KR102577332B1 - Composition for diagnosing latent tuberculosis comprising antigen with improved antigenicity and stability - Google Patents

Composition for diagnosing latent tuberculosis comprising antigen with improved antigenicity and stability Download PDF

Info

Publication number
KR102577332B1
KR102577332B1 KR1020210190696A KR20210190696A KR102577332B1 KR 102577332 B1 KR102577332 B1 KR 102577332B1 KR 1020210190696 A KR1020210190696 A KR 1020210190696A KR 20210190696 A KR20210190696 A KR 20210190696A KR 102577332 B1 KR102577332 B1 KR 102577332B1
Authority
KR
South Korea
Prior art keywords
ala
gln
gly
antigen
glu
Prior art date
Application number
KR1020210190696A
Other languages
Korean (ko)
Other versions
KR20230100972A (en
Inventor
최새해
우주랑
하경수
Original Assignee
재단법인 오송첨단의료산업진흥재단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 오송첨단의료산업진흥재단 filed Critical 재단법인 오송첨단의료산업진흥재단
Priority to KR1020210190696A priority Critical patent/KR102577332B1/en
Publication of KR20230100972A publication Critical patent/KR20230100972A/en
Application granted granted Critical
Publication of KR102577332B1 publication Critical patent/KR102577332B1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6893Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids related to diseases not provided for elsewhere
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56911Bacteria
    • G01N33/5695Mycobacteria
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/195Assays involving biological materials from specific organisms or of a specific nature from bacteria
    • G01N2333/35Assays involving biological materials from specific organisms or of a specific nature from bacteria from Mycobacteriaceae (F)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/52Assays involving cytokines
    • G01N2333/555Interferons [IFN]
    • G01N2333/57IFN-gamma

Abstract

본 발명은 항원성 및 안정성이 개선된 항원을 포함하는 잠복결핵 진단용 조성물에 관한 것으로서, 현재 활발히 사용하는 잠복결핵 진단 키트인 QuantiFERON-TB 테스트의 경우, 항원을 튜브에 고정하여 반응하는 방식으로 항원의 역가가 개선될 경우 적은 양으로도 충분한 면역반응을 유도할 수 있다. 본 발명의 항원의 경우, 혈액과의 반응온도인 37℃에서도 4일 정도는 안정성이 확보된 상태임으로 정확한 결과를 획득할 수 있다. 본 발명으로 얻은 변이체 항원은 기존의 야생형보다 항원역가는 2배 개선되었으며, 4℃에서는 10일 정도의 안정성과 37℃에서 4일 안정성이 개선된 효과를 확인하였다.The present invention relates to a composition for diagnosing latent tuberculosis containing an antigen with improved antigenicity and stability. In the case of the QuantiFERON-TB test, which is a currently actively used latent tuberculosis diagnostic kit, the antigen is fixed in a tube and reacted. If the titer is improved, a sufficient immune response can be induced even with a small amount. In the case of the antigen of the present invention, accurate results can be obtained because stability is guaranteed for about 4 days even at 37°C, which is the reaction temperature with blood. The mutant antigen obtained by the present invention had a two-fold improvement in antigen titer compared to the existing wild type, and improved stability for about 10 days at 4°C and 4 days at 37°C were confirmed.

Description

항원성 및 안정성이 개선된 항원을 포함하는 잠복결핵 진단용 조성물{Composition for diagnosing latent tuberculosis comprising antigen with improved antigenicity and stability}Composition for diagnosing latent tuberculosis comprising antigen with improved antigenicity and stability}

본 발명은 항원성 및 안정성이 개선된 항원을 포함하는 잠복결핵 진단용 조성물에 대한 것이다.The present invention relates to a composition for diagnosing latent tuberculosis containing an antigen with improved antigenicity and stability.

결핵은 미코박테리아 튜버클레로시스(Mycobacterium tuberculosis)에 의한 감염성 질병으로, 전 세계적으로 사망의 주요 원인인데, 세계 3대 질병 중의 하나로 전세계 인구의 약 3분의 1인 20억명 정도가 결핵에 감염되어 있다. 우리나라의 경우 결핵 발생율과 결핵으로 인한 사망율은 OECD 국가 중 1위이며, 연간 약 35,000명의 새로운 환자와 약 2,300명 정도의 사망자가 보고되고 있다.Tuberculosis is an infectious disease caused by Mycobacterium tuberculosis and is a major cause of death worldwide. It is one of the world's three major diseases, and approximately 2 billion people, or about a third of the world's population, are infected with tuberculosis. there is. In Korea, the tuberculosis incidence rate and death rate due to tuberculosis are the highest among OECD countries, with approximately 35,000 new patients and approximately 2,300 deaths reported annually.

현재 결핵을 진단하는 방법으로 널리 사용되는 것이 결핵균 도말 염색 또는 배양으로 결핵균을 임상적으로 분리하여 확인하는 방법이 있다. 상기 도말 염색은 결핵균을 빠르게 탐지하여 전염력이 높은 환자를 신속하게 선별할 수 있다는 장점이 있지만, 배양검사와 비교시 20-80% 정도로 민감성이 낮아서 어린이, 노인 또는 후천성면역결핍환자와 같이 면역시스템이 손상된 환자에서는 실패율이 높다. 국내에서 비결핵항산균의 분리 빈도가 증가하는 추세여서 도말검사만으로는 활동성 결핵을 진단하기에 불충분하다. 또한, 비결핵 항산균(nontuberculous mycobacteria) 폐질환일 경우에도 객담도말테스트에서 양성으로 나오므로 도말검사만으로 활동성 결핵으로 진단하기 어렵다.Currently, the widely used method of diagnosing tuberculosis is to clinically isolate and confirm the tuberculosis bacilli by staining or culturing the tuberculosis bacilli. The smear staining has the advantage of quickly detecting tuberculosis bacteria and quickly selecting highly contagious patients. However, compared to culture tests, the smear staining has a low sensitivity of about 20-80%, so it can be used in patients with weak immune systems, such as children, the elderly, or patients with acquired immune deficiency. Failure rates are high in impaired patients. As the frequency of isolation of non-tuberculous mycobacteria is increasing in Korea, smear tests alone are insufficient to diagnose active tuberculosis. In addition, even in cases of nontuberculous mycobacteria lung disease, the sputum smear test is positive, so it is difficult to diagnose active tuberculosis through a smear test alone.

다른 방법으로 사용되는 것이 투베르쿨린시험(Tuberculin skin test) 및 IGRA(IFN-γ release assay)와 같은 면역학적 방법으로 잠복결핵(latent tuberculosis)을 탐지하는 것이다. 투베르쿨린시험은 잠복 결핵을 탐지할 수 있지만 BCG 예방주사를 접종한 경우나 NTM 질병을 구별하지 못하며, 잠복결핵을 확인하기 위해서는 방사선 검사, 객담, 배양검사와 같은 추가적 검사가 필요하다. IGRA인 QuantiFERON-TB 테스트는 환자의 말초혈액세포에 항원의 자극을 통하여 면역세포가 분비하는 인터페론 감마를 측정하는 체외(in vitro) 잠복결핵 검사인데, 항원을 튜브에 고정하여 반응하는 방식으로 항원의 역가가 개선될 경우 적은 양으로도 충분한 면역반응을 유도할 수 있으므로, 항원의 역가 및 안정성을 개선시키는 것이 중요하다.Another method used is to detect latent tuberculosis using immunological methods such as the tuberculin skin test and IGRA (IFN-γ release assay). The tuberculin test can detect latent tuberculosis, but it does not distinguish between cases of BCG vaccination or NTM disease, and additional tests such as radiography, sputum, and culture are required to confirm latent tuberculosis. The QuantiFERON-TB test, known as IGRA, is an in vitro latent tuberculosis test that measures interferon gamma secreted by immune cells through antigen stimulation of the patient's peripheral blood cells. If the titer is improved, a sufficient immune response can be induced even with a small amount, so it is important to improve the titer and stability of the antigen.

한국공개특허 제10-2021-0057315호(2021.05.21 공개)Korean Patent Publication No. 10-2021-0057315 (published on May 21, 2021)

본 발명의 목적은 ESAT6-CFP10 재조합 항원을 유효성분으로 포함하는 잠복결핵 진단용 조성물 및 이를 포함하는 잠복결핵 진단용 키트를 제공하는데 있다. The purpose of the present invention is to provide a composition for diagnosing latent tuberculosis containing ESAT6-CFP10 recombinant antigen as an active ingredient and a kit for diagnosing latent tuberculosis containing the same.

또한, 본 발명의 다른 목적은 상기 조성물을 환자에서 분리된 시료와 반응시켜, 잠복 결핵 감염 여부를 분석하는 단계를 포함하는 잠복결핵 진단에 필요한 정보를 제공하는 방법을 제공하는데 있다.In addition, another object of the present invention is to provide a method of providing information necessary for diagnosing latent tuberculosis, including the step of reacting the composition with a sample isolated from a patient and analyzing latent tuberculosis infection.

상기 목적을 달성하기 위하여, 본 발명은 서열번호 1, 서열번호 2 또는 서열번호 3으로 표시되는 아미노산 서열로 이루어진 ESAT6-CFP10 재조합 항원을 유효성분으로 포함하는 잠복결핵 진단용 조성물을 제공한다.In order to achieve the above object, the present invention provides a composition for diagnosing latent tuberculosis comprising the ESAT6-CFP10 recombinant antigen consisting of the amino acid sequence represented by SEQ ID NO: 1, SEQ ID NO: 2, or SEQ ID NO: 3 as an active ingredient.

또한, 본 발명은 상기 조성물을 포함하는 잠복결핵 진단용 키트를 제공한다.Additionally, the present invention provides a kit for diagnosing latent tuberculosis comprising the composition.

또한, 본 발명은 상기 조성물을 환자에서 분리된 시료와 반응시켜, 잠복 결핵 감염 여부를 분석하는 단계를 포함하는 잠복결핵 진단에 필요한 정보를 제공하는 방법을 제공한다.Additionally, the present invention provides a method of providing information necessary for diagnosing latent tuberculosis, which includes reacting the composition with a sample isolated from a patient to analyze whether latent tuberculosis infection exists.

본 발명은 항원성 및 안정성이 개선된 항원을 포함하는 잠복결핵 진단용 조성물에 관한 것으로서, 현재 활발히 사용하는 잠복결핵 진단 키트인 QuantiFERON-TB 테스트의 경우, 항원을 튜브에 고정하여 반응하는 방식으로 항원의 역가가 개선될 경우 적은 양으로도 충분한 면역반응을 유도할 수 있다. 본 발명의 항원의 경우, 혈액과의 반응온도인 37℃에서도 4일 정도는 안정성이 확보된 상태임으로 정확한 결과를 획득할 수 있다. 본 발명으로 얻은 변이체 항원은 기존의 야생형보다 항원역가는 2배 개선되었으며, 4℃에서는 10일 정도의 안정성과 37℃에서 4일 안정성이 개선된 효과를 확인하였다.The present invention relates to a composition for diagnosing latent tuberculosis containing an antigen with improved antigenicity and stability. In the case of the QuantiFERON-TB test, which is a currently actively used latent tuberculosis diagnostic kit, the antigen is fixed in a tube and reacted. If the titer is improved, a sufficient immune response can be induced even with a small amount. In the case of the antigen of the present invention, accurate results can be obtained because stability is guaranteed for about 4 days even at 37°C, which is the reaction temperature with blood. The mutant antigen obtained by the present invention had a two-fold improvement in antigen titer compared to the existing wild type, and improved stability for about 10 days at 4°C and 4 days at 37°C were confirmed.

도 1은 재조합 ESAT6-CFP10 단백질의 항원성 평가 결과를 나타낸다.
도 2는 재조합 ESAT6-CFP10 단백질의 안정성 평가 결과를 나타낸다.
도 3은 ESAT6-CFP10 단백질의 안정성 향상을 위한 돌연변이체 제작 결과를 나타낸다.
도 4는 SDS-PAGE & RP-HPLC를 이용한 돌연변이체 안정성 시험 결과를 나타낸다.
도 5는 안정성이 개선된 돌연변이체(DG, 120Q 및 89R) 3종의 항원성 평가 결과를 나타낸다.
Figure 1 shows the results of antigenicity evaluation of recombinant ESAT6-CFP10 protein.
Figure 2 shows the results of stability evaluation of recombinant ESAT6-CFP10 protein.
Figure 3 shows the results of mutant production to improve the stability of ESAT6-CFP10 protein.
Figure 4 shows the results of mutant stability tests using SDS-PAGE & RP-HPLC.
Figure 5 shows the results of antigenicity evaluation of three mutants with improved stability (DG, 120Q, and 89R).

본 발명은 서열번호 1, 서열번호 2 또는 서열번호 3으로 표시되는 아미노산 서열로 이루어진 ESAT6-CFP10 재조합 항원을 유효성분으로 포함하는 잠복결핵 진단용 조성물을 제공한다.The present invention provides a composition for diagnosing latent tuberculosis comprising the ESAT6-CFP10 recombinant antigen consisting of the amino acid sequence shown in SEQ ID NO: 1, SEQ ID NO: 2, or SEQ ID NO: 3 as an active ingredient.

상세하게는, 상기 조성물은 항원성 및 안정성이 개선된 것으로서, 기존의 아생형보다 항원역가는 2배 개선되었으며, 4℃에서는 10일 정도의 안정성과 37℃에서 4일 안정성이 개선된 효과를 확인하였다.In detail, the composition has improved antigenicity and stability, and the antigen titer is doubled compared to the existing subtype, and the effect of improved stability for about 10 days at 4℃ and 4 days at 37℃ was confirmed. did.

본 발명에서, "진단"은 병리 상태의 존재 또는 특징을 확인하는 것을 의미한다. 본 발명에 있어서, 진단은 잠복결핵의 위험이 있는지 또는 잠복결핵의 발병 여부를 확인하거나, 나아가 잠복결핵의 진행 여부 또는 심화 여부를 확인하는 것을 의미할 수 있다.In the present invention, “diagnosis” means confirming the presence or characteristics of a pathological condition. In the present invention, diagnosis may mean confirming whether there is a risk of latent tuberculosis or whether latent tuberculosis has developed, or further, whether latent tuberculosis has progressed or worsened.

본 발명에서, 서열번호 1로 표시되는 아미노산 서열로 이루어진 ESAT6-CFP10 재조합 항원은 120G/204G 또는 DG로 기재하였고, 서열번호 2로 표시되는 아미노산 서열로 이루어진 ESAT6-CFP10 재조합 항원은 120Q로 기재하였으며, 서열번호 3으로 표시되는 아미노산 서열로 이루어진 ESAT6-CFP10 재조합 항원은 89R로 기재하였다.In the present invention, the ESAT6-CFP10 recombinant antigen consisting of the amino acid sequence shown in SEQ ID NO: 1 is described as 120G/204G or DG, and the ESAT6-CFP10 recombinant antigen consisting of the amino acid sequence shown in SEQ ID NO: 2 is described as 120Q, The ESAT6-CFP10 recombinant antigen consisting of the amino acid sequence shown in SEQ ID NO: 3 was designated as 89R.

한편, 야생형 ESAT6-CFP10 재조합 항원은 서열번호 4로 기재하였다.Meanwhile, the wild-type ESAT6-CFP10 recombinant antigen was listed as SEQ ID NO: 4.

또한, 본 발명은 상기 조성물을 포함하는 잠복결핵 진단용 키트를 제공한다.Additionally, the present invention provides a kit for diagnosing latent tuberculosis comprising the composition.

본 발명에 있어서, 상기 키트는 상기 ESAT6-CFP10 재조합 항원 뿐만 아니라, 잠복결핵 진단에 적합한 조성물, 용액 또는 장치를 포함할 수 있다.In the present invention, the kit may include not only the ESAT6-CFP10 recombinant antigen, but also a composition, solution, or device suitable for diagnosing latent tuberculosis.

또한, 본 발명은 상기 조성물을 환자에서 분리된 시료와 반응시켜, 잠복 결핵 감염 여부를 분석하는 단계를 포함하는 잠복결핵 진단에 필요한 정보를 제공하는 방법을 제공한다. Additionally, the present invention provides a method of providing information necessary for diagnosing latent tuberculosis, which includes reacting the composition with a sample isolated from a patient to analyze whether latent tuberculosis infection exists.

바람직하게는, 상기 잠복 결핵 감염 여부를 분석하는 단계는 인터페론 감마 분비 검사(Interferon-γ release assay, IGRA)를 통해 분석할 수 있으나, 이에 제한되는 것은 아니다.Preferably, the step of analyzing latent tuberculosis infection may be performed through an interferon-γ release assay (IGRA), but is not limited thereto.

본 명세서에 기재된 용어 “환자에서 분리된 시료”는 혈액 등을 포함한 생물의 모든 물질을 말하는 것이며, 본 발명의 잠복결핵 진단에 사용할 수 있는 생물학적 시료는 조직, 세포, 모발, 구강 조직, 구강 세포, 혈액, 림프, 골수 액, 타액, 유즙, 소변, 분변, 안구 액, 정액, 뇌추출액, 척수 액, 관절액, 복수, 양막액 또는 세포조직액이 포함하나 이에 한정되지 않는다. 본 발명에서, 바람직하게는 상기 시료는 혈액일 수 있다.The term “sample isolated from a patient” as used herein refers to all biological materials, including blood, etc., and biological samples that can be used to diagnose latent tuberculosis of the present invention include tissues, cells, hair, oral tissue, oral cells, This includes, but is not limited to, blood, lymph, bone marrow fluid, saliva, milk, urine, feces, eye fluid, semen, brain extract, spinal fluid, joint fluid, ascites, amniotic fluid, or tissue fluid. In the present invention, preferably the sample may be blood.

이하에서는, 본 발명을 한정하지 않는 실시예에 따라 본 발명을 상세히 설명한다. 본 발명의 하기 실시예는 본 발명을 구체화하기 위한 것일 뿐 본 발명의 권리범위를 제한하거나 한정하는 것이 아님은 물론이다. 따라서, 본 발명의 상세한 설명 및 실시예로부터 본 발명이 속하는 기술분야의 전문가가 용이하게 유추할 수 있는 것은 본 발명의 권리범위에 속하는 것으로 해석된다. Below, the present invention will be described in detail according to examples that do not limit the present invention. Of course, the following examples of the present invention are only intended to embody the present invention and do not limit or limit the scope of the present invention. Accordingly, what can be easily inferred by an expert in the technical field to which the present invention belongs from the detailed description and examples of the present invention is interpreted to fall within the scope of the rights of the present invention.

<< 실험예Experiment example >>

하기의 실험예들은 본 발명에 따른 각각의 실시예에 공통적으로 적용되는 실험예를 제공하기 위한 것이다.The following experimental examples are intended to provide experimental examples commonly applied to each embodiment according to the present invention.

1. 재조합 항원 1. Recombinant antigen ESAT6ESAT6 -- CFP10의CFP10's 제작( produce( 클로닝cloning 및 정제) and tablets)

ESAT6와 CFP10 사이에 3개의 G4S linker (GGGGS)가 들어가도록 유전자 합성을 하였고, 합성된 유전자는 pGEX4T-1에 BamHI/EcoRI으로 클로닝 하였다. 안정성 증가를 위해 디자인된 ESAT6/CFP10 돌연변이들은 site-directed mutagenesis 방법으로 유전자를 치환하였고, mutagenesis를 위해 사용된 프라이머는 표 1과 같다.A gene was synthesized to insert three G4S linkers (GGGGS) between ESAT6 and CFP10, and the synthesized gene was cloned into pGEX4T-1 with BamHI/EcoRI. ESAT6/CFP10 mutations designed to increase stability were gene replaced using site-directed mutagenesis, and the primers used for mutagenesis are listed in Table 1.

프라이머 명칭Primer name 서열order ESAT_S89R_FESAT_S89R_F ATTAGCGAAGCCGGTCAGGCAATGGCTCGTACCGAAGGCAACGTTACCGGCATGTTATTAGCGAAGCCGGTCAGGCAATGGCTCGTACCGAAGGCAACGTTACCGGCATGTT ESAT_S89R_RESAT_S89R_R AACATGCCGGTAACGTTGCCTTCGGTACGAGCCATTGCCTGACCGGCTTCGCTAATAACATGCCGGTAACGTTGCCTTCGGTACGAGCCATTGCCTGACCGGCTTCGCTAAT ESAT_S89L_FESAT_S89L_F ATTAGCGAAGCCGGTCAGGCAATGGCTCTTACCGAAGGCAACGTTACCGGCATGTTATTAGCGAAGCCGGTCAGGCAATGGCTCTTACCGAAGGCAACGTTACCGGCATGTT ESAT_S89L_RESAT_S89L_R AACATGCCGGTAACGTTGCCTTCGGTAAGAGCCATTGCCTGACCGGCTTCGCTAATAACATGCCGGTAACGTTGCCTTCGGTAAGAGCCATTGCCTGACCGGCTTCGCTAAT CFP_K120Q_FCFP_K120Q_F GAGGTGGAAGCATGGCAGAAATGCAGACGGATGCGGCAACCCTGGCACGAGGTGGAAGCATGGCAGAAATGCAGACGGATGCGGCAACCCTGGCAC CFP_K120Q_RCFP_K120Q_R GTGCCAGGGTTGCCGCATCCGTCTGCATTTCTGCCATGCTTCCACCTCCGTGCCAGGGTTGCCGCATCCGTCTGCATTTCTGCCATGCTTCCACCTCC CFP_K120G_FCFP_K120G_F GAGGTGGAAGCATGGCAGAAATGGGGACGGATGCGGCAACCCTGGCACGAGGTGGAAGCATGGCAGAAATGGGGACGGATGCGGCAACCCTGGCAC CFP_K120G_RCFP_K120G_R GTGCCAGGGTTGCCGCATCCGTCCCCATTTCTGCCATGCTTCCACCTCGTGCCAGGGTTGCCGCATCCGTCCCCATTTCTGCCATGCTTCCACCTC CFP_E204G_FCFP_E204G_F CAGTATAGCCGTGCCGACGAGGGGCAGCAGCAGGCGCTGTCTAGCCAGTATAGCCGTGCCGACGAGGGGCAGCAGCAGGCGCTGTCTAGC CFP_E204G_RCFP_E204G_R GCTAGACAGCGCCTGCTGCTGCCCCTCGTCGGCACGGCTATACTGGCTAGACAGCGCCTGCTGCTGCCCCTCGTCGGCACGGCTATACTG

각 돌연변이는 WT의 DNA를 주형으로 하여 PCR 산물을 생성하고, DpnI을 50℃에서 1시간 동안 처리하여 플라스미드 주형을 분해한 뒤 형질전환 하였다. 형질전환체는 시퀀싱을 통해 염기의 치환을 확인하였다. Each mutant generated a PCR product using WT DNA as a template, treated with DpnI at 50°C for 1 hour to digest the plasmid template, and then transformed. The base substitution of the transformant was confirmed through sequencing.

ESAT6/CFP10 WT과 돌연변이들은 E. coli strain인 BL21[DE3]에서 발현하였다. 단백질 발현은 100 mg/mL의 앰피실린(ampicillin)을 포함하는 LB 배지에서 배양하였고, 0.5 mM IPTG, 18℃, 16 hr 조건에서 발현하였다. E. coli cell은 PBS에서 초음파처리(sonication)로 파쇄한 후, 원심분리하고 상층액을 취하여 정제하였다. GST를 포함하는 ESAT6/CFP10 WT과 돌연변이들은 GST resin에 붙인 상태로 1 mg의 단백질 당 1 unit의 트롬빈(thrombin)을 처리하였으며, GST와 분리된 ESAT6/CFP10 WT과 돌연변이들은 flow-through로 회수하였다. ESAT6/CFP10 WT and mutants were expressed in E. coli strain BL21[DE3]. Protein expression was cultured in LB medium containing 100 mg/mL of ampicillin, and expressed under 0.5 mM IPTG, 18°C, 16 hr. E. coli cells were disrupted by sonication in PBS, centrifuged, and the supernatant was taken and purified. ESAT6/CFP10 WT and mutants containing GST were attached to GST resin and treated with 1 unit of thrombin per 1 mg of protein, and ESAT6/CFP10 WT and mutants separated from GST were recovered by flow-through. .

2. 항원성 평가2. Antigenicity evaluation

재조합 단백질들의 항원성 평가를 위하여 항원에 의해 활성화된 사람 primary T 세포가 분비하는 IFN-γ 측정을 위해 V-PLEX Human IFN-γ kit(Meso Scale Discovery)를 사용하여 정량화하였다. To evaluate the antigenicity of recombinant proteins, the IFN-γ secreted by human primary T cells activated by the antigen was quantified using the V-PLEX Human IFN-γ kit (Meso Scale Discovery).

재조합 단백질들(항원)의 엔도톡신(endotoxin) 유무 확인을 위해서 사용한 사람말초혈액세포(PBMCs)는 Lonza에서 구매하였다. 항원성 유무 확인을 위한 사람말초혈액세포는 건강한 일반 성인들 중에 과거 결핵에 걸린 경험이 있는 사람과 없는 사람들의 혈액을 채취해서 Histopaque-1119 (Sigma)을 이용하여 사람말초혈액세포를 분리하였다. 분리한 사람말초혈액세포를 2 × 105 개씩 96 well plate 에 깐 뒤 항원 단백질과 양성 대조군(positive control)으로 재조합 정제 단백질 유도체(purified protein derivative; PPD)를 주어진 농도별로 24 시간에서 72 시간 동안 처리한 후 세포 배양액을 회수하였다. 회수한 세포배양액은 V-PLEX Human IFN-γ kit를 이용하여 배양액 내 IFN-γ의 양을 정량하였다.Human peripheral blood cells (PBMCs) used to confirm the presence or absence of endotoxin in recombinant proteins (antigens) were purchased from Lonza. Human peripheral blood cells to check for antigenicity were collected from healthy adults with and without previous experience of tuberculosis, and the human peripheral blood cells were separated using Histopaque-1119 (Sigma). Separated human peripheral blood cells were spread on a 96-well plate (2 × 105 ) and then treated with antigen proteins and recombinant purified protein derivative (PPD) as a positive control for 24 to 72 hours at given concentrations. After that, the cell culture medium was recovered. The amount of IFN-γ in the recovered cell culture medium was quantified using the V-PLEX Human IFN-γ kit.

실험 진행과정은 다음과 같다.The experiment process is as follows.

1) Kit 내의 plate를 150㎕의 wash buffer (0.05% PBST) 로 3번 씻는다.1) Wash the plate in the kit 3 times with 150㎕ of wash buffer (0.05% PBST).

2) 회수한 세포 배양액 50㎕를 well 에 넣어준다.2) Add 50㎕ of the recovered cell culture medium to the well.

3) 세포 배양액이 담긴 plate를 adhesive film으로 밀봉한 후 상온에서 shaker 위에서 200 rpm으로 2시간 방치한다.3) Seal the plate containing the cell culture medium with adhesive film and leave it on a shaker at 200 rpm for 2 hours at room temperature.

4) Plate를 150㎕의 wash buffer로 3번 씻는다.4) Wash the plate 3 times with 150㎕ of wash buffer.

5) Detection antibody (anti-IFN-γ-SULFO TAG) 25㎕를 각 well에 넣어준다.5) Add 25㎕ of detection antibody (anti-IFN-γ-SULFO TAG) to each well.

6) Plate를 adhesive film으로 밀봉한 후 상온에서 shaker 위에서 200 rpm으로 2시간 방치한다.6) After sealing the plate with adhesive film, leave it on a shaker at 200 rpm for 2 hours at room temperature.

7) Plate를 150㎕의 wash buffer로 3번 씻는다.7) Wash the plate 3 times with 150㎕ of wash buffer.

8) 150㎕의 2× Read Buffer T를 각 well에 넣어준다.8) Add 150㎕ of 2× Read Buffer T to each well.

9) 각 well의 IFN-γ 양은 MESO SECTOR S 600 (Meso Scale Discovery) 장비를 사용하여 측정한다.9) The amount of IFN-γ in each well is measured using MESO SECTOR S 600 (Meso Scale Discovery) equipment.

* Commercial 항원: Mycobacterium tuberculosis CFP10: ESAT6 chimera Recombinant protein, Catalog : MBS313439(MyBioSource.com)* Commercial antigen: Mycobacterium tuberculosis CFP10: ESAT6 chimera Recombinant protein, Catalog: MBS313439 (MyBioSource.com)

3. SDS-PAGE & CE-SDS 분석3. SDS-PAGE & CE-SDS analysis

1) 프로테아제(Protease) 저해제 효과1) Protease inhibitor effect

정제한 ESAT6/CFP10을 프로테아제 저해제(Protease inhibitor) 유무에 따라 샘플링하였다. 5 ㎍의 각 단백질은 5×Laemmli sample buffer와 섞어 100℃에서 10분 동안 끓이고 식힌 후, 4~12% SDS-폴리아크릴아미드 젤(polyacrylamide gel)로 분리하였다. 젤은 쿠마시 블루(Coomassie blue)로 염색하여 단백질 절편(fragment)의 패턴을 비교하였다. Purified ESAT6/CFP10 was sampled with or without protease inhibitors. 5 μg of each protein was mixed with 5×Laemmli sample buffer, boiled at 100°C for 10 minutes, cooled, and separated using a 4-12% SDS-polyacrylamide gel. The gel was stained with Coomassie blue to compare the patterns of protein fragments.

2) CE-SDS 시료준비2) CE-SDS sample preparation

시료의 순도 및 불순물의 함량을 평가하기 위하여 CE-SDS (Maurice, ProteinSimple) 분석을 진행하였다. 분석된 시료는 2종으로 ESAT6·CFP10와 프로테아제 저해제(Protease inhibitor)가 처리된 ESAT6·CFP10 (ESAT6·CFP10+Inhibitor)이다. 시료는 환원 조건하에서 분석되었으며, β-머캡토에탄올(β-mercaptoethanol)을 이용하여 수행하였다. 분석을 위한 시료는 표 2와 같이 혼합하여 준비한다. 이후 시료는 환원을 위하여 70℃에서 10분 동안 유지하였다. 열을 가한 시료는 상온에서 5분간 방치한 후 13,000g에서 5분간 원심분리를 실시하였다. 원심분리 완료 후 상층액을 취하여 분석에 사용하였다. 시료와 함께 CE-SDS MW marker도 동일한 방법으로 준비하여 분석한다. Internal standard(IS) 10kDa을 시료와 같이 분석하여 이를 기준으로 시료의 크기와 relative migration time을 계산한다.CE-SDS (Maurice, ProteinSimple) analysis was performed to evaluate the purity and impurity content of the sample. There are two types of samples analyzed: ESAT6·CFP10 and ESAT6·CFP10 treated with protease inhibitor (ESAT6·CFP10+Inhibitor). Samples were analyzed under reducing conditions and were performed using β-mercaptoethanol. Samples for analysis are prepared by mixing as shown in Table 2. Afterwards, the sample was maintained at 70°C for 10 minutes for reduction. The heated sample was left at room temperature for 5 minutes and then centrifuged at 13,000 g for 5 minutes. After centrifugation was completed, the supernatant was taken and used for analysis. Along with the sample, the CE-SDS MW marker is also prepared and analyzed in the same manner. Internal standard (IS) 10kDa is analyzed together with the sample, and the sample size and relative migration time are calculated based on this.

UV detector로 측정된 세기(intensity)에 해당하는 Area 값으로부터 각 시료의 피크(peak)에 대한 상대적인 점유율을 계산하였다. The relative occupancy rate of the peak of each sample was calculated from the area value corresponding to the intensity measured by the UV detector.

시료가 준비되면 Maurice 시스템을 이용하여 분석을 시작한다. 분석 장비는 시작 전 최소 30분 이상 켜두어 준비한다. 분석에 사용되는 시약(reagents)과 시료를 해당하는 위치에 넣고 카트리지 (Muarice CE-SDS cartridges, ProteinSimple)를 장비에 삽입하여 분석을 시작한다. 시료의 분석조건은 표 3과 같다. 실험에 사용된 시약 및 재료는 표 4에 자세히 기술하였다.Once the sample is ready, analysis begins using the Maurice system. Prepare the analysis equipment by turning it on for at least 30 minutes before starting. The analysis begins by placing the reagents and samples used for analysis in the corresponding locations and inserting the cartridges (Muarice CE-SDS cartridges, ProteinSimple) into the equipment. The analysis conditions for the samples are shown in Table 3. The reagents and materials used in the experiment are detailed in Table 4.

ReagentReagent Reduced sampleReduced sample IgG STDIgG STDs SampleSample 45.5 μL45.5 μL 1 tube1 tube Sample buffer (1×)Sample buffer (1×) 50 μL50 μL 50 μL50 μL 10kDa 25× internal standard10kDa 25× internal standard 2 μL2 μL 2 μL2 μL 14.2 M ß-mercaptoethanol14.2 M ß-mercaptoethanol 2.5 μL2.5 μL 2.5 μL2.5 μL

Reducing conditionsReducing conditions StepStep VolageVolage TimeTime InjectionInjection 4600 V4600V 20 sec20 seconds SeperationSeparation 5750 V5750V 25 min25min

시약 및 재료명Reagent and material names 제조사manufacturing company Cat. No.Cat. No. Maurice CE-SDS molecular weightMaurice CE-SDS molecular weight ProteinSimpleProteinSimple 046-432046-432 Maurice sample vialMaurice sample vial ProteinSimpleProteinSimple 046-083046-083 ß-mercaptoethanolß-mercaptoethanol SigmaSigma M6250M6250 CE-SDS size application kitCE-SDS size application kit ProteinSimpleProteinSimple PSMAK02-SPSMAK02-S Muarice CE-SDS cartridgesMuarice CE-SDS cartridges Maurice CE-SES cartridge cleaning vialsMaurice CE-SES cartridge cleaning vials Maurice clear screw capMaurice clear screw cap Maurice glass reagent vialsMaurice glass reagent vials Maurice 96 well plateMaurice 96 well plate Maurice CE-SDS separation matrixMaurice CE-SDS separation matrix Maurice CE-SDS running buffer-topMaurice CE-SDS running buffer-top Maurice CE-SDS running-bottomMaurice CE-SDS running-bottom Maurice CE-SDS 1× sample bufferMaurice CE-SDS 1× sample buffer Maurice CE-SDS wash solutionMaurice CE-SDS wash solution Maurice CE-SDS conditioning solution 1Maurice CE-SDS conditioning solution 1 Maurice CE-SDS conditioning solution 2Maurice CE-SDS conditioning solution 2 Maurice CE-SDS 25× internal standardMaurice CE-SDS 25× internal standard

4. In gel digestion의 LC-MS 분석4. LC-MS analysis of in gel digestion

SDS-폴리아크릴아미드 젤(polyacrylamide gel)로부터 분리한 단백질을 포함하는 밴드는 washing solution (25mM NH4HCO3 in 50% acetonitrile)으로 염색 시약을 제거하였다. 아세토니트릴(Acetonitrile)로 버퍼가 완전히 치환된 젤은 10 mM DTT로 56℃에서 1시간 반응하고, 남아있는 용액을 제거한 후 55 mM 이오도아세트아미드(iodoacetamide)로 처리한 뒤 세척하였다. 아세토니트릴(Acetonitrile)로 버퍼가 완전히 치환된 젤은 10 ng/μL enzyme (Trypsin/Lys-C mix)과 섞어 37℃에서 16시간 동안 반응시키고, NH4HCO3과 아세토니트릴(acetonitrile)로 펩타이드를 회수하고 건조하였다.The staining reagent was removed from the band containing the protein separated from the SDS-polyacrylamide gel with a washing solution (25mM NH 4 HCO 3 in 50% acetonitrile). The gel whose buffer was completely replaced with acetonitrile was reacted with 10mM DTT at 56°C for 1 hour, the remaining solution was removed, and then treated with 55mM iodoacetamide and washed. The gel whose buffer was completely replaced with acetonitrile was mixed with 10 ng/μL enzyme (Trypsin/Lys-C mix) and reacted at 37°C for 16 hours, and the peptide was lysed with NH 4 HCO 3 and acetonitrile. It was recovered and dried.

Proteomic 분석은 Easy-nano LC가 연결된 Q-exactive hybrid quadrupole orbitrap mass spectrometer를 사용해 분석하였다. 0.1% 포름산(formic acid)에 녹여진 건조된 펩타이드는 nano LC system으로 주입하였다. 펩타이드의 분리는 Easy-spray C18 column (100 Å, 5 μm, 300 μm i.d. × 50 cm; Thermo Fisher Scientific)을 사용하였고, solution A (0.1% formic acid in water)와 solution B (0.1% formic acid in acetonitrile)의 비율을 점진적 농도 구배로 (5 - 80%) 40분 동안 300 nL/min 유속으로 분리시켰다. 얻어진 데이터는 Homo sapiens (Human) database를 통해 Proteome Discoverer software (version 2.4, Thermo Fisher Scientific)를 이용하여 database search 하였다.Proteomic analysis was performed using a Q-exactive hybrid quadrupole orbitrap mass spectrometer connected to Easy-nano LC. The dried peptide dissolved in 0.1% formic acid was injected into the nano LC system. Peptide separation was performed using an Easy-spray C18 column (100 Å, 5 μm, 300 μm i.d. × 50 cm; Thermo Fisher Scientific), solution A (0.1% formic acid in water) and solution B (0.1% formic acid in water). acetonitrile) was separated in a gradual concentration gradient (5 - 80%) at a flow rate of 300 nL/min for 40 minutes. The obtained data were subjected to a database search using Proteome Discoverer software (version 2.4, Thermo Fisher Scientific) through the Homo sapiens (Human) database.

5. 5. 3차구조Tertiary structure 모델링modelling 및 안정화 돌연변이 계산 and stabilizing mutation calculations.

G4S linker가 연결된 ESAT6/CFP10 모델 구조는 Discovery studio 2021 (version 2021, BIOVIA)을 사용하였다. 모델 생성을 위해 ESAT6/CFP10의 X-ray 구조 (PDB:3FAV)를 모델 템플릿으로 사용했고, Build and Edit Protein과 Minimize and Refine Protein tool을 이용하여 가장 낮은 에너지 상태의 모델을 생성하였다. 생성된 모델은 Design Protein tool의 Calculate Mutation Energy를 통해 SER89, LYS120의 돌연변이로 안정화에 영향을 주는 아미노산을 계산하였다.The ESAT6/CFP10 model structure with G4S linker connected was used in Discovery studio 2021 (version 2021, BIOVIA). To create the model, the X-ray structure of ESAT6/CFP10 (PDB:3FAV) was used as a model template, and the model in the lowest energy state was created using the Build and Edit Protein and Minimize and Refine Protein tools. The created model calculated the amino acids that affect stabilization due to mutations in SER89 and LYS120 through Calculate Mutation Energy in the Design Protein tool.

6. 안정성 평가를 위한 SDS-PAGE 및 RP-6. SDS-PAGE and RP- for stability evaluation HPLCHPLC 분석 analyze

1) SDS-PAGE1) SDS-PAGE

ESAT6/CFP10 WT과 돌연변이들은 0, 4, 7, 10일간 각각 4, 37℃에서 보관 후 샘플링 하였다. 5 ㎍의 각 단백질은 5× Laemmli sample buffer와 섞어 100℃에서 10분 동안 끓이고 식힌 후, 4~12% SDS-폴리아크릴아미드 젤(polyacrylamide gel)로 분리하였다. 젤은 쿠마시 블루(Coomassie blue)로 염색하여 단백질 절편(fragment)의 패턴을 비교하였다.ESAT6/CFP10 WT and mutants were stored at 4 and 37°C for 0, 4, 7, and 10 days, respectively, and then sampled. 5 μg of each protein was mixed with 5× Laemmli sample buffer, boiled at 100°C for 10 minutes, cooled, and separated using a 4-12% SDS-polyacrylamide gel. The gel was stained with Coomassie blue to compare the patterns of protein fragments.

2) RP-HPLC2) RP-HPLC

Reverse phase HPLC 분석은 1260 Infinity LC system (Agilent, USA)를 사용하였다. 10 ㎍의 단백질을 Xbridge protein BEH300 C4 (300 Å, 3.5 μm, 4.6 × 150 mm; Waters) 컬럼에 주입하였고, solution A (0.1% FA in water)와 solution B (0.1% FA in acetonitrile)의 비율을 solution B가 점진적 농도구배로 (20 - 50%) 20분 동안 분리하고, 3분 동안 100%가 되도록 한 후, 9분간 solution A를 80%로 하여 32분동안 1.44 mL/min으로 분리하였다. Detector의 UV 파장은 190~400 nm 범위에서 UV 흡수 파장은 220 nm, 280 nm을 사용하였다.Reverse phase HPLC analysis was performed using a 1260 Infinity LC system (Agilent, USA). 10 μg of protein was injected onto an Solution B was separated with a gradual concentration gradient (20 - 50%) for 20 minutes, brought to 100% for 3 minutes, and then solution A was adjusted to 80% for 9 minutes and separated at 1.44 mL/min for 32 minutes. The detector's UV wavelength ranged from 190 to 400 nm, and UV absorption wavelengths of 220 nm and 280 nm were used.

<< 실시예Example 1> 항원성 및 안정성 평가 1> Antigenicity and stability evaluation

항원성을 평가하기 위하여 ESAT6-CFP10 단백질 처리 후 PBMC에서 IFN-γ(IGRA)의 방출을 확인하는 실험을 수행하였다. PPD를 양성 대조군으로 사용하였다. 대조군 상용 CFP10 키메라 및 재조합 ESAT6-CFP10 모두 양성 잠복 결핵 환자의 PBMC에서 농도 의존적으로 IFN-γ의 방출 수준을 증가시키는 것으로 확인되었다. 재조합 ESAT6/CFP10 단백질은 10 μg/mL의 농도에서 대조군에 비해 적어도 2배 더 높은 항원 반응성을 보였다(도 1). IFN-γ 방출 분석(IGRA)의 결과는 재조합 ESAT6/CFP10의 더 높은 항원 반응성이 엔도톡신(endotoxin)에 의해 유발된 것이 아님을 보여주었다.To evaluate antigenicity, an experiment was performed to confirm the release of IFN-γ (IGRA) from PBMCs after treatment with ESAT6-CFP10 protein. PPD was used as a positive control. Both the control commercial CFP10 chimera and recombinant ESAT6-CFP10 were found to increase the release level of IFN-γ in a concentration-dependent manner in PBMCs of patients with positive latent tuberculosis. The recombinant ESAT6/CFP10 protein showed at least two times higher antigen reactivity compared to the control group at a concentration of 10 μg/mL (Figure 1). The results of the IFN-γ release assay (IGRA) showed that the higher antigen reactivity of recombinant ESAT6/CFP10 was not caused by endotoxin.

항원성이 개선된 재조합 항원 ESAT6-CFP10은 시간이 지남에 따라 분해되었다. 그러나 프로테아제 저해제(Protease inhibitor)를 첨가하여 재조합 단백질의 안정성을 유지하였으며, 정제과정에서 불순물에 해당하는 프로테아제의 활성을 억제하는 결과를 SDS-PAGE와 CE-SDS를 통해 확인하였다(도 2A). CE-SDS 실험은 항원의 24%만이 프로테아제 억제제가 없을 때 온전하게 유지되는 반면 항원의 94%는 그러한 억제제의 존재하에서 온전하게 남아 있음을 보여준다(도 2B). The recombinant antigen ESAT6-CFP10, with improved antigenicity, was degraded over time. However, the stability of the recombinant protein was maintained by adding a protease inhibitor, and the inhibition of protease activity corresponding to impurities during the purification process was confirmed through SDS-PAGE and CE-SDS (Figure 2A). CE-SDS experiments show that only 24% of the antigen remained intact in the absence of protease inhibitors, whereas 94% of the antigen remained intact in the presence of such inhibitors (Figure 2B).

<< 실시예Example 2> 항원 안정성 향상을 위한 조작 2> Manipulation to improve antigen stability

프로테아제 억제제를 첨가하지 않고 항원 ESAT6-CFP10의 안정성을 향상시키기 위해, in gel digestion에 기초한 LC-MS를 수행하여 프로테아제에 의해 절단된 약한 부위에 대한 정보를 얻었다. 본 발명자들은 SDS-PAGE에서 3개의 다른 조각 밴드(A, B, C)를 선택하고 절제하였다. 3가지 다른 프로테아제(Trypsin, chymotrypsin, Glu-C)로 처리한 후, 각 밴드의 LC-MS 실험에서 확인된 펩타이드 서열을 표적 단백질과 일치시켰다. 13kDa(A) 밴드에서 확인된 서열은 아미노산 121~204번으로 CFP10에 해당한다. 12kDa(B) 밴드에서는 ESAT6과 CFP10 서열이 모두 확인되었으며, 일부 단편화된 CFP10과 ESAT6은 아미노산 서열 17에서 82까지이며 SDS-PAGE 젤에서 완전히 분리되지 않은 것으로 예측된다. 5 kDa(C) 밴드는 주로 ESAT6(1~82)으로 식별되었다(도 3A). 젤 밴드에서 확인된 모든 펩티드는 ESAT6 및 CFP10의 나선-회전-나선을 모두 포함하고 Glu16, Glu82, Lys120 및 Glu204 아미노산은 절단의 결과로 강하게 관찰되었다. 이는 ESAT6 및 CFP10의 역평행 나선 형태의 구조가 프로테아제로부터 비교적 안정적으로 유지된다는 것을 의미한다. 3개의 아미노산은 절단의 시작 부위가 아니라 최종 생성물의 위치로 간주된다. 따라서 항원 안정화를 위한 엔지니어링은 ESAT6 및 CFP10의 링커 영역에 초점을 맞추었다. 특히 ESAT6과 CFP10을 연결하여 짧은 α-helix(88~92) 단백질의 3차 구조와 LC-MS 결과를 바탕으로 돌연변이가 도입되어야 하는 아미노산을 선별하였다. Ser89, Lys120, Glu204가 가장 유력한 후보였으며, Discovery studio 2021을 이용하여 구조적 변화에 영향을 미치지 않으면서 돌연변이 에너지가 가장 낮은 돌연변이체를 최종 선정하였다(도 3B). 일부 돌연변이체는 구조적 불안정성을 증가시키지만 Ser89가 Leu, Arg로 돌연변이 되었을 때 구조적 안정성이 증가하였다. Lys120에서 Gln으로의 돌연변이는 또한 돌연변이 에너지를 증가시켰다. 2차 구조가 없는 부위에 존재하는 Glu204를 글리신으로 대체하여 프로테아제의 영향을 받지 않도록 하였다.To improve the stability of the antigen ESAT6-CFP10 without adding protease inhibitors, LC-MS based on in gel digestion was performed to obtain information about weak sites cleaved by proteases. We selected and excised three different fragment bands (A, B, C) from SDS-PAGE. After treatment with three different proteases (Trypsin, chymotrypsin, and Glu-C), the peptide sequence identified in the LC-MS experiment of each band was matched to the target protein. The sequence identified in the 13kDa (A) band is amino acids 121 to 204 and corresponds to CFP10. In the 12 kDa (B) band, both ESAT6 and CFP10 sequences were confirmed, and some fragmented CFP10 and ESAT6 were predicted to have amino acid sequences from 17 to 82 and were not completely separated on the SDS-PAGE gel. The 5 kDa(C) band was primarily identified as ESAT6 (1–82) (Figure 3A). All peptides identified in the gel bands contained both helix-turn-helix of ESAT6 and CFP10 and the Glu16, Glu82, Lys120 and Glu204 amino acids were strongly observed as a result of cleavage. This means that the antiparallel helical structures of ESAT6 and CFP10 remain relatively stable from proteases. The three amino acids are considered the positions of the final product and not the start site of cleavage. Therefore, engineering for antigen stabilization focused on the linker regions of ESAT6 and CFP10. In particular, ESAT6 and CFP10 were linked to select amino acids where mutations should be introduced based on the tertiary structure of the short α-helix (88-92) protein and LC-MS results. Ser89, Lys120, and Glu204 were the most likely candidates, and the mutant with the lowest mutation energy without affecting structural change was finally selected using Discovery studio 2021 (Figure 3B). Some mutants increase structural instability, but structural stability increased when Ser89 was mutated to Leu or Arg. Mutation of Lys120 to Gln also increased the mutation energy. Glu204, which exists in a region without secondary structure, was replaced with glycine to prevent it from being affected by protease.

<< 실시예Example 3> SDS-PAGE & 3> SDS-PAGE & RP-HPLC를RP-HPLC 이용한 돌연변이 안정성 시험 Mutational stability test using

선택된 돌연변이체의 조합을 통해 7가지 유형의 돌연변이체를 만들었다. 온도 및 시간에 따른 항원의 안정성을 WT와 비교하였다. 먼저, 동일한 조건에서 발현 및 정제된 항원의 주 밴드의 변화를 SDS-PAGE 방법을 사용하여 프로테아제 억제제(protease inhibitor) 없이 4℃에서 0, 4, 7, 10일 동안 관찰하였다(도 4A). WT 및 204G 돌연변이체는 4일 후에 유사한 속도로 분해되기 시작하였다. 그러나 나머지 6개 돌연변이체의 안정성은 10일 후에도 유지되었다. 37℃에서의 안정성은 4℃에서의 안정성과 달랐고 거의 모든 돌연변이체가 분해되었다. 4일 후 주 밴드가 남은 돌연변이체는 DG(120G 및 204G), 120Q 및 89R 돌연변이체뿐이었다. 더욱이, 그들의 분해 패턴은 4℃의 것과 달랐다(도 4A). RP-HPLC를 이용하여 WT, 204G 및 3개의 돌연변이체(DG, 120Q 및 89R)를 정량화하였을 때 (도 4B) SDS-PAGE와 유사한 결과가 도출되었다. Seven types of mutants were created through combinations of selected mutants. The stability of the antigen over temperature and time was compared with WT. First, changes in the main band of the antigen expressed and purified under the same conditions were observed for 0, 4, 7, and 10 days at 4°C without protease inhibitor using SDS-PAGE method (Figure 4A). WT and 204G mutant began to degrade at similar rates after 4 days. However, the stability of the remaining six mutants was maintained even after 10 days. Stability at 37°C was different from stability at 4°C and almost all mutants were degraded. After 4 days, the only mutants with major bands remaining were DG (120G and 204G), 120Q, and 89R mutants. Moreover, their degradation pattern was different from that at 4°C (Figure 4A). When WT, 204G, and three mutants (DG, 120Q, and 89R) were quantified using RP-HPLC (Figure 4B), similar results were obtained as SDS-PAGE.

<< 실시예Example 4> 돌연변이들의 항원성 유지 4> Maintenance of antigenicity of mutations

WT과도 비교하여 안정성이 개선된 돌연변이체(DG, 120Q 및 89R) 3종의 항원성 평가를 말초혈액세포(PBMC)를 통하여 수행하였다. 잠복결핵 환자 2명과 일반 정상인 2명의 말초혈액세포로부터 항원성 평가 결과는 WT을 포함하여 3종의 돌연변이체는 잠복결핵 환자서만 IFN- γ (IGRA)의 분비가 증가하는 현상이 발생하였으며. 그 정도는 WT 가 비교하여 유사했다. 도입된 돌연변이가 항원성에는 영향을 주지 않은 것으로 판단된다(도 5).Antigenicity evaluation of three mutants (DG, 120Q, and 89R) with improved stability compared to WT was performed using peripheral blood cells (PBMC). The results of antigenicity evaluation from peripheral blood cells of two patients with latent tuberculosis and two normal people showed that three mutants, including WT, showed increased secretion of IFN-γ (IGRA) only in patients with latent tuberculosis. The degree was similar compared to WT. It is judged that the introduced mutation did not affect antigenicity (Figure 5).

이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.As the specific parts of the present invention have been described in detail above, it is clear to those skilled in the art that these specific techniques are merely preferred embodiments and do not limit the scope of the present invention. something to do. Accordingly, the actual scope of the present invention will be defined by the appended claims and their equivalents.

<110> Osong Medical Innovation Foundation <120> Composition for diagnosing latent tuberculosis comprising antigen with improved antigenicity and stability <130> ADP-2021-0886 <160> 4 <170> KopatentIn 2.0 <210> 1 <211> 225 <212> PRT <213> Artificial Sequence <220> <223> recombinant antigen ESAT6-CFP10 120G/204G <400> 1 Gly Ser Leu Gln Met Thr Glu Gln Gln Trp Asn Phe Ala Gly Ile Glu 1 5 10 15 Ala Ala Ala Ser Ala Ile Gln Gly Asn Val Thr Ser Ile His Ser Leu 20 25 30 Leu Asp Glu Gly Lys Gln Ser Leu Thr Lys Leu Ala Ala Ala Trp Gly 35 40 45 Gly Ser Gly Ser Glu Ala Tyr Gln Gly Val Gln Gln Lys Trp Asp Ala 50 55 60 Thr Ala Thr Glu Leu Asn Asn Ala Leu Gln Asn Leu Ala Arg Thr Ile 65 70 75 80 Ser Glu Ala Gly Gln Ala Met Ala Ser Thr Glu Gly Asn Val Thr Gly 85 90 95 Met Phe Leu Gln Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly 100 105 110 Gly Gly Ser Met Ala Glu Met Gly Thr Asp Ala Ala Thr Leu Ala Gln 115 120 125 Glu Ala Gly Asn Phe Glu Arg Ile Ser Gly Asp Leu Lys Thr Gln Ile 130 135 140 Asp Gln Val Glu Ser Thr Ala Gly Ser Leu Gln Gly Gln Trp Arg Gly 145 150 155 160 Ala Ala Gly Thr Ala Ala Gln Ala Ala Val Val Arg Phe Gln Glu Ala 165 170 175 Ala Asn Lys Gln Asn Gln Glu Leu Asp Glu Leu Ser Thr Asn Ile Arg 180 185 190 Gln Ala Gly Val Gln Tyr Ser Arg Ala Asp Glu Gly Gln Gln Gln Ala 195 200 205 Leu Ser Ser Gln Met Glu Phe Pro Gly Arg Leu Glu Arg Pro His Arg 210 215 220 Asp 225 <210> 2 <211> 225 <212> PRT <213> Artificial Sequence <220> <223> recombinant antigen ESAT6-CFP10 120Q <400> 2 Gly Ser Leu Gln Met Thr Glu Gln Gln Trp Asn Phe Ala Gly Ile Glu 1 5 10 15 Ala Ala Ala Ser Ala Ile Gln Gly Asn Val Thr Ser Ile His Ser Leu 20 25 30 Leu Asp Glu Gly Lys Gln Ser Leu Thr Lys Leu Ala Ala Ala Trp Gly 35 40 45 Gly Ser Gly Ser Glu Ala Tyr Gln Gly Val Gln Gln Lys Trp Asp Ala 50 55 60 Thr Ala Thr Glu Leu Asn Asn Ala Leu Gln Asn Leu Ala Arg Thr Ile 65 70 75 80 Ser Glu Ala Gly Gln Ala Met Ala Ser Thr Glu Gly Asn Val Thr Gly 85 90 95 Met Phe Leu Gln Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly 100 105 110 Gly Gly Ser Met Ala Glu Met Gln Thr Asp Ala Ala Thr Leu Ala Gln 115 120 125 Glu Ala Gly Asn Phe Glu Arg Ile Ser Gly Asp Leu Lys Thr Gln Ile 130 135 140 Asp Gln Val Glu Ser Thr Ala Gly Ser Leu Gln Gly Gln Trp Arg Gly 145 150 155 160 Ala Ala Gly Thr Ala Ala Gln Ala Ala Val Val Arg Phe Gln Glu Ala 165 170 175 Ala Asn Lys Gln Asn Gln Glu Leu Asp Glu Leu Ser Thr Asn Ile Arg 180 185 190 Gln Ala Gly Val Gln Tyr Ser Arg Ala Asp Glu Glu Gln Gln Gln Ala 195 200 205 Leu Ser Ser Gln Met Glu Phe Pro Gly Arg Leu Glu Arg Pro His Arg 210 215 220 Asp 225 <210> 3 <211> 225 <212> PRT <213> Artificial Sequence <220> <223> recombinant antigen ESAT6-CFP10 89R <400> 3 Gly Ser Leu Gln Met Thr Glu Gln Gln Trp Asn Phe Ala Gly Ile Glu 1 5 10 15 Ala Ala Ala Ser Ala Ile Gln Gly Asn Val Thr Ser Ile His Ser Leu 20 25 30 Leu Asp Glu Gly Lys Gln Ser Leu Thr Lys Leu Ala Ala Ala Trp Gly 35 40 45 Gly Ser Gly Ser Glu Ala Tyr Gln Gly Val Gln Gln Lys Trp Asp Ala 50 55 60 Thr Ala Thr Glu Leu Asn Asn Ala Leu Gln Asn Leu Ala Arg Thr Ile 65 70 75 80 Ser Glu Ala Gly Gln Ala Met Ala Arg Thr Glu Gly Asn Val Thr Gly 85 90 95 Met Phe Leu Gln Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly 100 105 110 Gly Gly Ser Met Ala Glu Met Lys Thr Asp Ala Ala Thr Leu Ala Gln 115 120 125 Glu Ala Gly Asn Phe Glu Arg Ile Ser Gly Asp Leu Lys Thr Gln Ile 130 135 140 Asp Gln Val Glu Ser Thr Ala Gly Ser Leu Gln Gly Gln Trp Arg Gly 145 150 155 160 Ala Ala Gly Thr Ala Ala Gln Ala Ala Val Val Arg Phe Gln Glu Ala 165 170 175 Ala Asn Lys Gln Asn Gln Glu Leu Asp Glu Leu Ser Thr Asn Ile Arg 180 185 190 Gln Ala Gly Val Gln Tyr Ser Arg Ala Asp Glu Glu Gln Gln Gln Ala 195 200 205 Leu Ser Ser Gln Met Glu Phe Pro Gly Arg Leu Glu Arg Pro His Arg 210 215 220 Asp 225 <210> 4 <211> 225 <212> PRT <213> Artificial Sequence <220> <223> recombinant antigen ESAT6-CFP10 wild type <400> 4 Gly Ser Leu Gln Met Thr Glu Gln Gln Trp Asn Phe Ala Gly Ile Glu 1 5 10 15 Ala Ala Ala Ser Ala Ile Gln Gly Asn Val Thr Ser Ile His Ser Leu 20 25 30 Leu Asp Glu Gly Lys Gln Ser Leu Thr Lys Leu Ala Ala Ala Trp Gly 35 40 45 Gly Ser Gly Ser Glu Ala Tyr Gln Gly Val Gln Gln Lys Trp Asp Ala 50 55 60 Thr Ala Thr Glu Leu Asn Asn Ala Leu Gln Asn Leu Ala Arg Thr Ile 65 70 75 80 Ser Glu Ala Gly Gln Ala Met Ala Ser Thr Glu Gly Asn Val Thr Gly 85 90 95 Met Phe Leu Gln Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly 100 105 110 Gly Gly Ser Met Ala Glu Met Lys Thr Asp Ala Ala Thr Leu Ala Gln 115 120 125 Glu Ala Gly Asn Phe Glu Arg Ile Ser Gly Asp Leu Lys Thr Gln Ile 130 135 140 Asp Gln Val Glu Ser Thr Ala Gly Ser Leu Gln Gly Gln Trp Arg Gly 145 150 155 160 Ala Ala Gly Thr Ala Ala Gln Ala Ala Val Val Arg Phe Gln Glu Ala 165 170 175 Ala Asn Lys Gln Asn Gln Glu Leu Asp Glu Leu Ser Thr Asn Ile Arg 180 185 190 Gln Ala Gly Val Gln Tyr Ser Arg Ala Asp Glu Glu Gln Gln Gln Ala 195 200 205 Leu Ser Ser Gln Met Glu Phe Pro Gly Arg Leu Glu Arg Pro His Arg 210 215 220 Asp 225 <110> Osong Medical Innovation Foundation <120> Composition for diagnosing latent tuberculosis comprising antigen with improved antigenicity and stability <130> ADP-2021-0886 <160> 4 <170>CopatentIn 2.0 <210> 1 <211> 225 <212> PRT <213> Artificial Sequence <220> <223> recombinant antigen ESAT6-CFP10 120G/204G <400> 1 Gly Ser Leu Gln Met Thr Glu Gln Gln Trp Asn Phe Ala Gly Ile Glu 1 5 10 15 Ala Ala Ala Ser Ala Ile Gln Gly Asn Val Thr Ser Ile His Ser Leu 20 25 30 Leu Asp Glu Gly Lys Gln Ser Leu Thr Lys Leu Ala Ala Ala Trp Gly 35 40 45 Gly Ser Gly Ser Glu Ala Tyr Gln Gly Val Gln Gln Lys Trp Asp Ala 50 55 60 Thr Ala Thr Glu Leu Asn Asn Ala Leu Gln Asn Leu Ala Arg Thr Ile 65 70 75 80 Ser Glu Ala Gly Gln Ala Met Ala Ser Thr Glu Gly Asn Val Thr Gly 85 90 95 Met Phe Leu Gln Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly 100 105 110 Gly Gly Ser Met Ala Glu Met Gly Thr Asp Ala Ala Thr Leu Ala Gln 115 120 125 Glu Ala Gly Asn Phe Glu Arg Ile Ser Gly Asp Leu Lys Thr Gln Ile 130 135 140 Asp Gln Val Glu Ser Thr Ala Gly Ser Leu Gln Gly Gln Trp Arg Gly 145 150 155 160 Ala Ala Gly Thr Ala Ala Gln Ala Ala Val Val Arg Phe Gln Glu Ala 165 170 175 Ala Asn Lys Gln Asn Gln Glu Leu Asp Glu Leu Ser Thr Asn Ile Arg 180 185 190 Gln Ala Gly Val Gln Tyr Ser Arg Ala Asp Glu Gly Gln Gln Gln Ala 195 200 205 Leu Ser Ser Gln Met Glu Phe Pro Gly Arg Leu Glu Arg Pro His Arg 210 215 220 Asp 225 <210> 2 <211> 225 <212> PRT <213> Artificial Sequence <220> <223> recombinant antigen ESAT6-CFP10 120Q <400> 2 Gly Ser Leu Gln Met Thr Glu Gln Gln Trp Asn Phe Ala Gly Ile Glu 1 5 10 15 Ala Ala Ala Ser Ala Ile Gln Gly Asn Val Thr Ser Ile His Ser Leu 20 25 30 Leu Asp Glu Gly Lys Gln Ser Leu Thr Lys Leu Ala Ala Ala Trp Gly 35 40 45 Gly Ser Gly Ser Glu Ala Tyr Gln Gly Val Gln Gln Lys Trp Asp Ala 50 55 60 Thr Ala Thr Glu Leu Asn Asn Ala Leu Gln Asn Leu Ala Arg Thr Ile 65 70 75 80 Ser Glu Ala Gly Gln Ala Met Ala Ser Thr Glu Gly Asn Val Thr Gly 85 90 95 Met Phe Leu Gln Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly 100 105 110 Gly Gly Ser Met Ala Glu Met Gln Thr Asp Ala Ala Thr Leu Ala Gln 115 120 125 Glu Ala Gly Asn Phe Glu Arg Ile Ser Gly Asp Leu Lys Thr Gln Ile 130 135 140 Asp Gln Val Glu Ser Thr Ala Gly Ser Leu Gln Gly Gln Trp Arg Gly 145 150 155 160 Ala Ala Gly Thr Ala Ala Gln Ala Ala Val Val Arg Phe Gln Glu Ala 165 170 175 Ala Asn Lys Gln Asn Gln Glu Leu Asp Glu Leu Ser Thr Asn Ile Arg 180 185 190 Gln Ala Gly Val Gln Tyr Ser Arg Ala Asp Glu Glu Gln Gln Gln Ala 195 200 205 Leu Ser Ser Gln Met Glu Phe Pro Gly Arg Leu Glu Arg Pro His Arg 210 215 220 Asp 225 <210> 3 <211> 225 <212> PRT <213> Artificial Sequence <220> <223> recombinant antigen ESAT6-CFP10 89R <400> 3 Gly Ser Leu Gln Met Thr Glu Gln Gln Trp Asn Phe Ala Gly Ile Glu 1 5 10 15 Ala Ala Ala Ser Ala Ile Gln Gly Asn Val Thr Ser Ile His Ser Leu 20 25 30 Leu Asp Glu Gly Lys Gln Ser Leu Thr Lys Leu Ala Ala Ala Trp Gly 35 40 45 Gly Ser Gly Ser Glu Ala Tyr Gln Gly Val Gln Gln Lys Trp Asp Ala 50 55 60 Thr Ala Thr Glu Leu Asn Asn Ala Leu Gln Asn Leu Ala Arg Thr Ile 65 70 75 80 Ser Glu Ala Gly Gln Ala Met Ala Arg Thr Glu Gly Asn Val Thr Gly 85 90 95 Met Phe Leu Gln Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly 100 105 110 Gly Gly Ser Met Ala Glu Met Lys Thr Asp Ala Ala Thr Leu Ala Gln 115 120 125 Glu Ala Gly Asn Phe Glu Arg Ile Ser Gly Asp Leu Lys Thr Gln Ile 130 135 140 Asp Gln Val Glu Ser Thr Ala Gly Ser Leu Gln Gly Gln Trp Arg Gly 145 150 155 160 Ala Ala Gly Thr Ala Ala Gln Ala Ala Val Val Arg Phe Gln Glu Ala 165 170 175 Ala Asn Lys Gln Asn Gln Glu Leu Asp Glu Leu Ser Thr Asn Ile Arg 180 185 190 Gln Ala Gly Val Gln Tyr Ser Arg Ala Asp Glu Glu Gln Gln Gln Ala 195 200 205 Leu Ser Ser Gln Met Glu Phe Pro Gly Arg Leu Glu Arg Pro His Arg 210 215 220 Asp 225 <210> 4 <211> 225 <212> PRT <213> Artificial Sequence <220> <223> recombinant antigen ESAT6-CFP10 wild type <400> 4 Gly Ser Leu Gln Met Thr Glu Gln Gln Trp Asn Phe Ala Gly Ile Glu 1 5 10 15 Ala Ala Ala Ser Ala Ile Gln Gly Asn Val Thr Ser Ile His Ser Leu 20 25 30 Leu Asp Glu Gly Lys Gln Ser Leu Thr Lys Leu Ala Ala Ala Trp Gly 35 40 45 Gly Ser Gly Ser Glu Ala Tyr Gln Gly Val Gln Gln Lys Trp Asp Ala 50 55 60 Thr Ala Thr Glu Leu Asn Asn Ala Leu Gln Asn Leu Ala Arg Thr Ile 65 70 75 80 Ser Glu Ala Gly Gln Ala Met Ala Ser Thr Glu Gly Asn Val Thr Gly 85 90 95 Met Phe Leu Gln Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly 100 105 110 Gly Gly Ser Met Ala Glu Met Lys Thr Asp Ala Ala Thr Leu Ala Gln 115 120 125 Glu Ala Gly Asn Phe Glu Arg Ile Ser Gly Asp Leu Lys Thr Gln Ile 130 135 140 Asp Gln Val Glu Ser Thr Ala Gly Ser Leu Gln Gly Gln Trp Arg Gly 145 150 155 160 Ala Ala Gly Thr Ala Ala Gln Ala Ala Val Val Arg Phe Gln Glu Ala 165 170 175 Ala Asn Lys Gln Asn Gln Glu Leu Asp Glu Leu Ser Thr Asn Ile Arg 180 185 190 Gln Ala Gly Val Gln Tyr Ser Arg Ala Asp Glu Glu Gln Gln Gln Ala 195 200 205 Leu Ser Ser Gln Met Glu Phe Pro Gly Arg Leu Glu Arg Pro His Arg 210 215 220 Asp 225

Claims (6)

서열번호 1, 서열번호 2 또는 서열번호 3으로 표시되는 아미노산 서열로 이루어진 ESAT6-CFP10 재조합 항원을 유효성분으로 포함하는 잠복결핵 진단용 조성물.A composition for diagnosing latent tuberculosis comprising ESAT6-CFP10 recombinant antigen consisting of the amino acid sequence represented by SEQ ID NO: 1, SEQ ID NO: 2, or SEQ ID NO: 3 as an active ingredient. 제1항에 있어서, 상기 조성물은 항원성 및 안정성이 개선된 것을 특징으로 하는 잠복결핵 진단용 조성물.The composition for diagnosing latent tuberculosis according to claim 1, wherein the composition has improved antigenicity and stability. 제1항 또는 제2항의 조성물을 포함하는 잠복결핵 진단용 키트.A kit for diagnosing latent tuberculosis comprising the composition of claim 1 or 2. 제1항 또는 제2항의 조성물을 환자에서 분리된 시료와 반응시켜, 잠복 결핵 감염 여부를 분석하는 단계를 포함하는 잠복결핵 진단에 필요한 정보를 제공하는 방법.A method of providing information necessary for diagnosing latent tuberculosis, comprising reacting the composition of claim 1 or 2 with a sample isolated from a patient and analyzing whether latent tuberculosis infection exists. 제4항에 있어서, 상기 시료는 혈액인 것을 특징으로 하는 잠복결핵 진단에 필요한 정보를 제공하는 방법.The method of claim 4, wherein the sample is blood. 제4항에 있어서, 상기 잠복 결핵 감염 여부를 분석하는 단계는 인터페론 감마 분비 검사(Interferon-γ release assay, IGRA)를 통해 분석하는 것을 특징으로 하는 잠복결핵 진단에 필요한 정보를 제공하는 방법.The method of claim 4, wherein the step of analyzing latent tuberculosis infection is performed using an interferon-γ release assay (IGRA).
KR1020210190696A 2021-12-29 2021-12-29 Composition for diagnosing latent tuberculosis comprising antigen with improved antigenicity and stability KR102577332B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210190696A KR102577332B1 (en) 2021-12-29 2021-12-29 Composition for diagnosing latent tuberculosis comprising antigen with improved antigenicity and stability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210190696A KR102577332B1 (en) 2021-12-29 2021-12-29 Composition for diagnosing latent tuberculosis comprising antigen with improved antigenicity and stability

Publications (2)

Publication Number Publication Date
KR20230100972A KR20230100972A (en) 2023-07-06
KR102577332B1 true KR102577332B1 (en) 2023-09-11

Family

ID=87185375

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210190696A KR102577332B1 (en) 2021-12-29 2021-12-29 Composition for diagnosing latent tuberculosis comprising antigen with improved antigenicity and stability

Country Status (1)

Country Link
KR (1) KR102577332B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101700891B1 (en) 2016-06-13 2017-01-31 사단법인대한결핵협회 Composition containing antigen for diagnosis of tuberculosis

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010121618A1 (en) * 2009-04-24 2010-10-28 Statens Serum Institut A tuberculosis tb vaccine to prevent reactivation
KR20170011200A (en) * 2015-07-22 2017-02-02 사단법인대한결핵협회 Fusion protein of tuberculosis specific antigens, efficient method of producing thereof and uses thereof
KR20210057315A (en) 2019-11-12 2021-05-21 울산대학교 산학협력단 Method for tuberculosis diagnosis based IFN-γ and TNF-α release assay

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101700891B1 (en) 2016-06-13 2017-01-31 사단법인대한결핵협회 Composition containing antigen for diagnosis of tuberculosis

Also Published As

Publication number Publication date
KR20230100972A (en) 2023-07-06

Similar Documents

Publication Publication Date Title
AU2008214852B2 (en) Peptides derived from the major allergen of ragweed (Ambrosia artemisiifolia) and uses thereof
JP2007151555A (en) Allergen protein and peptides from house dust mite and uses thereof
US20040028705A1 (en) Mutants of clostridium difficile toxin B and methods of use
JP4167075B2 (en) Inflammation-specific peptides and uses thereof
AU723494B2 (en) Mutant human growth hormones and their uses
CA2331845A1 (en) Compounds and methods for the diagnosis and treatment of ehrlichia infection
EP2149051B1 (en) Method and immune absorbents for the specific detection and absorption of celiac disease- and herpetiform dermatitis-associated antibodies
JP2004501061A (en) Fragments and antagonists of heat shock protein 60
Rihs et al. Recombinant Hev b 1: large‐scale production and immunological characterization
KR102577332B1 (en) Composition for diagnosing latent tuberculosis comprising antigen with improved antigenicity and stability
EP2384336B1 (en) A variant of mite allergen and uses thereof
CA2408344A1 (en) Compounds and methods for the diagnosis and treatment of ehrlichia infection
El Ridi et al. T and B cell reactivity to a 42-kDa protein is associated with human resistance to both schistosomiasis mansoni and haematobium
CN106606774B (en) Tuberculosis immunodiagnosis molecular marker and application thereof in preparation of vaccine
US20030124124A1 (en) Therapeutic modulation of chemokines using a helminth parasite chemokine-binding protein
US6683161B1 (en) Human ependymin
EP2199303B1 (en) Polypeptides and method for specific metering of antibodies for patients with a borrelia infection
Takai et al. Effects of double mutation at two distant IgE-binding sites in the three-dimensional structure of the major house dust mite allergen Der f 2 on IgE-binding and histamine-releasing activity
EP0597110A1 (en) Method of detecting mesitylene-resistant staphylococcus aureus, novel peptide, and dna coding for same
EP4046652A1 (en) Compositions and methods for diagnosing, treating and preventing carrion&#39;s disease
JPH11507825A (en) Protein having DNase activity
MARILLER et al. Involvement of the N-terminal part of cyclophilin B in the interaction with specific Jurkat T-cell binding sites
JPH10327881A (en) New human gene similar to secretory mouse protein sfrp-1
AU2013257437B2 (en) Peptides derived from the major allergen of ragweed (ambrosia artemisiifolia) and uses thereof
WO2021144793A1 (en) Methods for identifying anti clostridial neurotoxin compounds

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant