KR102580930B1 - Catalyst for oxygen evolution comprising transition metal oxide and nickel oxide, preparation method thereof, and batterfy for water electrolysis using the same - Google Patents

Catalyst for oxygen evolution comprising transition metal oxide and nickel oxide, preparation method thereof, and batterfy for water electrolysis using the same Download PDF

Info

Publication number
KR102580930B1
KR102580930B1 KR1020210111424A KR20210111424A KR102580930B1 KR 102580930 B1 KR102580930 B1 KR 102580930B1 KR 1020210111424 A KR1020210111424 A KR 1020210111424A KR 20210111424 A KR20210111424 A KR 20210111424A KR 102580930 B1 KR102580930 B1 KR 102580930B1
Authority
KR
South Korea
Prior art keywords
catalyst
nickel
transition metal
oxide
metal oxide
Prior art date
Application number
KR1020210111424A
Other languages
Korean (ko)
Other versions
KR20220136038A (en
Inventor
박경원
박덕혜
김민하
이학주
이우준
변정현
장재성
김지환
신재훈
김성범
이성남
문상현
박유연
Original Assignee
숭실대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 숭실대학교 산학협력단 filed Critical 숭실대학교 산학협력단
Publication of KR20220136038A publication Critical patent/KR20220136038A/en
Application granted granted Critical
Publication of KR102580930B1 publication Critical patent/KR102580930B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/892Nickel and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/468Iridium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/002Catalysts characterised by their physical properties
    • B01J35/0033Electric or magnetic properties
    • B01J35/33
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

본 발명은 전이금속 산화물 및 니켈 산화물을 포함하는 산소발생반응용 촉매, 이의 제조방법 및 이를 이용한 수전해 전지에 관한 것으로, 상기 산소발생반응용 촉매는 니켈 전구체와 전이금속 산화물을 고체상으로 혼합한 후 열처리하여 제조함으로써 주형 효과로 인해 촉매의 입자 크기가 감소하고, 더 큰 비표면적을 가지게 되어 산소발생반응용 촉매의 활성을 증가시킬 수 있고, 상기 산소발생반응용 촉매 제조 시에 열처리 온도에 따라 촉매의 안정성을 향상시킬 수 있다.The present invention relates to a catalyst for oxygen evolution reaction containing a transition metal oxide and nickel oxide, a method for manufacturing the same, and a water electrolysis cell using the same. The catalyst for oxygen evolution reaction is prepared by mixing a nickel precursor and a transition metal oxide in a solid phase. By manufacturing by heat treatment, the particle size of the catalyst is reduced due to the template effect, and the activity of the catalyst for the oxygen evolution reaction can be increased by having a larger specific surface area. When manufacturing the catalyst for the oxygen evolution reaction, the catalyst can be adjusted according to the heat treatment temperature. stability can be improved.

Description

전이금속 산화물 및 니켈 산화물을 포함하는 산소발생반응용 촉매, 이의 제조방법 및 이를 이용한 수전해 전지{Catalyst for oxygen evolution comprising transition metal oxide and nickel oxide, preparation method thereof, and batterfy for water electrolysis using the same}Catalyst for oxygen evolution reaction comprising transition metal oxide and nickel oxide, preparation method thereof, and water electrolysis battery using the same

본 발명은 전이금속 산화물 및 니켈 산화물을 포함하여 촉매 활성 및 안정성이 우수한 산소발생반응용 촉매 및 이의 제조방법에 관한 것이다.The present invention relates to a catalyst for oxygen evolution reaction containing transition metal oxide and nickel oxide and excellent catalytic activity and stability, and a method for producing the same.

수소는 심각한 환경 문제를 극복하는 청정 에너지원으로 미래 에너지의 원천이 될 것이라는 점에서 주목받고 있다. 아직 대부분의 수소는 개질, 부생 수소 등에 의해 공급되므로 탄소 화합물을 배출하게 되지만, 수전해 방법은 그린 수소로 부산물이 없다는 장점이 있다. 신재생 에너지에 의해 발생한 전기를 수전해를 통해 수소로 저장한다면, 탄소 발생 없이 청정하고 고 순도의 수소를 얻을 수 있다. 하지만 아직까지는 높은 생산 단가 때문에 경제성이 떨어진다는 단점이 있다. 이는 과전압을 줄이고, 생산 단가를 낮추는 방법으로 극복할 수 있다. 물의 전기 분해 반응은 산소 발생 반응과 수소 발생 반응으로 이루어지며, 이때 반응에 필요한 전압에서 표준 환원 전위 차인 1.23 V vs. RHE 를 뺀 값을 과전압이라 지칭한다. 수소 발생의 효율을 높이려면, 수소 발생 반응보다 산소 발생 반응에 필요한 과전압이 15배 이상 크므로 산소 발생 반응의 활성을 높이는 것이 필요하다. 대표적인 산소 발생 반응 촉매인 전이 금속 산화물은 가격이 저렴하지만, 과전압이 크고, 안정성이 낮다. 반대로 귀금속 산화물은 활성과 안정성은 뛰어나지만, 가격이 매우 높기 때문에 생산 단가를 높인다는 특징이 있다.Hydrogen is a clean energy source that overcomes serious environmental problems and is attracting attention as it will become a source of future energy. Most hydrogen is still supplied through reforming and by-product hydrogen, so carbon compounds are emitted, but the water electrolysis method has the advantage of producing green hydrogen and producing no by-products. If electricity generated by renewable energy is stored as hydrogen through water electrolysis, clean and high-purity hydrogen can be obtained without generating carbon. However, it still has the disadvantage of low economic feasibility due to the high production cost. This can be overcome by reducing overvoltage and lowering production costs. The electrolysis reaction of water consists of an oxygen evolution reaction and a hydrogen evolution reaction, and at this time, the standard reduction potential difference of 1.23 V vs. 1.23 V vs. The value minus RHE is called overvoltage. To increase the efficiency of hydrogen generation, it is necessary to increase the activity of the oxygen generation reaction because the overvoltage required for the oxygen generation reaction is more than 15 times greater than the hydrogen generation reaction. Transition metal oxides, a representative oxygen evolution reaction catalyst, are inexpensive, but have high overvoltage and low stability. On the other hand, precious metal oxides have excellent activity and stability, but their price is very high, which increases the production cost.

대한민국 공개특허 제10-2007-00032358호 (2007.03.21. 공개)Republic of Korea Patent Publication No. 10-2007-00032358 (published on March 21, 2007)

본 발명의 목적은 전이금속 산화물의 사용량을 줄이면서도 우수한 촉매 활성과 높은 안정성을 나타내는 산소발생반응용 촉매, 이의 제조방법 및 이를 이용한 수전해 전지를 제공하는 데에 있다.The purpose of the present invention is to provide a catalyst for oxygen evolution reaction that exhibits excellent catalytic activity and high stability while reducing the amount of transition metal oxide used, a method for manufacturing the same, and a water electrolysis battery using the same.

상기와 같은 목적을 달성하기 위하여, 본 발명은 니켈 전구체 및 전이금속 산화물을 고체상으로 혼합하여 혼합물을 제조하는 단계; 및 상기 제조된 혼합물을 퍼니스 내에서 250℃~700℃의 온도에서 2~10시간 동안 산소 분위기 하에서 열처리하는 단계;를 포함하고, 상기 니켈 전구체는 수산화니켈, 염화니켈, 질산니켈 및 질산 아세테이트 중 적어도 하나 이상을 포함하는 산소발생반응용 촉매의 제조방법을 제공한다.In order to achieve the above object, the present invention includes the steps of mixing a nickel precursor and a transition metal oxide in a solid phase to prepare a mixture; And heat-treating the prepared mixture in an oxygen atmosphere in a furnace at a temperature of 250°C to 700°C for 2 to 10 hours, wherein the nickel precursor is at least one of nickel hydroxide, nickel chloride, nickel nitrate and acetate nitrate. A method for producing a catalyst for oxygen evolution reaction comprising one or more catalysts is provided.

또한, 본 발명은 니켈 산화물 및 전이금속 산화물을 포함하고, 상기 니켈 산화물 전이금속 산화물은 다공성의 구조의 표면을 가지고, 상기 전이금속 산화물의 평균 입자 크기는 1 내지 4.5nm이고, 상기 니켈 산화물의 평균 입자 크기는 10 내지 25nm인 산소발생반응용 촉매를 제공한다.In addition, the present invention includes nickel oxide and a transition metal oxide, the nickel oxide and transition metal oxide have a porous surface, the average particle size of the transition metal oxide is 1 to 4.5 nm, and the average particle size of the nickel oxide is 1 to 4.5 nm. A catalyst for oxygen evolution reaction having a particle size of 10 to 25 nm is provided.

또한, 본 발명은 상기의 산소발생반응용 촉매를 포함하는 전극; 및 기준전극을 포함하는 수전해 전지를 제공한다.In addition, the present invention includes an electrode containing the catalyst for the oxygen generation reaction described above; and a reference electrode.

본 발명에 따른 산소발생반응용 촉매는 니켈 전구체와 전이금속 산화물을 고체상으로 혼합한 후 열처리하여 제조함으로써 주형 효과로 인해 촉매의 입자 크기가 감소하고, 더 큰 비표면적을 가지게 되어 산소발생반응용 촉매의 활성을 증가시킬 수 있다.The catalyst for the oxygen evolution reaction according to the present invention is manufactured by mixing a nickel precursor and a transition metal oxide in a solid phase and then heat treating it, thereby reducing the particle size of the catalyst due to the template effect and having a larger specific surface area, making it a catalyst for the oxygen evolution reaction. can increase the activity of.

또한, 본 발명에 따른 산소발생반응용 촉매는 제조시 열처리 온도에 따라 촉매의 안정성을 향상시킬 수 있다.In addition, the catalyst for oxygen generation reaction according to the present invention can improve the stability of the catalyst depending on the heat treatment temperature during production.

도 1은 본 발명에 따른 산소발생반응용 촉매를 제조방법을 도식화한 이미지이다.
도 2는 본 발명에 따른 산소발생반응용 촉매 및 비교예의 촉매를 대상으로 투과전자 현미경(TEM) 촬영한 이미지이다.
도 3은 본 발명에 따른 산소발생반응용 촉매 및 비교예의 촉매를 대상으로 BET(Brunauer-Emmett-Teller) 분석한 결과이다.
도 4는 본 발명에 따른 산소발생반응용 촉매 및 비교예의 촉매를 선형주사전위법(linear sweep voltammetry, LSV)으로 분석한 결과 그래프(a)와 대시간 전위차법(chronopotentiometry)으로 분석한 결과 그래프(b)이다.
도 5는 본 발명에 따른 산소발생반응용 촉매 및 비교예의 촉매를 대상으로 순환전압전류법(Cyclic voltammetry, CV)로 분석하여 기울기를 통해 촉매의 활성면적을 나타낸 그래프이다.
도 6은 본 발명에 따른 산소발생반응용 촉매를 선형주사전위법(linear sweep voltammetry, LSV)으로 분석한 결과 그래프이고, 촉매 제조를 위한 전구체의 종류를 달리한 것이다.
도 7은 본 발명에 따른 산소발생반응용 촉매를 선형주사전위법(linear sweep voltammetry, LSV)으로 분석한 결과 그래프이고, 촉매 제조를 위한 니켈 전구체 및 전이금속 산화물의 비율을 달리한 것이다.
Figure 1 is an image schematically illustrating a method for manufacturing a catalyst for oxygen generation reaction according to the present invention.
Figure 2 is a transmission electron microscope (TEM) image of the catalyst for oxygen generation reaction according to the present invention and the catalyst of the comparative example.
Figure 3 shows the results of BET (Brunauer-Emmett-Teller) analysis of the catalyst for oxygen generation reaction according to the present invention and the catalyst of the comparative example.
Figure 4 shows a graph (a) of the results of analyzing the catalyst for the oxygen evolution reaction according to the present invention and the catalyst of the comparative example by linear sweep voltammetry (LSV) and a graph (a) of the results of analysis by chronopotentiometry ( b).
Figure 5 is a graph showing the active area of the catalyst through slope as analyzed by cyclic voltammetry (CV) for the catalyst for oxygen generation reaction according to the present invention and the catalyst of the comparative example.
Figure 6 is a graph showing the results of analyzing the catalyst for oxygen generation reaction according to the present invention using linear sweep voltammetry (LSV), showing different types of precursors for catalyst production.
Figure 7 is a graph showing the results of analyzing the catalyst for oxygen generation reaction according to the present invention by linear sweep voltammetry (LSV), with different ratios of nickel precursor and transition metal oxide for catalyst production.

이하, 본 발명을 보다 구체적으로 설명하기 위하여 본 발명에 따른 바람직한 실시예를 첨부된 도면을 참조하여 보다 상세하게 설명한다. 그러나, 본 발명은 여기서 설명되어지는 실시예에 한정되지 않고 다른 형태로 구체화될 수도 있다.Hereinafter, in order to explain the present invention in more detail, preferred embodiments according to the present invention will be described in more detail with reference to the attached drawings. However, the present invention is not limited to the embodiments described herein and may be embodied in other forms.

본 발명은 니켈 전구체 및 전이금속 산화물을 고체상으로 혼합하여 혼합물을 제조하는 단계; 및 상기 제조된 혼합물을 퍼니스 내에서 250℃~700℃의 온도에서 2~10시간 동안 산소 분위기 하에서 열처리하는 단계;를 포함하는 산소발생반응용 촉매의 제조방법을 제공한다.The present invention includes the steps of mixing a nickel precursor and a transition metal oxide in a solid phase to prepare a mixture; and heat-treating the prepared mixture in an oxygen atmosphere in a furnace at a temperature of 250°C to 700°C for 2 to 10 hours.

상기 니켈 전구체는 수산화니켈, 염화니켈, 질산니켈 및 질산 아세테이트 중 적어도 하나 이상을 포함한다. 구체적으로, 상기 니켈 전구체는 수산화니켈, 염화니켈, 질산니켈 또는 질산 아세테이트이고, 보다 구체적으로, 상기 니켈 전구체는 수산화니켈일 수 있다. 상기와 같은 니켈 전구체를 사용함으로써 우수한 촉매 활성을 나타낼 수 있다.The nickel precursor includes at least one of nickel hydroxide, nickel chloride, nickel nitrate, and nitrate acetate. Specifically, the nickel precursor may be nickel hydroxide, nickel chloride, nickel nitrate, or nitrate acetate, and more specifically, the nickel precursor may be nickel hydroxide. By using the above nickel precursor, excellent catalytic activity can be exhibited.

상기 전이금속 산화물은 이리듐(Ir), 니오븀(Nb), 코발트(Co), 티타늄(Ti), 바나듐(V), 망간(Mn), 지르코늄(Zr), 로듐(Rh), 텅스텐(W), 탄탈럼(Ta), 오스뮴(Os), 레늄(Re) 및 몰리브덴(Mo) 중 적어도 하나 이상의 산화물을 포함한다. 구체적으로, 상기 전이금속 산화물은 이리듐(Ir), 니오븀(Nb), 코발트(Co), 티타늄(Ti), 바나듐(V), 망간(Mn) 및 지르코늄(Zr) 중 적어도 하나 이상의 산화물을 포함할 수 있고, 보다 구체적으로, 상기 전이금속 산화물은 이리듐 산화물일 수 있다.The transition metal oxides include iridium (Ir), niobium (Nb), cobalt (Co), titanium (Ti), vanadium (V), manganese (Mn), zirconium (Zr), rhodium (Rh), tungsten (W), It contains at least one oxide of tantalum (Ta), osmium (Os), rhenium (Re), and molybdenum (Mo). Specifically, the transition metal oxide may include at least one oxide of iridium (Ir), niobium (Nb), cobalt (Co), titanium (Ti), vanadium (V), manganese (Mn), and zirconium (Zr). Can be, and more specifically, the transition metal oxide can be iridium oxide.

