KR102582151B1 - 전기적 활성이 향상된 금속 인화물/ 그래파이트 촉매 제조방법 및 이를 이용한 수전해용 또는 연료전지용 촉매 - Google Patents

전기적 활성이 향상된 금속 인화물/ 그래파이트 촉매 제조방법 및 이를 이용한 수전해용 또는 연료전지용 촉매 Download PDF

Info

Publication number
KR102582151B1
KR102582151B1 KR1020210029806A KR20210029806A KR102582151B1 KR 102582151 B1 KR102582151 B1 KR 102582151B1 KR 1020210029806 A KR1020210029806 A KR 1020210029806A KR 20210029806 A KR20210029806 A KR 20210029806A KR 102582151 B1 KR102582151 B1 KR 102582151B1
Authority
KR
South Korea
Prior art keywords
catalyst
nickel
graphite
water electrolysis
reaction
Prior art date
Application number
KR1020210029806A
Other languages
English (en)
Other versions
KR20220052254A (ko
Inventor
박경원
박덕혜
이우준
이학주
문상현
김성범
신재훈
장재성
김지환
이성남
Original Assignee
숭실대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 숭실대학교 산학협력단 filed Critical 숭실대학교 산학협력단
Publication of KR20220052254A publication Critical patent/KR20220052254A/ko
Application granted granted Critical
Publication of KR102582151B1 publication Critical patent/KR102582151B1/ko

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/185Phosphorus; Compounds thereof with iron group metals or platinum group metals
    • B01J27/1853Phosphorus; Compounds thereof with iron group metals or platinum group metals with iron, cobalt or nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • B01J35/0033
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)

Abstract

본 발명은 본 발명은 전기적 활성이 향상된 금속 인화물/ 그래파이트 촉매 제조방법 및 이를 이용한 수전해용 또는 연료전지용 촉매에 관한 것으로, 본 발명에 따라 갈바닉 치환 반응 및 화학 기상 증착을 통해 탑-다운(top-down) 방식으로 제조하여 Ni이 주가 되어 저렴하면서, 수전해와 수소 연료 전지, 메탄올 연료 전지의 산소 발생 반응, 산소 환원 반응, 메탄올 산화 반응 촉매로 이용되어 우수한 활성 및 안정성 효과를 나타낼 수 있다.

Description

전기적 활성이 향상된 금속 인화물/ 그래파이트 촉매 제조방법 및 이를 이용한 수전해용 또는 연료전지용 촉매{Method for manufacturing metal phosphide/graphite catalyst with enhanced electrocatalytic performance and catalyst for water electrolysis or fuel cell using the same}
본 발명은 전기적 활성이 향상된 금속 인화물/ 그래파이트 촉매 제조방법 및 이를 이용한 수전해용 또는 연료전지용 촉매에 관한 것이다.
지구온난화와 화석연료의 고갈에 따른 대체에너지의 연구가 활발하게 진행되고 있으며, 이 중 실용가능성 있는 환경 및 에너지 문제 해결의 대안으로 수소에너지가 주목받고 있다. 물은 지구상 어느 곳이든 존재하는 청정한 자원이며, 수소와 산소로 반복하여 이용 가능한 재생가능성을 갖는 이상적인 수소 원료이다.
수전해는 전기를 이용하여 물로부터 산소와 수소를 제조하는 방법으로, 제조방법에 따라 고분자전해질 수전해, 알칼리 수전해, 고체 산화물을 이용한 고온 수증기 수전해로 나뉘어진다. 이 중 알칼리 수전해는 실증된 기술로서 공업적으로 확립된 방법으로 주목을 받고 있다.
종래 알칼리 수전해 기술에서 반응속도를 결정하는 산소발생반응(Oxygen Evolution Reaction; OER)에서 사용되는 촉매로 이리듐, 백금, 루테늄 등이 사용되고 있으나, 이는 고가인 단점이 있어, 이러한 단점을 극복하기 위한 연구가 많이 진행되고 있다.
한편, 연료전지(Fuel Cell)는 전기화학반응에 의해 메탄올, 에탄올, 천연가스와 같은 탄화수소 계열의 물질 내에 함유되어 있는 수소와 산소의 화학 에너지를 직접 전기 에너지로 변환시키는 발전 시스템이다.
연료전지는 화석 에너지를 대체할 수 있는 청정 에너지원으로서, 최근 전자 산업의 급속한 발달과 함께 휴대용 이동 전자제품들이 대중화되어 가는 추세에 가장 적합한 에너지원으로 여겨지고 있다. 또한, 현재 휴대용 전자 제품들의 전원으로 사용되고 있는 배터리에 비해 다양한 범위의 출력을 내면서도 높은 에너지 밀도를 나타내기 때문에 고성능의 휴대용 전자제품의 전원으로 연료전지가 주목 받고있다.
이러한 연료전지의 대표적인 예로는, 고분자 전해질형 연료전지(Polymer Electrolyte Membrane Fuel Cell, PEMFC)나 메탄올을 연료로 사용하는 직접 메탄올 연료전지(Direct Methanol Fuel Cell, DMFC) 등을 들 수 있으며, 이들에 관한 개발 및 연구가 활발히 이루어지고 있다.
이러한 연료전지의 효율은 전극의 반응 속도에 의해 크게 좌우되며, 이에 전극 소재로 나노 크기의 촉매가 사용된다. 연료전지에 사용되는 전극 촉매는 현재까지 백금(Pt)계의 귀금속이 주류를 이루고 있으므로 제조 원가가 높은 단점이 있으며, 이에 경제적인 부담이 커질 수밖에 없고, 매장량이 제한되고 매우 고가인 백금을 사용함에 따라 상용화 단계가 늦춰지고 있는 실정이다.
하지만 지금까지 개발된 비백금 촉매의 활성으로는 실제 연료전지용 전극에 적용하는데 어려움이 있는 것이 사실이다.
따라서, 귀금속의 양을 줄이고, 저렴하면서 수전해 또는 연료전지의 활성을 향상시킬 수 있으며, 안정성 또한 우수한 촉매에 대한 연구가 필요한 실정이다.
1. 대한민국 공개특허 제10-2020-0113333호(2020.10.07. 공개)
본 발명의 목적은 귀금속의 양을 줄이고, 저렴하면서 수전해 또는 연료전지의 활성을 향상시킬 수 있으며, 안정성 또한 우수한 금속 인화물/ 그래파이트 촉매 제조방법을 제공하는 데에 있다.
또한, 본 발명의 다른 목적은 상기 제조방법으로부터 제조된 금속 인화물/ 그래파이트 촉매 및 이의 수전해용 또는 연료전지의 전극으로의 이용을 제공하는 데에 있다.
상기 목적을 달성하기 위하여, 본 발명은 니켈폼(foam)을 식각하는 단계; 상기 식각된 니켈폼을 귀금속 전구체와 반응시켜 니켈-귀금속 복합체를 제조하는 단계; 상기 니켈-귀금속 복합체에 탄소를 증착시키는 단계; 상기 탄소가 증착된 니켈-귀금속 복합체를 분말로 제조하는 단계; 및 상기 분말을 인(Phosphorus) 분말과 함께 열처리하는 단계; 를 포함하는 금속 인화물/ 그래파이트 촉매의 제조방법을 제공한다.
또한, 본 발명은 상기의 제조방법에 따라 제조된 금속 인화물/ 그래파이트 촉매를 제공한다.
본 발명에 따라 갈바닉 치환 반응 및 화학 기상 증착을 통해 탑-다운(top-down) 방식으로 제조된 Ni-Pd-P/C 촉매는, Pd을 Ni 대비 3 at%로 적게 사용하면서, Ni을 foam을 사용하여, 비교적 저렴하게 top-down 방식으로 합성할 수 있다.
또한, Ni-Pd-P/C 촉매는 Ni이 주가 되어 저렴하면서, 수전해와 수소 연료 전지, 메탄올 연료 전지의 산소 발생 반응, 산소 환원 반응, 메탄올 산화 반응 촉매로 이용되어 우수한 활성 및 안정성 효과를 나타내어, 수전해용 또는 연료전지용 전극의 촉매로 유용하게 이용할 수 있는 효과가 있다.
도 1은 Ni-Pd-P/ C 합성 과정에 대한 개략도로, Galvanic Replacement Process를 통해 Ni 표면에 Pd가 형성되는 과정과 Chemical vapor deposition(CVD)을 통해 탄소가 Ni-Pd를 둘러싸는 과정을 나타낸 도면이다.
도 2는 Ni-Pd/C와 Ni-Pd-P/C의 XRD 데이터를 나타낸 도면이다.
도 3은 스퍼터링으로 Pd으로 증착시킨 비교예 Ni-Pd-P/C 샘플의 XRD 데이터를 나타낸 도면이다.
도 4는 (a, b, c) Ni-Pd, (d, e, f) Ni-Pd/C, (g, h, i) Ni-Pd-P/C의 SEM 이미지를 나타낸 도면이다.
