KR102578015B1 - An AAV vector containing a promoter specifically expressed in cerebrovascular endothelial cells and coated with a nano-peptide for targeting cerebrovascular endothelial cells, and its use for cerebrovascular endothelial cell-specific gene delivery - Google Patents

An AAV vector containing a promoter specifically expressed in cerebrovascular endothelial cells and coated with a nano-peptide for targeting cerebrovascular endothelial cells, and its use for cerebrovascular endothelial cell-specific gene delivery Download PDF

Info

Publication number
KR102578015B1
KR102578015B1 KR1020220087970A KR20220087970A KR102578015B1 KR 102578015 B1 KR102578015 B1 KR 102578015B1 KR 1020220087970 A KR1020220087970 A KR 1020220087970A KR 20220087970 A KR20220087970 A KR 20220087970A KR 102578015 B1 KR102578015 B1 KR 102578015B1
Authority
KR
South Korea
Prior art keywords
endothelial cells
cerebrovascular endothelial
aav9
peptide
cells
Prior art date
Application number
KR1020220087970A
Other languages
Korean (ko)
Inventor
이승민
보조글루 타릭
쿠팟 크리스찬
Original Assignee
주식회사 마크헬츠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 마크헬츠 filed Critical 주식회사 마크헬츠
Priority to KR1020220087970A priority Critical patent/KR102578015B1/en
Priority to PCT/KR2023/010038 priority patent/WO2024019425A1/en
Application granted granted Critical
Publication of KR102578015B1 publication Critical patent/KR102578015B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/06Linear peptides containing only normal peptide links having 5 to 11 amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/33Fusion polypeptide fusions for targeting to specific cell types, e.g. tissue specific targeting, targeting of a bacterial subspecies
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2750/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
    • C12N2750/00011Details
    • C12N2750/14011Parvoviridae
    • C12N2750/14111Dependovirus, e.g. adenoassociated viruses
    • C12N2750/14121Viruses as such, e.g. new isolates, mutants or their genomic sequences
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2750/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
    • C12N2750/00011Details
    • C12N2750/14011Parvoviridae
    • C12N2750/14111Dependovirus, e.g. adenoassociated viruses
    • C12N2750/14141Use of virus, viral particle or viral elements as a vector
    • C12N2750/14143Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector

Abstract

본 발명은 뇌혈관 내피세포에 특이적으로 발현되는 프로모터를 포함하고 뇌혈관 내피세포 표적용 나노-펩타이드가 코팅된 AAV 벡터 및 이의 뇌혈관 내피세포 특이적 유전자 전달 용도의 기술에 관한 것이다.The present invention relates to an AAV vector containing a promoter specifically expressed in cerebrovascular endothelial cells and coated with a nano-peptide targeting cerebrovascular endothelial cells, and a technology for using the same for cerebrovascular endothelial cell-specific gene delivery.

Description

뇌혈관 내피세포에 특이적으로 발현되는 프로모터를 포함하고 뇌혈관 내피세포 표적용 나노-펩타이드가 코팅된 AAV 벡터 및 이의 뇌혈관 내피세포 특이적 유전자 전달 용도 {An AAV vector containing a promoter specifically expressed in cerebrovascular endothelial cells and coated with a nano-peptide for targeting cerebrovascular endothelial cells, and its use for cerebrovascular endothelial cell-specific gene delivery}AAV vector containing a promoter specifically expressed in cerebrovascular endothelial cells and coated with nano-peptide for targeting cerebrovascular endothelial cells and its use for cerebrovascular endothelial cell-specific gene delivery {An AAV vector containing a promoter specifically expressed in cerebrovascular endothelial cells and coated with a nano-peptide for targeting cerebrovascular endothelial cells, and its use for cerebrovascular endothelial cell-specific gene delivery}

아래 실시예들은 뇌혈관 내피세포에 특이적으로 발현되는 프로모터를 포함하고 뇌혈관 내피세포 표적용 나노-펩타이드가 코팅된 AAV 벡터 및 이의 뇌혈관 내피세포 특이적 유전자 전달 용도의 기술에 관한 것이다. The examples below relate to an AAV vector containing a promoter specifically expressed in cerebrovascular endothelial cells and coated with a nano-peptide targeting cerebrovascular endothelial cells, and technology for using the same for cerebrovascular endothelial cell-specific gene delivery.

아데노 관련 바이러스(AAV)는 전임상 및 임상 적용을 위해 선호되는 벡터로서 광범위한 보조, 억제, 및 유전자 편집 이식유전자를 보유하고 있다. 간, 폐 등과 같은 다양한 기관의 세포는 AAV 혈청형의 자연 친화성의 표적이 되어 왔으며, 근육 친화성 AAV는 다양한 실험에서 심장을 표적으로 하는 데에 주로 사용되고, 특히 혈청형 8 또는 9는 동물 모델에서 유전자 편집에 선호된다. 반면, 혈관 세포의 경우 형질도입의 효율이 낮기 때문에 혈관 유전자 치료에서는 AAV가 거의 사용되지 않고 있다.Adeno-associated virus (AAV) is the preferred vector for preclinical and clinical applications and possesses a wide range of assisting, suppressing, and gene editing transgenes. Cells from various organs such as liver, lung, etc. have been targets of natural tropism of AAV serotypes, with myotropic AAV being mainly used to target the heart in various experiments, especially serotypes 8 or 9 in animal models. Preferred for gene editing. On the other hand, in the case of vascular cells, AAV is rarely used in vascular gene therapy because the transduction efficiency is low.

이와 관련하여, AAV2 및 AAV9에 대해 AAV를 내피 세포로 재표적하는 여러 접근 방식이 보고되어 왔으나, 펩티드 삽입은 결국 생체 내에서 큰 혈관(대동맥, 대정맥)의 내피 세포의 형질도입을 나타내었지만 미세혈관 구획에서는 그렇지 않은 것으로 확인되었다. 다른 펩타이드 변이체(PPS, BR1)가 생체 내에서 뇌 미세혈관 내피 세포를 표적화하기 위해 적용되었지만, 심장 또는 골격근과 같은 다른 혈관층에서는 발현이 부족하다는 문제가 있다.In this regard, several approaches to retarget AAV to endothelial cells have been reported for AAV2 and AAV9, although peptide insertion ultimately resulted in transduction of endothelial cells of large vessels (aorta, vena cava) in vivo, but not of microvessels. It was confirmed that this was not the case in the compartment. Other peptide variants (PPS, BR1) have been applied to target brain microvascular endothelial cells in vivo, but lack expression in other vascular beds such as heart or skeletal muscle.

한편, 심혈관 질환 (cardiovascular diseases)은 전 세계 사망 원인 1위의 질환으로 해마다 그 수가 증가하고 있다. 특히 동맥경화증(arteriosclerosis)은 심혈관 질환의 대표적인 질환으로 고혈압, 고지혈증, 흡연, 당뇨병, 비만, 운동부족, 스트레스 등의 원인으로 탄성이 줄어든 노화된 동맥이 혈전을 동반해 좁아지며 발생하는 질병으로, 발생 부위에 따라 뇌혈관 및 경동맥에 생기면 뇌경색 (뇌졸증)을, 심장의 관상동맥에 생기면 동맥경화성 심질환(협심증, 심근경색증)을 유발하며, 이러한 심혈관 질환의 효율적인 치료방법에 대한 필요성이 높은 실정이다.Meanwhile, cardiovascular diseases are the number one cause of death worldwide and the number is increasing every year. In particular, arteriosclerosis is a representative cardiovascular disease that occurs when aged arteries, whose elasticity has decreased due to causes such as high blood pressure, hyperlipidemia, smoking, diabetes, obesity, lack of exercise, and stress, narrow with blood clots. Depending on the area, if it occurs in the cerebral blood vessels and carotid arteries, it causes cerebral infarction (stroke), and if it occurs in the coronary arteries of the heart, it causes arteriosclerotic heart disease (angina, myocardial infarction). There is a high need for efficient treatment methods for these cardiovascular diseases.

한국공개특허공보 제10-2022-0011616호Korean Patent Publication No. 10-2022-0011616

실시예들은 심혈관 내피세포에 특이적으로 결합하는 펩타이드가 표면에 구성된 나노입자가 바이러스 캡시드 표면에 코팅된, 재조합 아데노연관바이러스에 관한 것이다.Examples relate to a recombinant adeno-associated virus in which the surface of a viral capsid is coated with nanoparticles composed of a peptide that specifically binds to cardiovascular endothelial cells.

상기 목적을 달성하기 위해, 내피세포에 특이적으로 결합하는 펩타이드가 표면에 구성된 나노입자가 바이러스 캡시드 표면에 코팅된, 재조합 아데노연관바이러스를 제공한다.To achieve the above object, a recombinant adeno-associated virus is provided in which the surface of a viral capsid is coated with nanoparticles composed of a peptide that specifically binds to endothelial cells.

또한, 상기 재조합 아데노연관바이러스의 제조방법을 제공한다.Additionally, a method for producing the recombinant adeno-associated virus is provided.

또한, 상기 재조합 아데노연관바이러스를 포함하는, 죽상동맥경화증의 예방 또는 치료용 조성물을 제공한다.Additionally, a composition for preventing or treating atherosclerosis comprising the recombinant adeno-associated virus is provided.

실시예들은 심혈관 내피세포에 특이적으로 결합하는 펩타이드가 표면에 구성된 나노입자가 바이러스 캡시드 표면에 코팅된, 재조합 아데노연관바이러스를 통해 혈관 및 혈관 내피세포에 약물을 표적할 수 있고, 혈관벽에 백혈구가 달라붙는 것을 막아 혈관 폐쇄를 예방할 수 있으며, eNOS 유전자를 제거하여 근육을 수축시켜, 혈압을 조절할 수 있다.Examples show that nanoparticles composed of a peptide that specifically binds to cardiovascular endothelial cells on the surface can target drugs to blood vessels and vascular endothelial cells through a recombinant adeno-associated virus coated on the surface of a viral capsid, and leukocytes in the blood vessel wall. It can prevent blood vessel occlusion by preventing sticking, and by removing the eNOS gene, it can contract muscles and control blood pressure.

다만, 본 발명의 효과들은 이상에서 언급한 효과로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.However, the effects of the present invention are not limited to the effects mentioned above, and other effects not mentioned will be clearly understood by those skilled in the art from the description below.

도 1 및 2는 AAV9의 G2CYS 코팅 및 이의 결과를 나타낸 도면임.
도 3은 mTmG 마우스에서 G2CNN 코팅에 의한 생체 내 AAV9-Cre 형질도입 조절에 관한 도면임.
도 4는 AAV9-Cre를 사용한 mTmG 돼지의 내피 형질도입 결과에 대한 것임.
도 5는 내피 재표적 AAV9를 통한 내피 S1FG 전달의 과정 및 결과에 관한 것임.
도 6은 Annexin A1의 재표적화된 내피가 만성 죽상경화증 마우스 모델에서 백혈구 모집을 억제함을 나타낸 것임.
도 7은 내피 재표적화된 AAV9를 사용한 Cas9 매개 eNOS 결실에 의한 혈압 변화를 나타낸 것임.
도 8 내지 10은 각각 pSEW (Template), eNOSp-GFP (human eNOS-Promotor in SEW), 및 eNOSp-TK (human eNOS-Promotor in SETKW8 (basiert auf SEW))의 구조를 나타낸 것임 (eNOS: human eNOS-Promotor ; 1600 bp).
Figures 1 and 2 are diagrams showing the G2 CYS coating of AAV9 and its results.
Figure 3 shows the control of AAV9-Cre transduction in vivo by G2 CNN coating in mTmG mice.
Figure 4 shows the results of endothelial transduction of mTmG pigs using AAV9-Cre.
Figure 5 relates to the process and results of endothelial S1FG delivery through endothelial retargeting AAV9.
Figure 6 shows that Annexin A1 retargeted to the endothelium inhibits leukocyte recruitment in a mouse model of chronic atherosclerosis.
Figure 7 shows blood pressure changes caused by Cas9-mediated eNOS deletion using endothelial retargeted AAV9.
Figures 8 to 10 show the structures of pSEW (Template), eNOSp-GFP (human eNOS-Promotor in SEW), and eNOSp-TK (human eNOS-Promotor in SETKW8 (basiert auf SEW)), respectively (eNOS: human eNOS) -Promotor; 1600 bp).