상기 혼합물을 제조하는 단계는 상기 니켈 전구체와 상기 전이금속 산화물을 1:1 내지 7:1의 몰 비율로 혼합할 수 있다. 상기 니켈 산화물과 상기 전이금속 산화물은 1:1 내지 3:1 또는 1:1 내지 1.5:1의 몰 비율로 혼합할 수 있다.In preparing the mixture, the nickel precursor and the transition metal oxide may be mixed at a molar ratio of 1:1 to 7:1. The nickel oxide and the transition metal oxide may be mixed at a molar ratio of 1:1 to 3:1 or 1:1 to 1.5:1.

상기 열처리하는 단계는 상기 제조된 혼합물을 퍼니스 내에서 250℃~700℃의 로, 상기 열처리하는 단계는 상기 혼합물을 퍼니스 내에서 350℃~700℃ 또는 500℃~650℃의 온도에서 2~10시간 동안 산소 분위기 하에서 열처리하여 수행할 수 있다.The heat treatment step is to heat the prepared mixture in a furnace at a temperature of 250°C to 700°C, and the heat treatment step is to heat the mixture in a furnace at a temperature of 350°C to 700°C or 500°C to 650°C for 2 to 10 hours. It can be performed by heat treatment under an oxygen atmosphere.

상기와 같은 비율로 니켈 산화물과 전이금속 산화물을 혼합하고 열처리함으로써 주형 효과로 인해 서로 다른 화합물이 서로의 입자 성장을 방해하여 입자의 크기를 감소시켜 높은 비포면적을 갖는 촉매를 제조하여 제조된 산소발생반응용 촉매는 산소환원반응 활성이 향상될 수 있다.By mixing nickel oxide and transition metal oxide in the same ratio as above and heat-treating, the different compounds interfere with each other's particle growth due to the template effect, thereby reducing the size of the particles, thereby producing oxygen by producing a catalyst with a high non-porous area. The reaction catalyst may have improved oxygen reduction reaction activity.

또한, 본 발명은 니켈 산화물 및 전이금속 산화물을 포함하는 산소발생반응용 촉매를 제공한다.Additionally, the present invention provides a catalyst for oxygen evolution reaction containing nickel oxide and transition metal oxide.

본 발명의 산소발생반응용 촉매는 상기 서술한 산소발생반응용 촉매의 제조방법을 이용하여 제조된 것일 수 있다.The catalyst for oxygen evolution reaction of the present invention may be manufactured using the method for producing the catalyst for oxygen evolution reaction described above.

구체적으로, 본 발명에 따른 산소발생반응용 촉매는 상기 니켈 산화물 및 상기 전이금속 산화물은 각각 입자 형태로 구비되고, 상기 니켈 산화물 및 전이금속 산화물의 입자는 독립적으로 다공성의 구조의 표면을 가질 수 있다.Specifically, in the catalyst for oxygen generation reaction according to the present invention, the nickel oxide and the transition metal oxide are each provided in the form of particles, and the particles of the nickel oxide and the transition metal oxide may independently have a surface with a porous structure. .

상기 전이금속 산화물의 평균 입자 크기는 1 내지 4.5nm이고, 상기 니켈 산화물의 평균 입자 크기는 10 내지 25nm일 수 있다. 구체적으로, 상기 전이금속 산화물의 평균 입자 크기는 2 내지 4.5nm, 2.5 내지 4.5nm 또는 3 내지 4nm이고, 상기 니켈 산화물의 평균 입자 크기는 10 내지 23nm, 12 내지 20nm 또는 12 내지 18nm일 수 있다. 상기 산화물의 평균 입자 크기는 같은 온도 조건에서 단일물질을 열처리한 경우보다 입자 크기가 훨씬 작은 것으로, 이와 같은 크기의 입경을 갖는 전이금속 산화물 및 니켈 산화물을 포함함으로써, 본 발명의 산소발생반응용 촉매는 높은 활성표면적을 가져 우수한 촉매활성을 나타낼 수 있다.The average particle size of the transition metal oxide may be 1 to 4.5 nm, and the average particle size of the nickel oxide may be 10 to 25 nm. Specifically, the average particle size of the transition metal oxide may be 2 to 4.5 nm, 2.5 to 4.5 nm, or 3 to 4 nm, and the average particle size of the nickel oxide may be 10 to 23 nm, 12 to 20 nm, or 12 to 18 nm. The average particle size of the oxide is much smaller than that in the case of heat treatment of a single material under the same temperature conditions, and by including a transition metal oxide and nickel oxide having the same particle size, the catalyst for the oxygen generation reaction of the present invention has a high active surface area and can exhibit excellent catalytic activity.

상기 전이금속 산화물은 이리듐(Ir), 니오븀(Nb), 코발트(Co), 티타늄(Ti), 바나듐(V), 망간(Mn), 지르코늄(Zr), 로듐(Rh), 텅스텐(W), 탄탈럼(Ta), 오스뮴(Os), 레늄(Re) 및 몰리브덴(Mo) 중 적어도 하나 이상의 산화물을 포함한다. 구체적으로, 상기 전이금속 산화물은 이리듐(Ir), 니오븀(Nb), 코발트(Co), 티타늄(Ti), 바나듐(V), 망간(Mn) 및 지르코늄(Zr) 중 적어도 하나 이상의 산화물을 포함할 수 있고, 보다 구체적으로, 상기 전이금속 산화물은 이리듐 산화물일 수 있다.The transition metal oxides include iridium (Ir), niobium (Nb), cobalt (Co), titanium (Ti), vanadium (V), manganese (Mn), zirconium (Zr), rhodium (Rh), tungsten (W), It contains at least one oxide of tantalum (Ta), osmium (Os), rhenium (Re), and molybdenum (Mo). Specifically, the transition metal oxide may include at least one oxide of iridium (Ir), niobium (Nb), cobalt (Co), titanium (Ti), vanadium (V), manganese (Mn), and zirconium (Zr). Can be, and more specifically, the transition metal oxide can be iridium oxide.

상기와 같은 전이금속 산화물을 포함함으로써, 본 발명의 산소발생반응용 촉매의 산소환원반응 활성 및 내구성을 향상시킬 수 있다.By including the transition metal oxide as described above, the oxygen reduction reaction activity and durability of the catalyst for oxygen generation reaction of the present invention can be improved.

상기 산소발생반응용 촉매에서 상기 니켈 산화물과 전이금속 산화물은 1:1 내지 7:1의 몰 비율로 포함할 수 있다. 상기 니켈 산화물과 전이금속 산화물은 1:1 내지 3:1 또는 1:1 내지 1.5:1의 몰 비율로 포함할 수 있다. 상기와 같은 비율로 니켈 산화물과 전이금속 산화물을 포함함으로써 향상된 산소환원반응 활성을 나타낼 수 있다.In the catalyst for the oxygen evolution reaction, the nickel oxide and transition metal oxide may be included in a molar ratio of 1:1 to 7:1. The nickel oxide and transition metal oxide may be included in a molar ratio of 1:1 to 3:1 or 1:1 to 1.5:1. By including nickel oxide and transition metal oxide in the above ratio, improved oxygen reduction reaction activity can be exhibited.

본 발명의 산소발생반응용 촉매는 20 내지 80 m2/g의 BET 비표면적을 가질 수 있다. 구체적으로, 상기 산소발생반응용 촉매는 20 내지 80 m2/g 또는 20 내지 80 m2/g의 BET 비표면적을 가질 수 있다.The catalyst for oxygen evolution reaction of the present invention may have a BET specific surface area of 20 to 80 m 2 /g. Specifically, the catalyst for the oxygen generation reaction may have a BET specific surface area of 20 to 80 m 2 /g or 20 to 80 m 2 /g.

또한, 본 발명의 발생반응용 촉매는 1.25~1.65 V에서 10mA/cm2 에서 전압 측정하여 1.23 V vs. RHE를 빼서 과전압을 측정하는 경우, 과전압 증가율은 초기 과전압 대비 3%~10%일 수 있다. 구체적으로, 상기 발생반응용 촉매는 과전압 증가율은 초기 과전압 대비 3%~9.5%, 3%~7% 또는 3%~5%일 수 있다.In addition, the catalyst for the generation reaction of the present invention was measured at 10 mA/cm 2 at 1.25 ~ 1.65 V and measured at 1.23 V vs. When measuring overvoltage by subtracting RHE, the overvoltage increase rate can be 3% to 10% compared to the initial overvoltage. Specifically, the overvoltage increase rate of the catalyst for the generation reaction may be 3% to 9.5%, 3% to 7%, or 3% to 5% compared to the initial overvoltage.

아울러, 본 발명의 발생반응용 촉매는 0.8 - 1.0 V vs. RHE에서 다양한 주사 속도로 순환 전압 전류법을 통해 double-layer capacitance (Cdl)를 측정하여 활성 면적이 0.004 내지 0.01 F 또는 0.005 내지 0.0099 F일 수 있다. 이를 통해, 본 발명에 따른 발생반응용 촉매는 활성 면적이 넓은 것을 알 수 있다.In addition, the catalyst for the generation reaction of the present invention is 0.8 - 1.0 V vs. The active area can be 0.004 to 0.01 F or 0.005 to 0.0099 F by measuring double-layer capacitance (Cdl) through cyclic voltammetry at various scan rates in RHE. Through this, it can be seen that the catalyst for generation reaction according to the present invention has a large active area.

더불어, 본 발명은 상기 서술한 산소발생반응용 촉매를 포함하는 전극 및 기준전극을 포함하는 수전해 전지를 제공한다.In addition, the present invention provides a water electrolysis cell including an electrode containing the catalyst for oxygen generation reaction described above and a reference electrode.

상기 수전해 전지는 전극에 본 발명의 산소발생반응용 촉매를 포함하여 연료전지 내 산소환원 반응의 활성도를 증가시킬 뿐만 아니라, 여러 번의 충방전이 반복되는 경우에도 초기 대비 연료전지의 성능이 저하되는 비율을 현저하게 줄일 수 있다.The water electrolysis cell not only increases the activity of the oxygen reduction reaction in the fuel cell by including the catalyst for the oxygen generation reaction of the present invention in the electrode, but also reduces the performance of the fuel cell from deterioration compared to the initial stage even when charging and discharging are repeated several times. The ratio can be significantly reduced.

상기 수전해 전지는 음이온 교환막, 전극(캐소드 및 애노드), 분리판, 가스켓, 집전체 및 기준전극을 포함한다.The water electrolysis cell includes an anion exchange membrane, electrodes (cathode and anode), a separator, a gasket, a current collector, and a reference electrode.

수전해 전극에서, 전극은 실제 전기화학 반응이 일어나는 곳으로 전압에 따른 반응이 일어나 산소 및 수소를 생성한다. 음이온 교환막은 수전해 반응이 일어날 때에 이온의 이동을 통해 반응이 일어나도록 하고 전기가 전극에서 다른 전극으로 바로 넘어가지 않도록 전기를 차단하는 역할을 한다. 분리판은 전극과 전기적 연결을 함과 동시에 반응물이 물이 잘 흐를 수 있도록 유로가 파여 있어 물질 저항을 감소시킨다. 가스켓(Gasket)은 전극을 고정시키면서 전극이 적절한 압력을 받을 수 있도록 지지해준다. 집전체는 전기 도선과 분리판까지 전기가 통할 수 있게 하는 역할을 한다. 마지막으로, 기준 전극의 경우 기존 전기화학 셀에서는 2개의 전극만 있기 때문에 각각의 전극에서 실제 전압을 알기 어렵기 때문에 도입한 것으로 각각의 전극의 절대 전압을 측정하기 위해 사용된다.In a water electrolysis electrode, the electrode is where the actual electrochemical reaction occurs, and a voltage-dependent reaction occurs to produce oxygen and hydrogen. The anion exchange membrane serves to allow the reaction to occur through the movement of ions when a water electrolysis reaction occurs and to block electricity so that it does not directly pass from one electrode to another. The separator plate makes an electrical connection to the electrode and at the same time has a flow path that allows the reactant water to flow easily, thereby reducing material resistance. The gasket fixes the electrode and supports it so that the electrode can receive appropriate pressure. The current collector serves to allow electricity to pass through the electrical conductors and the separator plate. Lastly, the reference electrode was introduced because it is difficult to know the actual voltage at each electrode because there are only two electrodes in existing electrochemical cells, and is used to measure the absolute voltage of each electrode.

이하, 본 발명의 이해를 돕기 위하여 실시예를 들어 상세하게 설명하기로 한다. 다만 하기의 실시예는 본 발명의 내용을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.Hereinafter, the present invention will be described in detail through examples to aid understanding. However, the following examples only illustrate the content of the present invention and the scope of the present invention is not limited to the following examples. Examples of the present invention are provided to more completely explain the present invention to those skilled in the art.

<< 실시예Example 1> 1> 고상법high law 열처리를 이용한 using heat treatment NiONiO // IrOIrO 22 -350 촉매 제조-350 Catalyst Manufacturing

먼저, 니켈 전구체인 수산화니켈(Ni(OH)2)과 산화이리듐(IrO2)을 1:1의 몰 비율로 혼합하고 30분 동안 고체상에서 혼합(solid mixing)하였고, 산소(O2) 분위기 의 퍼니스(furnace)에서 350℃의 온도로 6시간 동안 열처리하여 촉매를 제조하였다.First, nickel precursors, nickel hydroxide (Ni(OH) 2 ) and iridium oxide (IrO 2 ) were mixed at a molar ratio of 1:1 and mixed in solid phase for 30 minutes, in an oxygen (O 2 ) atmosphere. The catalyst was prepared by heat treatment in a furnace at a temperature of 350°C for 6 hours.

<< 실시예Example 2> 2> NiONiO // IrOIrO 22 -400 촉매 제조-400 Catalyst Manufacturing

퍼니스에서 열처리하는 온도를 400℃로 한 것을 제외하고는 실시예 1과 동일한 방법으로 산소발생반응용 촉매를 제조하였다.A catalyst for oxygen evolution reaction was prepared in the same manner as in Example 1, except that the heat treatment temperature in the furnace was set to 400°C.

<< 실시예Example 3> 3> NiONiO // IrOIrO 22 -450 촉매 제조-450 Catalyst Manufacturing

퍼니스에서 열처리하는 온도를 450℃로 한 것을 제외하고는 실시예 1과 동일한 방법으로 산소발생반응용 촉매를 제조하였다.A catalyst for oxygen evolution reaction was prepared in the same manner as in Example 1, except that the heat treatment temperature in the furnace was set to 450°C.

<< 실시예Example 4> 4> NiONiO // IrOIrO 22 -500 촉매 제조-500 catalyst manufacturing

퍼니스에서 열처리하는 온도를 500℃로 한 것을 제외하고는 실시예 1과 동일한 방법으로 산소발생반응용 촉매를 제조하였다.A catalyst for oxygen evolution reaction was prepared in the same manner as in Example 1, except that the heat treatment temperature in the furnace was set to 500°C.

<< 비교예Comparative example 1> 1> IrOIrO 22 촉매 catalyst

IrO2 촉매를 상업적으로 구입하였다.IrO 2 catalyst was purchased commercially.

<< 비교예Comparative example 2> 2> IrOIrO 22 -400 촉매-400 catalyst

IrO2 촉매를 퍼니스에서 400℃의 온도에서 6시간 동안 열처리하였다.The IrO 2 catalyst was heat-treated in a furnace at a temperature of 400° C. for 6 hours.

<< 비교예Comparative example 3> 3> NiONiO -400 촉매-400 catalyst

수산화니켈(Ni(OH)2을 퍼니스에서 400℃의 온도에서 6시간 동안 열처리하였다.Nickel hydroxide (Ni(OH) 2 was heat treated in a furnace at a temperature of 400°C for 6 hours.

<< 실험예Experiment example 1> 구조 분석 1> Structural analysis

본 발명에 따른 산소발생반응용 촉매의 구조를 확인하기 위해, 실시예 1 내지 실시예 4의 산소발생반응용 촉매를 투과전자 현미경(TEM)으로 촬영하였고, Brunauer-Emmett-Teeler(BET) 분석을 수행하였으며, 그 결과는 도 2, 도 3 및 표 1에 나타내었다. In order to confirm the structure of the catalyst for the oxygen evolution reaction according to the present invention, the catalysts for the oxygen evolution reaction of Examples 1 to 4 were photographed with a transmission electron microscope (TEM), and Brunauer-Emmett-Teeler (BET) analysis was performed. This was performed, and the results are shown in Figures 2, 3, and Table 1.

평균 IrO2 입자 사이즈(nm)Average IrO 2 particle size (nm) 평균 NiO 입자 사이즈(nm)Average NiO particle size (nm) 비교예 1Comparative Example 1 1.71.7 -- 비교예 2Comparative Example 2 4.84.8 -- 비교예 3Comparative Example 3 -- 18.118.1 실시예 1Example 1 3.23.2 12.612.6 실시예 2Example 2 3.43.4 15.515.5 실시예 3Example 3 3.63.6 19.819.8 실시예 4Example 4 3.63.6 22.822.8

도 2는 실시예 1 내지 실시예 4에서 제조된 산소발생반응용 촉매를 투과전자 현미경으로 촬영한 이미지이고, 표 1은 투과전자 현미경 분석을 통해 입자의 사이즈를 측정한 표이다.Figure 2 is an image taken with a transmission electron microscope of the catalyst for oxygen generation reaction prepared in Examples 1 to 4, and Table 1 is a table showing the size of particles measured through transmission electron microscope analysis.

도 2 및 표 1을 살펴보면, 온도가 증가할수록 1차 입자의 크기가 증가하는 것을 확인할 수 있다. 단일 물질을 열처리하는 경우(비교예 2 및 3)는 같은 온도 조건에서 혼합 촉매를 제조한 경우와 비교하여 입자사이즈가 훨씬 큰 것을 확인할 수 있다.Looking at Figure 2 and Table 1, it can be seen that the size of the primary particles increases as the temperature increases. In the case of heat treatment of a single material (Comparative Examples 2 and 3), it can be seen that the particle size is much larger compared to the case of manufacturing a mixed catalyst under the same temperature conditions.

도 3은 실시예 1 내지 4에서 제조된 산소발생반응용 촉매를 대상으로 Brunauer-Emmett-Teeler(BET) 분석을 수행한 결과 그래프이다. 도 3을 살펴보면, 질소 흡탈착 등온선의 경우, type IV 형태와 H3-type hysteresis로 분석되어, 메조(meso)나 마크로(micro) 기공 물질임을 확인하였다. 온도가 증가할수록 등온 흡탈착 곡선의 히스테리시스가 감소하는 것으로 보아, 기공이 점점 사라지는 것으로 보여진다. 총 기공 부피(Total Pore Volume)는 실시예 1(350℃)의 촉매는 0.189 cm2/g, 실시예 2(400℃)의 촉매는 0.173 cm2/g, 실시예 3(450℃)의 촉매는 0.139 cm2/g, 실시예 4(500℃)의 촉매는 0.014 cm2/g인 것으로 측정되었고, 위의 결과와 같이 기공의 전체 면적이 줄어드는 것으로 보아 기공이 사라지는 것을 확인할 수 있다. 비표면적의 경우, 실시예 1(350℃)의 촉매는 64.4 m2/g, 실시예 2(400℃)의 촉매는 60.37 m2/g, 실시예 3(450℃)의 촉매는 41.26 m2/g, 실시예 4(500℃)의 촉매는 25.34 m2/g으로 온도가 증가함에 따라 입자 크기가 증가하고, 기공이 사라지므로, 비표면적이 감소하는 것을 확인할 수 있다.Figure 3 is a graph showing the results of Brunauer-Emmett-Teeler (BET) analysis on the catalysts for oxygen evolution reaction prepared in Examples 1 to 4. Looking at Figure 3, the nitrogen adsorption/desorption isotherm was analyzed as type IV and H3-type hysteresis, confirming that it was a meso or micro pore material. As the temperature increases, the hysteresis of the isothermal adsorption and desorption curve decreases, and it appears that the pores gradually disappear. The total pore volume was 0.189 cm 2 /g for the catalyst of Example 1 (350°C), 0.173 cm 2 /g for the catalyst of Example 2 (400°C), and 0.173 cm 2 /g for the catalyst of Example 3 (450°C). was measured to be 0.139 cm 2 /g, and the catalyst of Example 4 (500°C) was measured to be 0.014 cm 2 /g, and as shown in the above results, it can be seen that the total area of pores is reduced, confirming that the pores disappear. In the case of specific surface area, the catalyst of Example 1 (350°C) was 64.4 m 2 /g, the catalyst of Example 2 (400°C) was 60.37 m 2 /g, and the catalyst of Example 3 (450°C) was 41.26 m 2 . /g, the catalyst of Example 4 (500°C) is 25.34 m 2 /g. It can be seen that as the temperature increases, the particle size increases and the pores disappear, so the specific surface area decreases.

<< 실험예Experiment example 2> 전기화학분석 2> Electrochemical analysis

본 발명에 따른 산소발생반응용 촉매의 전기화학 특성을 확인하기 위해, 실시예 1 내지 실시예 4 및 비교예 1의 촉매를 대상으로 촉매의 활성을 평가하기 위해 1.25 V에서 1.65 V vs. RHE에서 선형주사전위법(Linear Sweep Voltammetry, LSV) 실험을 진행하였고, 촉매의 안정성을 평가하기 위해 대시간 전위차법(Chronopotentiometry, CP) 실험을 진행하였으며, 그 결과는 도 4, 도 5 및 표 2에 나타내었다.In order to confirm the electrochemical properties of the catalyst for oxygen generation reaction according to the present invention, the catalyst activity of Examples 1 to 4 and Comparative Example 1 was evaluated at 1.25 V vs. 1.65 V vs. A Linear Sweep Voltammetry (LSV) experiment was conducted at RHE, and a Chronopotentiometry (CP) experiment was conducted to evaluate the stability of the catalyst. The results are shown in Figures 4, 5, and Table 2. shown in

물질matter 비교예 1Comparative Example 1 실시예 1Example 1 실시예 2Example 2 실시예 3Example 3 Cdl(F)C dl (F) 0.027450.02745 0.00950.0095 0.00560.0056 0.00510.0051

도 4는 본 발명에 따른 산소발생반응용 촉매 및 비교예의 촉매를 선형주사전위법(linear sweep voltammetry, LSV)으로 분석한 결과 그래프(a)와 대시간 전위차법(chronopotentiometry)으로 분석한 결과 그래프(b)이다. 도 5는 본 발명에 따른 산소발생반응용 촉매 및 비교예의 촉매를 대상으로 순환전압전류법(Cyclic voltammetry, CV)로 분석하여 기울기를 통해 촉매의 활성면적을 나타낸 그래프이다. 도 4 및 도 5를 살펴보면, 본 발명의 산소발생반응용 촉매는 귀금속 촉매의 사용량을 줄였음에도 촉매의 OER 활성을 유지한 것을 확인하였다.Figure 4 shows a graph (a) of the results of analyzing the catalyst for oxygen generation reaction according to the present invention and the catalyst of the comparative example by linear sweep voltammetry (LSV) and a graph (a) of the results of analysis by chronopotentiometry ( b). Figure 5 is a graph showing the active area of the catalyst through slope as analyzed by cyclic voltammetry (CV) for the catalyst for oxygen generation reaction according to the present invention and the catalyst of the comparative example. Looking at Figures 4 and 5, it was confirmed that the catalyst for oxygen generation reaction of the present invention maintained the OER activity of the catalyst even though the amount of noble metal catalyst used was reduced.

촉매의 활성을 평가하기 위해 1.25 V에서 1.65 V vs. RHE에서 Linear Sweep Voltammetry (LSV) 분석을 진행하였다. LSV는 일정한 주사속도로 작업 전극의 전위를 초기 전위에서 최종 전위까지 한 방향으로 주사하여 전류의 변화를 기록하는 방법으로, 10mA/cm²에서의 전압을 측정하여 1.23 V vs. RHE를 빼서 과전압으로 표현하여 촉매의 활성을 평가하였다.1.65 V vs. 1.25 V to evaluate the activity of the catalyst. Linear Sweep Voltammetry (LSV) analysis was performed at RHE. LSV is a method of recording changes in current by scanning the potential of the working electrode in one direction from the initial potential to the final potential at a constant scanning speed, measuring the voltage at 10 mA/cm² and measuring 1.23 V vs. The activity of the catalyst was evaluated by subtracting RHE and expressing it as overvoltage.

LSV를 측정한 결과, 상용 이리듐과 합성한 촉매 중 실시예 1(350℃)의 촉매와 실시예 2(400℃)의 촉매의 과전압은 비슷한 값을 가지므로 귀금속 촉매의 사용량이 감소되었음에도 OER 활성은 유지되었다고 볼 수 있다.As a result of measuring LSV, among the catalysts synthesized with commercial iridium, the overpotential values of the catalysts of Example 1 (350°C) and Example 2 (400°C) were similar, so even though the amount of noble metal catalyst used was reduced, the OER activity was high. It can be seen that it has been maintained.

도 4의 (b)를 보면, 대시간 전위차법(Chronopotentiometry, CP)은 촉매의 안정성을 평가할 수 있는 측정법으로, 일정한 전류 밀도(10mA/cm²)에서 시간이 지남에 따라 관찰되는 과전압을 측정하는 방법이다. 상용 이리듐 산화물과 합성한 촉매의 CP 측정 결과, 상용 이리듐 산화물 촉매나 350℃ 온도로 열처리한 촉매의 경우 시간이 흐름에 따라 과전압이 증가되는 것을 확인할 수 있지만, 실시예 2(400℃), 실시예 3(450℃), 실시예 4(500℃) 촉매의 경우 비교적 안정함을 나타내었다. 이는 안정성 테스트 이후의 LSV 결과, 상용 이리듐 산화물의 경우 과전압이 7.9% 증가하였고, 실시예 2(400℃) 촉매의 경우 3.51% 증가하여 매우 안정함을 볼 수 있다.Referring to Figure 4 (b), Chronopotentiometry (CP) is a measurement method that can evaluate the stability of a catalyst, and is a method of measuring the overvoltage observed over time at a constant current density (10 mA/cm²). am. As a result of CP measurement of a catalyst synthesized with commercial iridium oxide, it can be seen that the overvoltage increases with time in the case of a commercial iridium oxide catalyst or a catalyst heat-treated at a temperature of 350°C, but Example 2 (400°C), Example The catalysts of Example 3 (450°C) and Example 4 (500°C) were shown to be relatively stable. As a result of the LSV after the stability test, the overvoltage increased by 7.9% for the commercial iridium oxide and by 3.51% for the Example 2 (400°C) catalyst, showing that it is very stable.

표 2는 비 패러데이 전압 범위인 0.8 - 1.0 V vs. RHE에서 다양한 주사 속도로 순환 전압 전류법을 통해 double-layer capacitance (Cdl)를 측정하여 활성 면적을 구한 결과이다. 표 2를 살펴보면, 다양한 온도 조건에서 실험한 결과, 상용 이리듐 산화물을 제외하고, 실시예 1 내지 3의 촉매는 열처리 온도가 증가할수록 활성면적이 증가하는 것을 확인하였고, 이는 BET의 비표면적 크기와 같은 경향성을 보이는 것을 알 수 있다.Table 2 shows the non-Faraday voltage range of 0.8 - 1.0 V vs. This is the result of calculating the active area by measuring double-layer capacitance (Cdl) through cyclic voltammetry at various scanning speeds in RHE. Looking at Table 2, as a result of experiments under various temperature conditions, it was confirmed that, except for commercial iridium oxide, the active area of the catalysts in Examples 1 to 3 increased as the heat treatment temperature increased, which was the same as the specific surface area size of BET. It can be seen that there is a tendency.

<실험예 3> 전구체 종류에 따른 활성<Experimental Example 3> Activity according to precursor type

본 발명에 따른 산소발생반응용 촉매의 전구체로 사용되는 종류에 따른 촉매의 활성을 확인하기 위해, 실시예 2와 동일한 조건에서 촉매를 제조하되, 촉매 제조시에 사용되는 니켈 전구체의 종류를 Nickel Chloride(Chloride), Nickel Nitrate(Nitrate), Nickel Acetate(Acetate), Nickel Hydroxide(Hydroxide)으로 다양하게 사용하여 산소발생반응용 촉매를 제조하였다. 그런 다음, 촉매의 활성을 평가하기 위해 1.25 V에서 1.65 V vs. RHE에서 LSV 분석을 진행하였으며, 그 결과는 도 6에 나타내었다.In order to confirm the activity of the catalyst according to the type used as a precursor for the catalyst for oxygen generation reaction according to the present invention, a catalyst was prepared under the same conditions as in Example 2, but the type of nickel precursor used in catalyst preparation was Nickel Chloride. Catalysts for oxygen evolution reactions were manufactured using a variety of substances such as Chloride, Nickel Nitrate, Nickel Acetate, and Nickel Hydroxide. Then, at 1.25 V vs. 1.65 V to evaluate the activity of the catalyst. LSV analysis was performed in RHE, and the results are shown in Figure 6.

구체적으로, 고상법을 이용하여 간단하게 산화이리듐(IrO2)과 니켈 전구체를 고체상으로 혼합(solid state mixing)하고 열처리를 진행하여 IrO2/NiO 복합체를 형성하였고, 니켈 전구체의 종류를 다르게 하여 400℃에서 열처리 하였다.Specifically, using a solid phase method, iridium oxide (IrO 2 ) and a nickel precursor were simply mixed into a solid state and heat treated to form an IrO 2 /NiO composite, and the types of nickel precursors were different to form 400 Heat treated at ℃.

도 6은 니켈 전구체의 종류에 따른 산소발생반응용 촉매를 선형주사전위법(linear sweep voltammetry, LSV)으로 분석한 결과 그래프이다. 도 6을 살펴보면, 1.25 V에서 1.65 V vs. RHE에서 LSV를 측정한 결과, 염화니켈(Chloride), 질산니켈(Nitrate), 니켈아세테이트(Acetate) 및 수산화니켈(Hydroxide)의 10mA/cm²에서 과전압은 각각 376 mV, 386 mV, 375 mV 및 314 mV로 측정되었다. 이를 통해, 수산화니켈(Hydroxide)이 10mA/cm²에서 가장 낮은 과전압을 보이는 것을 확인하였고, 다른 니켈전구체를 사용하였지만 여전히 촉매적 활성이 나타났다.Figure 6 is a graph showing the results of analysis of catalysts for oxygen generation reaction according to the type of nickel precursor using linear sweep voltammetry (LSV). Looking at Figure 6, 1.65 V vs. 1.25 V. As a result of measuring LSV in RHE, the overvoltages of nickel chloride, nickel nitrate, nickel acetate, and nickel hydroxide at 10 mA/cm² were 376 mV, 386 mV, 375 mV, and 314 mV, respectively. was measured. Through this, it was confirmed that nickel hydroxide showed the lowest overvoltage at 10 mA/cm², and although a different nickel precursor was used, catalytic activity was still observed.

따라서, 본 발명에 따른 산소발생반응용 촉매는 간단한 고상법을 사용하지만, 전구체를 다양하게 하여 촉매의 활성을 조절할 수 있다.Therefore, the catalyst for oxygen generation reaction according to the present invention uses a simple solid phase method, but the activity of the catalyst can be controlled by varying the precursor.

<실험예 4> 니켈 전구체의 몰 비율에 따른 활성<Experimental Example 4> Activity according to molar ratio of nickel precursor

본 발명에 따른 산소발생반응용 촉매를 제조하기 위한 니켈 전구체 및 전이금속 산화물의 몰 비율에 따른 촉매의 활성을 확인하기 위해, 실시예 2와 동일한 조건에서 촉매를 제조하되, 촉매 제조시에 사용되는 니켈 전구체(Nickel Hydroxide)와 전이금속 산화물(산화이리듐)의 몰 비율을 1:1, 2:1, 3:1, 5:1,7:1로 다양하게 사용하여 산소발생반응용 촉매를 제조하였다. 그런 다음, 촉매의 활성을 평가하기 위해 1.25 V에서 1.65 V vs.RHE에서 LSV 분석을 진행하였으며, 그 결과는 도 7에 나타내었다.In order to confirm the activity of the catalyst according to the molar ratio of the nickel precursor and transition metal oxide for producing the catalyst for oxygen evolution reaction according to the present invention, the catalyst was prepared under the same conditions as in Example 2, but the catalyst used in preparing the catalyst was A catalyst for oxygen generation reaction was prepared by using various molar ratios of nickel precursor (Nickel Hydroxide) and transition metal oxide (iridium oxide) of 1:1, 2:1, 3:1, 5:1, and 7:1. . Then, to evaluate the activity of the catalyst, LSV analysis was performed at 1.25 V vs. 1.65 V vs. RHE, and the results are shown in Figure 7.

구체적으로, 고상법을 이용하여 간단하게 산화이리듐(IrO2)과 니켈 전구체를 고체상으로 혼합(solid state mixing)하고 열처리를 진행하여 IrO2/NiO 복합체를 형성하였고, 니켈 전구체의 몰 비율을 다르게 하여 400℃에서 열처리 하였다.Specifically, using a solid phase method, iridium oxide (IrO 2 ) and a nickel precursor were simply mixed into a solid state and heat treated to form an IrO 2 /NiO complex, and the molar ratio of the nickel precursor was varied. Heat treatment was performed at 400°C.

도 7을 살펴보면, 니켈 전구체와 IrO2이 다양한 비율로 혼합된 샘플을 합성하여 산소 발생 반응 활성을 평가하였다. 1:1 비율로 합성한 Ni-IrOx-400 샘플이 가장 좋은 활성을 나타내었고, NiO의 비율이 증가할수록 활성이 떨어지는 것을 확인하였다.Referring to FIG. 7, samples containing nickel precursor and IrO 2 mixed at various ratios were synthesized and oxygen generation reaction activity was evaluated. The Ni-IrOx-400 sample synthesized at a 1:1 ratio showed the best activity, and it was confirmed that the activity decreased as the NiO ratio increased.

이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 즉, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다.As the specific parts of the present invention have been described in detail above, it is clear to those skilled in the art that these specific techniques are merely preferred embodiments and do not limit the scope of the present invention. do. That is, the practical scope of the present invention is defined by the appended claims and their equivalents.

Claims (9)

니켈 전구체 및 전이금속 산화물을 고체상으로 혼합하여 혼합물을 제조하는 단계; 및
상기 제조된 혼합물을 퍼니스 내에서 350℃~500℃의 온도에서 2~10시간 동안 산소 분위기 하에서 열처리하는 단계;를 포함하고,
상기 니켈 전구체는 수산화니켈, 염화니켈, 질산니켈 및 질산 아세테이트 중 적어도 하나 이상을 포함하고,
상기 혼합물을 제조하는 단계는 상기 니켈 전구체와 전이금속 산화물은 1:1 내지 3:1 몰 비율로 혼합하는 것을 특징으로 하는 산소발생반응용 촉매의 제조방법.
Preparing a mixture by mixing a nickel precursor and a transition metal oxide in a solid phase; and
Heat-treating the prepared mixture in an oxygen atmosphere in a furnace at a temperature of 350°C to 500°C for 2 to 10 hours,
The nickel precursor includes at least one of nickel hydroxide, nickel chloride, nickel nitrate, and nitrate acetate,
In the step of preparing the mixture, the nickel precursor and the transition metal oxide are mixed at a molar ratio of 1:1 to 3:1.
제 1 항에 있어서,
상기 전이금속 산화물은 이리듐(Ir), 니오븀(Nb), 코발트(Co), 티타늄(Ti), 바나듐(V), 망간(Mn), 지르코늄(Zr), 로듐(Rh), 텅스텐(W), 탄탈럼(Ta), 오스뮴(Os), 레늄(Re) 및 몰리브덴(Mo) 중 적어도 하나 이상의 산화물을 포함하는 산소발생반응용 촉매의 제조방법.
According to claim 1,
The transition metal oxides include iridium (Ir), niobium (Nb), cobalt (Co), titanium (Ti), vanadium (V), manganese (Mn), zirconium (Zr), rhodium (Rh), tungsten (W), A method for producing a catalyst for oxygen generation reaction containing at least one oxide of tantalum (Ta), osmium (Os), rhenium (Re), and molybdenum (Mo).
삭제delete 제 1 항에 있어서,
상기 열처리하는 단계는 주형 효과(template effect)로 인해 형성되는 산화물의 입자 크기를 감소시키는 것을 특징으로 하는 산소발생반응용 촉매의 제조방법.
According to claim 1,
A method of producing a catalyst for oxygen evolution reaction, characterized in that the heat treatment step reduces the particle size of the oxide formed due to a template effect.
니켈 산화물 및 전이금속 산화물을 포함하고,
상기 니켈 산화물 및 상기 전이금속 산화물은 다공성의 구조의 표면을 가지는 입자 형태이고,
상기 전이금속 산화물의 평균 입자 크기는 1 내지 4.5nm이고,
상기 니켈 산화물의 평균 입자 크기는 10 내지 25nm인 산소발생반응용 촉매로서,
상기 산소발생반응용 촉매는 BET 비표면적이 20 내지 80 m2/g이고,
상기 산소발생반응용 촉매는 니켈 산화물과 전이금속 산화물의 몰 비율이 1:1 내지 3:1인 것을 특징으로 하는 산소발생반응용 촉매.
Contains nickel oxide and transition metal oxide,
The nickel oxide and the transition metal oxide are in the form of particles having a porous surface,
The average particle size of the transition metal oxide is 1 to 4.5 nm,
A catalyst for oxygen evolution reaction in which the average particle size of the nickel oxide is 10 to 25 nm,
The catalyst for the oxygen evolution reaction has a BET specific surface area of 20 to 80 m 2 /g,
The catalyst for the oxygen evolution reaction is characterized in that the molar ratio of nickel oxide and transition metal oxide is 1:1 to 3:1.
삭제delete 삭제delete 제 5 항에 있어서,
산소발생반응용 촉매는 1.25~1.65 V에서 10mA/cm2 에서 전압 측정하여 1.23 V vs. RHE를 빼서 과전압을 측정하는 경우, 과전압 증가율은 초기 과전압 대비 3%~10%이고,
상기 과전압 증가율은 20,000초가 경과된 이후에 측정된 과전압의 0초에 측정된 과전압 대비 증가율인 것을 특징으로 하는 산소발생반응용 촉매.
According to claim 5,
The catalyst for oxygen generation reaction was measured at 10mA/cm 2 at 1.25~1.65 V and measured at 1.23 V vs. When measuring overvoltage by subtracting RHE, the overvoltage increase rate is 3% to 10% compared to the initial overvoltage;
A catalyst for oxygen generation reaction, characterized in that the overvoltage increase rate is the rate of increase of the overvoltage measured after 20,000 seconds compared to the overvoltage measured at 0 seconds.
제 5 항에 따른 산소발생반응용 촉매를 포함하는 전극; 및 기준전극을 포함하는 수전해 전지.An electrode containing the catalyst for oxygen generation reaction according to claim 5; and a water electrolytic cell including a reference electrode.
KR1020210111424A 2021-03-30 2021-08-24 Catalyst for oxygen evolution comprising transition metal oxide and nickel oxide, preparation method thereof, and batterfy for water electrolysis using the same KR102580930B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210041096 2021-03-30
KR20210041096 2021-03-30

Publications (2)

Publication Number Publication Date
KR20220136038A KR20220136038A (en) 2022-10-07
KR102580930B1 true KR102580930B1 (en) 2023-09-21

Family

ID=83595823

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210111424A KR102580930B1 (en) 2021-03-30 2021-08-24 Catalyst for oxygen evolution comprising transition metal oxide and nickel oxide, preparation method thereof, and batterfy for water electrolysis using the same

Country Status (1)

Country Link
KR (1) KR102580930B1 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100797173B1 (en) 2004-08-19 2008-01-23 도꾸리쯔교세이호징 가가꾸 기쥬쯔 신꼬 기꼬 Metal oxide electrode catalyst
KR102266601B1 (en) * 2019-10-29 2021-06-18 한국재료연구원 Method for preparing electrode for water electrolysis comprising composite metal oxide catalyst

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
Ahmad M. Harzandi et al, Ruthenium Core-Shell Engineering with Nickel Single Atoms for Selective Oxygen Evolution via Nondestructive Mechanism, Adv. Energy Mater.2021, 11, 2003448, 2021.1.25.발행
Deok-Hye Park et al, Development of Ni-Ir Oxide Composites as Oxygen Catalysts for an Anion-Exchange Membrane Water Electrolyzer, Adv. Mater. Interfaces 2022, 9, 2102063, 2022.1.5.발행
Fang Song et al, Transition Metal Oxides as ~ in Alkaline Solutions: An Application-Inspired Renaissance, J. Am. Chem. Soc. 2018, 140, 25, 7748~7759, 2018.5.22.발행
Jinlong Liu et al, Self-Supported Hierarchical IrO2@NiO Nanoflake ~ for Electrochemical Oxygen Evolution, ACS Appl. Mater. Interfaces 2019, 11, 29, 25854~25862, 2019.7.1.발행
Nemanja Danilovic et al, Activity-Stability Trends for the Oxygen Evolution Reaction on Monometallic Oxides in Acidic Environments, J. Phys. Chem. Lett. 2014, 5, 14, 2474~2478쪽, 2014.6.24.발행
Simon Geiger et al, Activity and Stability of Electrochemically and Thermally Treated Iridium for the Oxygen Evolution Reaction, Journal of The Electrochemical Society, 163 (11), 2016.7.29.발행
Tobias Reier et al, Molecular Insight in Structure and Activity of ~ or Electrochemical Water Splitting (OER), J. Am. Chem. Soc. 2015, 137, 40, 13031~1304쪽, 2015.9.10.발행
숭실대학교 산학협력단, 리튬이온 교환막을 이용한 고전류밀도(1A/cm2 @ 1.7V) 수전해 시스템 개발, 과학기술정보통신부, 1 내지 25쪽, 2019.8.29.밸행

Also Published As

Publication number Publication date
KR20220136038A (en) 2022-10-07

Similar Documents

Publication Publication Date Title
Retuerto et al. La1. 5Sr0. 5NiMn0. 5Ru0. 5O6 double perovskite with enhanced ORR/OER bifunctional catalytic activity
EP2634850B1 (en) Composite, catalyst including the same, fuel cell and lithium air battery including the same
KR20140108212A (en) Precious metal oxide catalyst for water electrolysis
KR101901223B1 (en) Multifunctional non-platinum supported catalyst for automotive fuel cells and method for manufacturing the same
JP2009208070A (en) Electrode catalyst for fuel cells, method for producing the same, and electrode for fuel cells
Chanda et al. Electrochemical synthesis of Li-doped NiFeCo oxides for efficient catalysis of the oxygen evolution reaction in an alkaline environment
KR102332235B1 (en) Cathode containing palladium/ceria nanoparticles for solid oxide electrolysis cell and preparation method thereof
JP6978759B2 (en) Gas diffusion layer for air electrode
KR102580930B1 (en) Catalyst for oxygen evolution comprising transition metal oxide and nickel oxide, preparation method thereof, and batterfy for water electrolysis using the same
EP2218503A1 (en) Electrode catalyst and oxygen reduction electrode for positive electrode using the electrode catalyst
US8367273B2 (en) Method for preparation of the solid oxide fuel cell single cell
CN113046784B (en) Oxygen-rich defect IrO2-TiO2Solid solution material, its preparation method and application
KR102571771B1 (en) Method of producing platinum alloy catalyst for fuel cell, and fuel cell using same
KR102385067B1 (en) Co catalyst for oxygen evolution reaction and The manufacturing method for the same
Seo et al. A N-doped NbO x nanoparticle electrocatalyst deposited on carbon black for oxygen reduction and evolution reactions in alkaline media
KR102341316B1 (en) Oxide coated carbon nanotube support via surfactant and Manufacturing method of the Same
KR102379667B1 (en) Titanium dioxide coated carbon nanotube support via solution layer by layer coating and Manufacturing method of the Same
KR102631072B1 (en) Method of manufacturing eletrocatalyst for oxygen evolution or oxygen reduction and eletrocatalyst manufactured thereby
KR102552378B1 (en) Electrode for Alkaline Water Electrolysis, and Preparation Method thereof
CN114108027B (en) Obviously improved RuO 2 Electrochemical lithium intercalation modification method for OER catalytic performance in acidity
KR102585162B1 (en) Catalyst for oxygen evolution reaction and method for manufacturing the same
KR20230171492A (en) Catalyst for oxygen evolution reaction doped with iron, and preparation method thereof
KR20230053245A (en) Precious metal/zirconium nitrogen oxide-supported catalyst for water electrolysis oxygen generation, manufacturing method and application thereof
KR20220077939A (en) Oxidation catalyst having perovskite structure for anion exchange membrane water electrolysis and preparation method using co-precipitation reaction therefor
KR20240062089A (en) Method for manufacturing catalyst including layered double hydroxide(LDH)

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right