도 5는 (a) Ni-Pd/C, (b) Ni-Pd-P/C의 EDS 분석 결과를 나타낸 도면이다.
도 6은 스퍼터링으로 합성한 비교예 Ni-Pd-P/C 샘플의 EDS 분석 결과를 나타낸 도면이다.
도 7은 Ni-Pd-P/C의 Cs-TEM 이미지(a, b)와 EDS 분석(c) 결과를 나타낸 도면이다.
도 8은 Ni-Pd/C와 Ni-Pd-P/C의 Raman 분석을 나타낸 도면이다.
도 9는 (a) Ni-Pd-P/C의 Cyclic voltammogram (CV), (b, c) Ni-Pd-P/C와 IrO2의 OER 활성 비교와 (d) tafel 분석을 나타낸 도면이다.
도 10은 스퍼터링으로 소량의 Pd을 니켈폼 위에 얹어 실험한 비교예 Ni-Pd-P/C 샘플의 OER 활성 평가를 나타낸 도면이다.
도 11은 (a, b) 상용 Pt/C와 Ni-Pd-P/C의 CV 그래프, (c, d) ORR 활성 비교, (e) MOR 활성 평가, (f) MOR 안정성 평가를 나타낸 도면이다.
이하에서는 본 발명은 구체적으로 설명한다.
본 발명자들은 갈바닉 치환 반응 및 화학 기상 증착을 통해 탑-다운(top-down) 방식으로 Pd을 Ni 대비 적게 사용하면서, Ni을 foam을 사용하여, 비교적 저렴하게 Ni-Pd-P/C 촉매를 합성할 수 있었으며, Ni-Pd-P/C 촉매는 Ni이 주가 되어 저렴하면서, 수전해와 수소 연료 전지, 메탄올 연료 전지의 산소 발생 반응, 산소 환원 반응, 메탄올 산화 반응 촉매로 이용되어 우수한 활성 및 안정성 효과를 나타내어, 수전해용 또는 연료전지용 전극의 촉매로 유용하게 활용될 수 있음을 밝혀내어 본 발명을 완성하였다.
수전해 촉매는 산소 발생 반응 촉매와 수소 발생 반응(Hydrogen evolution reduction) 촉매가 있다. 흔히들 1.23 V vs. RHE에서 물의 분해 반응이 일어난다고 이론적으로 알고 있지만, 1.23 V의 전압을 물에 오랜 시간 흘려줘도 그 반응 속도가 매우 느려 수소와 산소의 발생을 보기 힘들다. 일반적으로 10 mA /cm2 가 흐를 때의 전위 값에 수전해 반응의 이론 전압인 1.23 V를 빼주어 그 값을 과전압(Overpotential) 이라 부른다. 즉, Overpotential이 낮을수록 좋은 촉매 활성을 띄는 것이다. 수소 발생 반응은 메커니즘이 간단하고, 필요한 과전압이 약 20 mV로 높지 않지만, 귀금속 촉매가 사용되므로 적은 양의 귀금속 촉매나 비귀금속 촉매로 백금만큼 좋은 활성을 띠는 촉매를 만드는 과정을 통해 단가를 낮출 수 있을 것이다. 또한, 산소 발생 반응은 메커니즘이 복잡하므로 높은 과전압이 요구된다. IrO2, RuO2 등이 자주 사용되는데 과전압이 약 340 mV로 수소 발생 반응에 비해 많이 크다. 그리고 비교적 높은 전위에서 반응이 일어나기 때문에 촉매의 부식이 더 쉽게 일어난다. 이렇듯 아직까지 수전해 촉매는 다양한 개선점들이 있으며, 위의 단점들을 극복하기 위한 연구를 진행하고 있다.
도한, 연료 전지는 산소 환원 반응 촉매와 수소 산화 반응 촉매 2 가지로 이루어져 있다. 그 중 산소 환원 반응 촉매가 과전압도 크고, 안정성도 보장이 안되어, 많은 개발이 이루어지고 있다. 산소 발생 반응의 대표적인 촉매는 백금이다. 수전해 촉매와 마찬가지로, 백금의 비용적인 측면에 의해 활성을 제일 좋지만, 비백금으로 가려는 시도 들이 이루어지고 있다.
이에, 귀금속의 양을 줄이고, 저렴하면서 수전해 또는 연료전지의 활성을 향상시킬 수 있으며, 안정성 또한 우수한 촉매 제조를 위해, 본 발명은 니켈폼(foam)을 식각하는 단계; 상기 식각된 니켈폼을 귀금속 전구체와 반응시켜 니켈-귀금속 복합체를 제조하는 단계; 상기 니켈-귀금속 복합체에 탄소를 증착시키는 단계; 상기 탄소가 증착된 니켈-귀금속 복합체를 분말로 제조하는 단계; 및 상기 분말을 인(Phosphorus) 분말과 함께 열처리하는 단계; 를 포함하는 금속 인화물/ 그래파이트 촉매의 제조방법을 제공한다.
이때, 상기 귀금속 전구체는 염화 팔라듐(Palladium chloride), 팔라듐 아세틸아세토네이트 (palladium(Ⅱ) acetylacetonate), 질산 팔라듐 (Palladium(II) nitrate) 및 아세트산 팔라듐 (Palladium(II) Acetate)로 이루어진 군에서 선택되는 것을 특징으로 하며, 바람직하게는 염화 팔라듐(Palladium chloride)일 수 있으나, 이에 제한되는 것은 아니다.
또한, 상기 니켈과 귀금속 전구체의 몰비는 30 내지 35 : 1인 것을 특징으로 하며, 바람직하게는 97 : 3일 수 있다.
또한, 상기 식각은 0.5 내지 2M의 염산(HCl)과 5 내지 20분 동안 반응시키는 것으로, 바람직하게는 1M의 염산(HCl)과 10분 동안 반응시킬 수 있으나, 이에 제한되는 것은 아니다.
또한, 상기 식각된 니켈폼과 귀금속 전구체와의 반응은 30 내지 50 ℃에서 5 내지 15분 동안 교반하여 갈바닉 치환 반응에 의해 니켈-귀금속 복합체를 형성하며, 바람직하게는 40 ℃에서 10분 동안 반응시킬 수 있으나, 이에 제한되는 것은 아니다.
또한, 상기 탄소 증착은 CH4 하에서 700 내지 1000 ℃, 30분 내지 2시간 동안 화학기상증착 방법으로 니켈-귀금속 복합체에 그래파이트를 성장시키며, 바람직하게는 900 ℃에서 1시간 동안 반응시킬 수 있으나, 이에 제한되는 것은 아니다.
또한, 상기 열처리는 500 내지 1000 ℃에서 30분 내지 3시간 동안 이루어지며, 바람직하게는 700 ℃에서 1시간 30븐 동안 이루어질 수 있으나, 이에 제한되는 것은 아니다.
이때, 상기 조건을 벗어나면 본 발명에 따른 금속 인화물/ 그래파이트 촉매가 제대로 형성되지 않아 수전해용 또는 연료전지용 촉매로서 우수한 활성 및 안정성 효과를 가질 수 없어 수전해용 또는 연료전지용 전극의 촉매로 유용하게 활용될 수 없는 문제가 야기될 수 있다.
또한, 본 발명의 상기의 제조방법에 따라 제조된 금속 인화물/ 그래파이트 촉매를 제공한다.
이때, 상기 금속 인화물/ 그래파이트 촉매는 구형 나노입자인 것으로, 나노입자의 평균 직경은 30 내지 300 nm일 수 있다.
구형의 Particles들은 전해질과의 접촉을 최대화하여 빠른 반응을 유도해 좋은 촉매 활성을 나타낼 수 있기에 촉매로써 유용할 것이다.
또한, 상기 구형 나노입자는 금속 인화물을 포함하는 코어(core) 및 상기 코어 상에 증착된 그래파이트를 포함하는 쉘(shell) 층으로 이루어지는 것으로, 상기 코어는 니켈, 귀금속 및 인을 포함하며, 니켈 및 인은 코어의 중심부에, 귀금속은 코어의 표면부에 존재할 수 있다.
본 발명은 샘플 합성 중, Galvanic Replacement Process와 CVD 방법을 사용하며, 이때, Galvanic Replacement Process는 두 금속의 표준 전위 차이에 의해 자발적으로 발생하게 된다. 대부분의 bimetal 중 환원 전위가 높은 금속이 shell에, 환원전위가 낮은 금속이 core에 풍부하므로, 귀금속이 shell에 전이 금속이 core에 위치하게 된다. Galvanic Replacement Process는 짧은 반응시간과 다양한 Morphology 합성이 가능하다는 점 등의 장점이 있다. 또한, CVD 방법으로 탄소를 합성하면 Ni, Pd 위에 탄소가 자라, core-shell 형태가 되기 쉽고, 열처리 온도와 시간, 기체 유량에 따라 탄소 결정성이나 양 등을 쉽게 조절할 수 있다. 본 발명은 Ni과 Pd 위에 탄소가 성장하며, Ni foam이 부셔져 top-dowm으로 나노 파티클을 만들 수 있다. 이후에, 적당한 양의 red P와 섞어 인화물화 하는 과정에서도 탄소의 결정도는 크게 줄어들지 않고 유지됨을 확인하였다.
또한, 상기 촉매는 수전해용 촉매 또는 연료전지용 촉매로 이용할 수 있으며, 본 발명의 일 실시예에 따르면, 본 발명의 금속 인화물/ 그래파이트 촉매는 귀금속의 함량은 현저하게 줄이면서 상용 IrO2 또는 Pt/C와 비교하여 우수한 촉매 활성 및 안정성 효과를 보임을 확인하였다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 있어서 자명할 것이다.
<실시예 1> 저가 니켈 폼(Nickel foam)을 이용한 탑-다운(top-down) 방식의 Ni-Pd-P/C 촉매 합성
니켈 팔라듐 인화물/ 그래파이트(Nickel Palladium Phosphide/ Graphite; Ni-Pd-P/C) 촉매는 니켈 폼(Nickel Foam) (MTI Korea, 99.99%)을 시작으로 갈바닉 치환 공정(Galvanic Replacement Process)과 화학기상증착(Chemical vapor deposition; CVD) 방법을 거쳐 합성되었다.
2*2 크기의 Nickel Foam을 1 M HCl과 EtOH에 각각 10분씩 소니케이션(Sonication) 시켜 세척함으로써 니켈 폼을 식각하였다. 0.04 M PdCl2(Alfa Aesar,99%)와 세척한 Ni foam을 40 ℃에서 10분 동안 빠르게 교반하여, Nickel foam 위의 Ni을 Pd로 치환하였다(Pd-Ni). 이때, Ni 몰 수 대비 약 97:3 정도의 Pd을 넣어주었다. 이후, Pd-Ni foam을 50 ℃ 진공오븐에서 1시간 동안 건조하였다. 그 다음 CH4를 500 mL/min으로 튜브퍼니스에서 900 ℃ 1시간 동안 화학기상증착(Chemical vapor deposition) 방법으로 Pd와 Ni에 탄소를 증착시켜 그래파이트(graphite)를 성장시킨 후, 폼 상태의 Nickel을 10분의 그라인딩(Grinding)으로 부셔서 top-dowm으로 150 nm의 나노 파티클을 만들었다. 파우더 상태가 된 Ni-Pd/C 0.1g과 0.03g의 red P (Alfa Aesar, 100 mesh, 98.9%)를 Ar 분위기의 글로브박스에서 Joint Bottle에 담아준 후, N2 분위기의 튜브퍼니스에서 700 ℃, 1시간 30분 동안 인화물화(Phosphidation) 시켜 Ni-Pd-P/C 나노 파우더를 얻었다.
<비교예 1>
니켈 폼 상에 Pd을 스퍼터링 방법으로 극소량 증착시켜 Pd-Ni foam을 제조하였다. 그 다음 CH4를 500 mL/min으로 튜브퍼니스에서 900 ℃ 1시간 동안 화학기상증착(Chemical vapor deposition) 방법으로 Pd와 Ni에 탄소를 증착시켜 그래파이트(graphite)를 성장시킨 후, 폼 상태의 Nickel을 그라인딩(Grinding)으로 부셔서 top-dowm으로 나노 파티클을 만들었다. 파우더 상태가 된 Ni-Pd/C 0.1g과 0.03g의 red P (Alfa Aesar, 100 mesh, 98.9%)를 Ar 분위기의 글로브박스에서 Joint Bottle에 담아준 후, N2 분위기의 튜브퍼니스에서 700 ℃, 1시간 30분 동안 인화물화(Phosphidation) 시켜 Ni-Pd-P/C 나노 파우더 촉매를 얻었다(Pd 함량이 매우 적어 이하 'Ni2P/C' 라 칭함').
<실험예 1> 구조분석
1) X-ray Diffraction(XRD) 분석
Ni-Pd/C와 Ni-Pd-P/C의 결정구조는 XRD 분석을 도 2에 나타냈다.
Galvanic Replacement Process를 통해 합성된 Ni-Pd 위에 Chemical Vapor Deposition 방법을 통해 탄소를 증착시킨 Ni-Pd/ Graphite 샘플의 XRD 결과, 26.5ㅀ 에서 그래파이트 피크(Graphite peak)(JCPDS FILE 08-0415)를 관찰할 수 있었다. 또한, 니켈(Nickel)(JCPDS file 65-2865)과 니켈-팔라듐(Nickel-Palladium) (JCPDS file 65-9444) 피크가 관찰되었다. 인화물화(Phosphidation)를 진행한 후(Ni-Pd-P/ Graphite)에도, 여전히 결정성 있는 그래파이트 피크(Graphite peak)가 관찰되었다. 인화물화 과정 이후, Ni과 Pd의 메탈(Metal) 형태의 피크는 보여지지 않았고, 전부 메탈 인화물(Metal phosphide) 형태로 존재하였다. 40.6, 44.5, 47.2, 54.0, 66.3, 72.7, 74.6, 79.9, 88.7ㅀ에서는 Ni2P의 (111), (201), (210), (300), (310), (311), (400), (401), (321) 결정면을 나타냈으며, 이로써 Nickel Phosphide가 Ni2P 단일상 형태로 균일하게 존재함을 알 수 있었다. 22.3, 30.5, 31.0, 32.8, 33.0ㅀ에서는 PdP2의 (011), (020), (200), (002), (211) 면을 나타내는 메인 피크(main peak)가 확인되었다. Ni2P는 JCPDS FILE 89-4864를 PdP2는 JCPDS file 77-1421을 참고하였다.
비교예 1을 통해 제조된 Pd을 스퍼터링으로 증착시킨 샘플의 XRD 분석 결과, Pd이 아주 소량 증착되었기 때문에 Pd과 관련된 피크가 전혀 관찰되지 않음을 확인하였다. 그 외에 Ni2P와 그래파이트 카본(Graphitic Carbon)의 피크는 여전히 관찰되었다(도 3).
2) Scanning Electron Microscope(SEM) 과 X-ray dispersive spectroscopy(EDS) 분석
실시예 1에서 제조된 Ni-Pd, Ni-Pd/C 및 Ni-Pd-P/C의 SEM 분석 결과, 도 4 (a, b, c)와 같이, Nickel foam에 Galvanic Replacement Process로 Pd을 붙여 줬을 때(Ni-Pd), 니켈 폼 표면이 거칠어 진 것을 확인할 수 있었다. 또한, 도 4(d, e, f)를 보면, CVD를 통해 탄소를 성장시켰을 때(Ni-Pd/C), 구형 모양의 입자들이 만들어진 것을 확인할 수 있었다. 도 5(a)를 보면, Ni-Pd/C는 Ni, Pd, C가 잘 분포하는 것을 확인할 수 있었다. 또한, 도 4(g, h, i)를 보면, 인화물화 과정 이후(Ni-Pd-P/C)에도 구형의 형태가 여전히 유지되는 것을 확인(평균 입자 크기: 150 nm)하였고, 도 5(b)에도 P가 추가적으로 확인되었다.
그러나, 도 6의 결과와 같이, 스퍼터링으로 Pd을 증착시킨 Ni foam으로 합성한 비교예 샘플의 경우, Pd의 양이 매우 소량만 검출됨을 확인하였다.
3) 원소 분석 데이터
상기 실시예의 합성 과정에서는 Ni 몰 수 대비 약 97:3 정도의 Pd을 넣어주었다. 실제 함량을 확인하기 위해 Inductive coupled plasma-optical emission spectrometry (ICP-OES), SEM EDS, X-ray photoelectron spectroscopy (XPS) 원소 분석을 통한 정량 분석을 진행하였다.
하기 표 1을 보면, SEM EDS 결과, Palladium은 전체 금속 대비 24.9 at%로, Nickel은 75.1 at%로 측정되었다. XPS Elemental Analysis 결과에서는 Nickel 과 Palladium이 84.4 at%, 15.6 at%로 측정되었다 (Figure S2). ICP-OES 결과 Ni : Pd은 98.4 : 1.6으로 측정되었다. 넣어준 Pd의 양과는 ICP-OES 결과가 가장 가까운 함량을 나타냄을 확인하였다.
약 1~12 nm의 깊이를 측정하는 XPS의 경우, 표면에 Pd 함량이 더 높게 나오는 것을 확인할 수 있었다. 이는 즉, 구형의 Ni-Pd-P/C 촉매 전체에서 표면에 Pd가 더 많이 분포하고, 코어(core)에는 Ni이 더 많이 존재함을 알 수 있다. 이는, Galvanic Replacement Process로 Ni foam의 한 부분들이 Pd으로 치환될 때, 환원 전위가 높은 금속이 shell에, 환원전위가 낮은 금속이 core에 풍부해지게 되므로, Pd가 상대적으로 Ni의 표면에 더 많이 치환되어 표면에 더 많이 존재하는 것이다.
이로써, 활성이 비교적 좋은 Pd이 표면에 존재하여, Ni 몰 수 대비 약 3 at%정도의 소량을 포함하고 있어도 Pd 효과가 크게 나타나, 전기적 활성 향상에 영향을 주었을 것이다.
4) Cs-corrected spherical aberration corrected scanning transmission electron microscope (Cs-TEM), EDS와 Raman spectroscopy 분석
실시예를 통해 제조된 구형의 Ni-Pd-P/C 촉매의 Cs-TEM 분석에서, core-shell 형태의 촉매가 합성된 것을 볼 수 있었다(도 7(b)). 또한, Shell은 탄소로 구성되어 있고, XRD 에서 보인 것과 같은 Graphitic carbon인 것을 격자 거리를 통해 또 확인할 수 있었다(도 7(c)).
또한, 도 7 (b)를 통해 Ni2P와 PdP2의 존재도 확인하였으며, 도 7(c) EDS 분석을 통해 shell은 탄소임을 확인하였고, core보다는 표면 쪽에 Pd이 잘 분포하고 있음을 확인하였다.
또한, 도 8의 Ni-Pd/C, Ni-Pd-P/C의 라만 분석에서도, Ni-Pd/C를 인화물화 하는 과정에서도 탄소의 결정도는 줄어들지 않고 결정성 높은 탄소가 존재함을 확인할 수 있었다(도 8(b)).
적당한 양의 red P와 섞어 인화물화 하는 과정에서도 탄소의 결정도는 크게 줄어들지 않고 유지된다.
<실험예 2> 전기화학 분석
1) Oxygen evolution reduction (OER, 산소 발생 반응) 평가
최소 전압인 0.1에서 최대 전압인 1.3 V vs. RHE 까지 50 mv/s로 50 cycs을 순환시켜 순환전압전류법 실험(CV)을 진행하였다. CV를 통해 안정화한 후, 1.25부터 1.65 V vs. RHE 까지 정방향으로 5 mV/s로 3 번 실험하였다.
도 9(a)는 전위범위 0.1-1.3 V vs. RHE이고, Ar으로만 포화되었고, 전해질은 1 M NaOH를 이용한 CV 분석 결과로서, CV는 LSV 전 촉매의 안정화를 위한 목적으로 진행하였다. Pd에 의해 0.1- 0.3 V vs. RHE에서 수소의 흡-탈착이 일어나고, 1.0- 1.3 V vs. RHE에서 산소의 산화, 환원이 일어났다.
도 9(b, c)는 산소 발생 반응 촉매로 주로 이용되는 IrO2 촉매(출처: 보야스에너지)와 Ni-Pd-P/C 촉매의 OER 활성을 비교한 것으로, Ni-Pd-P/C와 IrO2는 10 mA /cm2에서 과전압(Overpotential)이 330 mV로 유사한 특성을 나타냄을 확인하였다. 이는, 본 발명에서 소량의 Pd을 사용하였지만, Pd이 구형 구조체 내 core 부분의 표면에 있고, shell에 존재하는 탄소를 통해 전기 전도도를 대폭 향상시켰기에 IrO2 만큼의 성능을 보이고 있는 것이다.
또한, 도 9(d)는 OER에서의 전하 운반 거동을 나타내는 Tafel slope로 낮은 값을 가질수록 더 나은 전하 운반 거동을 가진다는 것을 의미하는데, IrO2 촉매는 266.6 mV/dec-1의 높은 Tafel slope을 보이는 반면, Ni-Pd-P/C 촉매는 119.9 mV/dec-1의 낮은 Tafel slope을 보였다. 이는 Ni-Pd-P/C 촉매가 OER 에서 훌륭한 전하 운반 거동을 보인다는 것을 의미한다.
그러나, 비교예와 같이 Pd을 스퍼터링으로 증착시킨 Ni2P/C(비교예 1)로 상기와 같은 조건에서 산소 발생 반응의 활성을 나타내었다. 10 mA /cm2 에서의 과전압은 470 mV로 평가되었고, 상용 Ni2P(출처: Aldrich)의 경우 421 mV로, 위 방법으로 만든 촉매에 비해 훨씬 큰 과전압을 나타내었으며, 결국 상기 방법으로 제조된 촉매는 본 발명의 실시예에 따라 제조된 Ni-Pd-P/C 촉매에 비해 높은 과전압을 나타내어 촉매의 활성이 떨어짐을 확인하였다.
2) Oxygen reduction reaction (ORR, 산소 환원 반응) 및 methanol oxidation reaction (MOR, 메탄올 산화 반응) 평가
CV, ORR은 모두 1 M NaOH 전해질에서 진행하였다. 전위범위 0.1 - 1.3 V vs. RHE, 50 mV/s의 주사속도로 Ar과 O2로 포화된 1 M NaOH 전해질에서 CV를 측정하였다. 그 후, 1600 rpm에서 O2로 포화된 1 M NaOH 전해질에서 1.3-0.1 V vs. RHE로 주사 속도 5 mV/s로 LSV 분성을 통해 ORR 활성 테스트를 진행하였다. Ar이 포화된 1.0 M NaOH + 1 M CH3OH 전해질에서 0.1 - 1.3 V vs. RHE, 50 mV/s의 주사속도로 MOR 테스트를 진행하였다.
도 11(a, b)는 촉매의 ORR 활성 평가를 위해 LSV 평가 전에 CV를 측정한 것으로, 연료전지의 산소 환원 반응 촉매로 주로 이용되는 Pt/C(출처: premetek) 촉매 및 Ni-Pd-P/C 촉매의 CV 분석 결과를 나타내며, 전위범위 0.1 - 1.3 V, 50 mV/s의 주사속도로 Ar로 포화된 1 M NaOH 전해질에서 CV를 측정한 결과, 충분히 활성화가 되어 그래프가 안정화가 된 후 그래프를 얻었다. 수소의 흡-탈착 픽과 산소의 산화-환원 픽이 나타나는 것을 확인하였다.
또한, 도 11(c, d)는 Pt/C(출처: premetek) 촉매 및 Ni-Pd-P/C 촉매의 ORR 활성을 비교한 것으로, Ni-Pd-P/C 촉매는 반파전위(half-wave potential)가 834 mV로 상용 Pt/C 812 mV 보다 좋은 활성을 띠었고, 질량당 활성(Mass activity)이 Ni-Pd-P/C 촉매는 0.071 mA mg-1, 상용 Pt/C 촉매는 0.075 mA mg-1로 유사한 활성을 보임을 확인하였다.
도 11(e, f)에서는 산소가 제거된 Ar으로 포화된 1.0 M NaOH + 1 M CH3OH 전해질에서 CV를 진행하여 촉매의 메탄올 내성을 측정한 것으로, 메탄올 산화 반응은 정방향 주사에서 보이는 산화 피크의 최대 전류 값과 역방향 주사에서 보이는 산화 피크의 최대 전류값의 비로 평가할 수 있다. 이 비가 작을수록 촉매의 내성이 약하고 메탄올 산화가 잘 이루어지지 않는 것으로 판단되어 지는데, 이 값이 상용 Pd/C가 1.679, Ni-Pd-P/C가 1.753으로 더 크게 나와 산화가 더 잘 이루어 진 것으로 판단된다. 또한 일정한 전압에서 전류 값의 변화를 보는 일정 전압 실험을 진행한 결과, Ni-Pd-P/C가 더 오래 전류 값을 유지하였기 때문에 안정성이 더 좋은 것으로 볼 수 있다. 이에, 염기성 조건에서 진행된 메탄올 산화 반응 평가에서, 상용 Pd/C보다 활성 및 안정성에서 모두 우수한 성과를 내는 것을 확인할 수 있었다.
따라서, 본 발명에 따라 제조된 Ni-Pd-P/C 촉매는 매우 소량의 팔라듐을 사용하여 수전해 산소 발생 반응 촉매뿐만 아니라 염기성 조건에서의 산소 환원 반응 촉매 및 메탄올 산화 반응 촉매로도 좋은 활성을 보임을 확인하였다.

Claims (13)

  1. 니켈폼(foam)을 식각하는 단계;
    상기 식각된 니켈폼 및 귀금속 전구체를 30 내지 35 : 1의 몰비로 반응시켜 니켈-귀금속 복합체를 제조하는 단계;
    상기 니켈-귀금속 복합체에 탄소를 증착시키는 단계;
    상기 탄소가 증착된 니켈-귀금속 복합체를 분말로 제조하는 단계; 및
    상기 분말을 인(Phosphorus) 분말과 함께 열처리하는 단계; 를 포함하고,
    상기 식각된 니켈폼과 귀금속 전구체와의 반응은 30 내지 50 ℃에서 5 내지 15분 동안 교반하여 갈바닉 치환 반응에 의해 니켈-귀금속 복합체를 형성하고,
    상기 탄소 증착은 CH4 하에서 700 내지 1000 ℃, 30분 내지 2시간 동안 화학기상증착 방법으로 니켈-귀금속 복합체에 그래파이트를 성장시키고,
    니켈, 귀금속 및 인을 포함하고, 니켈 및 인은 코어의 중심부에, 귀금속은 코어의 표면부에 존재하는 것을 특징으로 하는 코어 및 상기 코어 상에 증착된 그래파이트를 포함하는 쉘 층으로 이루어진 구형 나노입자인 금속 인화물/ 그래파이트 촉매의 제조방법.
  2. 제 1항에 있어서,
    상기 귀금속 전구체는 염화 팔라듐(Palladium chloride), 팔라듐 아세틸아세토네이트 (palladium(Ⅱ) acetylacetonate), 질산 팔라듐 (Palladium(II) nitrate) 및 아세트산 팔라듐 (Palladium(II) Acetate)로 이루어진 군에서 선택되는 것을 특징으로 하는 금속 인화물/ 그래파이트 촉매의 제조방법.
  3. 삭제
  4. 제 1항에 있어서,
    상기 식각은 0.5 내지 2M의 염산(HCl)과 5 내지 20분 동안 반응시키는 것을 특징으로 하는 금속 인화물/ 그래파이트 촉매의 제조방법.
  5. 삭제
  6. 삭제
  7. 제 1항에 있어서,
    상기 열처리는 500 내지 1000 ℃에서 30분 내지 3시간 동안 이루어지는 것을 특징으로 하는 금속 인화물/ 그래파이트 촉매의 제조방법.
  8. 제 1항, 제 2항, 제 4항 및 제 7항 중 어느 한 항의 제조방법에 따라 제조된 수전해 또는 연료전지용 금속 인화물/ 그래파이트 촉매.
  9. 삭제
  10. 삭제
  11. 삭제
  12. 삭제
  13. 제 8항에 있어서,
    상기 촉매는 수전해용 촉매 또는 연료전지용 촉매로 이용하는 것을 특징으로 하는 수전해 또는 연료전지용 금속 인화물/ 그래파이트 촉매.
KR1020210029806A 2020-10-20 2021-03-08 전기적 활성이 향상된 금속 인화물/ 그래파이트 촉매 제조방법 및 이를 이용한 수전해용 또는 연료전지용 촉매 KR102582151B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200135676 2020-10-20
KR20200135676 2020-10-20

Publications (2)

Publication Number Publication Date
KR20220052254A KR20220052254A (ko) 2022-04-27
KR102582151B1 true KR102582151B1 (ko) 2023-09-25

Family

ID=81391200

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210029806A KR102582151B1 (ko) 2020-10-20 2021-03-08 전기적 활성이 향상된 금속 인화물/ 그래파이트 촉매 제조방법 및 이를 이용한 수전해용 또는 연료전지용 촉매

Country Status (1)

Country Link
KR (1) KR102582151B1 (ko)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120208108A1 (en) 2011-02-15 2012-08-16 GM Global Technology Operations LLC Graphite Particle-Supported Pt-Shell/Ni-Core Nanoparticle Electrocatalyst for Oxygen Reduction Reaction

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230047207A (ko) * 2016-08-26 2023-04-06 아리엘 싸이언티픽 이노베이션스 엘티디. 주석-기반 촉매, 그것의 제조법, 및 상기 촉매를 사용한 연료 전지
KR102255855B1 (ko) 2019-03-25 2021-05-26 재단법인대구경북과학기술원 산소 환원 반응용 백금계 합금 촉매, 이의 제조방법 및 이를 포함한 연료전지

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120208108A1 (en) 2011-02-15 2012-08-16 GM Global Technology Operations LLC Graphite Particle-Supported Pt-Shell/Ni-Core Nanoparticle Electrocatalyst for Oxygen Reduction Reaction

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
D-H.Park et al., Top-down preparation of Ni-Pd-P ~ electrocatalytic reactions, International Journal of Hydrogen Energy, 46,43, 22499~22507쪽, 2021.5.7. 발행
Enrico Verlato et al., Preparation of Pd-Modified Ni Foam Electrodes and Their Use as Anodes for the Oxidation of Alcohols in Basic Media, Electrocatalysis 3, 48~58쪽, 2011.11.1. 발행*
Evan Fleming et al., Enhanced specific surface area and ~ sintered nickel powder templates, Carbon, 136, 380~386쪽, SI 1~4쪽, 2018.4.28. 발행*
Jinfa Chang et al., An Effective Pd-Ni2P/C Anode Catalyst for Direct Formic Acid Fuel Cells, Angew. Chem. Int. Ed.2014, 53, 122~126쪽, 2013.11.25. 발행
M.Zhao et al., Fabrication of Pd-Ni-P Metallic Glass ~ Methanol Electro-oxidation, Chem. Mater. 2014, 26, 2, 1056~1061쪽, 2013.12.29. 발행
Xin Liang et al., Ternary Pd-Ni-P hybrid electrocatalysts derived ~ formic acid oxidation activity, Chem. Commun., 52, 11143~11146쪽, SI 1~9쪽, 2016.8.11.발행*
Yo-Seob Kim et al., Ni2P/graphitic carbon nanostructure electrode with superior electrochemical performance, Electrochimica Acta, 341, 136045, 1~7쪽, SI 1~12쪽, 2020.3.9.발행*

Also Published As

Publication number Publication date
KR20220052254A (ko) 2022-04-27

Similar Documents

Publication Publication Date Title
Khan et al. Recent progresses in electrocatalysts for water electrolysis
Xiong et al. Anion-containing noble-metal-free bifunctional electrocatalysts for overall water splitting
Stacy et al. The recent progress and future of oxygen reduction reaction catalysis: A review
Cao et al. Improved hydrogen generation via a urea-assisted method over 3D hierarchical NiMo-based composite microrod arrays
Peng et al. Polydopamine coated prussian blue analogue derived hollow carbon nanoboxes with FeP encapsulated for hydrogen evolution
Xie et al. Noble-metal-free catalyst with enhanced hydrogen evolution reaction activity based on granulated Co-doped Ni-Mo phosphide nanorod arrays
Yu et al. Ultrafine ruthenium-iridium alloy nanoparticles well-dispersed on N-rich carbon frameworks as efficient hydrogen-generation electrocatalysts
Sun et al. Interfacial electronic structure modulation of hierarchical Co (OH) F/CuCo2S4 nanocatalyst for enhanced electrocatalysis and Zn–air batteries performances
Gebreslase et al. Transformation of CoFe2O4 spinel structure into active and robust CoFe alloy/N-doped carbon electrocatalyst for oxygen evolution reaction
Marimuthu et al. One-step fabrication of copper sulfide catalysts for HER in natural seawater and their bifunctional properties in freshwater splitting
Chen et al. Spatial confinement of partially oxidized RuCo alloys in N-doped carbon frameworks for highly efficient oxygen evolution electrocatalysis under acidic conditions
Loni et al. Cobalt-based electrocatalysts for water splitting: an overview
Chen et al. P-doped MOF-derived CoNi bimetallic sulfide electrocatalyst for highly-efficiency overall water splitting
Hu et al. Recent advances in Ni‐based electrocatalysts for hydrogen evolution reaction
Pérez-Sosa et al. Enhanced performance of urea electro-oxidation in alkaline media on PtPdNi/C, PtNi/C, and Ni/C catalysts synthesized by one-pot reaction from organometallic precursors
Ma et al. In situ construction and post-electrolysis structural study of porous Ni 2 P@ C nanosheet arrays for efficient water splitting
Neatu et al. Undoped SnO2 as a support for Ni species to boost oxygen generation through alkaline water electrolysis
Batool et al. Phase pure synthesis of iron-nickel nitride nanoparticles: A low cost electrocatalyst for oxygen evolution reaction
Liu et al. Enhanced oxygen evolution performance by the partial phase transformation of cobalt/nickel carbonate hydroxide nanosheet arrays in an Fe-containing alkaline electrolyte
CN113286919A (zh) 电极材料
Huang et al. Recent advances in surface reconstruction toward self-adaptive electrocatalysis: a review
Xu et al. Research progress on single atom and particle synergistic catalysts for electrocatalytic reactions
Ying et al. Enhanced oxygen evolution reaction kinetics through biochar-based nickel-iron phosphides nanocages in water electrolysis for hydrogen production
Liao et al. Plasma-induced surface reconstruction of NiFe/Co3O4 nanoarrays for high-current and ultrastable oxygen evolution and the urea oxidation reaction
Sun et al. Constructing Ni/MoN heterostructure nanorod arrays anchored on Ni foam for efficient hydrogen evolution reaction under alkaline conditions

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
E902 Notification of reason for refusal
X701 Decision to grant (after re-examination)
GRNT Written decision to grant