이하에서, 첨부된 도면을 참조하여 실시예들을 상세하게 설명한다. 그러나, 실시예들에는 다양한 변경이 가해질 수 있어서 특허출원의 권리 범위가 이러한 실시예들에 의해 제한되거나 한정되는 것은 아니다. 실시예들에 대한 모든 변경, 균등물 내지 대체물이 권리 범위에 포함되는 것으로 이해되어야 한다.Hereinafter, embodiments will be described in detail with reference to the attached drawings. However, various changes can be made to the embodiments, so the scope of the patent application is not limited or limited by these embodiments. It should be understood that all changes, equivalents, or substitutes for the embodiments are included in the scope of rights.

실시예들에 대한 특정한 구조적 또는 기능적 설명들은 단지 예시를 위한 목적으로 개시된 것으로서, 다양한 형태로 변경되어 실시될 수 있다. 따라서, 실시예들은 특정한 개시형태로 한정되는 것이 아니며, 본 명세서의 범위는 기술적 사상에 포함되는 변경, 균등물, 또는 대체물을 포함한다.Specific structural or functional descriptions of the embodiments are disclosed for illustrative purposes only and may be modified and implemented in various forms. Accordingly, the embodiments are not limited to the specific disclosed form, and the scope of the present specification includes changes, equivalents, or substitutes included in the technical spirit.

제1 또는 제2 등의 용어를 다양한 구성요소들을 설명하는데 사용될 수 있지만, 이런 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 해석되어야 한다. 예를 들어, 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소는 제1 구성요소로도 명명될 수 있다.Terms such as first or second may be used to describe various components, but these terms should be interpreted only for the purpose of distinguishing one component from another component. For example, a first component may be named a second component, and similarly, the second component may also be named a first component.

어떤 구성요소가 다른 구성요소에 "연결되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다.When a component is referred to as being “connected” to another component, it should be understood that it may be directly connected or connected to the other component, but that other components may exist in between.

실시예에서 사용한 용어는 단지 설명을 목적으로 사용된 것으로, 한정하려는 의도로 해석되어서는 안된다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terms used in the examples are for descriptive purposes only and should not be construed as limiting. Singular expressions include plural expressions unless the context clearly dictates otherwise. In this specification, terms such as “comprise” or “have” are intended to designate the presence of features, numbers, steps, operations, components, parts, or combinations thereof described in the specification, but are not intended to indicate the presence of one or more other features. It should be understood that this does not exclude in advance the possibility of the existence or addition of elements, numbers, steps, operations, components, parts, or combinations thereof.

다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 실시예가 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Unless otherwise defined, all terms used herein, including technical or scientific terms, have the same meaning as generally understood by a person of ordinary skill in the technical field to which the embodiments belong. Terms defined in commonly used dictionaries should be interpreted as having a meaning consistent with the meaning in the context of the related technology, and unless explicitly defined in the present application, should not be interpreted in an ideal or excessively formal sense. No.

본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.The advantages and features of the present invention and methods for achieving them will become clear by referring to the embodiments described in detail below along with the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below and will be implemented in various different forms. The present embodiments only serve to ensure that the disclosure of the present invention is complete and that common knowledge in the technical field to which the present invention pertains is not limited. It is provided to fully inform those who have the scope of the invention, and the present invention is only defined by the scope of the claims.

본 발명의 실시예들에서, 별도로 다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 발명의 실시예에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.In the embodiments of the present invention, unless otherwise defined, all terms used herein, including technical or scientific terms, are the same as those commonly understood by a person of ordinary skill in the technical field to which the present invention pertains. It has meaning. Terms defined in commonly used dictionaries should be interpreted as having a meaning consistent with the meaning in the context of the related technology, and unless clearly defined in the embodiments of the present invention, have an ideal or excessively formal meaning. It is not interpreted as

본 발명의 실시예를 설명하기 위한 도면에 개시된 형상, 크기, 비율, 각도, 개수 등은 예시적인 것이므로 본 발명이 도시된 사항에 한정되는 것은 아니다. 또한, 본 발명을 설명함에 있어서, 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명은 생략한다. 본 명세서 상에서 언급된 '포함한다', '갖는다', '이루어진다' 등이 사용되는 경우 '~만'이 사용되지 않는 이상 다른 부분이 추가될 수 있다. 구성 요소를 단수로 표현한 경우에 특별히 명시적인 기재 사항이 없는 한 복수를 포함하는 경우를 포함한다.The shapes, sizes, proportions, angles, numbers, etc. disclosed in the drawings for explaining embodiments of the present invention are illustrative, and the present invention is not limited to the matters shown. Additionally, in describing the present invention, if it is determined that a detailed description of related known technologies may unnecessarily obscure the gist of the present invention, the detailed description will be omitted. When 'includes', 'has', 'consists of', etc. mentioned in this specification are used, other parts may be added unless 'only' is used. When a component is expressed in the singular, the plural is included unless specifically stated otherwise.

구성 요소를 해석함에 있어서, 별도의 명시적 기재가 없더라도 오차 범위를 포함하는 것으로 해석한다.When interpreting a component, it is interpreted to include the margin of error even if there is no separate explicit description.

도면에서 나타난 각 구성의 크기 및 두께는 설명의 편의를 위해 도시된 것이며, 본 발명이 도시된 구성의 크기 및 두께에 반드시 한정되는 것은 아니다.The size and thickness of each component shown in the drawings are shown for convenience of explanation, and the present invention is not necessarily limited to the size and thickness of the components shown.

본 발명의 여러 실시예들의 각각 특징들이 부분적으로 또는 전체적으로 서로 결합 또는 조합 가능하며, 당업자가 충분히 이해할 수 있듯이 기술적으로 다양한 연동 및 구동이 가능하며, 각 실시예들이 서로에 대하여 독립적으로 실시 가능할 수도 있고 연관 관계로 함께 실시 가능할 수도 있다.Each feature of the various embodiments of the present invention can be partially or fully combined or combined with each other, and as can be fully understood by those skilled in the art, various technical interconnections and operations are possible, and each embodiment may be implemented independently of each other. It may be possible to conduct them together due to a related relationship.

본 발명의 일 측면은, 심혈관 내피세포에 특이적으로 결합하는 펩타이드가 표면에 구성된 나노입자가 바이러스 캡시드 표면에 코팅된, 재조합 아데노연관바이러스를 제공한다.One aspect of the present invention provides a recombinant adeno-associated virus in which the surface of a viral capsid is coated with nanoparticles composed of a peptide that specifically binds to cardiovascular endothelial cells.

일 실시예에 있어서, 상기 나노입자는 G2 덴드리머인 것일 수 있다.In one embodiment, the nanoparticle may be a G2 dendrimer.

일 실시예에 있어서, 상기 심혈관 내피세포에 특이적으로 결합하는 펩타이드는 CNN (CNNSGMRN) 또는 SLR(SLRSPPS)인 것이고, 바이러스 표면의 제타 전위가 4.3 내지 4.5 mV의 양의 값을 가지며, 골격근 내피세포 및 심혈관 내피세포에 대한 표적 지향성이 강화되고, 케모카인 헤드로서 SDF-1, 프렉트알킨 줄기 및 GPI 앵커로 구성된 이식유전자 S1FG를 게놈에 포함하고, 항염증성 단백질 Annexin A1(Anxa1)을 인코딩하는 플라스미드를 포함하여, 백혈구에 대한 접착력을 증가시켜 백혈구에 의한 혈관 폐쇄 및 동맥경화증의 발생을 예방하는, 재조합 아데노연관바이러스일 수 있다.In one embodiment, the peptide that specifically binds to cardiovascular endothelial cells is CNN (CNNSGMRN) or SLR (SLRSPPS), has a positive zeta potential of 4.3 to 4.5 mV on the surface of the virus, and skeletal muscle endothelial cells. and a plasmid encoding the anti-inflammatory protein Annexin A1 (Anxa1), which has enhanced targeting to cardiovascular endothelial cells and contains in its genome the transgene S1FG, which consists of SDF-1 as a chemokine head, a fractalkine stem, and a GPI anchor. Including, it may be a recombinant adeno-associated virus that increases adhesion to white blood cells and prevents the development of vascular occlusion and arteriosclerosis caused by white blood cells.

보다 구체적으로, 본 발명에서는 동맥경화증을 유발하는 백혈구를 염색하여 Ly6C+, Ly6G+ 및 CD11b+의 발현량을 확인하여 혈관벽에 백혈구가 달라붙는 것을 방지하는 효과를 확인하였다.More specifically, in the present invention, the expression levels of Ly6C+, Ly6G+, and CD11b+ were confirmed by staining leukocytes that cause arteriosclerosis, thereby confirming the effect of preventing leukocytes from adhering to blood vessel walls.

일 실시예에 있어서, 상기 바이러스는 aritificial adhesion molecule (S1FG; complex of [SDF-1] - [Mucin domain] - [GPI anchor])를 인코딩하는 유전자를 게놈에 포함하여, 상기 분자를 발현하여 고환 (cremaster)의 세정맥 (venule)에 특이적으로 약물을 전달할 수 있다.In one embodiment, the virus contains a gene encoding an aritificial adhesion molecule (S1FG; complex of [SDF-1] - [Mucin domain] - [GPI anchor]) in its genome, and expresses the molecule to induce testes ( Drugs can be delivered specifically to the venules of the cremaster.

일 실시예에 있어서, 상기 심혈관 내피세포에 특이적으로 결합하는 펩타이드는 CNN (CNNSGMRN) 또는 SLR(SLRSPPS)인 것이고, 바이러스 표면의 제타 전위가 4.3 내지 4.5 mV의 양의 값을 가지며, 골격근 내피세포 및 심혈관 내피세포에 대한 표적 지향성이 강화되고, 도 9의 플라스미드를 바이러스 게놈에 포함하며, Cas9-트랜스제닉(Cas9-tg) 마우스에서 내피 산화질소 합성효소(eNOS) 유전자의 엑손 6과 10 사이를 절제하는 AAV9-gRNA를 인코딩하여, 근육 수축 및 동맥압을 증가시킬 수 있는, 재조합 아데노연관바이러스일 수 있다. 전신 혈압 조절은 건강에 있어서 상당히 중요한 기능으로써 본 발명은 혈관내피세포 표적 Cas9-AAV 유전자 치료기법 (CRISPR/Cas9 방법을 이용하여 eNOS 유전자의 exon (6~10까지를 제거)을 이용하여 제거함으로써 근육을 수축시켜 혈압을 조절할 수 있음을 확인하였다.In one embodiment, the peptide that specifically binds to cardiovascular endothelial cells is CNN (CNNSGMRN) or SLR (SLRSPPS), has a positive zeta potential of 4.3 to 4.5 mV on the surface of the virus, and skeletal muscle endothelial cells. and enhanced targeting to cardiovascular endothelial cells, containing the plasmid of Figure 9 in the viral genome, and targeting between exons 6 and 10 of the endothelial nitric oxide synthase (eNOS) gene in Cas9-transgenic (Cas9-tg) mice. It may be a recombinant adeno-associated virus that encodes AAV9-gRNA, which excises and can increase muscle contraction and arterial pressure. Regulating systemic blood pressure is a very important function in health, and the present invention uses vascular endothelial cell-targeted Cas9-AAV gene therapy (CRISPR/Cas9 method to remove exons (6 to 10) of the eNOS gene to remove muscle tissue. It was confirmed that blood pressure can be controlled by contracting.

일 실시예에 있어서, 상기 재조합 아데노연관바이러스는 도 8 내지 10 중 하나 이상의 벡터가 형질도입된 것일 수 있다. In one embodiment, the recombinant adeno-associated virus may be transduced with one or more vectors of FIGS. 8 to 10.

일 실시예에 있어서, 상기 재조합 아데노연관바이러스는 pseudotype rAAV2/9일 수 있고, G2 덴드리머와, DMSO에 용해된 NHSPEG-OPSS 링커의 몰비는 1 : 4일 수 있다.In one embodiment, the recombinant adeno-associated virus may be pseudotype rAAV2/9, and the molar ratio of G2 dendrimer and NHSPEG-OPSS linker dissolved in DMSO may be 1:4.

본 발명의 일 측면은, 아민 말단 디아미노부탄 코어 PAMAM G2 덴드리머와, DMSO에 용해된 NHSPEG-OPSS 링커 및 CNN (CNNSGMRN) 또는 SLR(SLRSPPS)의 아미노산 서열을 갖는 심혈관 내피세포에 특이적으로 결합하는 펩타이드를 함께 인큐베이션 하는 단계; 상기 단계 이후, 양이온 교환 컬럼에 로딩하고 0.6 내지 3m NaCl의 염 구배, 20×10-3m HEPES(4-(2-하이드록시에틸)-1-피페라진에탄설폰산), pH 7.4) 용액에서 분획하는 단계; 상기 단계 이후, 생성물을 원심분리 필터 장치로 여과하는 단계; 및 상기 단계 이후 아데노연관바이러스 입자를 첨가한 후 즉시 피펫 팁으로 부드럽게 흡인하여 혼합하고, 실온에서 30분 동안 인큐베이션하는 덴드리머 코팅 단계;를 포함하는, 재조합 아데노연관바이러스의 제조방법을 제공한다. 보다 구체적으로 상기 제조방법은 하기 실시예에 기재된 제조단계를 포함할 수 있다. One aspect of the present invention is an amine-terminated diaminobutane core PAMAM G2 dendrimer, an NHSPEG-OPSS linker dissolved in DMSO, and an amino acid sequence of CNN (CNNSGMRN) or SLR (SLRSPPS) that specifically binds to cardiovascular endothelial cells. Incubating the peptides together; After the above steps, loading on a cation exchange column and a salt gradient of 0.6 to 3 m NaCl, 20 Fractionation step; After the above steps, filtering the product with a centrifugal filter device; and a dendrimer coating step of adding the adeno-associated virus particles after the above step, mixing them by gently aspirating them with a pipette tip, and incubating at room temperature for 30 minutes. More specifically, the manufacturing method may include the manufacturing steps described in the examples below.

본 발명의 일 측면은, 상술한 재조합 아데노연관바이러스를 유효성분으로 포함하는, 죽상동맥경화증 (atherosclerosis)의 예방 또는 치료용 조성물을 제공한다.One aspect of the present invention provides a composition for preventing or treating atherosclerosis, comprising the above-described recombinant adeno-associated virus as an active ingredient.

동맥경화증은 심혈관 질환의 대표적인 질환으로 고혈압, 고지혈증, 흡연, 당뇨병, 비만, 운동부족, 스트레스 등의 원인으로 탄성이 줄어든 노화된 동맥이 혈전을 동반해 좁아지며 발생하는 질병으로, 발생 부위에 따라 뇌혈관 및 경동맥에 생기면 뇌경색 (뇌졸증)을, 심장의 관상동맥에 생기면 동맥경화성 심질환(협심증, 심근경색증)을 유발하여 혈액을 공급받지 못해 신체의 각 부위가 죽는 괴사를 유발하는 치명적인 질병이다.Atherosclerosis is a representative cardiovascular disease that occurs when aged arteries, whose elasticity has decreased due to causes such as high blood pressure, hyperlipidemia, smoking, diabetes, obesity, lack of exercise, and stress, narrow with thrombosis. Depending on the site of occurrence, the brain If it occurs in blood vessels or carotid arteries, it can cause cerebral infarction (stroke), and if it occurs in the coronary arteries of the heart, it can cause arteriosclerotic heart disease (angina pectoris, myocardial infarction), which is a fatal disease that causes necrosis and death of each part of the body due to lack of blood supply.

본 발명에서는 관상동맥의 혈관내피세포 (Endothelial cell)에 특이적으로 표적하여 신생혈관(angiogenesis)을 유도함으로써, 괴사되어가는 심근조직 (myocardium)을 재생하기 위해 고안된 유전자치료제로, 표적 아데노연관바이러스 (AAV; Adeno-associated virus) 전달체 (vector)를 사용하였다. In the present invention, it is a gene therapy designed to regenerate necrotic myocardial tissue (myocardium) by specifically targeting endothelial cells of coronary arteries to induce angiogenesis, targeting adeno-associated virus ( AAV (Adeno-associated virus) vector was used.

이하, 구체적인 실시예와 비교예를 통하여 본 발명의 구성 및 그에 따른 효과를 보다 상세히 설명하고자 한다. 그러나, 본 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것이며, 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.Hereinafter, the configuration of the present invention and its effects will be described in more detail through specific examples and comparative examples. However, these examples are for illustrating the present invention in more detail, and the scope of the present invention is not limited to these examples.

1. 실험 방법1. Experimental method

바이러스 생성:Virus creation:

재조합 AAV9(pseudotype rAAV2/9)는 삼중 형질감염 방법을 사용하여 생성되었다. 간략하게, HEK293T 세포(CRL-3216, ATCC)의 형질감염은 시스 작용 AAV2 역 말단 반복부(ITR)가 측면에 있는 이식유전자를 인코딩하는 하나의 플라스미드, 트랜스에서 AAV2 rep 및 AAV9 캡을 제공하는 두 번째 플라스미드를 사용하여 수행된 반면, 세 번째 플라스미드 (delta F6, Puresyn) 폴리에틸렌이민(PEI-Max, Polysciences Inc.)을 사용하여 아데노바이러스 보조 기능을 보완했다. AAV의 역가는 ITR 영역에 대한 정량적 실시간 중합효소 연쇄 반응(qRT-PCR)을 통해 결정되었다.Recombinant AAV9 (pseudotype rAAV2/9) was generated using the triple transfection method. Briefly, transfection of HEK293T cells (CRL-3216, ATCC) consisted of two plasmids: one plasmid encoding the transgene flanked by cis-acting AAV2 inverted terminal repeats (ITRs), the AAV2 rep and the AAV9 cap in trans. This was performed using the second plasmid, while the third plasmid (delta F6, Puresyn) was complemented with adenoviral helper function using polyethyleneimine (PEI-Max, Polysciences Inc.). The titer of AAV was determined via quantitative real-time polymerase chain reaction (qRT-PCR) against the ITR region.

세포 배양 및 펩티드 선택:Cell culture and peptide selection:

인간 미세혈관 내피 세포(HMEC-1, CRL-3243, ATCC) 또는 HUVEC(Promocell) 세포를 Dulbecco의 변형 이글 배지(DMEM) 및 내피가 보충된 10% 우태아 혈청(FCS)에서 배양했다. 세포 성장 배지 2(Promocell) CX7C M13KE 파지 라이브러리(New England Biolabs)의 2 x 1011 플라크 형성 단위를 HMEC-1 또는 HUVEC 세포의 튜브당 1 x 107 세포에서 1mL의 1% 소 혈청 알부민(BSA)/DMEM과 함께 부드럽게 롤링하면서 4°C에서 120분 동안 인큐베이션했다. Human microvascular endothelial cells (HMEC-1, CRL-3243, ATCC) or HUVEC (Promocell) cells were cultured in Dulbecco's modified Eagle's medium (DMEM) and 10% fetal calf serum (FCS) supplemented with endothelium. Cell Growth Medium 2 (Promocell) Incubate 2 x 10 11 plaque-forming units of the CX7C M13KE phage library (New England Biolabs) at 1 x 10 cells per tube of HMEC-1 or HUVEC cells in 1 mL of 1% bovine serum albumin (BSA). /DMEM and incubated for 120 min at 4°C with gentle rolling.

세척 후, 결합된 파지를 0.2m 글리신-HCl 1mL로 용리시켰다. 1mL의 선택된 파지 용출액을 20mL의 E.coli ER2738 박테리아 현탁액(A600 nm 0.5)(New England Biolabs,)과 함께 인큐베이션했다. 회수된 파지를 4℃/13,000rpm/20분에서 원심분리하였다. 그 다음, 상층액을 1/6 부피의 20% PEG8000/2.5m NaCl이 포함된 새로운 튜브로 옮기고 4°C에서 밤새 인큐베이션했다. 그 후, 파지를 4℃/13,000rpm/15분에서 펠렛화하고 상청액을 버렸다. 파지 펠릿을 1mL의 TBS로 완전히 재현탁시켰다. 10μL의 파지 용출물을 300μL의 E. coli ER2738과 함께 인큐베이션했다. 단일 파란색 양성 플라크를 선택하고 E.coli ER2738 2mL로 증폭했다. 각각의 선택된 파지 DNA는 KAPA HiFi DNA 중합효소(Peqlab)를 사용하여 직접 PCR에 의해 증폭되었다. 10개의 파지 클론 서열은 M13 파지 프라이머 서열이 있는 시퀀싱 분석에 의해 선택되었다: 정방향 5'- TTA TTC GCA ATT CCT TTA GTG G -3', 역방향 5'-CCC TCA TAG TTA GCG TAA CG -3'. 그 후 PCR 산물을 분리하고 시퀀싱했다(Eurofins). 7개의 다양한 시퀀스 중 CNNSGMRN은 Clustal W 프로그램에 의한 정렬 분석 후 선택되었다.After washing, bound phage was eluted with 1 mL of 0.2 m glycine-HCl. 1 mL of selected phage eluate was incubated with 20 mL of E. coli ER2738 bacterial suspension (A600 nm 0.5) (New England Biolabs,). The recovered phages were centrifuged at 4°C/13,000rpm/20 minutes. The supernatant was then transferred to a new tube containing 1/6 volume of 20% PEG8000/2.5 m NaCl and incubated overnight at 4°C. Phages were then pelleted at 4°C/13,000 rpm/15 min and the supernatant was discarded. The phage pellet was thoroughly resuspended in 1 mL of TBS. 10 μL of phage eluate was incubated with 300 μL of E. coli ER2738. A single blue positive plaque was selected and amplified with 2 mL of E. coli ER2738. Each selected phage DNA was amplified by direct PCR using KAPA HiFi DNA polymerase (Peqlab). Ten phage clone sequences were selected by sequencing analysis with M13 phage primer sequences: forward 5′- TTA TTC GCA ATT CCT TTA GTG G -3′, reverse 5′-CCC TCA TAG TTA GCG TAA CG -3′. PCR products were then isolated and sequenced (Eurofins). Among the seven various sequences, CNNSGMRN was selected after alignment analysis by the Clustal W program.

접합체 합성: Conjugate synthesis :

아민 말단 디아미노부탄 코어 PAMAM G2 덴드리머는 Dendritic Nanotechnologies 및 Andrews ChemServices에서 구입했다. PAMAM G2 덴드리머, NHSPEG-OPSS 링커 및 내피 세포 특이적 형질도입 펩타이드(CNN 또는 SLR)의 접합을 수행했다. 간단히, 1μmol의 G2를 디메틸 설폭사이드(DMSO)에 용해된 4μmol의 NHS-PEG2kDa-OPSS(Rapp Polymere)와 함께 인큐베이션하고 양이온 교환 컬럼(Macro-Prep High S; BioRad, 독일)에 로딩하고 0.6~3m NaCl의 염 구배, 20×10-3m HEPES(=4-(2-하이드록시에틸)-1-피페라진에탄설폰산), pH 7.4) 용액에서 분획되었다. 그 후, 생성물을 원심분리 필터 장치(Amicon Ultra 3K, Merck)로 여과하고 접합체의 G2 함량을 TNBS(=트리니트로벤젠 설폰산) 분석에 의해 결정하였다.Amine-terminated diaminobutane core PAMAM G2 dendrimer was purchased from Dendritic Nanotechnologies and Andrews ChemServices. Conjugation of PAMAM G2 dendrimer, NHSPEG-OPSS linker, and endothelial cell-specific transduction peptide (CNN or SLR) was performed. Briefly, 1 μmol of G2 was incubated with 4 μmol of NHS-PEG2kDa-OPSS (Rapp Polymere) dissolved in dimethyl sulfoxide (DMSO) and loaded onto a cation exchange column (Macro-Prep High S; BioRad, Germany) at 0.6–3 m. Fractionated in a salt gradient of NaCl, 20 × 10 -3 m HEPES (=4-(2-hydroxyethyl)-1-piperazinethanesulfonic acid), pH 7.4) solution. Afterwards, the product was filtered with a centrifugal filter device (Amicon Ultra 3K, Merck) and the G2 content of the conjugate was determined by TNBS (=trinitrobenzene sulfonic acid) analysis.

덴드리머 코팅:Dendrimer coating:

AAV 및 G2 PAMAM의 복합체는 표시된 양의 PAMAM 덴드리머를 Opti-MEM I(Thermo Fisher)에서 희석하여 형성되었다. 바이러스 입자를 희석된 PAMAM 용액에 첨가하고, 즉시 피펫 팁으로 부드럽게 흡인하여 혼합하고, 추가 사용 전에 실온에서 30분 동안 인큐베이션하도록 하였다.Complexes of AAV and G2 PAMAM were formed by diluting the indicated amounts of PAMAM dendrimer in Opti-MEM I (Thermo Fisher). Virus particles were added to the diluted PAMAM solution, immediately mixed by gentle aspiration with a pipette tip, and allowed to incubate for 30 minutes at room temperature before further use.

제타 전위: Zeta potential:

100 μL 인산 완충 식염수(PBS) 중 1 ×1012 vgs AAV를 Hepes 완충 글루코스(HBG, 20 × 10-3m HEPES, 5% w/v 포도당, pH = 7.4), 25°C에서 30분 동안 방치한 다음 zetasizer Nano ZS에서 측정할 PBS/HBG의 1:1 혼합물에서 0.8mL로 추가 희석 (Malvern Pananalytical)하였다. 샘플은 물(0.8872 cP 점도)로 선택된 분산제를 사용하여 25°C에서 투명한 일회용 제타 셀에서 실행하고 자동 전압(항상 50.3V에 도달)으로 설정하여 수집 사이에 60초의 냉각 시간으로 최대 100회 실행을 두 번 실행했다. 결과는 Zetasizer Software v7.13(Malvern)을 사용하여 분석되었으며 소프트웨어에 따라 좋은 결과 품질로 추출된 것들만 분석되었다.1 × 10 12 vgs AAV in 100 μL phosphate-buffered saline (PBS) was incubated in Hepes-buffered glucose (HBG, 20 × 10 -3 m HEPES, 5% w/v glucose, pH = 7.4) for 30 min at 25°C. Then, it was further diluted to 0.8 mL in a 1:1 mixture of PBS/HBG to be measured on zetasizer Nano ZS (Malvern Pananalytical). Samples were run in transparent disposable zeta cells at 25 °C using the chosen dispersant of water (0.8872 cP viscosity) and set to automatic voltage (always reaching 50.3 V) for up to 100 runs with a cooling time of 60 s between collections. Run it twice. The results were analyzed using Zetasizer Software v7.13 (Malvern), and only those extracted with good result quality according to the software were analyzed.

TEM: TEM:

AAV는 위에서 설명한 대로 PAMAM 접합체로 코팅되었고 종래 기술에 따라 처리되었다. 간단히, 2μL 샘플을 formvar 코팅된 300메쉬 구리 그리드에 피펫팅하고 6시간 동안 증발되도록 방치한 다음 20μL 1% 인 텅스텐산 용액으로 3분 동안 적가 코팅하고, 과량의 액체를 배출하고 밤새 건조되도록 두었다. Sharp:eye 카메라(TRS) 및 컬럼 내 카메라 Morada G2(11MP)와 함께 120kV 작동 필터 및 LaB6 필라멘트를 사용하여 Libra 120 시스템(Zeiss,)에서 샘플을 이미지화했다.AAV was coated with PAMAM conjugate as described above and processed according to the prior art. Briefly, 2 μL samples were pipetted onto formvar-coated 300 mesh copper grids, left to evaporate for 6 h, then coated dropwise with 20 μL 1% phosphorus tungstic acid solution for 3 min, excess liquid drained and left to dry overnight. Samples were imaged on a Libra 120 system (Zeiss,) using a Sharp:eye camera (TRS) and an in-column camera Morada G2 (11 MP) with a 120 kV operating filter and LaB6 filament.

마우스 모델: Mouse Model:

동물 관리 및 모든 실험 절차는 바이에른 동물 관리 및 사용 위원회(ROB-55.2-2532.Vet_02-18-99, 등)에 따라 수행되었다. Rosa26 mTmG(007576, The Jackson Laboratory) 및 Rosa26-LSL-Cas9(024857, The Jackson Laboratory) 마우스는 각각 Ralf Adams(Max Planck Institute for molecular biomedicine, Muenster, Germany) 및 Roland Rad(Klinikum Rechts der Isar, 뮌헨, 독일), Oliver Sohnlein(Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany)에서 제공하였다. ApoE-/- 마우스는 C57Bl6 배경에서 사용되었으며 21% 지방과 0.15% 콜레스테롤(ssniff, Soest)로 4주 동안 급여하였다. 모든 AAV 생체내 실험은 2.5 × 1012 vgs의 꼬리 정맥 주사로 수행되었다.Animal care and all experimental procedures were performed in accordance with the Bavarian Animal Care and Use Committee (ROB-55.2-2532.Vet_02-18-99, etc.). Rosa26 mTmG (007576, The Jackson Laboratory) and Rosa26-LSL-Cas9 (024857, The Jackson Laboratory) mice were provided by Ralf Adams (Max Planck Institute for molecular biomedicine, Muenster, Germany) and Roland Rad (Klinikum Rechts der Isar, Munich, Germany), respectively. Germany), provided by Oliver Sohnlein (Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany). ApoE-/- mice were used on a C57Bl6 background and fed with 21% fat and 0.15% cholesterol (ssniff, Soest) for 4 weeks. All AAV in vivo experiments were performed with tail vein injections of 2.5 × 10 12 vgs.

mTmG 리포터 돼지에 AAV 주입: AAV injection into mTmG reporter pigs:

mTmG 리포터 돼지의 형질도입은 종래 기술에 따라 수행되었다. 간단히, 돼지(n = 2)를 마취하고, 2개의 6F 칼집을 경동맥과 외부 경정맥에 삽입하고, 왼쪽 전방 하행 동맥을 와이어 풍선으로 막았다. AAV(1 × 1014 vgs)는 Swan Ganz 카테터로 전방 심실간 정맥을 차단하는 동시에 이 풍선의 내강을 통해 주입되었다. 다른 바이러스(1 × 1014 vgs)도 대퇴이두근에 근육주사했다. 3주 후에 동물을 희생시켰고, 심장을 절제하고, 체계적인 방식으로 샘플링하고, 추가 조사를 위해 이소펜탄에서 급속 냉동시켰다. 유세포 분석을 위해 근육내 주사 부위를 중심으로 대퇴이두근의 영역도 수집했다.Transduction of mTmG reporter pigs was performed according to conventional techniques. Briefly, pigs (n = 2) were anesthetized, two 6F sheaths were inserted into the carotid artery and external jugular vein, and the left anterior descending artery was occluded with a wire balloon. AAV (1 × 10 14 vgs) was injected through the lumen of this balloon while occluding the anterior interventricular vein with a Swan Ganz catheter. Another virus (1 × 10 14 vgs) was also injected intramuscularly into the biceps femoris. Animals were sacrificed after 3 weeks, hearts were excised, sampled in a systematic manner, and flash frozen in isopentane for further investigation. An area of the biceps femoris muscle centered around the intramuscular injection site was also collected for flow cytometric analysis.

형광 현미경: Fluorescence microscopy:

63XxNA1.40 오일 침지 대물렌즈가 장착된 Leica THUNDER Imager Tissue(Leica Microsystems,)를 사용하여 현미경을 수행했다. 해당되는 경우 광학 줌을 사용했다. 형광 여기를 위해 SOLA 라이트 엔진(Lumencor)을 사용했다. 획득은 20482 픽셀로 수행되었다. 이미지 처리는 내장 이미지 디콘볼루션(소량 계산 클리어링)을 사용하여 라이카 LAS X 소프트웨어를 사용하여 수행되었다.Microscopy was performed using a Leica THUNDER Imager Tissue (Leica Microsystems,) equipped with a 63XxNA1.40 oil immersion objective. Optical zoom was used where applicable. The SOLA light engine (Lumencor) was used for fluorescence excitation. Acquisition was performed with 20482 pixels. Image processing was performed using Leica LAS

면역형광 염색에 사용된 항체는 다음과 같다: EGFP(CAB4211, Thermo Fisher), 뮤린 CD31(BM4086, Origene), 돼지 CD31(LCI-4, Bio-Rad), CRISPR-Cas9(7A9-3A3, Novus Biologicals), AAV9 온전한 캡시드(ADK9, Origene). Antibodies used for immunofluorescence staining were as follows: EGFP (CAB4211, Thermo Fisher), murine CD31 (BM4086, Origene), porcine CD31 (LCI-4, Bio-Rad), and CRISPR-Cas9 (7A9-3A3, Novus Biologicals). ), AAV9 intact capsid (ADK9, Origene).

고도로 교차 흡착된 Alexa Fluor 접합된 이차 항체는 형광 표지에 사용되었다(A-11034, A48265, A-11029, A-11032, Thermo Fisher). 면역형광 이미지에서 GFP/CD31 이중 양성 세포는 ImageJ를 사용하여 10개 섹션에서 계산되었다.Highly cross-adsorbed Alexa Fluor conjugated secondary antibodies were used for fluorescent labeling (A-11034, A48265, A-11029, A-11032, Thermo Fisher). GFP/CD31 double-positive cells in immunofluorescence images were counted in 10 sections using ImageJ.

형질도입의 유세포분석: Flow cytometry analysis of transduction:

조직 샘플을 다음과 같이 분해했다: 10mg의 뮤린 허혈 후 심장 조각을 콜라게나제 II(1mg mL-1; C6885, Sigma) 및 DNase I(50μg mL-1; D4263, Sigma)로 1시간 분해했다. 돼지 대퇴이두근 샘플을 50mg 조각으로 절단하고, 1mg mL-1 파파인(P3375, Sigma)으로 30분 동안 소화한 다음 1mg mL-1 콜라게나제/디스파제(Roche)로 30분 동안 소화했다. 세포 현탁액을 세포 여과기(70 μm)를 통해 압축하고 300 x g에서 원심분리했다. 적혈구를 2회 세척한 암모늄칼륨 완충액으로 용해하고 생쥐의 경우 트립판 블루로, 돼지 세포의 경우 LIVE/DEAD(Thermo Fisher)로 염색했다. 뮤린 세포를 15시간 동안 CD31(BM4086, Origene)에 대한 특이적 항체로 염색했다. 이차 항체 염색(A48265, Thermo Fisher)을 진행했다. 돼지 세포를 4% w/v 파라포름알데히드로 고정하고 Triton X100으로 투과화하고 EGFP(CAB4211, Thermo Fisher) 및 CD31(LCI-4, Bio-Rad)에 대해 염색한 후 2차 항체 염색(A32731 및 A48255, Thermo Fisher)을 수행했다. 형광 측정은 LSRFortessa(BD Biosciences)에서 수행되었다.Tissue samples were digested as follows: 10 mg of murine post-ischemic heart slices were digested with collagenase II (1 mg mL−1; C6885, Sigma) and DNase I (50 μg mL−1; D4263, Sigma) for 1 h. Porcine biceps femoris samples were cut into 50 mg pieces and digested with 1 mg mL -1 papain (P3375, Sigma) for 30 min and then digested with 1 mg mL -1 collagenase/dispase (Roche) for 30 min. The cell suspension was pressed through a cell strainer (70 μm) and centrifuged at 300 xg. Red blood cells were washed twice, lysed with ammonium potassium buffer, and stained with trypan blue for mouse cells and LIVE/DEAD (Thermo Fisher) for porcine cells. Murine cells were stained with a specific antibody against CD31 (BM4086, Origene) for 15 hours. Secondary antibody staining (A48265, Thermo Fisher) was performed. Porcine cells were fixed with 4% w/v paraformaldehyde, permeabilized with Triton A48255, Thermo Fisher) was performed. Fluorescence measurements were performed on LSRFortessa (BD Biosciences).

In Vivo Cremaster Microscopy: In Vivo Cremaster Microscopy :

AAV9 S1FG 주사된 C57Bl6 마우스를 마취하고 cremaster 근육을 현미경 단계에서 노출시켰다. 정맥 직경, 분절 길이 및 백혈구 회전 속도와 같은 형태학적 매개변수를 평가하였다. mm2당 부착 세포의 수는 생체내 현미경(Olympus BX51WI 현미경, 침지 대물렌즈 ×20, 0.95 개구수)을 사용하여 결정되었다. 모든 장면은 오프라인 분석을 위해 CCD(=전하 결합 소자) 카메라(모델 CF8/1, Kappa)와 가상 더빙 소프트웨어를 사용하여 기록되었다. 전체 관찰 동안, cremaster 근육은 온도 조절된(35°C) 중탄산염 완충 식염수로 대체되었다. 관찰된 모세혈관 뒤 세정맥의 범위는 20~40μm로 확인되었다.AAV9 S1FG-injected C57Bl6 mice were anesthetized and the cremaster muscle was exposed on the microscope stage. Morphological parameters such as vein diameter, segment length, and leukocyte turnover rate were evaluated. The number of adherent cells per mm2 was determined using an intravital microscope (Olympus BX51WI microscope, immersion objective ×20, 0.95 numerical aperture). All scenes were recorded using a charge-coupled device (CCD) camera (model CF8/1, Kappa) and virtual dubbing software for offline analysis. During the entire observation, the cremaster muscle was replaced with temperature-controlled (35°C) bicarbonate-buffered saline solution. The range of observed venules behind capillaries was confirmed to be 20 to 40 μm.

아테롬성 동맥 경화증 실험: Atherosclerosis Trial:

8주령 Apoe-/- 마우스에 Annexin A1(2.5 × 1012 vgs)을 운반하는 비특이적 AAV, Annexin A1(2.5 × 1012 vgs)을 운반하는 내피 특이적 AAV 또는 비히클(100 μL, NaCl)을 정맥내 투여했다. 쥐에게 4주 동안 21% 지방과 0.15% 콜레스테롤(ssniff, Soest)을 함유한 고지방식이를 먹였다. 모든 동물 절차는 동물 복지에 대한 국가 지침에 따라 수행되었으며 바이에른 동물 관리 및 사용 위원회의 승인을 받았다.Eight-week-old Apoe−/− mice were intravenously injected with non-specific AAV carrying Annexin A1 (2.5 × 10 12 vgs), endothelium-specific AAV carrying Annexin A1 (2.5 × 10 12 vgs), or vehicle (100 μL, NaCl). administered. Mice were fed a high-fat diet containing 21% fat and 0.15% cholesterol (ssniff, Soest) for 4 weeks. All animal procedures were performed in accordance with national guidelines for animal welfare and were approved by the Bavarian Animal Care and Use Committee.

경동맥의 생체내 현미경: Intravital microscopy of the carotid artery:

마우스를 앙와위로 놓고 항체 주사를 위한 카테터로 우측 경정맥에 캐뉼러를 삽입했다. Ly6G에 대한 피코에리트린(PE)-접합 항체(1μg, 클론 1A8, 127608, BioLegend), Ly6C(1μg, HK1.1, 128022, BioLegend)에 대한 플루오레세인(FITC) 접합 항체 및 PE-접합된 항체 CD11b(1 ㎍, 클론 M1/70, 101208, BioLegend)를 주입한 후 생체 내 현미경 검사를 수행했다. 경동맥을 따른 백혈구-내피 상호작용은 Hamamatsu 9100-02 전자 증식 CCD 카메라와 10 × 식염수 침지 대물렌즈가 장착된 Olympus BX51 현미경을 사용하여 시각화되었다. 30초짜리 영상을 오프라인에서 수집하여 분석했다. 마우스당 하나의 비디오를 분석하고 비디오 분석을 블라인드 방식으로 수행했다.The mouse was placed supine and the right jugular vein was cannulated with a catheter for antibody injection. Phycoerythrin (PE)-conjugated antibody to Ly6G (1 μg, clone 1A8, 127608, BioLegend), fluorescein (FITC)-conjugated antibody to Ly6C (1 μg, HK1.1, 128022, BioLegend), and PE-conjugated Intravital microscopy was performed after injection of antibody CD11b (1 μg, clone M1/70, 101208, BioLegend). Leukocyte-endothelial interactions along the carotid artery were visualized using an Olympus BX51 microscope equipped with a Hamamatsu 9100-02 electron multiplication CCD camera and a 10 × saline immersion objective. A 30-second video was collected offline and analyzed. One video was analyzed per mouse and video analysis was performed in a blinded manner.

형광 활성화 세포 분류(FACS): Fluorescence-activated cell sorting (FACS):

대동맥을 1.25mg mL-1 Liberase(Roche)로 소화하고 37°C에서 1시간 동안 배양했다. 단일 세포 현탁액을 염색하기 위해 다음 항체를 사용했다: CD45-eFluor450(30-F11, 48-0451-82, Thermo Fisher), CD31-APC(MEC13.3, 102510, BioLegend), Zombie Aqua Fixable Viability Kit(423102), 바이오 레전드). 세포를 Hanks Balanced Salt Solution으로 세척하고 PicoPure RNAIsolation 키트(Thermo Fisher)의 추출 완충액에서 FACSAria III(BD)로 직접 분류하고 42°C에서 30분 동안 인큐베이션했다. 제조사 지침에 따라 동일한 키트를 사용하여 RNA를 추출했다.The aorta was digested with 1.25 mg mL -1 Liberase (Roche) and incubated at 37°C for 1 h. The following antibodies were used to stain single cell suspensions: CD45-eFluor450 (30-F11, 48-0451-82, Thermo Fisher), CD31-APC (MEC13.3, 102510, BioLegend), Zombie Aqua Fixable Viability Kit ( 423102), Bio Legend). Cells were washed with Hanks Balanced Salt Solution, sorted directly with FACSAria III (BD) in extraction buffer from the PicoPure RNAIsolation kit (Thermo Fisher), and incubated for 30 min at 42°C. RNA was extracted using the same kit according to the manufacturer's instructions.

RNaseq 분석:RNaseq analysis:

poly(A)-RNA의 대량 시퀀싱을 위한 라이브러리 준비는 종래 기술 대로 수행되었다. 간단히, 바코드, 고유 분자 식별자(UMI) 및 어댑터를 포함하는 올리고-dT 프라이머를 사용하여 Maxima RT 중합효소(Thermo Fisher)로 각 샘플의 바코드 cDNA를 생성했다. cDNA의 5'-말단은 주형 스위치 올리고(TSO)에 의해 연장되었고 전장 cDNA는 TSO 부위 및 어댑터에 결합하는 프라이머로 증폭되었다. NEB UltraII FS 키트(New England Biolabs)를 사용하여 cDNA를 단편화했다. 말단 수리 및 A-테일링 후 TruSeq 어댑터를 결찰하고 Illumina P5 및 P7 돌출부가 있는 프라이머를 사용하여 3' 말단 단편을 최종적으로 증폭했다. Parek et al.에 비해(2016), 더 나은 클러스터 인식을 달성하기 위해 read1에서 cDNA 및 read2에서 바코드 및 UMI의 시퀀싱을 허용하도록 P5 및 P7 사이트를 교환했다. 라이브러리는 read1에서 cDNA에 대해 63주기, read2에서 바코드 및 UMI에 대해 16주기로 NextSeq 500(Illumina)에서 시퀀싱되었다. 데이터는 샘플 및 유전자별 UMI 테이블을 생성하기 위해 게시된 Drop-seq 파이프라인(v1.0)을 사용하여 처리되었다. 주성분 분석 및 히트맵 생성은 R 패키지 Pheatmap에 의해 수행되었다.Library preparation for bulk sequencing of poly(A)-RNA was performed as described in the prior art. Briefly, barcode cDNA for each sample was generated with Maxima RT polymerase (Thermo Fisher) using oligo-dT primers containing the barcode, unique molecular identifier (UMI), and adapter. The 5'-end of the cDNA was extended by template switch oligo (TSO) and the full-length cDNA was amplified with primers binding to the TSO site and adapter. cDNA was fragmented using the NEB UltraII FS kit (New England Biolabs). After end repair and A-tailing, TruSeq adapters were ligated and the 3' end fragment was finally amplified using primers with Illumina P5 and P7 overhangs. Compared to Parek et al. (2016), the P5 and P7 sites were exchanged to allow sequencing of cDNA in read1 and barcode and UMI in read2 to achieve better cluster recognition. The library was sequenced on a NextSeq 500 (Illumina) with 63 cycles for cDNA in read1 and 16 cycles for barcode and UMI in read2. Data were processed using the published Drop-seq pipeline (v1.0) to generate sample- and gene-specific UMI tables. Principal component analysis and heatmap generation were performed by the R package Pheatmap.

Cas9 매개 eNOS 삭제:Cas9-mediated eNOS deletion:

쥐 eNOS를 표적으로 하는 후보 단일 가이드 RNA를 spCas9 플라스미드(px459 #62988, Addgene)에 클로닝하고 폴리에틸렌이민 형질도입(PEI-MAX, Polysciences Inc)한 후 T7 엔도뉴클레아제 분석(New England Biolabs)에 의해 Neuro2A 세포(CCL-131, ATCC)에서 이중 가닥 절단 유도 효율로 평가했다. 2개의 sgRNA인 5'-GCG AGG GGA CCC CGC CAA CG-3' 및 5"-CAA TCC AGG CCC AAT CGG CA-3"은 반대의 pEndo.Cre 카세트와 함께 자가-상보성 AAV 이식유전자 플라스미드에 역방향으로 클로닝되었고, AAV9 비리온은 상기 설명한 대로 생성되었다(AAV9.pEndo.Cre.sgRNAeNOS). 성인 LSL-Cas9 마우스(8주령)는 CODA 2 비침습 혈압 측정 시스템(Kent Scientific)을 사용하여 초기 비침습 혈압 측정을 받았다. 기준 혈압 측정 후, 2.5 × 1012 vgs의 코팅되지 않은 AAV9.pEndo.Cre 또는 G2CNN 코팅된 AAV9.pEndo.Cre.sgRNAeNOS를 꼬리 정맥 주사를 통해 주사했다. 비침습적 혈압 측정은 4주와 8주 후에 반복되었다. AAV 주입 8주 후, 마우스는 좌심실 압력 부피 루프 기록을 받았다. 이를 위해 MMF(Midazolam 5mg kg-1 체중, Medetomidin 0.5 mg kg-1 체중 및 Fentanyl 0.05 mg kg-1 체중)를 복강내 주사하여 마우스를 마취시켰다. 완전한 진정 후 압력 용적 카테터(Scisense P/V Catheter, 1.2F, 3.5mm 전극 간격, Transonic)를 오른쪽 경동맥을 통해 좌심실로 삽입했다. 혈압이 안정화된 후 LabChart 8 소프트웨어를 사용하여 30개의 P/V 루프를 분석했다. 심장 및 비복근 근육을 이소펜탄에서 급속 동결했다. Cryo-sections는 CRISPR-Cas9 항체(7A9-3A3, Novus Biologicals) 및 CD31 항체(BM4086, Origen)로 염색되었다. 컬럼 정제(Nucleospin Tissue XS, Macherey-Nagel)에 의해 DNA 추출을 수행하였다. 편집된 영역의 PCR은 프라이머 5' GAG GCA ATC TTC GGT GAG TGA CCC T 3' 및 5' AAG GGG AGG AGC ATG GAA GAA AGC A 3'를 사용하여 Q5 중합효소(New England Biolabs)에 의해 수행되었다. 야생형 앰플리콘에 대한 절제된 비율은 ImageJ에 의해 아가로스 겔에서 밴드 강도를 정량화하여 결정되었다.A candidate single guide RNA targeting murine eNOS was cloned into spCas9 plasmid (px459 #62988, Addgene) and subjected to polyethyleneimine transduction (PEI-MAX, Polysciences Inc) by T7 endonuclease assay (New England Biolabs). Efficiency of double-strand break induction was evaluated in Neuro2A cells (CCL-131, ATCC). Two sgRNAs, 5'-GCG AGG GGA CCC CGC CAA CG-3' and 5'-CAA TCC AGG CCC AAT CGG CA-3', were reverse-directed onto a self-complementary AAV transgene plasmid with the opposite pEndo.Cre cassette. Cloned and AAV9 virions were generated as described above (AAV9.pEndo.Cre.sgRNAeNOS). Adult LSL-Cas9 mice (8 weeks old) underwent initial noninvasive blood pressure measurements using the CODA 2 Noninvasive Blood Pressure Measurement System (Kent Scientific). After baseline blood pressure measurement, 2.5 × 10 12 vgs of uncoated AAV9.pEndo.Cre or G2CNN coated AAV9.pEndo.Cre.sgRNAeNOS was injected via tail vein injection. Noninvasive blood pressure measurements were repeated after 4 and 8 weeks. Eight weeks after AAV injection, mice underwent left ventricular pressure volume loop recordings. For this purpose, mice were anesthetized by intraperitoneal injection of MMF (Midazolam 5 mg kg-1 body weight, Medetomidin 0.5 mg kg-1 body weight, and Fentanyl 0.05 mg kg-1 body weight). After complete sedation, a pressure volume catheter (Scisense P/V Catheter, 1.2F, 3.5mm electrode gap, Transonic) was inserted into the left ventricle through the right carotid artery. After blood pressure was stabilized, 30 P/V loops were analyzed using LabChart 8 software. Cardiac and gastrocnemius muscles were snap frozen in isopentane. Cryo-sections were stained with CRISPR-Cas9 antibody (7A9-3A3, Novus Biologicals) and CD31 antibody (BM4086, Origen). DNA extraction was performed by column purification (Nucleospin Tissue XS, Macherey-Nagel). PCR of the edited region was performed by Q5 polymerase (New England Biolabs) using primers 5′ GAG GCA ATC TTC GGT GAG TGA CCC T 3′ and 5′ AAG GGG AGG AGC ATG GAA GAA AGC A 3′. The proportion of excised relative to wild-type amplicon was determined by quantifying band intensity on agarose gel by ImageJ.

통계 분석:Statistical analysis:

데이터는 평균 ± SEM(평균의 표준 오차)으로 표시되었다. 두 그룹의 평균을 비교하기 위해 짝지어지지 않은 2-꼬리 스튜던트 T-검정이 사용된 반면, 여러 그룹의 비교에는 Dunnett 사후 검정을 사용한 1-way ANOVA(분산 분석)가 적용되었다. 통계적 유의성은 p<0.05로 정의하였다. *p<0.05, **p<0.01, *** p<0.001,**** p<0.0001. Data were expressed as mean ± SEM (standard error of the mean). To compare the means of two groups, an unpaired 2-tailed Student's T-test was used, whereas for comparisons of multiple groups, 1-way ANOVA (analysis of variance) with Dunnett's post hoc test was applied. Statistical significance was defined as p<0.05. *p<0.05, **p<0.01, ***p<0.001,****p<0.0001.

2.실험 결과 2.Experiment results

2.1 AAV9의 G22.1 AAV9 G2 CYSCYS 코팅은 지향성을 변경하지 않고 표적 세포 진입을 촉진함 Coating promotes target cell entry without changing orientation

PEG화된 G2-접합체(G2CYS)(이하 G2CYS)는 AAV9 캡시드의 음으로 하전된 표면에 쉽게 결합되었고, 각각의 투과 전자 현미경(TEM) 이미지에서 추정된 입자 직경에 의해 크기가 크게 증가했다. (네이키드 AAV9 캡시드의 경우 32.97 ± 2.24 nm, n = 153 대 35.01 nm ± 2.74, 2.5 × 1012 바이러스 게놈당 450 ng, G2CYS로 코팅된 캡시드의 경우 n = 69 = vgs, p < 0.00001). G2CYS 접합체 코팅은 제타 전위를 음의 표면 전하 값에서 양의 표면 전하 값으로 변경했다(AAV9의 경우 -9.9 ± 1.18 mV 대 4.4 ± 1.19 mV G2CYS AAV9, p < 0.00001. 참고로, AAV9의 양으로 하전된 표면은 시험관내에서 인간 내피 세포 및 비내피 세포(각각 HUVEC 및 HEK293T 세포)의 AAV9-형질 도입을 용량 의존적으로 증가시키기에 충분하였다(도 1 및 2).The PEGylated G2-conjugate (G2 CYS ) (hereafter G2CYS) was readily bound to the negatively charged surface of the AAV9 capsid and its size was significantly increased by the particle diameter estimated from the respective transmission electron microscopy (TEM) images. (32.97 ± 2.24 nm, n = 153 for naked AAV9 capsids vs. 35.01 nm ± 2.74, 450 ng per 2.5 × 10 12 viral genomes, n = 69 for G2CYS-coated capsids = vgs, p < 0.00001). G2CYS conjugate coating changed the zeta potential from negative to positive surface charge values (−9.9 ± 1.18 mV for AAV9 vs. 4.4 ± 1.19 mV for G2CYS AAV9, p < 0.00001. For reference, the positively charged The surface was sufficient to dose-dependently increase AAV9-transduction of human endothelial cells and non-endothelial cells (HUVEC and HEK293T cells, respectively) in vitro (Figures 1 and 2).

그 후, Rosa26 유전자좌의 EGFP(강화된 녹색 형광 단백질) 이식유전자 앞에 floxed tdTomato-transgene 및 floxed stop-codon을 포함하는 mTmG 마우스에서, 적색에서 녹색으로의 전환으로 검출된 AAV9-Cre 형질도입 효능에 대한 G2CYS 코팅의 효과를 조사했다. Cre-뉴클레아제를 통한 두 floxed 대립유전자의 절단은 생체내에서 적색에서 녹색으로의 형광 스위치를 제공한다.Subsequently, in mTmG mice containing a floxed tdTomato-transgene and a floxed stop-codon preceding the enhanced green fluorescent protein (EGFP) transgene at the Rosa26 locus, AAV9-Cre transduction efficacy detected as a red-to-green transition was observed. The effect of G2CYS coating was investigated. Cleavage of both floxed alleles via Cre-nuclease provides a fluorescence switch from red to green in vivo.

특히, 2.5 × 1012 vgs의 전신 적용 시, 각각 47.3% ± 3.6% 및 51.3% ± 5.9%의 골격근세포 및 심근세포 변환율을 얻었으며 AAV9의 근시성을 확인하였다. 그러나 명확한 내피 AAV9-Cre 형질도입은 감지할 수 없었고, 잠재적으로 이웃 심근세포의 형광에 의해 가려졌다. 따라서 Cre-발현을 내피 세포로 제한하는 CMV-프로모터(거대세포 바이러스, pCMV)를 사용하는 엔도글린 프로모터(pEndo)로 전환했다. AAV9.pEndo.Cre를 사용하여 근육 변환을 제거하면 G2CYS 코팅이 있거나 없는 골격근과 심장에서 최소한의 내피 AAV9 변환만 얻었다(도 3의 B).In particular, upon systemic application of 2.5 × 10 12 vgs, skeletal myocyte and cardiomyocyte conversion rates of 47.3% ± 3.6% and 51.3% ± 5.9% were obtained, respectively, confirming the myopic nature of AAV9. However, clear endothelial AAV9-Cre transduction could not be detected, potentially masked by the fluorescence of neighboring cardiomyocytes. Therefore, we switched to the endoglin promoter (pEndo) using the CMV-promoter (cytomegalovirus, pCMV), which limits Cre-expression to endothelial cells. Eliminating muscle transduction using AAV9.pEndo.Cre resulted in only minimal endothelial AAV9 transduction in skeletal muscle and heart with or without G2CYS coating (Figure 3B).

2.2. AAV9-Cre의 G22.2. G2 of AAV9-Cre CNNCNN 코팅으로 시험관 내 및 생체 내에서 Stop-Loxed EGFP 발현 가능 Coating enables expression of Stop-Loxed EGFP in vitro and in vivo

G2CYS의 tropism stability를 극복하기 위해 EP를 붙였다. M13-CX7C 파지 라이브러리를 사용하여 배양된 내피 세포에서 3회의 바이오패닝 후에 우리는 OPN(G2CNN)(이하, G2CNN)을 통해 G2-PAMAM에 연결한 CNNSGMRN 펩타이드(CNN)를 얻었고, 다시 네이티브 AAV9에 비해 G2Cys와 유사하게 크기가 증가했다. (도 1 및 2). p.Endo.Cre를 운반하는 G2CNN AAV9를 mTmG 마우스에 전신 주사한 후 골격근(도 3 C)과 심장의 미세혈관 내피 전달이 크게 증가하는 것을 확인했다. Cre-meditated redto-green 형광 스위치는 EPCNN에 의존했는데, 이는 엔도사이토시스에 대한 히알루로난 수용체(Stab2)에 대한 항체이며, 이는 CNN-모티프와 부분적으로 상동이며, 내피 형질도입을 배제했다(도 3D,E).EP was added to overcome the tropism stability of G2CYS. After three rounds of biopanning in cultured endothelial cells using the M13-CX7C phage library, we obtained the CNNSGMRN peptide (CNN) linked to G2-PAMAM via OPN (G2 CNN ) (hereafter, G2CNN), which was then linked to native AAV9. Compared to G2Cys, the size increased similarly. (Figures 1 and 2). After systemic injection of G2CNN AAV9 carrying p.Endo.Cre into mTmG mice, we found that microvascular endothelial transport in skeletal muscle (Figure 3 C) and heart was significantly increased. The Cre-mediated redto-green fluorescence switch depended on EPCNN, an antibody against the hyaluronan receptor for endocytosis (Stab2), which is partially homologous to the CNN-motif and ruled out endothelial transduction (Figure 3D,E).

Cre 형질도입된 PECAM-1(혈소판 및 내피 세포 부착 분자 1, CD31) 양성 내피 세포의 정량화는 골격근에서 32.9% ± 4.1%, 심장에서 42.7% ± 2.1%에 달했다. 이러한 결과는 전체 심장에서 세포를 분리한 후 PECAM-1 양성 EGFP 발현 세포의 유세포 분석에 의해 확증되었다. 여기에서 G2CNN을 추가하면 마우스에서 PECAM-1 양성 내피 세포의 형질도입이 5.1% ± 2%에서 27.3% ± 7.2%로 증가했다.Quantification of Cre transduced PECAM-1 (platelet and endothelial cell adhesion molecule 1, CD31) positive endothelial cells amounted to 32.9% ± 4.1% in skeletal muscle and 42.7% ± 2.1% in heart. These results were confirmed by flow cytometry analysis of PECAM-1-positive EGFP-expressing cells after isolating cells from whole hearts. Here, the addition of G2CNN increased the transduction of PECAM-1 positive endothelial cells from 5.1% ± 2% to 27.3% ± 7.2% in mice.

CNN 모티프 자체의 높은 선택성 또는 내피-친화 펩타이드에 연결된 G2-OPN 샌드위치의 분자 구성이 관찰된 내피 표적에 필수적인지 여부를 조사하기 위해 대체 EP인 SLRSPPS(= SLR)를 사용했다. 이 펩타이드는 AAV9 캡시드의 아미노산 잔기 A589에서 직접 발현될 때 큰 혈관을 형질도입하는 것으로 설명되었지만, 미세혈관 형질도입을 제공하지 않는다. G2와 연결된 SLR은 항체가 동족 수용체 FGFR3에 대한 G2SLR AAV9의 결합을 방지하지 않는 한 근육 조직에서 미세혈관 내피 세포의 AAV9.pEndo.Cre 형질도입을 유사하게 향상시켰다.To investigate whether the high selectivity of the CNN motif itself or the molecular composition of the G2-OPN sandwich linked to an endothelial-tropic peptide is essential for the observed endothelial targeting, we used an alternative EP, SLRSPPS (=SLR). This peptide has been described to transduce large blood vessels when expressed directly from amino acid residue A589 of the AAV9 capsid, but does not provide for microvascular transduction. SLR linked to G2 similarly enhanced AAV9.pEndo.Cre transduction of microvascular endothelial cells in muscle tissue unless the antibody prevented binding of G2SLR AAV9 to its cognate receptor FGFR3.

다음으로, pEndo.Cre에 대한 G2CNN AAV9 인코딩이 floxed td-Tomato 대립 유전자를 함께 포함하는 mTmG 돼지에 국부적으로 적용될 때 기본 형광 적색(tdTomato)에서 형광 녹색(EGFP)으로 내피 세포를 전환할 수 있는지 여부를 평가했다. 돼지 심장 또는 골격근 내피에서 EGFP 발현을 활성화할 수 없었던 AAV9.pCMV.Cre와 대조적으로, G2CNN AAV9.pEndo.Cre는 말초 및 심장 조직 모두의 미세혈관 내피(PECAM-1+)를 쉽게 형질도입했다(도 4). G2CNN 코팅된 pEndo.Cre 운반 벡터의 국소 주사는 m.quadriceps의 15.8% ± 0.9% 및 심장 근육 모세관 내피의 32.7% ± 2.8%를 형질도입하기에 충분한 반면, 야생형 AAV9의 등가 용량은 이 효과를 유도하지 않았다. 이는 소화된 뒷다리 근육 샘플에서 PECAM-1 양성 EGFP 발현 세포의 유세포 분석에 의해 지지되었다(10.9% ± 3.4% 대 1.8% ± 0.4%, p < 0.05).Next, whether G2CNN AAV9 encoding for pEndo.Cre can switch endothelial cells from native fluorescent red (tdTomato) to fluorescent green (EGFP) when applied topically to mTmG pigs co-containing the floxed td-Tomato allele. evaluated. In contrast to AAV9.pCMV.Cre, which was unable to activate EGFP expression in porcine heart or skeletal muscle endothelium, G2CNN AAV9.pEndo.Cre readily transduced the microvascular endothelium (PECAM-1+) of both peripheral and cardiac tissues ( Figure 4). Local injection of G2CNN-coated pEndo.Cre carrier vector is sufficient to transduce 15.8% ± 0.9% of m.quadriceps and 32.7% ± 2.8% of cardiac muscle capillary endothelium, whereas equivalent doses of wild-type AAV9 induce this effect. Did not do it. This was supported by flow cytometry analysis of PECAM-1 positive EGFP expressing cells in digested hindlimb muscle samples (10.9% ± 3.4% vs. 1.8% ± 0.4%, p < 0.05).

G2CNN 변형으로 AAV9를 전신적으로 적용하는 동안 독성은 확인되지 않았다.No toxicity was identified during systemic application of AAV9 with G2CNN modification.

2.3. 증가된 백혈구 접착을 위한 인공 접착 분자인 S1FG의 AAV 매개 발현2.3. AAV-mediated expression of S1FG, an artificial adhesion molecule for increased leukocyte adhesion.

흐르는 혈액 세포를 내피로 끌어들이는 역할을 하는 접착 분자의 발현은 미세혈관 내피 세포로 엄격하게 통제되며, 이는 내피하 또는 실질 세포로 대체될 수 없다. 따라서, 접착 분자를 인코딩하는 AAV9가 내피 리타게팅 수정에 의해 변경된 경우에만 백혈구를 모집할 것이라는 가설을 테스트했다. G2CNN AAV9가 백혈구를 자극되지 않은 미세혈관 내피로 모집하는 능력을 평가하기 위해 SDF1(= 기질 세포 유래 인자 1) 케모카인 헤드, 프랙트알킨 줄기 및 GPI(=글리코시돌포스파티딜이노시톨) 앵커로 구성된 인공 접착 분자인 이식유전자로 S1FG를 구성했다(도 5A). 부착성 백혈구를 분석하기 위해 생체 내 현미경의 cremaster 모델을 사용하여(도 5 B,C), 수정되지 않은 AAV9.pCMV.S1FG가 대조군(AAV9.pCMV.LacZ)에 비해 백혈구 접착력을 증가시키지 않았다는 것을 발견했다. 그러나, G2CNN AAV9.pEndo.S1FG는 부착성 백혈구를 4.6배 증가시켰다(도 5 C,D). 참고로, 순환하는 백혈구에서 수용체 CXCR4에 대한 SDF-1의 결합을 방해하는 AMD3100의 동시 적용은 이 효과를 완전히 배제했다(도 5 D).The expression of adhesion molecules responsible for attracting flowing blood cells to the endothelium is tightly controlled by microvascular endothelial cells, which cannot be replaced by subendothelial or parenchymal cells. Therefore, we tested the hypothesis that AAV9, encoding an adhesion molecule, would only recruit leukocytes if altered by endothelial retargeting modifications. To assess the ability of G2CNN AAV9 to recruit leukocytes to the unstimulated microvascular endothelium, an artificial adhesive consisting of a SDF1 (= stromal cell-derived factor 1) chemokine head, a fractalkine stem, and a GPI (= glycosidolphosphatidylinositol) anchor S1FG was constructed with a molecular transgene (Figure 5A). Using the cremaster model of intravital microscopy to analyze adherent leukocytes (Figure 5 B,C), we showed that unmodified AAV9.pCMV.S1FG did not increase leukocyte adhesion compared to the control (AAV9.pCMV.LacZ). found. However, G2CNN AAV9.pEndo.S1FG increased adherent leukocytes by 4.6-fold (Figure 5 C,D). Of note, simultaneous application of AMD3100, which interferes with the binding of SDF-1 to its receptor CXCR4 on circulating leukocytes, completely abrogated this effect (Figure 5 D).

2.4. 만성 죽상동맥경화증 모델에서 내피 활성화 예방2.4. Preventing endothelial activation in a chronic atherosclerosis model.

AAV 벡터는 적어도 근세포에서 긴 발현 간격을 갖는 것으로 알려져 있다. 이 기능이 죽상동맥경화증과 같은 만성 염증 상태를 장기적으로 진정시킬 수 있는지 여부를 테스트하기 위해 죽상동맥경화증의 쥐 모델, 즉 대동맥판 형성을 특징으로 하는 고지방식이를 먹인 apoE-/- 마우스를 사용했다(도 6A). 항염증성 단백질 Annexin A1(Anxa1)을 인코딩하는 G2CNN AAV9.pEndo를 활용하여 고지혈증 마우스에서 플라크 형성의 특징인 대동맥 내피로의 백혈구 모집을 방지했다. G2CNNAAV9.pEndo-Anxa1의 전신 투여 시, 코팅되지 않은 AAV9.pEndo-Anxa1과 비교할 때 Anxa1 이식유전자 발현의 강력한 증가를 발견했다. 2.5 × 1012 vgs의 G2CNN AAV9 또는 Anxa1을 인코딩하는 야생형 AAV9를 전신 적용한 2개월 후, 백혈구 모집에 대해 경동맥을 분석했다. G2CNN AAV9.pEndo.Anxa1이 적용된 경우 고지혈증 마우스의 경동맥벽에 모집된 CD11b+-백혈구 중 Ly6C+-단핵구 및 Ly6G+-호중구가 EGFP-대조군 벡터 또는 야생형 AAV9.pCMV.Anxa1과 비교하여 훨씬 적은 양의 Ly6C+-단핵구를 검출했다. (도 6 B,C). 분리된 대동맥 내피 세포에 대한 벌크 RNA 시퀀싱은 G2CNN AAV9.pEndo.Anxa1 형질도입된 동물로부터 EGFP-대조군 벡터 형질도입된 것들로부터 분리된 것과 별개의 클러스터로 분리된 세포를 보여주었다.AAV vectors are known to have long expression intervals, at least in muscle cells. To test whether this function could provide long-term quelling of chronic inflammatory conditions such as atherosclerosis, we used a murine model of atherosclerosis: apoE-/- mice fed a high-fat diet characterized by aortic valve formation. (Figure 6A). G2CNN AAV9.pEndo, encoding the anti-inflammatory protein Annexin A1 (Anxa1), was utilized to prevent leukocyte recruitment to the aortic endothelium, a hallmark of plaque formation in hyperlipidemic mice. Upon systemic administration of G2CNNAAV9.pEndo-Anxa1, we found a strong increase in Anxa1 transgene expression compared to uncoated AAV9.pEndo-Anxa1. Two months after systemic application of 2.5 × 10 12 vgs of G2CNN AAV9 or wild-type AAV9 encoding Anxa1, carotid arteries were analyzed for leukocyte recruitment. Among CD11b+-leukocytes recruited to the carotid artery wall of hyperlipidemic mice when G2CNN AAV9.pEndo.Anxa1 was applied, significantly lower amounts of Ly6C+-monocytes and Ly6G+-neutrophils compared to EGFP-control vector or wild-type AAV9.pCMV.Anxa1. was detected. (Figure 6 B,C). Bulk RNA sequencing of isolated aortic endothelial cells showed cells from G2CNN AAV9.pEndo.Anxa1 transduced animals separated into distinct clusters from those isolated from EGFP-control vector transduced ones.

2.5. AAV는 Cas9 매개 내피 산화질소 합성효소 절제를 통해 혈압 조절에 영향을 미침2.5. AAV affects blood pressure regulation through Cas9-mediated endothelial nitric oxide synthase ablation.

전신 혈압 조절은 중요한 기능으로 인해 복잡하고 다층적이며 중복되는 현상이다. 그럼에도, 내피 산화질소 합성효소(eNOS)는 인접한 평활근 세포 세포골격(도 7 A)을 이완시키고 생리학적 범위에서 혈압을 유지하는 기체 자동 산화질소를 방출함으로써 미세순환 세동맥의 혈관 확장에 중심 역할을 한다.Systemic blood pressure regulation is a complex, multilayered, and overlapping phenomenon due to its important functions. Nonetheless, endothelial nitric oxide synthase (eNOS) plays a central role in vasodilation of microcirculatory arterioles by releasing gaseous auto-nitric oxide that relaxes the adjacent smooth muscle cell cytoskeleton (Figure 7 A) and maintains blood pressure in the physiological range. .

여기에서 내피 NOS의 G2CNN AAV9-gRNA 매개 녹아웃이 전신 혈압을 증가시킬 수 있는지 여부를 Cas9-트랜스제닉(Cas9-tg) 마우스에서 조사했다(도 7 A). Cas9-tg 마우스에서 엑손 6과 10 사이를 절제하도록 설계된 G2CNN AAV9-gRNA가 비침습적 측정에서 전신 형질도입 2개월 후 평균 동맥압을 23.7 ± 2.3mmHg까지 증가시키기에 충분하다는 것을 발견했다 (대조군 동물의 9.4 ± 4.7 mmHg 대비). 이완기 및 수축기 혈압에 대해 유사한 결과가 얻어졌다(도 7 B-D). 2개월 시점에서 심장 카테터 삽입이 수행되어 모의 형질도입된 대조군과 비교하여 G2CNN AAV9.gRNAeN°S 그룹의 혈압 증가를 확인했다(도 7 E). 풍부한 Cas9 발현이 관찰된 이들 동물의 내피 세포에서(도 7 F), eNOS의 편집은 CD31+ 내피 세포에서 eNOS 대립유전자의 20.7% ± 1.6%에서 얻어졌다(도 7 G).Here, we investigated in Cas9-transgenic (Cas9-tg) mice whether G2CNN AAV9-gRNA-mediated knockout of endothelial NOS could increase systemic blood pressure ( Figure 7 A). We found that G2CNN AAV9-gRNA, designed to excise between exons 6 and 10 in Cas9-tg mice, was sufficient to increase mean arterial pressure by 23.7 ± 2.3 mmHg 2 months after systemic transduction in non-invasive measurements (compared to 9.4 in control animals). ± 4.7 mmHg vs.). Similar results were obtained for diastolic and systolic blood pressure (Figure 7 B-D). At 2 months, cardiac catheterization was performed to confirm the increase in blood pressure in the G2CNN AAV9.gRNAeN°S group compared to the mock-transduced control group (Figure 7 E). In the endothelial cells of these animals, where abundant Cas9 expression was observed (Figure 7 F), editing of eNOS was obtained in 20.7% ± 1.6% of the eNOS alleles in CD31+ endothelial cells (Figure 7 G).

심장 및 근육 내피 외에도 G2CNN으로 코팅된 AAV9 바이러스는 대동맥, 간, 횡격막, 비장 및 뇌를 포함한 다양한 조직 특이적 CD31+ 내피 세포를 형질도입했다. 그러나, 골격근 및 심장 조직의 미세혈관 전달의 양에서, 이들 조직이 AAV9 혈청형의 친화성 내에 있기 때문에 원래의 친화성이 주로 표적 조직의 내피 쪽으로 벡터를 조종할 가능성을 높였다. 수반되는 G2CNN-벡터의 근섬유 형질도입은 그 특징을 나타내었다. 또한, 형광 표지된 벡터 캡시드의 분석을 통해, EP 덕분에 이웃 내피 세포에 끌리는 G2CNN AAV9의 제자리에 온전한 근위축의 개념에 맞는 abluminal plasmalemma를 통한 진입이 제안되었다.In addition to cardiac and muscle endothelium, G2CNN-coated AAV9 virus transduced a variety of tissue-specific CD31+ endothelial cells, including aorta, liver, diaphragm, spleen, and brain. However, the amount of microvascular delivery in skeletal muscle and cardiac tissue raised the possibility that the original tropism would steer the vector primarily toward the endothelium of the target tissue since these tissues are within the tropism of the AAV9 serotype. Muscle fiber transduction of the concomitant G2CNN-vector was characterized. Additionally, analysis of fluorescently labeled vector capsids suggested entry through the abluminal plasmalemma, fitting the concept of intact proximal cells in situ for G2CNN AAV9, which is attracted to neighboring endothelial cells by virtue of its EP.

따라서, AAV 캡시드를 G2-EP로 코팅하면 내피 세포에 대한 재표적화가 이루어지며, 이러한 결과는 혈관 질환 모델, 예를 들어, 죽상경화증 마우스와 같은 플라크 표적화, 유전성 혈관 질환 (마르판 증후군 또는 대동맥류 치료)이 있는 마우스의 대동맥 표적화에서 보다 광범위한 AAV 적용 가능성 제시할 수 있다. 또한, 미세혈관 성장 및 성숙을 위한 내피 형질도입은 내피 재표적 AAV를 통해 달성될 수 있다.Therefore, coating AAV capsids with G2-EP results in retargeting to endothelial cells, and this result can be used in vascular disease models, e.g., plaque targeting such as atherosclerosis mice, inherited vascular diseases such as Marfan syndrome or aortic aneurysm. Targeting the aorta of mice with treatment) may suggest the possibility of broader AAV application. Additionally, endothelial transduction for microvascular growth and maturation can be achieved through endothelial retargeting AAV.

Claims (3)

심혈관 내피세포에 특이적으로 결합하는 펩타이드가 표면에 구성된 나노입자가 바이러스 캡시드 표면에 코팅된, 재조합 아데노연관바이러스를 유효성분으로 포함하는, 죽상동맥경화증 (atherosclerosis)의 예방 또는 치료용 조성물로서,
상기 재조합 아데노연관바이러스에 있어서, 상기 나노입자는 G2 덴드리머인 것이고; 상기 심혈관 내피세포에 특이적으로 결합하는 펩타이드는 CNN (CNNSGMRN) 또는 SLR(SLRSPPS)인 것이고; 바이러스 표면의 제타 전위가 4.3 내지 4.5 mV의 양의 값을 가지며; 골격근 내피세포 및 심혈관 내피세포에 대한 표적 지향성이 강화되고; 케모카인 헤드로서 SDF-1, 프렉트알킨 줄기 및 GPI 앵커로 구성된 S1FG 콤플렉스를 인코딩하는 유전자를 게놈에 포함하고; 도 9의 플라스미드를 바이러스 게놈에 포함하며; 및 항염증성 단백질 Annexin A1(Anxa1)을 인코딩하는 플라스미드를 포함하여, 백혈구에 대한 접착력을 증가시켜 백혈구에 의한 혈관 폐쇄 및 동맥경화증의 발생을 예방하는 것인, 죽상동맥경화증(atherosclerosis)의 예방 또는 치료용 조성물.


A composition for the prevention or treatment of atherosclerosis, comprising as an active ingredient a recombinant adeno-associated virus coated on the surface of a viral capsid with nanoparticles composed of a peptide that specifically binds to cardiovascular endothelial cells,
In the recombinant adeno-associated virus, the nanoparticle is a G2 dendrimer; The peptide that specifically binds to the cardiovascular endothelial cells is CNN (CNNSGMRN) or SLR (SLRSPPS); The zeta potential of the virus surface has a positive value of 4.3 to 4.5 mV; Enhanced targeting toward skeletal muscle endothelial cells and cardiovascular endothelial cells; The genome contains genes encoding the S1FG complex, which consists of SDF-1 as a chemokine head, a fractalkine stem, and a GPI anchor; Containing the plasmid of Figure 9 in the viral genome; and a plasmid encoding the anti-inflammatory protein Annexin A1 (Anxa1), which prevents the development of vascular occlusion and arteriosclerosis by leukocytes by increasing adhesion to leukocytes. Composition for.


삭제delete 삭제delete
KR1020220087970A 2022-07-18 2022-07-18 An AAV vector containing a promoter specifically expressed in cerebrovascular endothelial cells and coated with a nano-peptide for targeting cerebrovascular endothelial cells, and its use for cerebrovascular endothelial cell-specific gene delivery KR102578015B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020220087970A KR102578015B1 (en) 2022-07-18 2022-07-18 An AAV vector containing a promoter specifically expressed in cerebrovascular endothelial cells and coated with a nano-peptide for targeting cerebrovascular endothelial cells, and its use for cerebrovascular endothelial cell-specific gene delivery
PCT/KR2023/010038 WO2024019425A1 (en) 2022-07-18 2023-07-13 Avv vector that includes promoter specifically expressed in cerebrovascular endothelial cells and is coated with nano-peptides targeting cerebrovascular endothelial cells, and use thereof for transfer of genes specific to cerebrovascular endothelial cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220087970A KR102578015B1 (en) 2022-07-18 2022-07-18 An AAV vector containing a promoter specifically expressed in cerebrovascular endothelial cells and coated with a nano-peptide for targeting cerebrovascular endothelial cells, and its use for cerebrovascular endothelial cell-specific gene delivery

Publications (1)

Publication Number Publication Date
KR102578015B1 true KR102578015B1 (en) 2023-09-18

Family

ID=88196336

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220087970A KR102578015B1 (en) 2022-07-18 2022-07-18 An AAV vector containing a promoter specifically expressed in cerebrovascular endothelial cells and coated with a nano-peptide for targeting cerebrovascular endothelial cells, and its use for cerebrovascular endothelial cell-specific gene delivery

Country Status (2)

Country Link
KR (1) KR102578015B1 (en)
WO (1) WO2024019425A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114107386A (en) * 2021-11-29 2022-03-01 中国人民解放军军事科学院军事医学研究院 Method for preparing blood brain barrier defect mouse model

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220011616A (en) 2019-03-21 2022-01-28 스트라이드바이오 인코포레이티드 Recombinant adeno-associated viral vectors
KR20220050073A (en) * 2020-10-15 2022-04-22 이승민 Composition for delivering genes to the brain tissue and uses thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220011616A (en) 2019-03-21 2022-01-28 스트라이드바이오 인코포레이티드 Recombinant adeno-associated viral vectors
KR20220050073A (en) * 2020-10-15 2022-04-22 이승민 Composition for delivering genes to the brain tissue and uses thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Adv. Sci. 9, 2103867 (2022.01.12) 1부.* *
뮌헨 루트비히 막시밀리안 대학교 박사학위논문, 2015, 페이지 1-106 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114107386A (en) * 2021-11-29 2022-03-01 中国人民解放军军事科学院军事医学研究院 Method for preparing blood brain barrier defect mouse model

Also Published As

Publication number Publication date
WO2024019425A1 (en) 2024-01-25

Similar Documents

Publication Publication Date Title
Schon et al. Pharmacological intervention in hepatic stellate cell activation and hepatic fibrosis
JP7197464B2 (en) EV-Mediated Delivery of Binding Protein-Small Molecule Conjugates
Bozoglu et al. Endothelial retargeting of AAV9 in vivo
WO2024019425A1 (en) Avv vector that includes promoter specifically expressed in cerebrovascular endothelial cells and is coated with nano-peptides targeting cerebrovascular endothelial cells, and use thereof for transfer of genes specific to cerebrovascular endothelial cells
JP2014088432A (en) Cd34 stem cell-related method and composition
US20150322410A1 (en) Hypoxia regulated conditionally silenced aav expressing angiogenic inducers
JP2022527917A (en) Manipulated adeno-associated (AAV) vector for transgene expression
Kim et al. Cytokine-like 1 regulates cardiac fibrosis via modulation of TGF-β signaling
US20190358297A1 (en) Angiogenic conditioning to enhance cardiac cellular reprogramming of fibroblasts of the infarcted myocardium
US7655467B2 (en) Compositions and methods for systemic nucleic acid sequence delivery
US20060166924A1 (en) Gene therapeutics
US20200270638A1 (en) Exosomes as a vector for gene delivery in resistance to neutralizing antibody and methods of their manufacture
AU2022320438A1 (en) Hemocompatible mesenchymal stem cells, preparation method therefor and use thereof
EP4119166A1 (en) Composition for inducing apoptosis of cells having genomic sequence variation and method for inducing apoptosis of cells by using composition
JP7193849B2 (en) Exosomes that accumulate in ischemic tissue and method for producing the same
KR102101384B1 (en) Pharmaceutical composition for treating or preventing ischemic cardiovascular disease
WO2023111351A1 (en) Aav vectors for gene therapy in endothelial cells
WO2020193696A1 (en) Methods and products for a safe and efficient transduction of gene editing components
Rust Vascular Repair and Regeneration after Ischemia
JP2023519078A (en) Nanoparticles for modulation of expression of genes of interest and/or signaling pathways
JP2023184168A (en) Pharmaceutical composition for preventing or treating vasculopathy
WO2023097292A2 (en) Compositions and methods for treating cancer by targeting endothelial cells having upregulated expression of transmembrane molecules
EP4312997A1 (en) Extracellular vesicles loaded with at least two different nucleic acids
WO2023091904A1 (en) A novel way for brain-specific delivery of molecules for the treatment of brain diseases
AU2021300261A1 (en) Compositions and methods for treating allograft vasculopathy, Moyamoya Disease, Moyamoya Syndrome and intimal proliferation

Legal Events

Date Code Title Description
AMND Amendment
AMND Amendment
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant