KR102581056B1 - 유동균등화 저항체를 구비하는 다중 발열체용 상변화 열관리시스템 - Google Patents

유동균등화 저항체를 구비하는 다중 발열체용 상변화 열관리시스템 Download PDF

Info

Publication number
KR102581056B1
KR102581056B1 KR1020210180198A KR20210180198A KR102581056B1 KR 102581056 B1 KR102581056 B1 KR 102581056B1 KR 1020210180198 A KR1020210180198 A KR 1020210180198A KR 20210180198 A KR20210180198 A KR 20210180198A KR 102581056 B1 KR102581056 B1 KR 102581056B1
Authority
KR
South Korea
Prior art keywords
thermal management
management system
heating element
phase change
heating elements
Prior art date
Application number
KR1020210180198A
Other languages
English (en)
Other versions
KR20230091259A (ko
Inventor
송용석
김화중
Original Assignee
현대로템 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대로템 주식회사 filed Critical 현대로템 주식회사
Priority to KR1020210180198A priority Critical patent/KR102581056B1/ko
Publication of KR20230091259A publication Critical patent/KR20230091259A/ko
Application granted granted Critical
Publication of KR102581056B1 publication Critical patent/KR102581056B1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/0407Liquid cooling, e.g. by water

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

본 발명은 다중 발열체용 상변화 열관리시스템에 관한 것으로서 특히, 수직으로 배치되는 다중 발열체의 일측에 유동균등화 저항체를 형성하여 각 발열체 라인에서 유량 차이를 최소화하여 열관리 효율을 향상시키도록 하는 다중 발열체용 상변화 열관리시스템에 관한 것이다. 구성은 기액분리기, 펌프, 냉각모듈, 센서류를 포함하여 수직으로 배치되는 다중 발열체의 온도를 제어하는 상변화 열관리시스템에 있어서, 수직으로 배치되는 다중 각 발열체 라인의 전방측에는 공급되는 냉매의 유량 차이에 미치는 영향 중, 마찰 압력손실을 증대시켜 정수두에 의한 압력손실의 영향을 상대적으로 감소시킴으로써 유량 차이를 최소화할 수 있도록 냉매의 흐름을 제어할 수 있는 저항체가 형성되는 것을 특징으로 한다.

Description

유동균등화 저항체를 구비하는 다중 발열체용 상변화 열관리시스템{A phase change thermal management system for multiple heating elements including a flow equalization resistor}
본 발명은 다중 발열체용 상변화 열관리시스템에 관한 것으로서 특히, 수직으로 배치되는 다중 발열체의 일측에 유동균등화 저항체를 형성하여 각 발열체 라인에서 유량 차이를 최소화하여 열관리 효율을 향상시키도록 하는 다중 발열체용 상변화 열관리시스템에 관한 것이다.
일반적으로 열관리(thermal management 또는 heat control)는 열을 사용하는 곳에서 최소의 열원(熱源)으로 최대의 효과를 거두기 위해 전체 열량을 분석하여 유효하게 이용, 관리하는 것과, 열에너지원의 절약을 위해, 장치 및 그 각 부에서의 에너지 손실을 조사하고 그 원인까지 거슬러 올라가 이것을 개조하거나 하는 기술인데, 최근에는 피열물(被熱物)의 시간적 및 공간적 온도 분포를 향상시키는 것 등을 포함하고 있다.
이러한 열관리를 효율적으로 하기 위해 산업전반에는 다양한 구성의 열관리시스템이 알려져 있다.
그 한 예로써, 방위산업분야에서 전략 미사일 및 밀집부대로 공격해 오는 로켓탄, 포병탄, 박격포탄의 방어에 적용할 수 있도록 하거나, 일반산업에서 핵발전소 철거, 석유시추 그리고 터널 시공 등의 분야에 적용할 수 있는 고에너지 레이저 발생장치의 레이저를 안정하게 운영하기 위해서 레이저 다이오드와 이득매질에서 발생한 열을 대기로 방출하기 위한 발열체용 열관리시스템이 필수적으로 사용되고 있다.
도 1에 도시된 바와 같이, 종래의 상변화 열관리 기술인 다중 발열체용 상변화 열관리시스템(100)은 발열체(110)와, 응축기(120) 및 냉각팬(130)과, 기액분리기(140)와, 펌프(150)를 포함하여 구성되며, 냉각수를 이용한 수냉각시스템과 구성품이 크게 다르지 않다.
단, 냉매를 이용하기 때문에 방열기 대신 응축기가 사용되고 발열체에서의 냉각이 일반적인 액상대류 열전달이 아닌 상변화 대류 열전달로 이루어지며, 이에 따라 열전달 성능이 탁월한 장점이 있다.
또한, 종래의 상변화 열관리 기술은 도 2에 도시된 바와 같이 다중 발열체용 상변화 열관리시스템(200)은 발열체(210)와, 응축기(220) 및 냉각팬(230)과, 기액분리기(240)와, 펌프(250)와, 다중 발열체(210)로의 냉각제어를 위해 각 라인에 유량계(F) 및 제어밸브(QCV)를 포함하여 구성되어, 유량정보와 각 발열체(210)에서의 발열량 정보를 통해 유량을 조절하여 각 발열체(210) 라인의 건도를 제어하게 된다.
이러한 상변화 열관리의 경우 도 3에 도시된 바와 같이 각 발열체(210)를 수직으로 배치할 경우 각 발열체 라인에서의 마찰 압력손실은 유사한 반면, 상변화 전후의 수직배관에서의 정수두 차이에 의한 압력손실 차가 달라져 동일한 발열량에서도 유량 차이가 발생하게 된다.
즉, 정수두 차에 의한 압력손실 효과에 의해 동일한 발열량에 대해 하단에 설치한 발열체일수록 유량이 증가하고, 상단으로 갈수록 유량이 감소하는 경향이 있어 결국 상단으로 갈수록 건도가 증가하는 경향이 있다.
이와 같이, 종래의 상변화 열관리 기술은 각 발열체 라인의 건도 조절을 위해서 각 발열체의 발열량 정보를 통해 각 라인으로의 유량을 지속적으로 조절하게 되는데, 동일한 펌프를 사용하게 되므로 한 발열체 라인의 유량조절이 다른 발열체 라인에 영향을 미쳐 제어가 난해해지고 쉽게 수렴하지 않아 발산하는 등의 문제가 있다.
특히, 유량에 따라 건도가 변하게 되어 마찰 압력손실이 냉각수 대비 크게 변동하는 특징이 있어 더욱 제어가 쉽지 않다.
그리고, 발열체인 레이저 모듈의 특징으로서, 광섬유 레이저는 발진기에서 큰 발열이 발생하게 되는데, 공간 효율성을 확보하기 위해 통상적인 경우 도 3에 도시된 바와 같이 단위 발진기모듈을 적층하여 배치하게 된다.
따라서, 상변화 열관리 기술을 레이저 열관리에 적용할 경우 수직 높이 차에 따른 유량 분배가 중요 이슈가 될 수 있다.
또, 종래의 발열체용 열관리시스템은 도 4에 도시된 바와 같이, 냉각수를 이용해 발열체(레이저)를 열관리(냉각/가열)하는데, 이는 전통적인 방식으로 상변화 효과를 이용한 상변화 열관리에 비해 열전달 효율이 낮아 목표로 하는 열관리 성능을 확보하려면 열관리시스템의 용량이 상대적으로 증가되어야 한다.
이에 따라, 열관리시스템의 부피, 하중, 소모동력이 크게 증가하는 문제점이 있다.
또한, 발열체가 레이저의 경우 발열부에서의 균일한 온도 분포가 레이저의 품질을 결정하는 중요한 요소 중의 하나인데, 냉각수를 이용한 선행 기술은 냉각수의 입구 온도와 출구 온도가 다르기 때문에 균일한 온도 분포를 위해 유량을 크게 증가시켜야 하고, 이에 따라 상기와 유사하게 열관리시스템의 용량이 증가하게 된다.
이러한 문제점 및 단점에 의해 종래의 발열체용 열관리시스템은 차량 탑재용으로서는 소형, 경량화에 적합하지 않다.
공개특허 제10-2010-0073204호
이에, 본 발명은 상기한 문제점을 해결하기 위해 안출된 것으로서, 본 발명의 목적은 수직으로 배치되는 다중 발열체 라인에서 유량 차이에 미치는 압력손실 중, 마찰 압력손실의 영향을 증대시켜 정수두 차에 의해 발생하는 압력손실의 영향을 상대적 감소시켜줌으로써, 유량 차를 최소화하여 열관리성능 저하를 방지하는 유동균등화 저항체를 구비하는 다중 발열체용 상변화 열관리시스템을 제공하는 것이다.
상기한 목적을 달성하기 위한 본 발명은, 기액분리기, 펌프, 냉각모듈, 센서류를 포함하여 수직으로 배치되는 다중 발열체의 온도를 제어하는 상변화 열관리시스템에 있어서, 수직으로 배치되는 다중 각 발열체 라인의 전방측에는 공급되는 냉매의 유량 차이에 미치는 영향 중, 마찰 압력손실을 증대시켜 정수두에 의한 압력손실의 영향을 상대적으로 감소시킴으로써 유량 차이를 최소화할 수 있도록 냉매의 흐름을 제어할 수 있는 저항체가 형성되는 것을 특징으로 한다.
삭제
삭제
삭제
이상에서와 같이 본 발명은 다중 발열체의 수직 배치에 따른 유량 차이에 미치는 영향 중, 마찰 압력손실의 영향을 증대시켜 정수두 압력손실의 영향을 상대적으로 감소시킴으로써, 유량 차를 최소화하여 열관리 효율을 향상시키는 효과가 있다.
도 1은 종래의 발열체용 상변화 열관리시스템의 구성을 개략적으로 나타낸 도면이다.
도 2는 종래의 다중 발열체용 상변화 열관리시스템의 구성을 개략적으로 나타낸 도면이다.
도 3은 다중 발열체인 발열체 모듈의 확대도이다.
도 4는 종래의 냉각수를 이용한 발열체용 열관리시스템의 구성을 개략적으로 나타낸 도면이다.
도 5는 본 발명의 바람직한 실시예에 따른 유동균등화 저항체를 구비하는 다중 발열체용 상변화 열관리시스템의 구성을 개략적으로 나타낸 도면이다.
도 6은 본 발명에 따른 수직 배치 발열체 라인별 압력강하를 개략적으로 나타낸 도면이다.
도 7은 본 발명의 바람직한 실시예에 따른 유동균등화 저항체를 구비하는 다중 발열체용 상변화 열관리시스템의 냉매 흐름을 개략적으로 나타낸 도면이다.
도 8은 본 발명에 따른 저항체의 설치와 저항체의 미설치 시의 정수두 압력손실 및 마찰 압력손실의 비율변화를 개략적으로 나타낸 도면이다.
도 9는 건도에 따른 2상 냉매의 밀도변화를 개략적으로 나타낸 도면이다.
이하, 본 발명에 따른 바람직한 실시예를 첨부된 도면에 의거하여 보다 구체적으로 설명한다.
여기서, 하기의 모든 도면에서 동일한 기능을 갖는 구성요소는 동일한 참조부호를 사용하여 반복적인 설명은 생략하며, 아울러 후술 되는 용어들은 본 발명에서의 기능을 고려하여 정의된 것으로서, 이것은 고유의 통용되는 의미로 해석되어야 함을 명시한다.
도 5 및 도 6을 참조하여 본 발명에 따른 유동균등화 저항체를 구비하는 다중 발열체용 상변화 열관리시스템을 설명하면 다음과 같다.
먼저, 도 5에 도시된 바와 같이 본 발명의 바람직한 실시예에 따른 유동균등화 저항체를 구비하는 다중발열체용 상변화 열관리시스템(300)은 발열체(310)와, 상기 발열체(310)를 열관리하기 위한 냉각모듈(320)과, 기액분리기(330) 및 펌프(340)와, 저항체(350)로 대별되어 이루어진다.
상기 발열체(310)는 복수 개가 수직으로 배치되어 다중 발열체(310)를 형성한다.
즉, 상기 발열체(310)는 유사한 발열량을 가지는 복수 개가 수직으로 배치되는 것이 바람직하다.
여기서, 상변화 열관리시스템에서는 다중 발열체(310)를 수직으로 배치할 경우, 수직 배치에 따른 영향을 받아 상부에 설치된 발열체(310) 일수록 적은 유량이 공급되어 건도가 상승하는 문제가 있다.
이는 도 6에 도시된 바와 같이, 냉각유체가 상부에 위치하는 발열체(1)로 공급되는 경로 ACD에서의 압력강하(ΔPACD)와, 냉각유체가 하부에 위치하는 발열체(2)로 공급되는 경로 ABD에서의 압력강하(ΔPABD)가 동일하기 때문에 결국 정수두에 의한 압력손실(ΔPS) 차이만큼 마찰 압력손실이 발생하게 된다.
그러나, 본 발명은 아래의 저항체 설명에서와 같이 상기 각 발열체(310)의 일측으로 저항체(350)를 형성함으로써, 각 발열체(310) 라인에서 유량의 차이에 미치는 영향 중, 마찰 압력손실을 증대시켜 정수두의 영향을 상대적으로 감소시킴으로써 유량 차이를 개선토록 하는 것이다.
또한, 상기 발열체(310)는 복수 개가 수직으로 배치되어 열에너지를 방출하는 레이저 또는 레이저 모듈로 이루어지는 것이 바람직하다.
그러나, 이에 한정되지 않고 열에너지를 방출하는 전력 전자장치나 배터리와 같은 기타 발열 장치 등으로 이루어질 수도 있다.
상기 냉각모듈(320)은 고온냉매를 냉각하고 응축열을 제거해 액화시키는 냉각팬을 구비하는 응축기 조립체 또는 증기-압축 또는 흡수 냉동 사이클로 액체의 열을 제거하는 데 쓰는 기계인 칠러 등으로 구성될 수 있다.
즉, 상기 냉각모듈(320)은 시스템의 열을 시스템 외부로 방출하는 역할을 하기 위해 냉매를 냉각 및 응축시킬 수 있는 냉각팬 및 응축기와 같이 냉각 에너지를 가지는 모든 장치를 포함하는 것으로서, 특정 형태에 한정되지 않으며 칠러 등으로 대체될 수 있다.
상기 기액분리기(330)는 상기 냉각모듈(320)의 후방에 형성되어 배출되는 2상 냉매를 기상과 액상으로 분리한 후 액상의 냉매만 상기 각 발열체(310)로 보내 냉각할 수 있도록 한다.
여기서, 상기 기액분리기(330)는 리저버, 어큐뮬레이터, 냉매저장용기 등의 다양한 용어로 사용되는 모든 것을 포함할 수 있다.
또, 상기 펌프(340)는 상기 기액분리기(330)의 하부 일측에 형성되어 기액분리기(330)를 통해 배출되는 액상 냉매를 압력작용을 이용하여 순환, 이송시키는 역할을 한다.
상기 저항체(350)는 상기 각 발열체(310) 라인의 일측에 형성되어 냉매의 유량 차이에 미치는 영향 중, 마찰 압력손실을 증대시켜 정수두의 영향을 상대적으로 감소시킴으로써 유동 균등화를 통해 유량 차이를 개선할 수 있도록 한다.
즉, 상기 각 발열체(310) 라인의 일측에 저항체(350)를 형성하지 않을 경우, 정수두에 따른 압력손실 차이만큼 마찰 압력손실을 변화시키기 위해 하부에 설치되는 발열체(310) 일수록 큰 유량이 공급되어 건도가 하강하게 되고, 반대로 하부에 설치되는 발열체(310) 일수록 적은 유량이 공급되어 건도가 상승하게 된다.
그러나, 상기 각 발열체(310) 라인의 일측에 저항체(350)를 형성할 경우, 증대된 저항만큼 마찰 압력손실이 증대되어 정수두에 의한 압력손실의 영향이 상대적으로 감소되므로 상부와 하부에 설치되는 발열체(310)로 비슷한 유량이 공급되어 건도 상승을 방지하거나 최소화할 수 있다.
또, 상기 저항체(350)는 상기 각 발열체(310)의 전방측에 형성되는 것이 바람직하다.
그 이유는, 상기 저항체(350)를 각 발열체(310)의 후방측에 설치할 경우, 기상과 액상으로 이루어지는 2상의 냉매 흐름 시, 흐름 내 기포의 크기, 형상 및 빈도가 불규칙하여 냉매의 흐름이 일정하지 않게 되며, 이로 인해 일정한 저항력을 형성하지 못할 수 있기 때문이다.
그러나, 상기 저항체(350)를 각 발열체(310)의 전방측에 형성할 경우, 액상 배관을 통해 액상 냉매가 안정적으로 흐르기 때문에 일정한 저항력을 형성할 수 있어 상기와 같은 문제를 해소할 수 있다.
따라서, 상기 저항체(350)를 각 발열체(310)의 전방측에 설치하는 것이 일정한 저항력 형성을 위해 바람직하다.
또한, 상기 저항체(350)는 오리피스, 밸브 등과 같이 냉매의 흐름을 제어할 수 있는 장치로 구성될 수 있다.
즉, 상기 저항체(350)를 오리피스나 밸브와 같은 장치로 구성하여 상기 각 발열체(310)로 공급되는 냉매의 흐름을 가감시키도록 제어할 수도 있다.
이와 같이, 본 발명은 상변화 열관리시스템의 고유 특징인 다중 발열체(310)의 수직 배치에 따른 유량 불균형에 대응하여 각 발열체(310) 라인에 저항체(350)를 형성함으로써, 유량 차이를 개선할 수 있는 것이다.
그리고, 본 발명에 따른 다중 발열체용 상변화 열관리시스템(300)은 개도 조절이 필요 없는 On/off용 개폐밸브 및 센서류, 피팅류 등 Minor한 구성품은 도식하지 않았으나 당 분야의 통상 기술자라면 누구나 이들의 필요 지점을 당연하게 인지할 수 있을 것으로 판단된다.
상기와 같이 구성된 본 발명의 실시예에 따른 다중 발열체용 상변화 열관리시스템의 동작관계를 설명하면 다음과 같다.
도 7 내지 도 9에 도시된 바와 같이, 상기 각 발열체(310)를 통과하면서 열교환으로 각 발열체(310)를 냉각한 냉매는 상기 냉각모듈(320)로 이동된다.
상기 냉각모듈(320)로 이동된 냉매는 외부 공기와 열교환하여 응축 및 과냉각된 후 기액분리기(330)에 모이게 된다.
그리고, 상기 기액분리기(330)에 모인 냉매는 기상 냉매와 액상 냉매로 분리되고, 분리된 액상 냉매는 상기 펌프(340)의 동작에 의해 펌프(340)를 통해 상기 저항체(350)를 거쳐 발열체(310)로 이송, 공급되어 각 발열체(310)를 냉각시킨 후 상기 냉각모듈(320)로 이동되는 과정을 반복하게 된다.
이때, 상기 저항체(350)는 각 발열체(310)의 전방측에 형성된 액상 배관을 통해 액상의 냉매가 일정한 마찰 저항력으로 각 발열체(310)로 공급된다.
즉, 상기 저항체(350)는 상기 각 발열체(310) 전방측에 형성되어 마찰저항력을 발생시켜 공급되는 냉매의 유량 차이에 미치는 영향 중, 마찰 압력손실을 증대시켜 정수두에 의한 압력손실을 상대적으로 감소시켜 유량 차이를 개선할 수 있도록 한다.
그러나, 도 8에 도시된 바와 같이 상기 각 발열체(310) 라인의 일측에 저항체(350)를 형성하지 않을 경우, 상부에 설치되는 발열체(310) 일수록 적은 유량이 공급되어 건도가 상승하게 된다.
즉, 저항체의 적용여부에 따른 정수두 강하의 비율 변화를 보면 아래의 표 1에 나타낸 바와 같다.
비 고 저항체 적용 전 저항체 적용 후
발열체(1) 발열체(2) 발열체(1) 발열체(2)
마찰 압력손실 비율1) ΔPF % 20 99 75 100
정수두 압력손실 비율1) ΔPS % 80 1 25 0
유량비2) RQ % 100 221 100 115
발열체 출구 건도 xo - 0.88 0.40 0.46 0.40
※ 추정조건
1) 조건 : 액상밀도 1000kg/m³, 기상밀도 5kg/m³, 높이차 2m
2) 발열체(1) 기준, ΔPF ∝ Q² 가정
이와 같이, 본 발명에 따른 저항체(350)를 적용하기 전에는 발열체(1)과 발열체(2)의 유량비 차이가 크게 나타나지만, 저항체(350)를 적용한 후에는 발열체(1)과 발열체(2)의 유량비 차이가 크지 않고 비슷하게 공급됨을 알 수 있다.
또한, 본 발명에 따른 저항체(350)를 수직으로 배치되는 각 발열체(310) 라인에 적용할 경우, 도 9에 도시된 바와 같이 액상 밀도 1000kg/m³, 기상 밀도 5kg/m³을 기준으로 할 때, 건도에 따른 밀도 변화는 저건도 영역에서 급격히 감소하고 그 후로는 거의 유사한 수준임을 알 수 있다.
따라서, 본 발명에 따른 다중 발열체용 상변화 열관리시스템은 이와 같은 동작을 지속적으로 반복함으로써 다중 발열체의 수직 배치에 따른 유량 불균형에 대응하여 건도 불균일을 원천적으로 최소화할 수 있는 것이다.
이상에서 설명한 본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지로 치환, 변형 및 균등한 타 실시예로의 변경이 가능함은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어서 명백할 것이다.
300 : 유동균등화 저항체를 구비하는 다중 발열체용 상변화 열관리시스템
310 : 발열체 320 : 냉각모듈
330 : 기액분리기 340 : 펌프
350 : 저항체

Claims (4)

  1. 기액분리기, 펌프, 냉각모듈, 센서류를 포함하여 수직으로 배치되는 다중 발열체의 온도를 제어하는 상변화 열관리시스템에 있어서,
    수직으로 배치되는 다중 각 발열체 라인의 전방측에는 공급되는 냉매의 유량 차이에 미치는 영향 중, 마찰 압력손실을 증대시켜 정수두에 의한 압력손실의 영향을 상대적으로 감소시킴으로써 유량 차이를 최소화할 수 있도록 냉매의 흐름을 제어할 수 있는 저항체가 형성되는 것을 특징으로 하는 유동균등화 저항체를 구비하는 다중 발열체용 상변화 열관리시스템.
  2. 삭제
  3. 삭제
  4. 삭제
KR1020210180198A 2021-12-16 2021-12-16 유동균등화 저항체를 구비하는 다중 발열체용 상변화 열관리시스템 KR102581056B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210180198A KR102581056B1 (ko) 2021-12-16 2021-12-16 유동균등화 저항체를 구비하는 다중 발열체용 상변화 열관리시스템

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210180198A KR102581056B1 (ko) 2021-12-16 2021-12-16 유동균등화 저항체를 구비하는 다중 발열체용 상변화 열관리시스템

Publications (2)

Publication Number Publication Date
KR20230091259A KR20230091259A (ko) 2023-06-23
KR102581056B1 true KR102581056B1 (ko) 2023-09-20

Family

ID=86993563

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210180198A KR102581056B1 (ko) 2021-12-16 2021-12-16 유동균등화 저항체를 구비하는 다중 발열체용 상변화 열관리시스템

Country Status (1)

Country Link
KR (1) KR102581056B1 (ko)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016157733A (ja) * 2015-02-23 2016-09-01 株式会社デンソー 冷却器
JP2019195042A (ja) * 2018-04-25 2019-11-07 三菱重工業株式会社 冷却システム並びにその制御方法、制御プログラム、及び廃熱利用システム
WO2020174593A1 (ja) * 2019-02-26 2020-09-03 住友精密工業株式会社 冷却装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101043156B1 (ko) 2008-12-23 2011-06-21 두산디에스티주식회사 고에너지 고체레이저장치용 냉각장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016157733A (ja) * 2015-02-23 2016-09-01 株式会社デンソー 冷却器
JP2019195042A (ja) * 2018-04-25 2019-11-07 三菱重工業株式会社 冷却システム並びにその制御方法、制御プログラム、及び廃熱利用システム
WO2020174593A1 (ja) * 2019-02-26 2020-09-03 住友精密工業株式会社 冷却装置

Also Published As

Publication number Publication date
KR20230091259A (ko) 2023-06-23

Similar Documents

Publication Publication Date Title
US9137931B2 (en) Data center module
EP3494766B1 (en) Active/passive cooling system
ES2477869T3 (es) Unidad de sub-refrigeración para sistema y procedimiento de refrigeración
US20160273811A1 (en) System for cooling a cabinet
JP6137167B2 (ja) 冷却装置および冷却システム
CN103959926A (zh) 电子基板外罩装置和电子设备
JP2009512190A5 (ko)
US11839062B2 (en) Active/passive cooling system
JPWO2016031195A1 (ja) 相変化冷却装置および相変化冷却方法
MXPA06014594A (es) Ciclo de refrigeracion sub-ambiental.
US20070119199A1 (en) System and method for electronic chassis and rack mounted electronics with an integrated subambient cooling system
CN201867102U (zh) 具备汽泡注入功能的自适应储液器及具有该储液器的两相回路散热系统
KR102581056B1 (ko) 유동균등화 저항체를 구비하는 다중 발열체용 상변화 열관리시스템
JP6292834B2 (ja) 情報処理室の空調設備
KR102557650B1 (ko) 다중 발열체용 상변화 열관리시스템
JP2021111660A (ja) 液浸冷却システム
KR102616313B1 (ko) 프리히터를 적용한 발열체용 상변화 열관리시스템
KR102616311B1 (ko) 항온유체공급모듈을 구비하는 발열체용 열관리시스템
KR102591849B1 (ko) 이젝터를 적용한 발열체용 상변화 열관리시스템
KR102504919B1 (ko) 버퍼탱크를 적용한 발열체용 열관리시스템
CN102012182A (zh) 一种具备汽泡注入功能的自适应储液器
KR20230139510A (ko) 수직배관을 구비한 발열체용 상변화 열관리시스템
WO2016031186A1 (ja) 相変化冷却装置および相変化冷却方法
KR102627702B1 (ko) 축냉열교환기를 적용한 발열체용 열관리시스템
KR102630473B1 (ko) 열원공급장치를 이용한 발열체용 상변화 열관리시스템

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant