하는 제2 급전 핀이 상기 상부면과 내부 공간을 사이에 두고 이격된 하부면을 관통하여 삽입되는 공간적 전자기 결합 구조물;
    을 포함하고,
    상기 제2 급전 핀은 급전 시에 상기 제1 급전 핀의 말단부와 전자기 결합하도록 일정 간격 이격되어 일측에 배치되는, 개별 회전형 방사 소자.
  2. 청구항 1에 있어서,
    상기 제2 급전 핀은 상기 제1 급전 핀의 말단부를 둘러싸는 중공 원통 형태를 구비하는, 개별 회전형 방사 소자.
  3. 삭제
  4. 청구항 1에 있어서,
    상기 공간적 전자기 결합 구조물은 그 상부면 상에 설치되는 하부 요철부를 구비하며, 상기 요철부는 상기 보조 구조체의 개구부 내에서 상기 접지판의 하부의 상부 요철부와 일정 간격 이격되어 맞춰지거나 삽입 결합되는, 개별 회전형 방사 소자.
  5. 청구항 4에 있어서,
    상기 간격은 상하 접지 면들의 간격으로 낮은 손실의 무선주파수 신호의 전달을 위한 용량성 전자기 결합의 설계 변수로써 설계 주파수 대역에 따라 결정되는, 개별 회전형 방사 소자.
  6. 청구항 1에 있어서,
    상기 헬릭스 소자의 직경은 상기 보조 구조체의 직경과 동일하고 상기 접지판의 직경보다 작은, 개별 회전형 방사 소자.
  7. 청구항 6에 있어서,
    상기 헬릭스 소자의 높이는 상기 헬릭스 소자의 직경보다 크고 상기 접지판의 직경보다 작은, 개별 회전형 방사 소자.
  8. 청구항 1에 있어서,
    상기 공간적 전자기 결합 구조물의 내부 공간의 크기와 상기 제1 급전 핀과 상기 제2 급전 핀 간의 결합 길이 및 간격은, 설계 주파수 대역에 따라 결정되는, 개별 회전형 방사 소자.
  9. 서로 이격 배열되는 복수의 단위 방사 소자들;
    상기 복수의 단위 방사 소자들 각각을 지지하는 구동체 배열; 및
    상기 복수의 단위 방사 소자들과 공간적 전자기 결합하는 공간 급전 구조체 배열;을 포함하며,
    상기 복수의 단위 방사 소자들 각각은, 유전체로 이루어진 보조 구조체, 상기 보조 구조체의 측면 나선형 홈에 삽입되는 헬릭스 소자, 및 상기 보조 구조체의 하부면에 결합하는 접지판을 구비하고,
    상기 구동체 배열은 상기 접지판이 안착되는 개구부를 구비하고 상기 접지판과 함께 상기 헬릭스 소자가 삽입되어 있는 상기 보조 구조체를 회전시키는 단위 구동체 복수개를 구비하며,
    상기 공간 급전 구조체 배열은 상기 구동체 배열의 하부에 결합하고 상기 헬릭스 소자의 일단에 연결되는 제1 급전 핀이 상기 접지판의 중심을 관통하여 상부면에서 삽입되고, 급전 시에 상기 제1 급전 핀과 전자기 결합하는 제2 급전 핀이 상기 상부면과 내부 공간을 사이에 두고 이격된 하부면을 관통하여 삽입되는 적어도 하나 이상의 공간적 전자기 결합 구조물을 구비하며,
    상기 제2 급전 핀은 급전 시에 상기 제1 급전 핀의 말단부와 전자기 결합하도록 일정 간격 이격되어 일측에 배치되는, 배열 안테나.
  10. 청구항 9에 있어서,
    상기 제2 급전 핀은 상기 제1 급전 핀의 말단부를 둘러싸는 중공 원통 형태를 구비하는, 배열 안테나.
  11. 삭제
  12. 청구항 9에 있어서,
    상기 공간적 전자기 결합 구조물은 그 상부면 상에 설치되는 하부 요철부를 구비하며, 상기 요철부는 상기 보조 구조체의 개구부 내에서 상기 접지판의 하부의 상부 요철부와 일정 간격 이격되어 맞춰지거나 삽입 결합되는, 배열 안테나.
  13. 청구항 12에 있어서,
    상기 간격은 상하 접지 면들의 간격으로 낮은 손실의 무선주파수 신호의 전달을 위한 용량성 전자기 결합의 설계 변수로써 설계 주파수 대역에 따라 결정되는, 배열 안테나.
  14. 청구항 9에 있어서,
    상기 헬릭스 소자의 직경은 상기 보조 구조체의 직경과 동일하고 상기 접지판의 직경보다 작은, 배열 안테나.
  15. 청구항 14에 있어서,
    상기 헬릭스 소자의 높이는 상기 헬릭스 소자의 직경보다 크고 상기 접지판의 직경보다 작은, 배열 안테나.
  16. 청구항 9에 있어서,
    상기 공간적 전자기 결합 구조물의 내부 공간의 크기와 상기 제1 급전 핀과 상기 제2 급전 핀 간의 결합 길이 및 간격은, 설계 주파수 대역에 따라 결정되는, 배열 안테나.
  17. 청구항 9에 있어서,
    상기 공간 급전 구조체 배열에 결합하는 급전 회로망을 더 포함하며, 상기 급전 회로망은 배열 안테나 개구면의 진폭 제어를 위한 개구면 테이퍼링을 구비하는, 배열 안테나.
  18. 청구항 17에 있어서,
    상기 구동체 배열 및 상기 급전 회로망에 연결되는 안테나 주변 유니트를 더 포함하며, 상기 안테나 주변 유니트는 미리 계산된 기계적 위상 제어 데이터에 기초하여 상기 구동체 배열 내 복수의 단위 구동체의 동작을 개별 제어하는 안테나 제어 유니트를 구비하는, 배열 안테나.
  19. 청구항 18에 있어서,
    상기 안테나 주변 유니트는 개방 루프 제어용 센서 유니트를 더 포함하고, 상기 센서 유니트에서 검출되는 신호는 상기 안테나 제어 유닛에 전달되는, 배열 안테나.
  20. 청구항 9에 있어서,
    상기 공간 급전 구조체 배열은 상기 제1 급전 핀 복수개와 상기 제2 급전 핀 하나가 전자기 결합하는 하나의 내부 공간을 구비하는, 배열 안테나.
KR1020210091309A 2020-11-06 2021-07-13 개별 회전형 방사 소자 및 이를 이용하여 기계적 각 위상 변화를 갖는 배열 안테나 KR102583958B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/519,807 US11715875B2 (en) 2020-11-06 2021-11-05 Individual rotating radiating element and array antenna using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200147841 2020-11-06
KR20200147841 2020-11-06

Publications (2)

Publication Number Publication Date
KR20220061834A KR20220061834A (ko) 2022-05-13
KR102583958B1 true KR102583958B1 (ko) 2023-09-27

Family

ID=81583369

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210091309A KR102583958B1 (ko) 2020-11-06 2021-07-13 개별 회전형 방사 소자 및 이를 이용하여 기계적 각 위상 변화를 갖는 배열 안테나

Country Status (1)

Country Link
KR (1) KR102583958B1 (ko)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030164805A1 (en) * 2002-03-01 2003-09-04 Strickland Peter C. Pentagonal helical antenna array

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4427984A (en) * 1981-07-29 1984-01-24 General Electric Company Phase-variable spiral antenna and steerable arrays thereof
KR101507502B1 (ko) * 2009-03-30 2015-04-01 중앙대학교 산학협력단 다중대역 안테나 어레이

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030164805A1 (en) * 2002-03-01 2003-09-04 Strickland Peter C. Pentagonal helical antenna array

Also Published As

Publication number Publication date
KR20220061834A (ko) 2022-05-13

Similar Documents

Publication Publication Date Title
EP3014705B1 (en) Broadband low-beam-coupling dual-beam phased array
JP6384550B2 (ja) 無線通信モジュール
US6842157B2 (en) Antenna arrays formed of spiral sub-array lattices
JP4440266B2 (ja) 広帯域フェーズドアレイ放射器
US7212163B2 (en) Circular polarized array antenna
US7956815B2 (en) Low-profile antenna structure
EP3278398B1 (en) Sparse phase-mode planar feed for circular arrays
US10148009B2 (en) Sparse phase-mode planar feed for circular arrays
JP2005533446A (ja) マルチレベルで成形された素子及び空間充填して成形された素子を使用するアンダーサンプリングされたマイクロストリップアレー
Yao et al. A new approach to design circularly polarized beam-steering antenna arrays without phase shift circuits
US6919854B2 (en) Variable inclination continuous transverse stub array
US20080211600A1 (en) Broad Band Mechanical Phase Shifter
EP1514329B1 (en) Helix antenna
El-Tager et al. Design and implementation of a smart antenna using butler matrix for ISM-band
US11715875B2 (en) Individual rotating radiating element and array antenna using the same
KR102583958B1 (ko) 개별 회전형 방사 소자 및 이를 이용하여 기계적 각 위상 변화를 갖는 배열 안테나
Wounchoum et al. A switched-beam antenna using circumferential-slots on a concentric sectoral cylindrical cavity excited by coupling slots
EP1870959B1 (en) Broadband mechanical phase shifter
Batel et al. Superdirective and compact electronically-beam-switchable antenna for smart communication objects
Ouyang et al. A cavity-backed slot ESPAR E-plane array
CN110416718B (zh) 一种可重构介质谐振器天线及其宽角扫描阵列
Ouyang et al. Cavity-backed slot ESPAR cross array with two-dimensional beam steering control
Nakamoto et al. Radial line helical phased array with antenna elements rotated by motors for microwave power transmissions
Yin et al. A modular 2-bit subarray for large-scale phased array antenna
Allayioti et al. Side lobe level reduction for beam steerable antenna design

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant