KR102564586B1 - 조직의 열 치료를 위한 시스템 및 방법 - Google Patents

조직의 열 치료를 위한 시스템 및 방법 Download PDF

Info

Publication number
KR102564586B1
KR102564586B1 KR1020197023890A KR20197023890A KR102564586B1 KR 102564586 B1 KR102564586 B1 KR 102564586B1 KR 1020197023890 A KR1020197023890 A KR 1020197023890A KR 20197023890 A KR20197023890 A KR 20197023890A KR 102564586 B1 KR102564586 B1 KR 102564586B1
Authority
KR
South Korea
Prior art keywords
delete delete
medical device
working fluid
tissue
cooling
Prior art date
Application number
KR1020197023890A
Other languages
English (en)
Other versions
KR20190109741A (ko
Inventor
디터 맨스타인
세이드 레자 모나자미 미랄리포우
사하르 자하니
Original Assignee
더 제너럴 하스피탈 코포레이션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 더 제너럴 하스피탈 코포레이션 filed Critical 더 제너럴 하스피탈 코포레이션
Publication of KR20190109741A publication Critical patent/KR20190109741A/ko
Application granted granted Critical
Publication of KR102564586B1 publication Critical patent/KR102564586B1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F7/00Heating or cooling appliances for medical or therapeutic treatment of the human body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F7/00Heating or cooling appliances for medical or therapeutic treatment of the human body
    • A61F7/02Compresses or poultices for effecting heating or cooling
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/203Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser applying laser energy to the outside of the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F7/00Heating or cooling appliances for medical or therapeutic treatment of the human body
    • A61F7/0053Cabins, rooms, chairs or units for treatment with a hot or cold circulating fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F7/00Heating or cooling appliances for medical or therapeutic treatment of the human body
    • A61F7/12Devices for heating or cooling internal body cavities
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00005Cooling or heating of the probe or tissue immediately surrounding the probe
    • A61B2018/00011Cooling or heating of the probe or tissue immediately surrounding the probe with fluids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00005Cooling or heating of the probe or tissue immediately surrounding the probe
    • A61B2018/00011Cooling or heating of the probe or tissue immediately surrounding the probe with fluids
    • A61B2018/00029Cooling or heating of the probe or tissue immediately surrounding the probe with fluids open
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00452Skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00577Ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F7/00Heating or cooling appliances for medical or therapeutic treatment of the human body
    • A61F2007/0054Heating or cooling appliances for medical or therapeutic treatment of the human body with a closed fluid circuit, e.g. hot water
    • A61F2007/0056Heating or cooling appliances for medical or therapeutic treatment of the human body with a closed fluid circuit, e.g. hot water for cooling
    • A61F2007/0058Heating or cooling appliances for medical or therapeutic treatment of the human body with a closed fluid circuit, e.g. hot water for cooling evaporating on or near the spot to be cooled
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F7/00Heating or cooling appliances for medical or therapeutic treatment of the human body
    • A61F2007/0059Heating or cooling appliances for medical or therapeutic treatment of the human body with an open fluid circuit
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F7/00Heating or cooling appliances for medical or therapeutic treatment of the human body
    • A61F2007/0059Heating or cooling appliances for medical or therapeutic treatment of the human body with an open fluid circuit
    • A61F2007/0063Heating or cooling appliances for medical or therapeutic treatment of the human body with an open fluid circuit for cooling
    • A61F2007/0068Heating or cooling appliances for medical or therapeutic treatment of the human body with an open fluid circuit for cooling evaporating on the spot to be cooled
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F7/00Heating or cooling appliances for medical or therapeutic treatment of the human body
    • A61F2007/0086Heating or cooling appliances for medical or therapeutic treatment of the human body with a thermostat
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F7/00Heating or cooling appliances for medical or therapeutic treatment of the human body
    • A61F2007/0095Heating or cooling appliances for medical or therapeutic treatment of the human body with a temperature indicator
    • A61F2007/0096Heating or cooling appliances for medical or therapeutic treatment of the human body with a temperature indicator with a thermometer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F7/00Heating or cooling appliances for medical or therapeutic treatment of the human body
    • A61F7/02Compresses or poultices for effecting heating or cooling
    • A61F2007/0203Cataplasms, poultices or compresses, characterised by their contents; Bags therefor
    • A61F2007/0215Cataplasms, poultices or compresses, characterised by their contents; Bags therefor containing liquids other than water
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F7/00Heating or cooling appliances for medical or therapeutic treatment of the human body
    • A61F7/02Compresses or poultices for effecting heating or cooling
    • A61F2007/0225Compresses or poultices for effecting heating or cooling connected to the body or a part thereof
    • A61F2007/0226Compresses or poultices for effecting heating or cooling connected to the body or a part thereof adhesive, self-sticking
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F7/00Heating or cooling appliances for medical or therapeutic treatment of the human body
    • A61F7/02Compresses or poultices for effecting heating or cooling
    • A61F2007/0244Compresses or poultices for effecting heating or cooling with layers
    • A61F2007/0258Compresses or poultices for effecting heating or cooling with layers with a fluid permeable layer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F7/00Heating or cooling appliances for medical or therapeutic treatment of the human body
    • A61F7/02Compresses or poultices for effecting heating or cooling
    • A61F2007/0244Compresses or poultices for effecting heating or cooling with layers
    • A61F2007/026Compresses or poultices for effecting heating or cooling with layers with a fluid absorbing layer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F7/00Heating or cooling appliances for medical or therapeutic treatment of the human body
    • A61F7/02Compresses or poultices for effecting heating or cooling
    • A61F2007/0268Compresses or poultices for effecting heating or cooling having a plurality of compartments being filled with a heat carrier
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F7/00Heating or cooling appliances for medical or therapeutic treatment of the human body
    • A61F7/02Compresses or poultices for effecting heating or cooling
    • A61F2007/0282Compresses or poultices for effecting heating or cooling for particular medical treatments or effects
    • A61F2007/029Fat cell removal or destruction by non-ablative heat treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F7/00Heating or cooling appliances for medical or therapeutic treatment of the human body
    • A61F7/12Devices for heating or cooling internal body cavities
    • A61F2007/126Devices for heating or cooling internal body cavities for invasive application, e.g. for introducing into blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F7/00Heating or cooling appliances for medical or therapeutic treatment of the human body
    • A61F7/007Heating or cooling appliances for medical or therapeutic treatment of the human body characterised by electric heating

Abstract

조직 영역에 냉각을 제공하도록 구성된 의료 장치용 시스템 및 방법이 제공된다. 의료 장치는 2-상 열 전달 공정을 통해 소정의 작동 온도로 조직 영역을 비침투성으로 또는 침투성으로 냉각시키도록 구성될 수 있다.

Description

조직의 열 치료를 위한 시스템 및 방법
관련 출원에 대한 상호-참조
본 출원은 2017 년 1 월 19 일자로 출원된 미국 특허 가출원 제 62/447,997 호, 2017 년 4 월 5 일자로 출원된 미국 특허 가출원 제 62/482,027 호, 2017 년 5 월 2 일자로 출원된 미국 특허 가출원 제 62/500,047 호, 2017 년 5 월 26 일자로 출원된 미국 특허 가출원 제 62/511,837 호, 2017 년 6 월 22 일자로 출원된 미국 특허 가출원 제 62/523,492 호, 2017 년 7 월 13 일자로 출원된 미국 특허 가출원 제 62/532,343 호 및 2017 년 8 월 4 일자로 출원된 미국 특허 가출원 제 62/541,650 호의 우선권을 주장하고 그 전체 내용은 참고로 본원에 합체되어 있다.
연방 후원 연구에 관한 진술
미적용
배경
일부 의학적 적용에서, 냉각은 원하는 의학적 절차(예: 극저온분해)를 수행하기 위해 조직 영역에 선택적으로 적용될 수 있다. 대안적으로, 냉각은 표적 조직 영역(예: 레이저 절제)에서 수행되는 열처리 절차 동안 비표적 조직을 보호하도록 구현될 수 있다.
이러한 의학적 적용에서 구현되는 종래의 냉각 시스템은 불충분한 냉각 용량을 겪고 다양한 이동 구성요소 및 외부 전원 공급 장치를 필요로 한다.
본 발명은 조직 영역에 냉각 및/또는 가열을 제공하도록 구성된 의료 장치용 시스템 및 방법을 제공한다. 의료 장치는 2-상 열전달을 지렛대 활용하여 기존의 최첨단 냉각 메커니즘(예 : 단-상 냉각, 열전 냉각, 주울-톰슨 냉각, 스프레이 냉각 등)과 비교할 때 매우 높은 냉각 용량을 제공한다. 의료 장치는 조직 영역을 소정의 온도로 비침투성으로 또는 침투성으로 냉각하도록 구성될 수 있다. 일부 비제한적인 예에서, 냉각을 제공하기 위해 의료 장치에 의해 지렛대 활용되는 2-상 열 전달은 의료 장치가 조직 영역에 가열 및 냉각을 제공하는 것 사이에서 선택적으로 전환할 수 있게 하기 위해 가열 요소와 결합될 수 있다.
일 양태에서, 본 발명은 조직 영역에 냉각을 제공하도록 구성된 의료 장치를 제공한다. 의료 장치는 베이스와 베이스 상에 배치되고 작동 유체를 수용하도록 구성된 증발 구조체를 포함한다. 증발 구조체는 베이스를 소정의 작동 온도로 냉각시키기 위해 작동 유체의 증발을 촉진시키도록 설계된다.
일 양태에서, 본 발명은 조직 영역에 냉각을 제공하도록 구성된 비침투성 의료 장치를 제공한다. 비침투성 의료 장치는 그 위에 배치된 치료면을 갖는 베이스와, 베이스의 적어도 일부와 결합하고 작동 유체를 수용하도록 구성된 다공성 기재를 포함한다. 다공성 기재는 소정의 작동 온도로 치료면을 냉각시키기 위해 작동 유체의 증발을 촉진시키도록 설계된다.
일 양태에서, 본 발명은 조직 영역에 냉각을 제공하도록 구성된 침투성 의료 장치를 제공한다. 침투성 의료 장치는 외벽과, 그 위에 적어도 하나의 채널을 가지며, 그에 따라 축방향으로 연장되는 내벽을 포함한다. 적어도 하나의 채널은 내부에 배치된 작동 유체의 증발을 촉진하여 외면을 소정의 작동 온도로 냉각시키도록 설계된다.
일 양태에서, 본 발명은 부분 치료 패턴이 적용된 조직 영역에 냉각을 제공하도록 구성된 비침투성 의료 장치를 제공한다. 비침투성 의료 장치는 부분 치료 패턴을 수용하도록 내부에 배치된 복수의 개구들을 형성하는 베이스와, 베이스 상에 배치되고 작동 유체를 수용하도록 구성된 복수의 채널들을 포함한다. 복수의 채널들은 베이스를 소정의 작동 온도로 냉각시키기 위해 작동 유체의 증발을 촉진시키도록 설계된다.
일 양태에서, 본 발명은 조직 영역에 냉각을 제공하도록 구성된 비침투성 의료 장치를 제공한다. 비침투성 의료 장치는 상단 플레이트, 접촉면을 포함하는 하단 플레이트, 및 작동 유체를 수용하도록 구성된 상단 플레이트와 하단 플레이트 사이에 배치된 증발 구조체를 포함한다. 증발 구조체는 접촉면을 냉각시키기 위해 작동 유체의 증발을 촉진시키도록 구성된다. 비침투성 의료 장치는 상단 플레이트, 하단 플레이트 및 증발 구조체를 통해 연장되는 개구를 포함한다.
일 양태에서, 본 발명은 조직 영역에 냉각을 제공하도록 구성된 비침투성 의료 장치를 제공한다. 비침투성 의료 장치는 입구 포트 및 출구 포트를 포함하는 투명한 상단 플레이트, 조직 영역과 결합하도록 구성된 하면을 포함하는 투명한 하단 플레이트, 및 입구 포트 및 출구 포트와 유체 교통하는 증발 구조체를 포함한다. 입구 포트는 작동 유체를 수용하도록 구성되고, 증발 구조체는 작동 유체의 증발을 촉진하여 원하는 조직 영역을 소정의 온도로 냉각시키도록 구성된다.
일 양태에서, 본 발명은 조직 영역에 냉각을 제공하도록 구성된 비침투성 의료 장치를 제공한다. 비침투성 의료 장치는 그 위에 치료면이 배열된 응축 플레이트 및 입구 포트 및 출구 포트를 갖는 베이스와, 내부에 증발 구조체가 배치된 증발 플레이트를 포함한다. 응축 플레이트는 입구 포트와 출구 포트 사이에서 연장되는 유동 경로를 포함하고 냉각 유체를 수용하도록 구성되며, 증발 구조체는 작동 유체를 수용하고 작동 유체의 증발을 촉진하여 치료면을 소정의 작동 온도로 냉각시키도록 구성된다.
일 양태에서, 본 발명은 조직 영역을 열처리하도록 구성된 의료 장치를 제어하는 방법을 제공한다. 상기 방법은 의료 장치를 조직 영역과 결합시키는 단계, 조직 영역의 표면을 따라 하나 이상의 위치에서 온도를 측정하는 단계, 상기 조직 영역의 표면을 따라 하나 이상의 위치에서 측정된 온도에 기초하여 상기 조직 영역 내의 하나 이상의 깊이에서 온도 프로파일을 결정하는 단계, 및 상기 조직 영역 내의 상기 하나 이상의 깊이에서 프로파일링된 상기 결정된 온도에 기초하여 상기 의료 장치의 작동 파라미터를 조정하는 단계를 포함한다.
본 발명의 상기 및 다른 양태 및 장점은 다음의 설명으로부터 명백해질 것이다. 설명에서, 본 명세서의 일부를 형성하고 본 발명의 바람직한 실시예를 예시로 도시한 첨부 도면을 참조한다. 그러나, 이러한 실시예는 반드시 본 발명의 전체 범위를 나타내는 것은 아니며, 따라서 본 발명의 범위를 해석하기 위해서는 청구범위를 참조해야 한다.
본 발명은 이하의 상세한 설명을 고려할 때 보다 잘 이해되고 상술한 것 이외의 특징, 양태 및 장점은 명백해질 것이다. 이러한 상세한 설명은 다음의 도면을 참조한다.
도 1은 본 발명의 일 양태에 따른 의료 장치의 개략도이다.
도 2는 본 발명의 일 양태에 따른 열원과 교통하는 의료 장치의 개략도이다.
도 3은 본 발명의 일 양태에 따라 유체 공급원과 교통하는 의료 장치의 개략도이다.
도 4는 본 발명의 일 양태에 따른 유체 공급원 및 유체 제어 장치와 교통하는 의료 장치의 개략도이다.
도 5는 본 발명의 일 양태에 따른 유체 공급원 및 콘덴서와 교통하는 의료 장치의 개략도이다.
도 6은 본 발명의 일 양태에 따른 유체 공급원, 유체 제어 장치 및 콘덴서와 교통하는 의료 장치의 개략도이다.
도 7은 본 발명의 일 양태에 따른 유체 공급원, 저장소 및 콘덴서와 교통하는 의료 장치의 개략도이다.
도 8은 본 발명의 일 양태에 따른 패턴화된 증발 구조체를 갖는 의료 장치의 개략도이다.
도 9는 본 발명의 일 양태에 따른 타일 의료 장치의 개략도이다.
도 10은 본 발명의 일 양태에 따른 복수의 채널들을 포함하는 의료 장치의 개략도이다.
도 11은 본 발명의 일 양태에 따른 다공성 기재를 포함하는 의료 장치의 개략도이다.
도 12는 본 발명의 일 양태에 따른 개방 회로를 갖는 비침투성 의료 장치의 상부, 전방, 우측 등각도이다.
도 13은 도 12의 비침투성 의료 장치의 하부, 후방, 좌측 등각도이다.
도 14a는 본 발명의 일 양태에 따른 폐쇄 회로를 구비한 비침투성 의료 장치의 콘덴서 측의 평면도이다.
도 14b는 도 14a의 비침투성 의료 장치의 콘덴서 측의 저면도이다.
도 15는 도 14a의 비침투성 의료 장치의 증발 측의 상부 정면도이다.
도 16은 도 14a의 비침투성 의료 장치의 조립시의 평면도이다.
도 17은 도 14a의 비침투성 의료 장치의 조립시의 저면도이다.
도 18은 액체 저장 탱크로부터 유체를 흡입하는 조직 영역에 증발기가 적용된 비침투성 의료 장치의 개략도이다.
도 19는 가요성 커버 및 진공을 갖는 도 18의 비침투성 의료 장치의 개략도이다.
도 20은 접착층, 부동층 및 장치와 조직 표면 사이에 적용된 제거 가능한 시트를 갖는 도 18의 비침투성 의료 장치의 개략도이다.
도 21은 접착층, 부동층, 및 장치와 조직 표면 사이에 적용된 제거 가능한 시트를 구비한 도 18의 비침투성 의료 장치의 개략도이며, 여기서 가열기는 제거 가능한 시트 안으로 통합된다.
도 22는 접착층, 부동층, 및 장치와 조직 표면 사이에 적용된 제거 가능한 시트를 갖는 도 18의 비침투성 의료 장치의 개략도이며, 여기서 가열기는 접착층 및 부동층 사이에 통합된다.
도 23은 본 발명의 일 양태에 따른 비침투성 의료 장치의 오목한 치료면의 개략도이다.
도 24는 본 발명의 일 양태에 따른 복수의 피크들 및 밸리들을 갖는 비침투성 의료 장치의 치료면의 개략도이다.
도 25는 본 발명의 일 양태에 따른 복수의 돌출부들을 갖는 비침투성 의료 장치의 치료면의 개략도이다.
도 26은 본 발명의 일 양태에 따른 비침투성 의료 장치의 말발굽 형태의 치료면의 개략도이다.
도 27은 본 발명의 일 양태에 따른 비침투성 의료 장치의 초승달 형상의 치료면의 개략도이다.
도 28은 본 발명의 일 양태에 따른 비침투성 의료 장치의 환형 치료면의 개략도이다.
도 29는 본 발명의 일 양태에 따라 리세스를 갖는 조직 영역을 치료하는 비침투성 의료 장치의 개략도이다.
도 30은 본 발명의 일 양태에 따라 돌출부를 갖는 조직 영역을 치료하는 비침투성 의료 장치의 개략도이다.
도 31은 본 발명의 일 양태에 따른 침투성 의료 장치의 개략도이다.
도 32는 도 31의 침투성 의료 장치의 단면 A-A의 확대도이다.
도 33은 라인 33-33을 따라 취한 도 31의 침투성 의료 장치의 단면도이다.
도 34는 라인 34-34를 따라 취한 도 31의 침투성 의료 장치의 단면도이다.
도 35는 라인 35-35를 따라 취한 도 31의 침투성 의료 장치의 단면도이다.
도 36은 본 발명의 일 양태에 따른 부분 의료 분야에서 사용하기 위한 비침투성 의료 장치 어레이의 개략도이다.
도 37은 도 36의 비침투성 의료 장치 어레이의 측면도이다.
도 38은 본 발명의 일 양태에 따른 부분 의료 분야에서 사용하기 위한 다른 비침투성 의료 장치 어레이의 상부, 전방, 우측 등각도이다.
도 39는 도 38의 비침투성 의료 장치 어레이의 측면도이다.
도 40은 본 발명의 일 양태에 따른 투명한 비침투성 의료 장치의 상부, 전방, 우측 등각도이다.
도 41은 본 발명의 일 양태에 따라 조직 영역을 치료하는 조립된 도 40의 투명한 비침투성 의료 장치의 개략도이다.
도 42는 조직 영역 상에 배치된 냉각 장치의 초기 온도를 도시하는 그래프이다.
도 43은 냉각이 냉각 장치에 의해 적용되는 동안 조직 영역 내의 등온 층을 도시하는 그래프이다.
도 44는 본 발명의 일 양태에 따른 비침투성 온도 모니터링 및 제어 시스템의 개략도이다.
도 45는 도 44의 위치 1 및 5에서 시간의 함수로서 온도를 도시하는 그래프이다.
도 46은 도 44의 위치 2 및 6에서 시간의 함수로서 온도를 도시하는 그래프이다.
도 47은 도 44의 위치 3 및 7에서 시간의 함수로서 온도를 도시하는 그래프이다.
도 48은 도 44의 위치 4 및 8에서 시간의 함수로서 온도를 도시하는 그래프이다.
도 49는 도 44의 위치 5-8의 온도의 보간을 도시하는 그래프이다.
도 50은 도 44의 위치 1-4의 온도의 보간을 도시하는 그래프이다.
도 51은 도 49 및 도 50의 보간 날짜에 기초한 0 ℃ 등온선에 대한 x, y 쌍을 도시하는 그래프이다.
도 52는 도 49 및 도 50의 보간 날짜에 기초하여 0 ℃ 등온선으로 도시되고 결정될 수 있는 10 ℃ 등온선의 x, y 쌍을 도시하는 그래프이다.
도 53은 2-상 냉각을 사용하여 비침투성으로 냉각된 모의 조직 영역 내로의 깊이 변화에 따른 시간의 함수로서 온도를 측정하기 위해 사용된 시험 셋업의 개략도이다.
도 54는 열전기 냉각 및 2-상 냉각을 위한 도 53의 모의 조직 셋업 내의 깊이 변화에 따른 시간의 함수로서 온도를 도시하는 그래프이다.
도 55는 본 발명에 따른 비침투성 의료 장치에 의해 레이저 처리되고 냉각되는 조직 영역 내 0.059 초 후의 3 차원 온도 프로파일을 나타내는 그래프이다.
도 56은 본 발명에 따른 비침투성 의료 장치에 의해 레이저 처리되고 냉각되는 조직 영역 내의 0.073 초 후의 3 차원 온도 프로파일을 나타내는 그래프이다.
도 57은 도 55 및 도 56에 도시된 냉각 처리를 위해 레이저 빔으로부터 방사상으로 거리 변화에 따른 시간의 함수로서 온도를 도시하는 그래프이다.
도 58은 레이저 기반 의료 치료 동안 투명한 비침투성 의료 장치의 냉각 성능을 모델링하는데 사용되는 셋업을 도시한다.
도 59는 레이저 기반 치료 동안 종래의 냉각 장치의 냉각 성능을 모델링하는데 사용된 셋업을 도시한다
도 60은 도 58의 비침투성 의료 장치 및 도 59의 종래의 냉각 장치에 대한 레이저 기반 치료 중에 냉각이 시작된 후의 2 초에 피부 표면의 온도를 도시하는 그래프이다.
본원에서 "상류" 및 "하류"라는 용어의 사용은 유체 유동에 대한 방향을 나타낸다. "하류"라는 용어는 유체 유동의 방향에 해당하는 반면, "상류"라는 용어는 유체 유동의 방향과 반대되는 방향을 의미한다.
도 1은 본 발명의 일 양태에 따른 의료 장치(100)의 비제한적인 예를 도시한다. 의료 장치(100)는 비침투성으로(예: 조직 영역의 표면에서) 또는 침투성으로(예: 조직 영역 내의 소정 깊이에서) 조직 영역 또는 조직 영역들의 어레이에 냉각을 제공하도록 구성될 수 있다. 의료 장치(100)는 베이스(102) 및 증발 구조체(104)를 포함한다. 베이스(102)는 조직 영역과 접촉하여 조직 영역으로부터 열의 제거를 용이하게 함으로써 조직 영역을 소정의 온도로 냉각하도록 구성된다. 일부 비제한적인 예에서, 의료 장치(100)는 시간의 함수로서 조직 영역을 원하는 온도 프로파일로 냉각하도록 구성될 수 있다.
일부 비제한적인 예에서, 베이스(102)는 조직 영역의 표면과 연속적으로 접촉하여 표면에서 조직 영역을 냉각시키고 및/또는 조직 영역 내로 소정 깊이로 냉각하도록 설계된 비침투성 장치일 수 있다. 일부 비제한적인 예에서, 베이스(102)는 조직 영역 상에 및/또는 조직 영역 내로 소정의 깊이로 부분 냉각을 제공하기 위해 원하는 부분 패턴으로 조직 영역의 표면에 이산적으로 접촉하도록 설계된 비침투성 장치일 수 있다. 일부 비제한적인 예에서, 베이스(102)는 부분 가열 영역들 사이의 비표적 조직에 대한 손상을 최소화하기 위해 부분 가열 패턴에 인접하거나 또는 주변의 열 관리(즉, 냉각)를 제공하도록 설계된 비침투성 장치일 수 있다. 일부 비제한적인 예에서, 베이스(102)는 조직 영역 또는 조직 영역의 어레이 내로 침투하여, 조직 영역(들)에 소정의 깊이 또는 깊이의 범위로 냉각을 제공하도록 구성된 침투성 장치일 수 있다.
일부 비제한적인 예에서, 증발 구조체(104)는 베이스(102)와 접촉하거나 일체형일 수 있다. 증발 구조체(104)는 2-상 열 전달 공정을 통한 조직 영역의 냉각을 용이하게 하기 위해 작동 유체를 수용하도록 구성된다. 증발 구조체(104)는 하나 이상의 공동 및/또는 내부에 형성된 하나 이상의 유동 경로를 포함하도록 설계되고, 각각은 작동 유체로 채워지도록 구성된다. 일단 작동 유체로 충전되면, 모세관 및 짧은 범위 힘의 복합 효과로 인해 각각의 공동 또는 경로 내에 액체 메니스커스(liquid menisci)가 형성된다. 액체 메니스커스는 액체의 큰 증발 엔탈피 때문에 증발 구조체(104) 및 베이스(102)로부터 상당한 열 제거 전위를 제공하는 증발 부위로서 작용한다. 따라서, 의료 장치(100)는 종래의 의료용 냉각 기술(예: 단상 냉각, 열전 냉각, 주울-톰슨 냉각 등)보다 몇 배 더 큰 열 제거 용량을 제공하는 2-상 열 전달 공정을 통해 조직 영역에 냉각을 제공하도록 작동 가능하다.
도시된 비제한적인 예에서, 증발 구조체(104)는 유체의 연속적인 유동을 수용할 필요가 없을 수 있다. 오히려, 증발 구조체(104)는 소정량의 작동 유체로 채워지거나 충전될 수 있다. 대안적으로 또는 추가적으로, 증발 구조체(104)는 초기에 작동 유체의 공급원과 유체 교통될 수 있고, 증발 구조체(104)의 설계에 의해 제공되는 모세관 힘은 작동 유체가 외부에서 유도된 압력 차동장치(예: 펌프)의 필요성없이 증발 구조체(104) 내로 흐르게 한다. 일부 비제한적인 예에서, 증발 구조체(104)는 높은 표면 장력(예: 단일 층의 그래파이트 또는 그래 핀)을 갖는 물질로 코팅될 수 있다. 일단 충전되면, 증발 구조체(104)는 작동 유체의 공급원과의 유체 교통으로부터 제거될 수 있다. 일단 베이스(102)가 조직 영역과 접촉하게 되면, 증발 구조체(104)는 작동 유체의 증발을 개시하고 유지하도록 설계될 수 있다. 즉, 조직 영역으로부터 베이스(102)를 통해 증발 구조체(104)로 전달된 열은 작동 유체의 증발을 개시 및 유지하고 조직 영역의 냉각을 개시 및 유지하기에 충분하다. 따라서, 의료 장치(100)는 그 내부의 작동 유체의 증발을 용이하게 하기 위해 외부 전원 또는 열원의 요구없이 조직 영역에 냉각을 제공하도록 작동 가능하다. 일부 비제한적인 예들에서, 이것은 의료 장치(100)가 수동 장치로서 작동할 수 있게 하고(즉, 외부 에너지 원을 필요로 하지 않고 작동할 수 있게 하고), 작동을 위해 와이어, 전원 공급 장치 등을 필요로 하는 종래의 의료용 냉각 시스템에 비해 증가된 이동성을 가질 수 있게 한다. 대안적으로 또는 추가적으로, 증발 구조체(104)는 의료 장치(100)의 방위에 상관없이 증발 구조체(104) 내에서 모세관 힘이 작동 유체를 유지하도록 설계될 수 있다. 즉, 일단 충전되면 증발 구조체(104) 내의 모세관 힘은 중력보다 커서 증발 구조체(104) 내의 작동 유체의 누설 또는 부분 건조 영역의 위험없이 임의의 방향으로 의료 장치(100)가 사용될 수 있게 한다.
의료 장치(100)의 열역학적 작동으로 인해, 조직 영역을 원하는 시간 동안 원하는 온도로 냉각시키는데 필요한 작동 유체의 양이 알려져 있다. 즉, 증발 구조체(104)로부터의 작동 유체의 증발 속도는 조직 영역으로부터의 열 입력에 기초하여 알 수 있다. 이러한 방식으로, 의료 장치(100)는 원하는 시간 동안 원하는 양의 냉각을 제공하도록 조정될 수 있다. 대안적으로 또는 추가적으로, 작동 유체가 재충전될 필요가 있을 때 및/또는 상이한 작동 유체가 조직 영역의 온도를 제어하기 위해 증발 구조체(104)에 전달될 때를 결정하기 위해 작동 유체의 알려진 양이 이용될 수 있다.
의료 장치(100)는 다양한 상이한 작동 유체로 작동될 수 있다. 예를 들어, 물, 액체 탄화수소 또는 알콜, 할로겐화 탄화수소, 암모니아, 이산화탄소 등이 있다. 일부 비제한적인 예에서, 작동 유체는 특정 의학적 적용, 원하는 열교환 속도 및/또는 작동 온도의 범위에 기초하여 선택될 수 있다. 증발 공정이 실질적으로 등온이기 때문에, 바람직한 온도 범위 및 열 전달 특성은 작동 유체의 열적 특성에 의해 좌우될 수 있다. 즉, 작동 유체의 비등점은 주어진 압력 및 온도에 대해 알려져 있고, 따라서 의료 장치(100)에 의해 달성되는 평형 온도는 작동 유체의 화학적 조성에 적어도 부분적으로 기초하여 결정될 수 있다. 하기 표 1은 의료 장치(100)의 특성 및 작동 특성의 다양한 비제한적인 예를 제공한다.
의료 장치(100)의 특성 및 작동 특징
작동 범위 -220℃ 내지 200℃
작동 압력 0.01bar 내지 10 bar
작동 유체 탄화수소, 수소화불화탄소, 수소불화올레핀, 알콜, 물, 수용액, 노벨 가스, 이원 혼합물, 나노입자 함유 유체, 극저온 유체: N2, O2
기재 물질 금속, 폴리머, 복합 물질, 비금속 원소 E.G., 구리, 알루미늄, 흑연 등
증발 구조체
미세홈, 부분 패턴 마이크로채널, 나노-구체
예를 들어, 알루미늄, 구리, 탄소, 강 등
증발 다공 크기 100nm-2000㎛
코팅부 습윤 또는 비습윤 코팅, 금, 테플론, 양극처리된 나노층, 나노 구조의 코팅
유체 유동 제어 열 모세관, 압전 전기, 팽창 밸브, 모세관, 전기 삼투 구동 유동, 기전력
온도 제어 열전쌍, RTD, 매립형 접점 마이크로-와이어
원하는 조직 영역을 냉각시키기 위해 의료용 냉각 장치(100)를 구현할 때, 온도 변화에 대한 구조적 역학 반응과 결합된 원하는 조직 영역의 열적 특성은 에너지 기반 의학 적용에서 역할을 할 수 있다. 예를 들어, 극저온 분해의 경우, 물 및 지방 함유 조직은 물 및 지방의 온도가 물 및/또는 지방의 융점 이하로 떨어짐에 따라 상 변화를 겪을 수 있다. 이러한 상 변화(즉, 결정화)는 조직의 열적 특성 뿐 아니라 냉각 공정 동안의 에너지 균형에서의 두 가지 사건을 동반한다. 첫째, 고상의 열전도가 액상보다 높기 때문에 동결된 전방이 원하는 조직 영역의 비동결 영역으로 이동함에 따라 전도 열 전달이 크게 향상될 수 있다. 예를 들어, 물은 액상의 물과 비교할 때 고상(즉, 얼음)에서 약 4 배 더 높은 열전도를 갖는다. 이러한 열전도의 증가는 열 제거 용량을 초과하지 않는 한, 그리고 냉각 표면으로부터의 거리가 열 유동에 큰 저항을 부과하지 않는 한 가속 효과의 케스케이드(cascade)를 유도할 수 있다. 둘째로, 조직의 동결 및 비동결 섹션들 사이의 계면에서 방출된 상 변화의 잠열은 원하는 조직 영역에서 제거되어야 하는 총 열에 상당한 부하를 추가할 수 있다. 냉각 용량이 제한되어 있는 경우, 냉각 공정은 방열될 수 있는 최대 열 유동과 일치하도록 느리게 진행된다.
상술한 조직의 이러한 동적 특성은 원하는 조직 영역으로부터 저온 표면으로의 열 유동이 냉각 효과를 제공하기 위해 사용되는 메커니즘의 용량에 의해 제한되지 않는 상황에서만 인지될 수 있다. 의료 장치(100)에 의해 지렛대 활용되는 2-상 냉각은 종래의 냉각 메커니즘(예: 단상 냉각, 열전 냉각, 주울-톰슨 냉각, 스프레이 냉각 등)과 비교할 때 우수한 냉각 성능 및 현저히 증가된 냉각 용량을 제공한다. 의료 장치(100)의 극도로 높은 냉각 용량은 원하는 조직 영역의 동적 열적 거동을 장점으로 전환하여, 동결된 전방의 진행을 가속화시키고, 단위 시간당 조직의 단위 체적로부터 제거된 에너지를 증가시킴으로써 원하는 조직 영역에 대한 열 손상의 효과를 증진시키고, 원하는 의료 절차의 지속 기간을 줄이고, 전체 의료 장치(100)의 풋 프린트를 축소하고, 그 총 중량을 현저하게 감소시키며, 인접/비 표적 조직에 대한 바람직하지 않은 손상의 위험을 감소시키고, 수동 작동으로 인한 의료 장치(100)의 신뢰성을 개선하고, 냉각될 수 있는 유효 범위(저온 표면으로부터의 거리)를 증가시키며, 온도 레벨의 제어 및 유지시 시간적 및 공간적 정확도를 향상시킬 수 있다.
일부 비제한적인 예에서, 의료 장치(100)는 냉각 파를 원하는 조직 영역으로 유도함으로써 시간 냉각 접근법의 함수로서 계단식, 주기적 또는 소정의 온도 프로파일을 제공하도록 구성될 수 있다. 예를 들어, 조직 영역이 -10 ℃로 냉각될 필요가 있는 경우, 의료 장치(100)는 -5 ℃의 작동 온도에서 시작하여 제 1 소정량의 시간 동안 거기에 머물도록 구성될 수 있다. 제 1 소정량의 시간 후에, 의료 장치(100)는 제 2 소정량의 시간 동안 -15 ℃의 작동 온도로 전이하도록 구성될 수 있다. 예를 들어, 시스템의 작동 압력을 약간 변경하거나 작동 유체 및/또는 작동 유체의 유량을 약간 변경함으로써 -5 ℃ 내지 -15 ℃ 사이의 작동 온도 변이가 촉진될 수 있다 . 일단 제 2 소정량의 시간이 경과하면, 의료 장치(100)는 제 3 소정량의 시간 동안 -5 ℃의 작동 온도로 다시 전이하도록 구성될 수 있다. 일부 비제한적인 예에서, 의료 장치(100)는 주어진 절차의 총 시간에 도달할 때까지 -5 ℃, -15 ℃ 및 -5 ℃의 작동 온도 사이에서 주기적으로 전이를 계속할 수 있다. 작동 온도에서의 계단식 또는 주기적 전이는 의료 장치(100)가 일정한 -10 ℃에서 냉각을 제공하는 것과 비교할 때, 조직 영역을 원하는 -10 ℃로 보다 효과적으로 냉각시키고 보다 짧은 시간에 원하는 -10 ℃ 온도에 도달하게 할 수 있다.
비제한적인 구성에 따라, 의료 장치(100)의 사용 또는 사용 방법은 수술 또는 치료법에 의한 인간 또는 동물 신체의 치료 단계를 포함하지 않는다. 본원에 기술된 장치를 사용하는 사람의 기술에는 의사의 기술이 없을 수도 있고 의도된 치료가 미적 이유로 오히려 치료받는 사람의 질병으로 인해 동기 부여될 수 없다는 점에 유의해야 한다.
일부 비제한적인 예에서, 흡인 장치는 조직 영역을 베이스(102)에 접착하도록 구현될 수 있다. 흡인 장치는 조직 영역을 베이스(102) 상으로 흡인하기 위해, 대기압보다 낮은 압력을 발생시킬 수 있는 진공 펌프 또는 다른 장치의 형태일 수 있다.
도 2는 본 발명의 일 양태에 따른 의료 장치(100)의 다른 비제한적인 예를 도시한다. 도 2에 도시된 바와 같이, 의료 장치(100)는 열원(106)을 포함할 수 있다. 일부 비제한적인 예에서, 열원(106)은 저항성 가열기, 베이스(102)와 조직 영역 사이에 배치된 얇은 투명한 가열기, 열전 가열기, 마이크로파 가열기, 전자기 가열기(예: 적외선), 초음파 가열기, 무선 주파수 가열기 등일 수 있다. 일부 비제한적인 예에서, 열원(106)은 베이스(102)로부터 외부에 위치한 다른 구성요소(예: 레이저)로부터의 폐열을 지렛대 활용할 수 있다.
열원(106)은 베이스(102) 및/또는 조직 영역에 열을 선택적으로 가하도록 구성될 수 있다. 일부 비제한적인 예에서, 열원(106)은 베이스(102)의 선택적 가열을 용이하게 하기 위해 베이스(102)에 통합될 수 있다. 일부 비제한적인 예에서, 열원(106)은 베이스(102)로부터 원격에 그리고 베이스(102) 및/또는 조직 영역과 열 교통하게 위치할 수 있다. 작동시, 의료 장치(100)는 주어진 의료 적용을 위해 조직 영역을 냉각시키는데 사용될 수 있고, 열원(106)은 차후에 조직 영역 및/또는 인접한 조직 영역을 대략 실온으로 다시 가열할 수 있다. 비제한적인 일부 적용 예에서, 의료 장치(100)는 조직 영역의 적어도 일부(예: 조직 영역의 표면)를 동결시킬 수 있고, 열원(106)은 베이스(102)와 조직 영역의 표면 사이의 고착상태를 방지하는데 사용될 수 있다. 예를 들어, 얇은 투명한 열원(106)이 베이스(102)와 조직 영역의 표면 사이에 배치되어, 원하는 냉각이 적용된 후에 조직 영역의 표면으로부터 의료 장치(100)의 신속한 제거를 용이하게 할 수 있다.
도 3은 본 발명의 일 양태에 따른 의료 장치(100)의 다른 비제한적인 예를 도시한다. 도 3에 도시된 바와 같이, 증발 구조체(104)는 유체 공급원(108)과 유체 교통할 수 있다. 유체 공급원(108)은 증발 구조체(104)에 공급될 수 있는 작동 유체의 공급원을 포함할 수 있다. 일부 비제한적인 예에서, 유체 공급원(108)은 작동 유체의 비가압원(즉, 대략 대기압에서)일 수 있다. 이러한 비제한적인 예에서, 유체 공급원(108)과 증발 구조체(104) 사이의 유체 접촉은 증발 구조체(104)에 작동 유체를 공급하는 모세관 힘을 유도하기에 충분할 수 있다. 일부 비제한적인 예에서, 유체 공급원(108)은 유체 공급원(108)과 증발 구조체(104) 사이의 압력 강하를 유도하여 작동 유체를 증발 구조체(104)에 공급하도록 구성될 수 있다. 비제한적인 예에서, 유체 공급원(108)은 [예를 들어, 증발 구조체(104)가 더 많은 작동 유체를 필요로 한다고 결정될 때] 증발 구조체(104)로 작동 유체를 선택적으로 공급하도록 구성될 수 있다.
도 4는 본 발명의 일 양태에 따른 의료 장치(100)의 다른 비제한적인 예를 도시한다. 도 4에 도시된 바와 같이, 의료 장치(100)는 유체 공급원(108) 및/또는 증발 구조체(104)와 교통하는 유체 제어 장치(110)를 포함할 수 있다. 일부 비제한적인 예에서, 유체 제어 장치(110)는 유체 공급원(108)과 증발 구조체(104) 사이의 유체 유동의 방향, 또는 작동 유체의 유량을 제어하도록 구성될 수 있다. 예를 들어, 유체 제어 장치(110)는 유체가 유체 공급원(108)으로부터 증발 구조체(104)로 유동하는 것을 허용하도록 구성된 체크 밸브의 형태일 수 있다.
일부 비제한적인 예에서, 유체 제어 장치(110)는 유체 공급원(108)으로부터 증발 구조체(104)로 제공되는 작동 유체의 압력을 제어하도록 구성될 수 있다. 예를 들어, 유체 제어 장치(110)는 증발 구조체(104)로 흐르는 작동 유체의 압력을 선택적으로 증가시키도록 구성된 일회용 충전 카트리지의 형태일 수 있다. 이러한 방식으로, 유체 제어 장치(110)는 증발 구조체(104) 내의 작동 유체의 압력을 변화시킴으로써 의료 장치(100)에 의해 온도 출력을 제어하는데 사용될 수 있다. 대안적으로 또는 추가적으로, 유체 제어 장치(110)는 필요에 따라 작동 유체의 압력을 증가 또는 감소시키도록 구성된 압력 조절기를 포함할 수 있다.
일부 비제한적인 예에서, 유체 제어 장치(110)는 유체 공급원(108)과 증발 구조체(104) 사이의 유체 교통을 선택적으로 제공하도록 구성될 수 있다. 예를 들어, 유체 제어 장치(110)는 조직 영역의 냉각을 활성 및 비활성시키기 위하여 유체 공급원(108)과 증발 구조체(104) 사이에 선택적으로 유체 교통을 제공하도록 구성된 유체/오프 밸브의 형태일 수 있다. 본원에 기술된 유체 제어 장치(100)의 다양한 형태가 결합될 수 있고, 의료 장치(100)는 설명된 기능 중 하나만의 사용에 제한되지 않는다는 것을 이해해야 한다.
도 5는 본 발명의 일 양태에 따른 의료 장치(100)의 다른 비제한적인 예를 도시한다. 도 5에 도시된 바와 같이, 의료 장치(100)는 증발 구조체(104)와 유체 교통하는 콘덴서(112)를 포함할 수 있다. 콘덴서(112)는 증발 구조체(104)로부터 흐르는 증발된 작동 유체의 응축을 용이하게 하도록 구성될 수 있다. 일부 비제한적인 예에서, 콘덴서(112)는 응축을 달성하기 위해 작동 유체에 충분한 양의 열 제거 또는 소산을 제공하도록 구성될 수 있다. 콘덴서(112)는 작동 유체를 회수하여 이를 유체 공급원(108)에 제공하기 위해 유체 공급원(108)과 유체 교통할 수 있다. 다른 비제한적인 예에서, 콘덴서(112)는 하기 기술되는 바와 같이, 응축된 작동 유체를 저장소에 전달하도록 구성될 수 있다.
도 6은 본 발명의 하나의 비제한적인 예에 따른 의료 장치(100)의 다른 비제한적인 예를 도시한다. 도 6에 도시된 바와 같이, 유체 제어 장치(110)는 유체 공급원(108)의 하류 및 증발 구조체(104)의 하류의 작동 유체와 원격으로 유체 교통[즉, 유체 공급원(108)과 직렬로 정렬되지 않음]될 수 있다. 이 구성은 유체 제어 장치(110)가 증발 섹션(104)으로 흐르는 작동 유체의 압력을 선택적으로 제어[예: 의료 장치(100)에 의해 제공되는 냉각 온도를 선택적으로 제어] 및/또는 증발 구조체(104)를 떠나는 작동 유체의 압력을 선택적으로 제어[예: 증발된 작동 유체의 응축을 선택적으로 제어]할 수 있게 한다.
도 7은 본 발명의 일 양태에 따른 의료 장치(100)의 다른 비제한적인 예를 도시한다. 도 7에 도시된 바와 같이, 증발 구조체(104)는 유체 공급원(108), 콘덴서(112) 및 저장소(114)와 유체 교통할 수 있다. 일부 비제한적인 예에서, 저장소(114)는 작동 유체를 저장하는 대략 대기압의 탱크 또는 용기일 수 있다. 일부 비제한적인 예에서, 저장소(114)는 작동 유체를 저장하는 대기압보다 높거나 낮은 탱크 또는 용기일 수 있다. 유체 공급원(108)은 저장소(114)로부터 증발 구조체(104)로 소정의 압력 및 유량으로 작동 유체를 공급하도록 구성될 수 있다. 일부 비제한적인 예에서, 작동 유체는 콘덴서(112)를 통해 유체 공급원(108)으로부터 증발 구조체(104)로 그리고 다시 저장소(114)로 연속적으로 유동할 수 있다. 일부 비제한적인 예에서, 작동 유체는 필요할 때 증발 구조체(104)로 선택적으로 제공될 수 있다.
의료 장치(100)의 열적 및 열역학적 특성은 의료 장치(100)가 가해진 열 입력에 기초하여 자체 적응되거나 또는 자체 조절되도록 한다. 즉, 증발 구조체(104) 내에서 증발되고 이어서 콘덴서(112)에 의해 응축되는 작동 유체의 양은 조직으로부터 의료 장치(100)로의 열 입력에 비례할 수 있다. 이러한 방식으로, 의료 장치(100)는 충분일 양의 작동 유체를 저장소(114) 및 유체 공급원(108)에 제공하기 위해 작동 유체의 증발 및 후속 응축의 양을 자체적으로 조절할 수 있다.
도 8은 본 발명의 일 양태에 따른 의료 장치(100)의 다른 비제한적인 예를 도시한다. 도 8에 도시된 바와 같이, 증발 구조체(104)는 패턴화된 증발 구조체(118)의 형태일 수 있다. 패턴화된 증발 구조체(118)는 조직 영역에 변화된 열 플럭스를 갖는 냉각 패턴을 제공하도록 구성될 수 있다. 일부 비제한적인 예에서, 패턴화된 증발 구조체(118)의 기계적 구조는 의료 장치(100)에 의해 제공된 열 방출 플럭스를 공간적으로 변화시키도록 조정될 수 있다. 예를 들어, 패턴화된 증발 구조체(118)의 다공성은 의료 장치(100)를 가로질러 열 제거 플럭스 또는 용량을 공간적으로 변화시키도록 설계될 수 있다. 대안적으로 또는 추가적으로, 베이스(102)의 물질, 베이스(102) 또는 패턴화된 증발 구조체(118)의 코팅, 및/또는 베이스(102)와 조직 영역 사이에 도포된 외부 코팅 영역은 냉각 패턴을 형성하도록 의료 장치(100)의 열 방출 플럭스 또는 프로파일을 공간적으로 변화시키도록 설계될 수 있다. 하나의 비제한적인 예에서, 부동 코팅 또는 물질이 의료 장치(100)의 냉각 효과로부터 조직 영역 내의 특정 영역을 보호하기 위해(예: 동결에 대한 보호를 제공하기 위해) 베이스(102)와 조직 영역 사이에 도포될 수 있다.
일부 비제한적인 예에서, 의료 장치(100)는 베이스(102)를 따라 공간적으로 변하는 작동 온도로 작동하도록 구성될 수 있다. 예를 들어, 베이스(102)는 베이스(102)의 중심선으로부터 베이스(102)의 제 1 및 제 2 에지들로 온도가 증가하는 대칭 작동 온도 프로파일을 형성할 수 있다. 일부 비제한적인 예에서, 베이스(102)는 베이스(102)의 중심선으로부터 베이스의 제 1 및 제 2 에지까지 온도가 감소하는 대칭 작동 온도 프로파일을 형성할 수 있다. 일부 비제한적인 예에서, 베이스(102)는 원하는 대로 임의의 기능적 형태에 따르는 변화된 작동 온도 프로파일을 형성할 수 있다.
도 9는 본 발명의 일 양태에 따른 타일형 의료 장치(200)의 비제한적인 예를 도시한다. 도 9에 도시된 바와 같이, 타일형 의료 장치(200)는 어레이 또는 타일형 패턴으로 배열된 복수의 의료 장치(100)를 포함할 수 있다. 의료 장치(100)는 원하는 대로 임의의 패턴으로 배열될 수 있다는 것을 이해해야 한다. 일부 비제한적인 예에서, 의료 장치(100)는 메시형 구조체를 통해 링크될 수 있다. 다른 비제한적인 예에서, 의료 장치(100)는 외부 구조체에 개별적으로 장착될 수 있다. 임의의 경우에, 의료 장치(100)는 타일형 의료 장치(200)가 임의의 해부학적 영역에 순응하고 및/또는 원하는 대로 임의의 해부학적 특징을 일치시킬 수 있도록 이동 가능할 수 있다. 일부 비제한적인 예에서, 의료 장치(100)는 타일형 의료 장치(200) 내에서 개별적으로 제어되어 타일형 의료 장치(200)가 소정의 냉각 패턴을 제공할 수 있게 한다. 예를 들어, 의료 장치(100)에는 다양한 작동 온도를 한정하는 다양한 작동 유체가 제공될 수 있다. 대안적으로 또는 추가적으로, 의료 장치(100) 내의 증발 구조체(104)는 상이한 열 전달 특성을 제공하도록 설계될 수 있다. 대안적으로 또는 추가적으로, 의료 장치(100)의 베이스(102)는 그 출력 온도를 제어하도록 코팅 및/또는 절연될 수 있다. 일부 비제한적인 예에서, 타일형 의료 장치(200) 내의 의료 장치(100)의 선택적인 그룹은 타일형 의료 장치(200)가 소정의 냉각 패턴을 제공할 수 있도록 제어될 수 있다. 예를 들어, 타일형 의료 장치(200) 내의 의료 장치(100)의 선택적인 그룹은 의료 장치(100)의 선택적인 그룹이 상이한 냉각 온도에서 작동할 수 있게 하는 상이한 작동 유체 회로에 연결될 수 있다.
본원에 기술된 의료 장치(100)의 다양한 비제한적인 예들은 반드시 본질적으로 분리된 것은 아니며, 의료 장치(100)는 본원에 기술된 다양한 비제한적인 구성요소들 및 구성들의 임의의 조합을 포함하도록 구성될 수 있다는 것을 이해해야 한다.
도 10은 본 발명의 일 양태에 따른 증발 구조체(104)의 비제한적인 일례를 도시한다. 도 10의 비제한적인 예에서, 증발 구조체(104)는 베이스(102)에 통합된다. 베이스(102)는 그 사이에 복수의 채널들(404)을 형성하도록 베이스(102)의 제 1 표면(402)으로부터 연장되는 복수의 핀(400)을 포함한다. 채널(404)은 작동 유체를 수용하도록 구성되며, 액체 메니스커스가 그 내부에 형성되게 보장되도록 치수가 정해진다. 작동 중에, 예를 들어, 베이스(102)의 제 2 표면(406)은 조직 영역과 결합될 수 있다. 조직 영역으로부터의 열 에너지는 베이스(102) 및 핀(400)을 통해 작동 유체가 증발되는 채널(404)에 형성된 액체 메니스커스로 이동할 수 있다. 증발 구조체(104)의 모든 메니스커스로부터의 증발의 통합 효과는 의료 장치(100)의 상당한 열 제거 용량을 제공한다. 증발 구조체(104)의 특성은 증발 속도에 영향을 주어 의료 장치(100)의 전체 열 제거 용량에 영향을 줄 수 있다. 예를 들어, 채널(404)의 수, 채널 폭(W), 베이스(102)의 물질, 베이스(102)에 도포된 코팅 및 베이스(102)의 외부에[예: 베이스(102) 및 조직 영역 사이에] 도포된 물질은 의료 장치(100)의 전체 냉각 성능에 모두 영향을 줄 수 있다.
도 11은 본 발명에 따른 증발 구조체(104)의 다른 비제한적인 예를 도시한다. 도 11에 도시된 바와 같이, 증발 구조체(104)는 다공성 기재(500)에 의해 형성될 수 있다. 일부 비제한적인 예에서, 다공성 기재(500)는 베이스(102)의 제 1 표면(402)에 부착되거나 또는 제거가능하게 위치될 수 있다. 일부 비제한적인 예에서, 다공성 기재(500)는 베이스(102)의 제 1 표면(402) 상에 부착될 수 있다. 임의의 경우에, 다공성 기재(500)는 일단 작동 유체로 충전되면, 메니스커스를 형성하기 위한 부위로서 각각 작용하는 복수의 공극(502)을 포함한다. 작동 중에, 예를 들어, 베이스(102)의 제 2 표면(406)은 조직 영역과 결합될 수 있다. 조직 영역으로부터의 열 에너지는 베이스(102) 및 다공성 기재(500)를 통해 작동 유체가 증발되는 액체 메니스커스로 이동할 수 있다. 예를 들어, 다공성 기재(500)의 특성은 증발의 속도에 영향을 미칠 수 있고 그에 의해서 의료 장치(100)의 전체 열 제거 용량에 영향을 미칠 수 있다. 예를 들어, 공극(502)의 수, 공극(502)의 크기, 다공성 기재(500)의 물질, 베이스(102)의 물질, 베이스(102)의 외부에[즉, 베이스(102)와 조직 영역 사이에] 도포되는 물질 및 베이스(102)에 도포되는 코팅은 모두 의료 장치(100)의 전체 냉각 성능에 영향을 줄 수 있다.
상술한 바와 같이, 의료 장치(100)는 비침투성 의료 장치의 형태일 수 있다. 도 12 및 도 13은 본원에 기술된 시스템 및 방법에 따라 2-상 열 전달 공정을 통해 조직 영역을 냉각하도록 구성된 비침투성 의료 장치(600)의 비제한적인 일례를 도시한다. 비침투성 의료 장치(600)는 제 1 표면(604)을 갖는 베이스(602), 제 1 표면(604)에 마주하여 배치된 치료면(606) 및 베이스(602)에 형성된 냉각 공동(608)을 포함한다. 일부 비제한적인 예에서, 베이스(602)는 금속 물질(예 : 알루미늄, 구리, 황동 등)로 제조될 수 있다. 일부 비제한적인 예에서, 베이스(602)는 흑연 또는 직물 물질(예 : 탄소 섬유)로 제조될 수 있다.
도시된 비제한적인 예에서, 베이스(602)는 2 개의 냉각 공동(608)을 포함한다. 다른 비제한적인 예에서, 베이스(602)는 2 개보다 많거나 적은 냉각 공동(608)을 포함할 수 있다. 냉각 공동(608)은 치료면(606)을 향해 제 1 표면(604) 내로 연장되는 리세스에 의해서 형성된다. 도시된 비제한적인 예에서, 냉각 공동(608)은 일반적으로 직사각형 형상을 형성한다. 다른 비제한적인 예에서, 냉각 공동(608)은 원하는 대로 다른 형상(예: 원형, 다각형 등)을 형성할 수 있다.
냉각 공동(608)은 내부에 다공성 기재(610)를 수용하도록 구성된다. 일부 비제한적인 예에서, 다공성 기재(610)는 금속(예: 알루미늄 또는 구리), 탄소 섬유 메쉬 물질 또는 금속 폼 물질로 제조될 수 있다. 다공성 기재(610)는 일단 작동 유체로 채워진 메니스커스를 형성하기 위한 부위로서 각각 작용하는 복수의 공극을 포함한다. 본원에 기술된 바와 같이, 메니스커스는 치료면(606)과 접촉하는 원하는 조직 영역으로부터의 열 입력에 반응하여 증발하는 작동 유체를 위한 부위로서 작용할 수 있다.
다공성 기재(610)의 기하학적 성질(예: 공극의 크기)은 작동 유체로 충전되면 비침투성 의료 장치(600)의 배향에 상관없이 모세관 힘이 작동 유체를 유지하도록 설계될 수 있다. 즉, 일단 충전되면, 다공성 기재(610) 내의 모세관 힘은 중력보다 크게 되어 작동 유체의 누설의 위험없이 임의의 방향으로 비침투성 의료 장치(600)가 사용될 수 있게 한다.
다공성 기재(610)는 베이스(602)의 적어도 일부와 결합할 수 있다. 도시된 비제한적인 예에서, 하나 이상의 포스트(611)는 냉각 공동(608)의 하단면으로부터 상방으로 돌출하여, 베이스(602)와 다공성 기재(610) 사이의 접촉을 강화한다. 포스트(611)는 베이스(602)와 다공성 기재(610) 사이의 전도성 열 전달을 보조하기 위해 냉각 공동(608)을 통해 배열될 수 있다. 도시된 비제한적인 예에서, 각각의 냉각 공동(608)은 엇갈리게 배열된 6 개의 포스트(611)를 포함한다. 다른 비제한적인 예에서, 각각의 냉각 공동(608)은 원하는 대로 임의의 패턴으로 배열된 6 개보다 많거나 적은 포스트(611)를 포함할 수 있다.
도시된 비제한적인 예에서, 다공성 기재(610)는 주위에 노출될 수 있다[즉, 비침투성 의료 장치(600)는 작동 유체에 대해 개방 회로를 형성한다]. 이는 다공성 기재(610) 내에 배열된 작동 유체가 주변으로 증발하도록 할 수 있다. 이러한 비제한적인 예에서, 작동 유체는 환자 및/또는 사용자에 의한 흡입을 위해 화학적으로 비활성 및/또는 안전하도록 선택될 수 있다. 일부 비제한적인 예에서, 다공성 기재(610)는 작동 유체로 미리 적재될 수 있다. 일부 비제한적인 예에서, 다공성 기재(610)는 다공성 기재(610)가 주변에 노출된 구조체에 의해 덮인 준 개구일 수 있다. 증발된 작동 유체는 구조체를 따라 이동하고 그 후 응축되어 원하는 대로 작동 유체의 적어도 일부가 수집되고 재순환될 수 있게 한다. 일부 비제한적인 예에서, 다공성 기재(610)는 작동 유체를 위한 폐쇄 회로를 제공하기 위해 주위로부터 밀봉될 수 있다. 즉, 작동 유체는 밀봉된 저장소로부터 비침투성 의료 장치(600)에 제공될 수 있고, 증발된 작동 유체는 밀봉된 냉각 공동(608)으로부터 포획되고 그 후 (예: 콘덴서를 통해) 능동으로 또는 (예: 주변과의 열전달을 통해) 수동으로 응축될 수 있다. 응축된 작동 유체는 밀봉된 저장소로 다시 유동적으로 전달될 수 있다. 따라서, 폐쇄 회로에서, 작동 유체는 주위에 노출되지 않아 개방 회로에서 잠재적으로 해로울 수 있는 화학적으로 활성인 작동 유체의 사용을 가능하게 할 수 있다.
냉각 공동(608) 및 그에 의한 다공성 기재(610)는 제 1 및 제 2 채널(614, 616)을 통해 포트(612)에 연결된다. 포트(612) 및 제 1 및 제 2 채널(614, 616)은 제 1 표면(604) 안으로 오목하게 형성된다. 작동 중에, 포트(612)는 작동 유체의 공급원에 연결되도록 구성될 수 있다. 작동 유체는 채널(614, 616)을 따라 포트(612)로부터 냉각 공동(608)으로 유동하여 다공성 기재(610) 내로 흐를 수 있다.
일부 비제한적인 예에서, 일회용 충전 카트리지(미도시)가 비침투성 의료 장치(600) 내의 작동 유체의 압력을 제어하도록 제공될 수 있다. 예를 들어, 충전된 카트리지는 냉각 공동(608)의 상류에 있는 작동 유체와 유체 교통할 수 있고 냉각 공동(608) 내로 흐르는 작동 유체의 압력을 선택적으로 증가시키도록 구성될 수 있다. 대안적으로 또는 추가적으로, 충전된 카트리지는 예를 들어, 작동 유체의 응축을 달성하기 위해 냉각 공동(608)의 하류의 비침투성 의료 장치(600)와 유체 교통할 수 있다.
비침투성 의료 장치(600)의 폐쇄 회로 구성의 작동 중에, 예를 들어, 작동 유체가 비침투성 의료 장치(600)에 공급되어 다공성 공동(608)을 채울 수 있다. 일부 비제한적인 예에서, 다공성 기재(610)의 설계에 의해 제공된 모세관 힘은 작동 유체가 외부로 유도된 압력 차를 필요로 하지 않고 흐르게 할 수 있다. 따라서, 작동 유체는 포트(612)에 공급될 수 있고 작동 유체는 다공성 기재(610) 내로 자연스럽게(즉, 외력없이) 끌어 당겨질 수 있다.
다공성 기재(610)가 작동 유체로 충전되면, 비침투성 의료 장치(600)는 치료면(606)이 환자의 원하는 조직 영역과 결합하도록 위치될 수 있다. 원하는 조직 영역과 치료면(606)의 결합은 비침투성 의료 장치(600)와 원하는 조직 영역 사이의 열 전달을 개시한다. 구체적으로, 원하는 조직 영역으로부터의 열은 치료면(606)을 통해 냉각 공동(608)의 하단면으로 전달된다. 냉각 공동(608)의 하단면으로부터 열은 다공성 기재(610)를 통해 액체 메니스커스로 전달되고, 여기서 조직 영역으로부터의 열 입력으로 인한 작동 유체의 증발이 이루어진다. 다공성 기재(610) 내의 모든 메니스커스로부터의 증발의 통합 효과는 종래의 의료용 냉각 기술과 비교할 때 비침투성 의료 장치(600)에 상당한 열 제거 용량(즉, 열 플럭스 용량)을 제공한다.
상술한 바와 같이, 일부 비제한적인 예에서, 비침투성 의료 장치(600)는 작동 유체에 대해 폐쇄 회로를 형성할 수 있다. 도 14a 내지 도 15는 작동 유체에 대해 폐쇄 회로를 구현하는 비침투성 의료 장치(600)의 비제한적인 예를 도시한다. 도 14a 및 도 14b에 도시된 바와 같이, 비침투성 의료 장치(600)는 응축 판(629)을 포함할 수 있으며, 그 일측에 유동 경로(618)를 형성하고 다른 측에 응축 구조체(631)를 형성한다. 유동 플레이트(618)는 입구 포트(620)로부터 출구 포트(622)까지 연장된다. 유동 경로(618)는 콘덴서 플레이트(629)의 일 측면으로 리세스될 수 있고 베이스(602)의 표면적의 원하는 양을 덮는 형상을 형성할 수 있다. 도 14a의 도시된 비제한적인 예에서, 유동 경로(618)는 입구 포트(620)로부터 일반적으로 직선 경로에서 응축 플레이트(629)의 반대편 단부를 향해 연장되고, 응축 플레이트(629)의 반대편 단부에 인접한, 유동 경로(618)는 응축 플레이트(629)의 중심을 향하는 방향으로 만곡한다. 그 다음, 유동 경로(618)는 입구 포트(620)가 일반적으로 소용돌이 형상의 패턴으로 배열되는 응축 플레이트(629)의 단부를 향한 방향으로 뒤로 연장된다. 즉, 유동 경로(618)는 베이스(602)의 입구 단부를 향해 연장될 때 전후로 만곡한다. 유동 경로(618)의 소용돌이 섹션이 응축 플레이트(629)의 입구 단부에 도달하면, 유동 경로(618)는 입구 포트(620)로부터 멀어지는 방향으로 만곡지고 실질적으로 직선 경로에서 출구 포트(622)까지 연장된다.
유동 경로(618)는 하나의 비제한적인 예일 뿐이고, 유동 경로(618)는 원하는 대로 응축 플레이트의 원하는 양을 덮도록 성형될 수 있음을 이해해야 한다. 예를 들어, 유동 경로(618)는 응축 플레이트(629)의 총 표면적의 상당한 양을 균일하게 덮도록 성형될 수 있다. 다른 비제한적인 예에서, 유동 경로(618)는 냉각이 요구되는 응축 플레이트(629)의 표면적의 선택된 섹션을 덮도록 성형될 수 있다.
도 14b에 도시된 바와 같이, 응축 플레이트(629)의 다른 측은 응축 구조체(631)를 포함한다. 도시된 비제한적인 예에서, 응축 구조체(631)는 리세스 표면(635)을 따라 배열된 복수의 리지(633)를 포함한다. 복수의 리지(633)는 리세스 표면(635)으로부터 외측으로 돌출하여 응축 플레이트(629)의 제 1 단부(637)와 제 2 단부(639) 사이에서 측방향으로 연장된다. 일부 비제한적인 예에서, 복수의 리지(633)는 유동 경로(618)를 통해 유동하는 유체로부터 추가 열 전달을 촉진하기 위해 핀으로서 작용할 수 있고, 이것은 후술되는 바와 같이 증발된 작동 유체의 응축을 돕는 역할을 한다.
도 15는 폐쇄 회로를 갖는 비침투성 의료 장치(600)의 증발 플레이트(641)를 도시한다. 도 15에 도시된 바와 같이, 증발 플레이트(641)는 치료면(606)에 마주하는 측 상에 배치된 증발 구조체(624)를 포함한다. 도시된 비제한적인 예에서, 증발 구조체(624)는 치료면(606)으로부터 멀어지는 방향으로 리세스 표면(643)으로부터 외측으로 돌출하는 복수의 리지(626)를 포함할 수 있다. 복수의 리지(626)는 리세스 표면(624)의 제 1 및 제 2 단부(628 및 630) 사이에서 측 방향으로 연장될 수 있고, 입구 포트(620) 및 출구 포트(622) 사이에서 리세스 표면(624)을 따라 배열될 수 있다. 일부 비제한적인 예에서, 복수의 리지(626)는 제 1 및 제 2 단부(628 및 630) 사이에서 변화하는 측방향 거리를 연장할 수 있다. 예를 들어, 복수의 리지(626)는 입구 포트(620)와 출구 포트(622) 사이의 제 1 리지(632) 및 제 2 리지(634) 사이에서 교번할 수 있다. 제 1 리지(632)는 리세스 표면(624)의 중심으로부터 제 1 리지(632)는 제 1 단부(628)와 제 2 단부(630)의 각각과 중심 사이의 위치로 연장될 수 있다[즉, 제 1 리지(632)는 제 1 단부(628)와 제 2 단부(630) 사이에서 완전히 연장되는 것은 아니다]. 제 2 리지(634)는 제 1 단부(628)와 제 2 단부(630) 사이에서 완전히 연장될 수 있다. 일부 비제한적인 예에서, 인접한 리지(632 및 634) 사이의 거리는 모세관 힘이 이들 사이에 작동 유체를 유지하도록 보장할 수 있다. 따라서, 제 1 리지(632)와 제 2 리지(634) 사이의 상이한 측방향 연장은 증발 플레이트(641)의 중심선을 따라 작동 유체를 유지할 수 있다. 다른 비제한적인 예에서, 증발 구조체(641)의 설계는 예를 들어, 리지들(632, 634)의 배열 및 배향을 조작함으로써 임의의 원하는 냉각 패턴을 수용하도록 변경될 수 있다. 일부 비제한적인 예에서, 증발 구조체(641)는 본원에 기술된 바와 같이 다공성 구조의 형태일 수 있다. 일부 비제한적인 예에서, 증발 구조체(641)는 리세스 표면(624)을 따라 연장되는 하나 이상의 마이크로채널의 형태일 수 있다.
콘덴서 플레이트(629) 및 증발 플레이트(641) 모두는 그 내부로 연장되어 유동 경로(618), 응축 구조체(631) 및 증발 구조체(624)를 둘러싸는 리세스 노치(636)를 포함할 수 있다. 리세스 노치(636)는 응축 플레이트(629)의 각각의 측 에 부착된 커버 플레이트와 증발 플레이트(641)의 비처리 측 사이의 밀봉을 용이하게 하기 위한 시일(예: O-링 또는 개스킷)을 수용하도록 구성될 수 있다.
도 16 및 도 17에 도시된 바와 같이, 비침투성 의료 장치(600)는 조립될 때 그 둘레 주위에 배열된 절연 층(640)을 포함할 수 있다. 일부 비제한적인 예에서, 절연 층(640)은 열이 비침투성 의료 장치(600)로부터 대기로 방산되는 것을 방지할 수 있고, 비침투성 의료 장치(600)를 조작하는 사용자를 보호할 수 있다. 또한, 비침투성 의료 장치(600)는 작동 유체가 상기 장치[즉, 증발 구조체(641)와 응축 구조체(631) 사이의 영역]로 유동할 수 있게 하는 충전 포트를 포함한다. 조립시, 콘덴서 플레이트(629)는 증발 구조체(624)가 응축 구조체(631)를 향하도록 콘덴서 플레이트(641)에 부착될 수 있다. 따라서, 조립될 때, 장치의 일 측은 증발 구조체(624)에 열적으로 결합되는 치료면(606)을 포함하고, 커버 플레이트는 다른 측 상에 배열될 수 있으며, 유동 경로(618)를 덮는다.
예를 들어, 비침투성 의료 장치(600)의 폐쇄 회로 구성의 작동 중에, 작동 유체는 증발 구조체(624)와 응축 구조체(631) 사이에 형성된 공동 내로 충전될 수 있다. 일단 충전되면, 이 공동은 밀봉되어서, 주위로부터 작동 유체를 차단한다. 치료면(606)이 원하는 조직 영역과 접촉하여 배치되면, 열 전달은 원하는 조직 영역과 증발 구조체(624) 사이에서 시작된다. 구체적으로, 원하는 조직 영역으로부터의 열은 치료면(606)을 통해서 그리고 응축 구조체(631) 내에 흐르는 작동 유체로 전달된다. 원하는 조직 영역으로부터의 열 입력은 응축 구조체(631)와 접촉할 수 있는 작동 유체의 증발을 용이하게 한다. 증발 구조체(624) 내에서 유동하는 작동 유체의 증발은 비침투성 의료 장치(600)가 본원에 기술된 2-상 열 전달 공정의 장점을 지렛되활용할 수 있게 한다. 따라서, 비침투성 의료 장치(600)는 종래의 의료용 냉각 기술과 비교할 때 상당한 열 제거 용량(즉, 열 플럭스 용량)을 제공한다.
장치의 작동 중에, 냉각 유체는 작동 유체로부터 격리된 유동 경로(618)를 통해 흐를 수 있다. 따라서, 증발된 작동 유체가 응축 구조체(631) 주위에 축적됨에 따라, 유동 경로(618)를 통해 흐르는 유체에 의해 제공되는 냉각은 증발된 작동 유체의 응축을 용이하게 하고 응축된 작동 유체가 증발 구조체(624) 상에 "아래로" 내려가게 하는 필요한 열 제거를 제공할 수 있다.
도 18은 열처리 적용에서 구현되는 비침투성 의료 장치(600)의 다른 비제한적인 예를 도시한다. 도 18에 도시된 바와 같이, 비침투성 의료 장치(600)는 작동 유체에 대한 개방 시스템을 형성할 수 있고(즉, 작동 유체는 장치에 제공되고 장치로부터 회수된다) 장치는 장치 내부의 응축 단계를 포함하지 않는다[즉, 응축 단계는 조직 영역과 접촉하는 베이스(602)로부터 멀리 떨어져서 발생한다]. 비침투성 의료 장치(600)는 탱크(603)로부터 작동 유체를 수용하도록 구성될 수 있다. 입구 라인(613)은 탱크(603)와 증발 구조체(610, 624)의 입구 사이에서 연장되어 그들 사이의 유체 교통을 제공한다. 유동 제어 장치(110, 605)는 탱크(603)와 증발 구조체(610, 624)의 입구 사이의 입구 라인(613) 상에 배치될 수 있다. 일부 비제한적인 예에서, 유동 제어 장치(110, 605)는 유체 유동의 방향, 유체 유동의 압력, 및/또는 유량을 제어하도록 구성될 수 있다. 입구로부터 증발 구조체(610, 624)까지, 작동 유체는 증발 구조체(624)를 따라 유동하여 조직 영역으로부터 열을 제거할 수 있으며, 이는 작동 유체의 증발을 초래한다. 따라서, 비침투성 의료 장치(600)는 종래의 의료용 냉각 기술과 비교할 때 상당한 열 제거 용량(즉, 열 플럭스 용량)을 제공한다.
증발된 작동 유체는 출구를 통해 증발 구조체(610, 624)로 흐르고 출구 라인(615)으로 흐를 수 있다. 출구 라인(615)으로부터, 증발된 작동 유체는 콘덴서(609)에서 응축되고 이어서 탱크(611) 내에 저장될 수 있다.
도시된 비제한적인 예에서, 제어기(607)는 원하는 조직 영역의 표면에 인접한 또는 그 표면상의 온도를 측정하도록 배치된 하나 이상의 온도 센서와 교통한다. 제어기(607)는 온도 센서의 측정에 적어도 부분적으로 기초하여 비침투성 의료 장치(600)의 작동 파라미터를 조정하도록 유동 제어 장치(110, 605)에 지시할 수 있다. 본원에 기술된 바와 같이, 비침투성 냉각(600)의 열 출력 파라미터를 제어하기 위해 여러 파라미터가 사용될 수 있다.
일부 비제한적인 예에서, 비침투성 의료 장치(600)는 비침투성 장치(600) 주위를 덮고 밀봉하는 가요성 블랭킷(645)과 함께 이용될 수 있다. 가요성 블랭킷(645)과 비침투성 의료 장치(600) 사이의 공간은 이 공간 내의 압력을 감소시키도록 구성된 진공부(647)와 교통할 수 있다. 비침투성 의료 장치(600)의 형태 팩터(예: 얇은)로 인해, 진공부(647)에 대한 연결은 조직 표면과 치료면(606) 사이의 열 접촉을 유지하고, 주위(즉, 절연체)로부터의 열적 방해를 방지하고, 조직 영역 내의 혈류를 억제하고, 표적 조직의 냉각 또는 가열을 촉진할 수 있다.
일부 비제한적인 예에서, 도 20에 도시된 바와 같이, 비침투성 의료 장치(600)는 치료면(606)에 접착제로 부착된 접착층(621)을 구비할 수 있다. 부동층(623)은 접착층(621) 및 제거 가능한 시트(625) 사이에 제공될 수 있다. 제거 가능한 시트(625)는 원하는 조직 영역에 도포되고 원하는 의학적 치료가 수행된 후에 폐기되는 일회용 구성요소일 수 있다. 이러한 방식으로, 비침투성 의료 장치(600)의 무균성이 유지될 수 있다.
일부 비제한적인 예에서, 도 21에 도시된 바와 같이, 얇은 가열기(627)가 제거 가능한 시트(625)에 통합되어 치료면(606)과 조직 표면(606) 사이의 임의의 동결고착을 녹여서 비침투성 의료 장치(600)를 조직 표면으로부터 제거할 수 있다. 일부 비제한적인 예에서, 도 22에 도시된 바와 같이, 얇은 가열기(627)는 일회용 구성요소가 아니며, 접착층(621)과 부동층(623) 사이에 배치될 수 있다.
비침투성 의료 장치(600)의 모든 구성에서, 치료면(606)은 환자의 특정 조직 영역에 부합하도록 구성될 수 있다. 일부 비제한적인 예에서, 치료면(606)은 코팅물질로 코팅될 수 있다. 치료면(606)에 도포된 코팅은 다공성 기재(610) 내의 작동 유체 및/또는 베이스(602)의 열적 특성에 대응하도록 구성된 물질로 제조될 수 있다. 도 13의 비제한적인 예에서, 치료면(606)은 일반적으로 직사각형 프로파일을 갖는 일반적으로 아치형 또는 곡면을 형성한다. 도 17의 비제한적인 예에서, 치료면(606)은 일반적으로 직사각형 프로파일을 갖는 대체로 편평한 표면을 형성한다. 다른 비제한적인 예에서, 치료면(606)은 도 23에 도시된 바와 같이 대체로 볼록 형상을 형성할 수 있다. 일부 비제한적인 예에서, 치료면(606)은 대체로 평탄하거나 중단되지 않은 프로파일을 형성할 수 있다. 일부 비제한적인 예에서, 치료면(606)은 거칠거나 중단된 프로파일을 형성할 수 있다. 예를 들어, 치료면(606)은 그의 표면적을 증가시키기 위해 그 위에 배치된 구조 패턴을 포함할 수 있다. 도 24는 복수의 교대 피크 및 밸리를 포함하는 치료면(606)의 구조 패턴의 하나의 비제한적인 예를 도시한다. 도 25는 복수의 돌출부들 또는 이로부터 연장되는 핀(642)을 포함하는 치료면(606)의 비제한적인 예를 도시한다.
일부 비제한적인 예에서, 베이스(602) 또는 치료면(606)은 도 26에 도시된 바와 같이 일반적으로 말발굽 형상을 형성할 수 있다. 일부 비제한적인 예에서, 베이스(602) 또는 치료면(606)은 도 27에 도시된 바와 같이, 일반적으로 바나나, 반월판 형상을 형성할 수 있다. 일부 비제한적인 예에서, 베이스(602) 또는 치료면(606)은 도 28에 도시된 바와 같이 대체로 환상의 형상을 형성할 수 있다. 비제한적인 예에서, 흡입 장치는 베이스(602)에 의해 한정된 중심 개구로 조직 영역을 당기도록 구성될 수 있다.
일부 비제한적인 예에서, 비침투성 의료 장치(600)는 불평탄한 또는 불균일한 조직 표면에 냉각을 제공하도록 작동할 수 있다. 예를 들어, 도 29에 도시된 바와 같이, 조직 표면(644)은 그 위에 배치된 하나 이상의 리세스(646)를 포함할 수 있다. 이러한 비제한적인 예에서, 물질(예컨대, 겔 또는 포움)(648)이 리세스(646)를 채우도록 리세스(646) 내의 조직 표면에 도포될 수 있다. 물질은 조직 리세스를 선택적으로 보호하거나 절연하도록 구성될 수 있다. 일부 비제한적인 예에서, 물질(648)는 조직 표면(644)(예: 피부)에 의해 한정된 열 전도성보다 작거나 같은 열 전도성을 형성할 수 있다. 리세스(646)를 채우고 절연하기 위해 예를 들어, 피부에 물질을 도포함으로써, 비침투성 의료 장치(600)의 치료면(606)은 치료면(606)에 접촉하는 리세스들(646) 사이에 또는 주위의 영역들에 냉각을 제공할 수 있다.
일부 비제한적인 예에서, 도 30에 도시된 바와 같이, 조직 표면(650)은 그 위에 배치된 하나 이상의 돌출부(652)를 포함할 수 있다. 물질(예: 겔 또는 포움)(648)은 돌출부(652) 주위의 풀에 적용되어 돌출부(652)에 인접한 조직 표면(650)을 선택적으로 보호 또는 절연할 수 있다. 돌출부(652) 주위의 풀에 물질(648)를 도포함으로써, 비침투성 의료 장치(600)의 치료면(606)은 단지 돌출부(652)에 냉각을 제공할 수 있다.
비제한적인 구성에 따라, 비침투성 의료 장치(600)의 사용 또는 사용 방법은 수술 또는 치료에 의한 인간 또는 동물 신체의 치료 단계를 포함하지 않는다. 본원에 기술된 장치를 사용하는 사람의 기술에는 의사의 기술이 없을 수도 있고 의도된 치료가 미적 이유로 오히려 치료받는 사람의 질병으로 인해 동기 부여될 수 없다는 점에 유의해야 한다.
비침투성 의료 장치(600)의 다양한 파라미터는 열 제거 용량 및 적용에 기초한 작동 온도 범위를 제어하도록 변경될 수 있다. 예를 들어, 베이스(602)의 물질, 공극의 크기, 다공성 기재(610)의 다공성, 유체 경로(618)의 기하학적 구조, 작동 유체의 열적 특성, 냉각 공동(608)의 기하학적 특성 등. 표 2는 비침투성 의료 장치(600)의 특성 및 작동 특성의 다양한 비제한적인 예를 제공한다.
의료 장치(600)의 특성 및 작동 특징
작동 범위 -200℃ 내지 200℃
작동 압력 0.01bar 내지 10 bar
작동 유체 탄화수소, 수소화불화탄소, 수소불화올레핀, 알콜, 물, 수용액, 노벨 가스, 이원 혼합물, 나노입자 함유 유체
기재 물질 금속, 폴리머, 복합 물질 예: 구리, 알루미늄, 흑연
다공성기재 물질 알루미늄, 구리, 탄소, 강
다공성 기재 다공 크기 100nm-2000㎛
코팅부 습윤 또는 비습윤 코팅, 금, 테플론, 양극처리된 나노층, 나노 구조의 코팅
유체 유동 제어 열 모세관, 압전 전기, 팽창 밸브, 모세관
온도 제어 열전쌍, RTD, 매립형 접점 마이크로-와이어
상술한 바와 같이, 의료 장치(100)는 침투성 의료 장치의 형태일 수 있다. 도 31은 본원에 기술된 시스템 및 방법에 따라 2-상 열 전달 공정을 통해 조직 영역을 냉각 또는 가열하도록 구성된 침투성 의료 장치(700)의 비제한적 일례를 도시한다. 도시된 비제한적인 예에서, 침투성 의료 장치(700)는 침투성 의료 장치(700)의 침투 깊이를 제어하기 위한 도입기(미도시)를 포함할 수 있는 바늘 또는 바늘 장치(고정 또는 확장 가능)의 형태일 수 있다. 다른 비제한적인 예에서, 침투성 의료 장치(700)는 카테터 기반 장치의 형태일 수 있다.
침투성 의료 장치(700)는 근위 단부(702), 원위 단부(704), 내면(706) 및 외면(708)을 포함한다. 원위 단부(704)는 환자의 원하는 조직 영역으로의 침투를 용이하게 하는 바늘 팁(710)을 포함한다. 내면(706)은 내부에 형성된 하나 이상의 채널(712)을 포함한다. 일부 비제한적인 예에서, 내면(706)은 습윤성, 높은 표면 장력 등과 같은 원하는 표면 특성을 갖는 물질(예: 흑연의 단일 층, 또는 그래핀)로 코팅될 수 있다.
침투성 의료 장치(700)는 예를 들어, 주위 조직으로 및 주변 조직으로부터의 열 전달을 억제하기 위한 절연 코팅을 포함할 수 있는 절연 길이(LI)를 형성할 수 있다. 절연 길이(LI)는 원하는 대로 외면(708)을 따라 임의의 축방향 길이로 규정될 수 있다. 일부 비제한적인 예에서, 절연 길이(LI)는 근위 단부(702)로부터 근위 단부(702)와 원위 단부(704) 사이의 위치까지 축방향으로 연장하여 원하는 조직 영역의 표면에 인접한 조직을 절연시킬 수 있다.
침투성 의료 장치(700)는 원하는 깊이에서 원하는 조직 영역의 냉각을 용이하게 하기 위해 조직 영역 내의 원하는 깊이에서 원하는 조직 영역에 노출되도록 구성된 열 활성 길이(LT)를 형성할 수 있다. 열 활성 길이(LT)는 원하는 대로 외면(708)을 따라 임의의 길이를 규정할 수 있다. 일부 비제한적인 예에서, 열 활성 길이는 원위 단부(704)로부터 원위 단부(704)와 근위 단부(702) 사이의 위치로 축방향으로 연장하여 원하는 조직 영역의 표면 아래의 조직을 냉각시킬 수 있다.
도 32 내지 도 35를 참조하면, 채널(712)은 내면(706) 내로 방사상으로 오목하게 형성되고 근위 단부(702)와 원위 단부(704) 사이의 내면(706)을 따라 축방향으로 연장된다. 내면(706)은 내부에 작동 유체를 수용하도록 구성된 일반적인 중공의 공동(714)을 형성한다. 예를 들어, 작동 중에 침투성 의료 장치(700)의 중공의 공동(714)은 작동 유체로 채워질 수 있다. 그 다음, 침투성 의료 장치(700)는 원하는 조직 영역 내로 조직 영역 내의 원하는 깊이까지 삽입될 수 있다. 일부 비제한적인 예에서, 절연 길이(LI) 및 열 활성 길이(LT)의 축방향 배열은 냉각이 원하는 조직 영역 내에서 연장되는 치료 깊이를 결정할 수 있다.
일단 외면(708)이 원하는 조직 영역과 접촉 및/또는 삽입되면, 공동(714) 내의 작동 유체는 증발하기 시작하여 원하는 조직 영역의 목표 온도로의 냉각을 개시한다. 작동 유체가 증발함에 따라, 작동 유체 유동(L)이 채널(712) 내에 유지되는 동안 증기(V)가 공동(714)으로부터 유출되어, 원하는 조직 영역의 연속 냉각을 촉진시킨다. 내면(706) 내의 채널(712)의 설계는 채널(712) 내의 유체 유동에 대한 마찰에 대항하여 원위 단부(704)를 향한 채널(712)의 적어도 일부 내에서의 작동 유체의 유동을 유지하고 건조를 방지하도록 구성된다. 작동 유체가 채널(712) 내로 유동하도록 유도하는 구동력은 채널(712)이 내면(706)을 따라 축방향으로 연장됨에 따라 채널(712)을 따르는 액체 압력의 구배에 의해 유지된다. 압력 구배는 채널들이 원위 단부(704)를 향하여 내면(706)을 따라 축방향으로 연장됨에 따라 채널들(712)의 구조에서의 변화로 발생되는 모세관 압력 변화에 의해서 유도된다. 구체적으로, 도 33 내지 도 35에 도시된 바와 같이, 채널(712) 내의 액체 메니스커스에 대한 평균 반경은 채널(712)이 원위 단부(704)를 향하여 내면(706)을 따라 축방향으로 연장됨에 따라 단계적으로 감소된다. 도시된 비제한적인 예에서, 채널(712) 내의 메니스커스 반경의 감소는 채널(712)이 내면(706)을 따라 축방향으로 연장됨에 따라 채널(712)의 원주방향 분포의 증가에 의해 촉진된다. 즉, 내면(706) 주위에 원주방향으로 배열된 채널(712)의 수는 채널(712)이 원위 단부(704)를 향하여 축방향으로 연장됨에 따라 단계적으로 증가할 수 있다. 따라서, 침투성 냉각 장치(700)의 설계는 작동 유체 유동이 내면(706)을 따라 채널(712)의 적어도 일부 내에서 유지되어 냉각 공정 전체에 걸쳐 원하는 조직 영역에 증발 냉각을 제공하도록 보장한다.
일부 비제한적인 예에서, 채널(712)은 침투성 의료 장치(700)를 따라 축방향으로 원주방향 지출의 증가에 따라 연속적인 유동 경로를 형성할 수 있다. 즉, 근위 단부(702)(도 33)에 인접한 채널(712)은 근위 및 원위 단부(702 및 704) 사이에서 채널(712)로 분기하고(도 34), 그 다음 원위 단부(704)에 인접한 채널(712)로 분기할 수 있다(도 35). 일부 비제한적인 예에서, 채널(712)은 침투성 의료 장치(700)를 따라 축방향으로 원주방향 지출의 증가에 따라 적어도 부분적으로 불연속일 수 있다.
일부 비제한적인 예에서, 침투성 의료 장치(700)는 채널(712) 대신에 내면에 의해 한정된 내부 공동 내에 배치된 복수의 마이크로구체를 포함할 수 있다. 다양한 직경을 갖는 마이크로구체가 내부 공동을 따라 축방향으로 다른 위치에 배치될 수 있다. 예를 들어, 최소 직경을 갖는 마이크로구체가 바늘 팁(710)에 인접한 내부 공동의 일부를 따라 축방향으로 제공될 수 있고, 최대 직경을 갖는 마이크로구체가 근위 단부(702)에 인접한 내부 공동의 일부를 따라 축방향으로 제공될 수 있고, 중간 직경을 갖는 마이크로구체가 최소 직경과 최대 직경의 마이크로구체 사이에 제공될 수 있다. 이러한 방식으로, 변화하는 직경은 모세관 힘들에 의해 작동 유체를 내부 공동으로 당겨서 내부의 작동 유체의 증발을 가능하게 할 수 있다.
일부 비제한적인 예에서, 침투성 의료 장치(700)는 그에 따라 축방향으로 변화하는 열적 특성을 제공하기 위해 가열과 결합될 수 있다. 예를 들어, 침투성 의료 장치(700)의 상단부에는 본원에 기술된 다양한 증발 구조체들 중 하나가 제공될 수 있고, 침투성 의료 장치의 하단부에는 열원(예: RF 가열)이 제공되어 조합된 가열 냉각 효과를 제공한다. 예를 들어, 냉각 효과는 가열 효과와 관련된 통증을 경감시킬 수 있다.
일부 비제한적인 예에서, 침투성 의료 장치(700)는, 예를 들어, 부분 의료 치료에서 구현되도록 어레이로 배열될 수 있다.
비제한적인 구성에 따르면, 침투성 의료 장치(700)의 사용 또는 사용 방법은 수술 또는 치료법에 의한 인간 또는 동물 신체의 치료 단계를 포함하지 않는다. 본원에 기술된 장치를 사용하는 사람의 기술에는 의사의 기술이 없을 수도 있고 의도된 치료가 미적 이유로 오히려 치료받는 사람의 질병으로 인해 동기 부여될 수 없다는 점에 유의해야 한다.
침투성 의료 장치(700)의 다양한 파라미터는 적용에 기초하여 열 제거 용량 및 작동 온도 범위를 제어하도록 변경될 수 있다. 예를 들어, 내면(706)상의 채널(712)의 패턴, 작동 유체의 열적 특성, 비침투성 의료 장치(700)의 물질 및 내면(706) 및 외면(708) 상의 코팅. 침투성 의료 장치(700)의 냉각 용량의 제어가 본원에 기술된 비침투성 의료 장치보다 더 제한될 수 있다는 것을 이해해야 한다. 즉, 본원에 기술된 시스템 및 방법에 의해 지렛대 활용되는 2-상 열 전달 공정에 의해 제공되는 상당히 증가된 냉각 용량은 조직 손상을 방지하기 위해 침투성 의료 장치(700)의 냉각 용량에 특별한 주의를 요구할 수 있다. 표 3은 아래에 침투성 의료 장치(700)의 특성 및 작동 특징의 다양한 비제한적인 예를 제공한다.
침투성 의료 장치(700)의 특성 및 작동 특징
작동 범위 -220℃ 내지 200℃
작동 압력 0.1bar 내지 10 bar
작동 유체 탄화수소, 수소화불화탄소, 수소불화올레핀, 물, 수용액, 이원 혼합물, 극저온 유체: N2, O2
바늘 물질 금속, 비금속 원소, 복합 물질 예: 구리, 알루미늄, 흑연
바늘 벽 내부 구조체
미세홈, 부분 패턴 마이크로채널, 나노-구체
다공성 기재 다공 크기 100nm-20㎛
바늘 내벽 코팅부 습윤 또는 비습윤 코팅, 금, 양극처리된 나노층
유체 유동 제어 전기삼투 구동 유동, EMF, 압전, 모세관
유체 분사 직접 열교환, 보강된 혼합을 위한 마이크로-노즐
온도 제어 열전쌍, RTD, 매립형 접점 마이크로-와이어
상술한 바와 같이, 의료 장치(100)는 비침투성 의료 장치의 형태일 수 있다. 도 36 및 도 37은 본원에 기술된 시스템 및 방법에 따라 2-상 열 전달 공정을 통해 조직 영역을 냉각시키도록 구성된 비침투성 의료 장치 어레이(900)의 다른 비제한적인 예를 도시한다. 도시된 비제한적인 예에서, 비침투성 의료 장치 어레이(900)는 부분 손상 또는 상해 패턴을 겪는 위치에 인접하여 냉각을 제공하도록 구현될 수 있다. 일부 비제한적인 예에서, 부분 손상 또는 상해 패턴은 전자기 에너지(예: 레이저), 무선 주파수 바늘, 코어링 필요 또는 가열, 기계적 파괴, 초음파 또는 조직 손상을 일으키는 다른 방법을 통한 조직 손상을 야기하는 다른 장치의 사용을 통해 생성될 수 있다. 비침투성 의료 장치 어레이(900)는 부분 치료 패턴을 수용하도록 내부에 배치된 복수의 개구들(912)을 갖는 베이스(901)로 구성될 수 있다. 도시된 비제한적인 예에서, 베이스(901)는 복수의 어레이 타일들(902)을 포함한다. 어레이 타일들(902) 각각은 부분 가열된 조직에 인접한 조직 영역에 냉각을 제공하도록 구성된 복수의 어레이 유닛들(904)을 포함한다.
어레이 유닛들(904)은 근위 단부(906), 원위 단부(908) 및 그 위에 배치된 복수의 채널들(910)을 포함한다. 근위 단부(906)는 부분 가열된 조직에 인접하여 배열되도록 구성된다. 조립될 때, 근위 단부(906)는 결합하여 부분 치료가 수행될 수 있는 개구(912)를 생성하도록 구성된다. 즉, 어레이 유닛(904)의 조립된 근위 단부(906)에 의해 형성된 개구(912)는 원하는 부분 패턴으로 조직 영역에 접근할 수 있게 한다. 비침투성 의료 장치 어레이(900)에 의해 형성된 개구(912)의 수 및 개구(912)의 배향은 어떤 방식으로든 한정되는 것을 의미하지 않으며 어레이 타일들(902)은 원하는 대로 임의의 부분 패턴을 생성하도록 모듈식으로 배열될 수 있다.
원위 단부(908)는 유체 공급원(914)과 유체 교통할 수 있다. 도시된 비제한적인 예에서, 유체 공급원(914)은 작동 유체의 축적물 또는 풀일 수 있다. 작동 유체는 채널(910) 내로 자연적으로 흡인될 수 있으며, 채널(910)의 설계에 의해 유도된 모세관 압력에 기초하여 관통하여 흐를 수 있다. 채널(910)은 어레이 유닛(904)을 따라 근위 단부(906)로부터 근위 단부(906)과 원위 단부(908) 사이의 위치로 어레이 유닛(904)을 따라 가변 길이를 연장시킬 수 있다. 이러한 방식으로, 유체가 원위 단부(908)로부터 각 어레이 유닛(904) 상의 근위 단부(906)로 당겨짐에 따라 작동 유체가 통과하는 채널(910)의 수가 증가한다. 어레이 유닛(904)은 고정 폭을 한정하고, 작동 유체가 관통 흐르게 하는 채널(910)의 수가 증가함에 따라, 어레이 유닛(904)을 따라 채널(910)을 통해 흐르는 유체에 의해 경험되는 채널 폭은 감소할 수 있다. 채널 폭의 이러한 감소는 작동 유체를 유체 공급원(914)로부터 근위 단부(906)로 당기는데 필요한 모세관 힘을 유도함으로써 각각의 어레이 유닛(904)의 채널(910)을 작동 유체로 채운다. 일단 작동 유체로 채워지면, 어레이 유닛(904) 내의 채널(910) 각각은 작동 유체의 증발을 용이하게 하기 위해 메니스커스를 형성할 수 있다. 채널(910)로부터의 작동 유체의 증발은 어레이 유닛(904)으로부터 전도성으로 열을 제거할 수 있다.
작동시, 비침투성 의료 장치 어레이(900)는 부분 패턴의 조직을 가열하게 될 부분 의학적 치료를 받게 될 조직 영역과 접촉하여 배치될 수 있다. 비침투성 의료 장치 어레이(900)는 어레이 타일들(902)이 원하는 의료적 치료에 부합하도록 임의의 부분 패턴으로 배열될 수 있도록 모듈식으로 구성된다. 원하는 부분 패턴으로 구성되면, 유체 공급원(914)은 채널(910)을 작동 유체로 채우기 위해 어레이 유닛(904)의 원위 단부(908)와 유체 교통 상태로 배치될 수 있다. 각각의 채널(910) 내의 작동 유체는 채널(910)을 따라 메니스커스를 형성하여 채널(910) 내의 작동 유체의 증발을 촉진시킬 수 있다. 열은 조직 영역으로부터 흡수되어 어레이 유닛(904)을 통해 채널(910) 내의 작동 유체로 전달되고, 여기서 열 입력은 그 내부에 형성된 메니스커스에서 작동 유체의 증발을 촉진할 수 있다. 조직 영역으로부터 흡수된 열은 어레이 유닛(904)이 조직 영역과 접촉하는 영역에서 조직 영역을 냉각시킬 수 있다. 어레이 타일들(902)에 의해 형성된 개구(912)는 개구(912)에 인접하거나 그 주위의 조직이 비침투성 의료 장치(900)에 의해 냉각되는 동안 부분 의료 또는 미용 치료(예: 입사 레이저 광)가 조직 영역에서 수행될 수 있게 한다. 당업계에 공지된 바와 같이, 부분 치료 영역들 사이의 조직이 치유를 촉진하기 위해 손상되지 않은 채로 유지되는 것을 보장하는 것이 필수적이다. 또한, 비침투성 의료 장치 어레이(900)에 의해 제공되는 냉각은 마취 효과를 제공할 수 있다. 따라서, 비침투성 의료 장치 어레이(900)는 부분 의학적 치료의 효능, 안전성, 안락성 및/또는 내약성(tolerability)을 추가할 수 있다.
도 38 및 도 39는 본원에 기술된 시스템 및 방법에 따른 2-상 열 전달 공정을 사용하여 부분 손상 또는 상해 패턴을 받는 위치에 인접하여 냉각을 제공하도록 구현될 수 있는 비침투성 의료 장치 어레이(900)의 비제한적인 예를 도시한다. 도 38 및 도 39에 도시된 바와 같이, 비침투성 의료 장치 어레이(900)는 원하는 부분 패턴으로 배열된 복수의 개구들(912)을 포함한다. 복수의 개구들(912)은, 예를 들어, 레이저 빔(916)이 관통 전파되고 조직 영역(918)에 부분 치료(예를 들면, 절제)를 가할 수 있도록 치수가 정해질 수 있다.
일반적으로, 레이저 빔(916)에 적용되는 조직 영역(918)의 표면 상의 개별 영역은 매우 작을 수 있다. 또한, 레이저 빔(916)은 짧은 가열 시간 내에 많은 양의 에너지를 전달할 수 있다. 따라서, 레이저 빔(916)에 적용되지 않는 조직 영역(918)의 이웃 영역은 핫 스폿의 형성을 방지하기 위해 짧은 시간 내에 많은 양의 열을 방출할 필요가 있으며, 이는 인접한 조직을 바람직하지 않게 손상시킬 수 있다. 비침투성 의료 장치 어레이(900)에 의해 지렛대 활용되는 2-상 열 전달 공정으로 인해, 복수의 개구들(912)에 이웃하는 조직에서 형성되는 임의의 성장 온도 구배는 비침투성 의료 장치 어레이(900) 내의 작동 유체의 국부화된 높은 플럭스 증발에 의해 급속하게 감쇠될 수 있다.
도시된 비제한적인 예에서, 비침투성 장치 어레이(900)는 상단 플레이트(920), 하단 플레이트(922) 및 상단 플레이트(920)와 하단 플레이트(922) 사이에 배치된 증발 구조체(924)를 포함할 수 있다. 상단 플레이트(920) 및 하단 플레이트(922)는 금속 물질(예: 알루미늄)로 제조될 수 있고 복수의 개구들(912) 주위에 밀봉을 제공할 수 있다. 일부 비제한적인 예에서, 증발 구조체(924)는 그 측부들을 따라 대기에 개방되어서 작동 유체의 도입을 용이하게 한다. 일부 비제한적인 예에서, 증발 구조체(924)는 복수의 마이크로채널 또는 다공성 기재(예 : 금속 포움)를 포함할 수 있다. 임의의 경우에, 증발 구조체(924)는 [예를 들어, 작동 유체를 증발 구조체(924)와 유체 교통 상태로 배치하고 모세관 힘이 작동 유체를 증발 구조체(924) 내로 당기게 함으로써] 작동 유체로 채워지도록 구성된다. 일단 작동 유체로 충전되면, 증발 구조체(924)는 그 자체의 순수 증기와 열역학적 평형을 이룰 수 있다.
부분 절제 절차 동안, 예를 들어, 높은 플럭스가 절제의 개시시에 레이저 빔(916)에 의해 도입된다. 레이저 빔(916)이 조직 영역(918) 내로 더 깊이 드릴링됨에 따라, 조직 영역(918)의 표면상의 고온 영역은 [즉, 복수의 개구들(912)에 인접한] 각각의 부분 부위에서 조직 영역(918)을 통해서 방사상으로 확산되기 시작한다. 이 열 확산은 레이저 빔(916)이 제거된 후에도 오랫동안 각 부분 부위에서 조직 영역(918)을 통해 계속 전파된다. 부분 부위에 인접한 영역에 충분한 냉각을 가하지 않으면, 열 손상 영역이 바람직하지 않은 부작용으로 이웃 영역으로 빠르게 성장할 수 있다.
도 38 및 도 39에 도시된 비침투성 의료 장치 어레이(900)는 대안적인 경로(즉, 조직을 통해)에 비해 매우 작은 저항을 갖는 열 전달 경로를 제공한다. 따라서, 열은 조직 영역(918)에서 하단 플레이트(922)로 그리고 증발 구조체(924)로 전도된다. 하단 플레이트(922)와 접촉하는 원하는 조직 영역(918)의 열은 신속하게 제거되어 증발 증발 구조체 내의 작동 유체의 즉각적인 증발에 의해서 확산된다. 증발 구조체(924)는 레이저 빔(916)이 조직 영역(918)의 표면을 만날 때 균일한 증발 냉각 용량을 보장하기 위해 하단 플레이트(922)의 전체 표면에 걸쳐 액체 형태의 작동 유체를 유지할 수 있다. 예를 들어, 증발된 작동 유체는 상단 플레이트(920)와 접촉하면 응축될 수 있고 응축된 작동 유체는 증발 구조체(924) 안으로 뒤로 떨어질 수 있다. 도시된 비제한적인 예에서, 비침투성 의료 장치 어레이(900)는 수동적으로 작동할 수 있고 임의의 이동 부품을 포함할 수 없으며, 기존 의료용 냉각 기술에 대해 장점을 제공한다.
비침투성 의료 장치 어레이(900)의 다양한 파라미터는 열 제거 용량 및 적용에 기초한 작동 온도 범위를 제어하도록 변경될 수 있다. 예를 들어, 어레이 유닛(904)의 물질, 어레이 유닛(904)의 수 및 배열, 채널(910)의 폭, 작동 유체의 열적 특성 등이 있다. 표 2의 비침투성 의료 장치(600)의 특성 및 작동 특징은 비침투성 의료 장치 어레이(900)에 적용될 수 있다는 것을 이해해야 한다.
비제한적인 구성에 따라, 비침투성 의료 장치 어레이(900)의 사용 또는 사용 방법은 수술 또는 치료에 의한 인간 또는 동물 신체의 치료 단계를 포함하지 않는다. 본원에 기술된 장치를 사용하는 사람의 기술에는 의사의 기술이 없을 수도 있고 의도된 치료가 미적 이유로 오히려 치료받는 사람의 질병으로 인해 동기 부여될 수 없다는 점에 유의해야 한다.
일부 비제한적인 예에서, 비침투성 의료 장치 어레이(900)의 설계 및 특성은 본원에 기술된 상당히 증가된 냉각 용량에 추가하여 몇 가지 장점을 제공한다. 예를 들어, 비침투성 의료 장치 어레이(900)는 메시 구조 아래에 배향된 조직을 전자기 에너지에 노출시키지 못하도록 보호하는 불투명 메시 구조로 제조될 수 있다. 메쉬가 전자기 에너지에 불투명한 동안, 메쉬 내의 개구는 전자기 에너지를 조직 영역의 표면으로 전달할 때 손실을 발생시키지 않으며, 이는 스프레이 또는 사파이어 냉각 시스템이 사용되는 경우에는 적용되지 않는다. 일부 비제한적인 예에서, 비침투성 의료 장치 어레이(900)는 조직 영역의 표면에 분포되지만 국부화된 압력을 전달하기 위한 골격을 제공한다. 이것은 실질적으로 메쉬에 적용되는 주어진 위치에 가해지는 압력을 증가시킨다. 이를 위해, 골격은 가해지는 압력으로 인한 혈류의 제한을 제공할 수 있으며, 보다 근위에 위치한 골격을 갖는 뇌로부터 원위으로 배향된 조직으로부터의 신경 신호의 제한을 제공할 수 있다.
본원에 기술된 비침투성 의료 장치 어레이(900)의 비제한적인 예들에 부가하여, 비침투성 의료 장치 어레이(900)는 조직 영역의 표면을 가로질러 메쉬를 형성하도록 연장되는 튜브로 증발 냉각을 촉진하는 튜브로 형성될 수 있다. 이 경우에, 튜브의 직경 및 분포는 냉각, 압력, 보호된 조직 표면적, 레이저 인가 전에 조직의 예비 냉각에 소요되는 시간량 등과 같은 파라미터를 최적화하도록 선택된 비율의 파라미터를 갖는 메시를 생성하도록 선택될 수 있다.
일부 비제한적인 적용에서, 비침투성 의료 장치 어레이(900)는 바늘 또는 외과 장치(예: 생검 시스템 등)와 같은 다른 치료 시스템과 함께 사용될 수 있다. 혈류를 제한하기 위한 냉각, 조직 보호 및 압력 적용 또는 신경 신호 전도는 장치 등을 통해 연장된 생검 장치와 같이 메쉬의 개구를 통해 연장된 메쉬 또는 외과 장치의 개구를 통해 바늘 적용과 관련하여 사용될 수 있다.
수행되는 특정 임상 적용에 관계없이, 비침투성 의료 장치 어레이(900)는 음압 또는 흡인/진공 시스템과 함께 이용될 수 있으며, 어레이의 개구 내에 배치된 조직은 더 큰 치료 절차의 일부로서 음압을 겪을 수 있다.
도 40 및 도 41은 본원에 기술된 시스템 및 방법에 따라 2-상 열 전달 공정을 사용하여 부분 손상 또는 상해 패턴이 적용된 위치에 인접하여 냉각을 제공하도록 구현될 수 있는 비침투성 의료 장치(1000)의 비제한적인 예를 도시한다. 비침투성 의료 장치(1000)는 또한 부분 치료(예 : 광-동적 치료 및 종양 제거) 이외의 다른 의료용 냉각 적용 분야에서 구현될 수도 있다.
도 40에 도시된 바와 같이, 비침투성 의료 장치(1000)는 상단 플레이트(1002) 및 하단 플레이트(1004)를 포함한다. 상단 플레이트(1002) 및 하단 플레이트(1004)는 투명 또는 광학적으로 투과성인 물질로 제조될 수 있다. 상단 플레이트(1002) 및 하단 플레이트(1004)가 제조되는 물질은 원하는 광학 특성을 제공하도록 선택될 수 있다. 예를 들어, 비침투성 의료 장치(1000)는 전자기 에너지가 조직 영역으로 전달되는 적용에서 비표적 조직을 냉각시키는데 사용될 수 있다. 따라서, 상단 플레이트(1002) 및 하단 플레이트(1004)에 대한 물질은 주어진 전자기 처리에 대응하는 파장 범위에서 투명하도록 선택될 수 있다.
상단 플레이트(1002)는 상단 플레이트(1002)를 통해 연장되는 입구 포트(1006) 및 출구 포트(1008)를 포함할 수 있다. 조립될 때, 입구 포트(1006)는 하단 플레이트(1004)에 형성된 입구 저장소(1010)와 정렬되도록 구성되고 출구 포트(1008)는 하단 플레이트(1004)에 형성된 출구 저장소(1012)와 정렬되도록 구성된다. 하단 플레이트(1004)는 입구 저장소(1010)와 출구 저장소(1012) 사이에서 연장되는 복수의 마이크로채널(1014)을 포함한다. 일부 비제한적인 예에서, 다공성 기재가 상단 플레이트(1002)와 하단 플레이트(1004) 사이에 배치될 수 있다. 입구 저장소(1010), 출구 저장소(1012) 및 복수의 마이크로채널(1014) 각각은 하단 플레이트(1004) 내로 오목하게 형성된다.
일부 비제한적인 예에서, 전체 접촉 면적[즉, 하단 플레이트(1004)의 하단면(1011)]에 대한 복수의 마이크로채널(1014)에 의해 사용된 투영 면적의 비율은 10 % 미만일 수 있다. 일부 비제한적인 예에서, 전체 접촉 면적[즉, 하단 플레이트(1004)의 하단면(1011)]에 대한 복수의 마이크로채널(1014)에 의해 사용되는 투영 면적의 비율은 5 % 미만일 수 있다. 임의의 경우에, 복수의 마이크로채널(1014)에 의해 점유되는 투영 면적은 접촉 면적에 비해 매우 작다. 따라서, 하단 플레이트(1004)의 실질적인 다수는 중단없이 전자기 에너지가 비침투성 의료 장치(1000)를 통과하는 상당한 공간을 남겨둔 복수의 마이크로채널(1014)에 의해 중단되지 않을 수 있다.
도시된 비제한적인 예에서, 복수의 마이크로채널(1014) 각각은 대체로 일정한 폭, 직사각형 단면을 형성한다. 다른 비제한적인 예에서, 복수의 마이크로채널(1014)은 하단 플레이트(1004) 상의 다른 형상 및/또는 패턴을 형성할 수 있다. 예를 들어, 입구 저장소(1010) 및 출구 저장소(1012) 사이의 마이크로채널(1014)에 의해 가로지르는 경로의 형상 및 마이크로채널들 (1014) 사이의 간격은 임의의 유입 전자기 에너지(예: 부분 레이저 패턴, 단일 레이저 빔 등)와의 간섭을 방지하도록 설계될 수 있다. 일부 비제한적인 예에서, 마이크로채널들(1014) 사이의 간격, 마이크로채널(1014)의 패턴, 및/또는 마이크로채널(1014)에 의해 한정된 단면의 기하학적 구조는 빠른 냉각 응답 및 안정한 냉각을 제공하도록 조정될 수 있으며, 유입 전자기 에너지와의 간섭을 피할 수 있다. 일부 비제한적인 예에서, 마이크로채널(1014)의 내면은 (일부 목록의) 코팅으로 덮일 수 있거나 또는 유체 유동을 향상시키고 마찰 손실을 감소시키도록 패턴화될 수 있다.
도시된 비제한적인 예에서, 비침투성 의료 장치(1000)는 대체로 둥근 형상을 형성한다. 다른 비제한적인 예에서, 비침투성 의료 장치(1000)는 다른 형상(예: 곡선, 다각형 등)을 형성할 수 있다. 예를 들어, 하단 플레이트(1004) 및/또는 비침투성 의료 장치(1000)의 접촉면(1011)은 비침투성 의료 장치(600)의 베이스(602) 및 치료면(606)을 참조하여 본원에 기술된 다양한 기하학적 구조 중 어느 하나를 취할 수 있다.
도 40 및 도 41을 참조하면, 비침투성 의료 장치(1000)의 작동 중에, 예를 들어, 하단 플레이트(1004)의 접촉면(1011)은 전자기 기반 치료의 대상이 되는 조직 영역(1016)의 표면과 접촉하게 될 수 있다. 작동 유체는 외부 저장소(1018)로부터 인출되어 상단 플레이트(1002)의 입구 포트(1006)를 통해 하단 플레이트(1004)의 입구 저장소(1010)로 들어갈 수 있다. 작동 유체는 표면 장력 및 분자간 힘(예 : 모세관 힘)에 의해 수동적으로 복수의 마이크로채널(1014)에 대해 분배될 수 있다.
전자기 에너지는 간섭없이 원하는 치료 패턴으로 비침투성 의료 장치(1000)를 통해 전달될 수 있다. 복수의 마이크로채널(1014)을 통해 흐르는 작동 유체는 조직 영역(1016)으로부터 유입되는 열 에너지를 흡수하여 증발할 수 있다. 복수의 마이크로채널(1014)을 따라 출구 저장소(1012)를 향해 유동하는 작동 유체의 증발은 접촉면(1011)의 전체 접촉 면적에 대해 직접적이고 균일하게 분포된 냉각 효과를 유도한다. 작동 유체는 출구 포트(1008)를 통해 가스상(예: 증기)으로 배출되며, 출구 포트(1008)를 떠나는 증기는 수집되어 콘덴서(1021)에서 응축되고 저장소(1018)로 복귀될 수 있다.
도 41에 도시된 바와 같이, 비침투성 의료 장치(1000)에 의해 제공되는 냉각 효과는 유입 전자기 에너지에 의해 생성된 열로부터 비표적 조직 영역(1020)을 보호할 수 있고, 표적 조직 영역(1022)은 전자기 에너지에 의해 제공된 원하는 의료적 치료를 받는다. 비침투성 의료 장치(1000)로의 작동 유체의 유동은 조직 영역(1016) 및/또는 비침투성 의료 장치(1000)로부터 획득된 하나 이상의 피드백 신호를 통해 제어될 수 있다. 예를 들어, 하단 플레이트(1004)를 따른 하나 이상의 위치에서의 온도, 접촉면(1011)과 조직 영역(1016)의 표면 사이의 접촉력 및/또는 접촉면(1011)과 조직 영역(1016)의 표면 사이의 계면에서의 하나 이상의 위치에서의 온도를 포함할 수 있다.
비침투성 의료 장치(1000)의 다양한 파라미터는 적용에 기초하여 열 제거 용량 및 작동 온도 범위를 제어하도록 변경될 수 있다. 예를 들어, 상단 플레이트(1002) 및 하단 플레이트(1004)의 물질, 복수의 마이크로채널(1014)의 수 및 배열, 채널(1014)의 기하학적 구조 및 패턴, 작동 유체의 열적 특성 등이 포함된다. 표 2의 비침투성 의료 장치(600)의 특성 및 작동 특징이 비침투성 의료 장치(1000)에 적용될 수 있음을 이해해야 한다.
비제한적인 구성에 따라, 비침투성 의료 장치(1000)의 사용 또는 사용 방법은 수술 또는 치료에 의한 인간 또는 동물 신체의 치료 단계를 포함하지 않는다. 본원에 기술된 장치를 사용하는 사람의 기술에는 의사의 기술이 없을 수도 있고 의도된 치료가 미적 이유로 오히려 치료받는 사람의 질병으로 인해 동기 부여될 수 없다는 점에 유의해야 한다.
본원에 기술된 바와 같이, 본 발명은 의료 적용에서 조직 영역을 선택적으로 냉각하도록 구현될 수 있는 비침투성 의료 장치(100, 600, 900 및 1000)의 다양한 비제한적인 예를 제공한다. 이들 장치의 비침투성 특성으로 인해, 이들 장치를 비침투성으로 제어하는데 사용될 수 있는 피드백 신호를 획득하는 것이 바람직할 수 있다. 본원에 개시된 비침투성 의료 장치(100, 600, 900, 및 1000)를 제어하는데 사용될 수 있는 피드백 신호 중 일부는 조직 영역 내의 다양한 위치 및 깊이에서의 조직 영역 내의 온도이다. 또한, 일부 의학적 적용에서, 표적 조직 영역이 처리되는 것을 보장하기 위해 조직 영역 내의 온도의 시간적 및 공간적 분포를 결정하는 한편, 다른 조직 영역은 미처리로 유지하는 것이 바람직하다. 예를 들어, 조직 영역으로 관통하는 차가운 정면을 추적하고 이 차가운 정면의 원하는 위치 또는 깊이에 기초하여 의료용 냉각 장치를 제어하는 것이 필요할 수 있다. 분명히 조직 영역 내의 온도 정보를 얻으려면 침투성인 기술이 필요하다. 따라서, 본 발명은 예를 들어, 조직 영역의 표면에서 측정된 온도 분포에 기초하여 조직 영역 내의 다양한 깊이에서 공간적 및 시간적 온도 분포를 비침투성으로 결정하는 접근법을 제공한다.
도 42 및 도 43은 매체(예: 조직)에서 차가운 전방의 침투를 도시하는 등온 표면의 진행에 대한 하나의 비제한적인 예를 도시하는 그래프이다. 등온 표면의 임의의 점 및 방향에서 온도를 측정함으로써, 다른 점 및 방향에서의 온도 분포가 추출될 수 있다. 본 발명은 조직 영역의 표면으로부터 수집된 정보에 기초하여 이 조직 영역 내의 온도 분포를 결정하는 접근법을 제공한다. 일부 비제한적인 예에서, 조직 영역의 표면에서 수집된 복수의 온도 측정치는 주어진 시간에서 상이한 깊이의 조직 영역 내의 (예: 지방층에서의) 실제 존재하는 온도 프로파일과 관련될 수 있다.
도 44는 본 발명의 시스템 및 방법에 따른 비침투성 온도 결정 접근법을 개발하기 위해 이용되는 시험 셋업의 하나의 비제한적인 예를 도시한다. 도시된 비제한적인 예에서, 시험은 피부층(1100) 및 지방층(1102)을 갖는 돼지 조직의 입방 샘플에서 수행되었다. 돼지 피부는 24 ℃의 초기 온도에 있었고, -15 ℃의 초기 온도를 갖는 평평한 냉각 어플리케이터(1104)는 피부의 반을 덮었다. 위치되는 4 개의 열전쌍(도 44에서 1 내지 4로 번호가 매김)은 냉각 어플리케이터(1104) 아래의 조직 샘플 내의 다양한 깊이(Y1, Y2, Y3 및 Y4)에 있다. 또한, 4 개의 열전쌍(도 44에서 5 내지 8로 번호가 매김)은 냉각 어플리케이터(1104)에 이웃하는 상이한 위치(X1, X2, X3 및 X4)의 피부의 표면을 따라 위치된다. 주어진 시간에 이들 4 개의 데이터 점(즉, X, Y 쌍) 사이를 보간함으로써, 그 주어진 시간 동안 피부상의 임의의 주어진 점에서 온도를 기술하는 함수가 계산될 수 있다. 이 정보는 특정 시간에 피부의 표면에 대한 온도 프로파일 분포를 제공할 수 있다. 따라서, 지방 내부 또는 피부 표면 상의 임의의 주어진 점에서의 온도는 그 좌표 및 시간의 함수일 수 있다[즉, T(t) = f(x, y, t)이고, 여기서 T는 온도, x는 원점으로부터 피부 표면을 따른 거리이고, y는 원점으로부터 조직으로 내로의 깊이이고, t는 시간이다].
도 45 내지 도 48은 냉각 어플리케이터가 피부와 접촉한 후 1000 초 동안 도 44에 도시된 8 개의 열전쌍에 대한 시간의 함수로서 온도를 도시하는 그래프이다. 원점으로부터의 수평 거리 대 1000 초 실험의 시작부터 종료까지의 50 초 간격마다 4 개의 수평 열전쌍의 온도 보간이 도 49의 그래프에 도시되어 있다. 각각의 추출된 방정식을 원하는 온도로 동등화(equating)함으로써, 그 온도를 갖는 점들의 위치가 추출될 수 있다. 예를 들어, 피부 표면의 열전쌍은 T(t) = f(x, 0, t)로 나타낼 수 있다. 이 방정식을 0 ℃에 대해 풀면, f(x, 0, t) = 0이 된다. 그러면 t = 1 : 50 : 1000에 대해서 x(t)에 해당하는 값을 추출된 방정식에서 추출할 수 있다.
피부 표면에 대한 깊이 대 1000 초 실험의 시작부터 종료까지 각각의 50 초 간격에 대한 4 개의 수직(깊이) 열전쌍의 온도 보간이 도 49의 그래프에 도시되어 있다. 이 데이터는 제 2 함수 T(t) = f(0, y, t)를 제공한다. 이 방정식을 0 ℃에 대해서 풀면, 방정식은 f(0, y, t) = 0이 된다. 그러면 t = 1 : 50 : 1000에 대해서 y(t)에 해당하는 값을 추출할 수 있다.
수집된 정보로, T = 0 ℃에 대해 x 및 y 쌍이 동시에 알려지게 된다. 예를 들어, 원점으로부터 5 밀리미터 위치의 온도가 0 ℃가 될 때, 온도가 0 ℃인 조직 영역 내의 해당 깊이가 결정될 수 있다. 따라서, 조직 영역으로의 상이한 깊이의 동일한 온도에 대한 쌍이 결정될 수 있다. 예를 들어, 0 ℃에서의 등온선에 대해, 조직 내의 온도를 침투성으로 측정하는 선택을 사용할 수 없거나 구현하기에 바람직하지 않은 경우 조직 영역으로의 다양한 깊이에서 온도를 결정하기 위해 방정식 y = f(x)를 개발할 수 있다. X 좌표를 해당 온도 방정식에 배치함으로써, 그 온도에 해당하는 깊이를 조직 영역 내에서 결정할 수 있다. 결국 정확히 동일한 온도에서 피부 표면의 길이와 조직 영역 내의 깊이를 동등화하는 함수를 개발할 수 있다.
도 51은 상술한 실험에서 0 ℃ 등온선에 대한 x, y 쌍을 도시하는 그래프이다. 상술한 접근법을 사용하여, 10 ℃ 등온선의 x, y 쌍이 또한 결정될 수 있고 도 52에서 0 ℃ 등온선과 함께 플롯된다. 도시된 바와 같이, 임의의 온도 등온선에 대한 x, y 쌍은 조직 영역의 표면에서의 대응하는 온도에 기초하여 결정된다. 따라서, 본 발명은 조직 영역의 표면에서의 온도에 기초하여 조직 영역 내의 공간적 및 시간적 온도 프로파일을 비침투성으로 결정하는 접근법을 제공한다. 실제 적용에서, 조직 영역 내의 다양한 깊이에 열전쌍을 제공하는 선택은 실용적이지 않을 수도 있지만, 상술한 방정식은 이미 개발되어 조직 영역 내에 열전쌍을 실질적으로 갖는 것으로 작용할 수 있다. 따라서, 영역 내의 깊이에서 침투성으로 온도를 측정할 필요성이 제거될 수 있고, 본원에 기술된 접근법은 조직 영역의 표면에서의 온도를 깊이에서의 온도와 상관시키는 역할을 할 수 있다.
일부 비제한적인 적용에서, 하나 이상의 온도는 조직 영역에 열 효과를 제공하도록 구성된 의료 장치에 인접한 조직 표면 상에서 측정될 수 있다. 예를 들어, 하나 이상의 온도는 조직 영역에 열 효과를 제공하도록 구성된 의료 장치의 측에 또는 인접하게 소정 간격으로 측정될 수 있다. 이러한 방식으로, 조직 표면에서의 온도 프로파일이 결정될 수 있으며, 본원에 기술된 접근법을 사용하여 표면에서 이 프로파일을 조직 영역 내 또는 그 깊이에서 프로파일과 상관시킬 수 있다. 조직 영역 내에 비침투성으로 온도 프로파일을 측정하는 접근법은 의료용 냉각 기술 및 의료용 가열 기술에도 동등하게 적용될 수 있다는 것을 이해해야 한다.
본원에 기술된 조직 영역을 냉각시키기 위해 구현될 수 있는 본원에 기술된 다양한 의료 장치(100, 600, 700, 900 및 1000)는 하나 이상의 제어 파라미터를 변경함으로써 제어될 수 있다. 예를 들어, 장치(100, 600, 700, 900, 및 1000)로의 유체 유동은 조직 영역에 적용되는 온도 및 냉각 속도를 제어하도록 조정될 수 있다. 유체 유량은 수동적으로 또는 능동적으로 제어될 수 있다. 수동 제어를 위해, 유체 유동은 장치(100, 600, 700, 900, 및 1000) 및 존재한다면 콘덴서[예: 콘덴서(112, 1022)]의 압력에 의해 제어된다. 장치(100, 600, 700, 900 및 1000)의 압력 및 존재한다면, 콘덴서의 압력은 유입 열 플럭스, 열 손실 및 장치(100, 600, 700, 900, 및 1000)의 기하학적 형태 및 배향 및 존재한다면 콘덴서기하학적 형태 및 배향 뿐만 아니라 이들 사이의 액체 및 증기 수송 라인에 의해서 결정될 수 있다. 수동 유체 유동 제어의 몇 가지 장점은 시스템의 단순성, 직접적인 통합 및 높은 신뢰성이다.
능동 제어의 경우, 제어 밸브, 유동 제어 장치 또는 모세관이 장치(100,600,700,900,1000)로의 유체 유동 및/또는 존재한다면, 콘덴서의 증기압을 제어할 수 있다. 제어 시스템 응답은 모니터링 시스템에 의해 얻어진 피드백 파라미터에 기초하여 조율될 수 있다. 능동 유체 유동 제어의 몇 가지 장점은 급격한 온도 변동 및 사용자가 정의한 냉각/가열 절차에 대응할 수 있는 유연성이다.
본원에 기술된 바와 같이, 장치(100, 600, 700, 900, 및 1000)의 작동 특성을 조정하기 위한 다른 제어 파라미터는 사용되는 작동 유체의 열 물리적 특성일 수 있다. 열 물리적 특성은 성능, 온도, 압력 및 냉각 속도에 대한 작동 범위, 및 장치(100, 600, 700, 900 및 1000)의 기하학적 파라미터 및 존재한다면 콘덴서의 기하학적 파라미터를 결정할 수 있다. 여러 가지 물질이 각각의 특정 적용을 위한 작동 유체로 사용될 수 있다. 각 유체는 평형 압력, 증발 잠열, 밀도 등을 기반으로 자체 작동 조건 및 설계 파라미터를 결정한다. 따라서, 냉각 유체(들)의 선택은 상 변화 가열/냉각 시스템의 설계, 작동, 특히 최적화 및 제어에 필수적이다.
유동 제어 및 작동 유체 선택에 추가하여, 본원에 기술된 장치(100, 600, 700, 900, 및 1000)에 대한 처리/접촉면의 온도는 전기 가열 및/또는 대류 가열/냉각을 사용하여 직접 제어될 수 있다. 이들 각각의 방법은 초고속 응답을 위한 보조 시스템으로서 상 변화 시스템에 통합되거나 필요할 경우 신속하게 온도 변화 방향을 역전시킬 수 있다.
일부 비제한적인 예에서, 본원에 기술된 장치(100, 600, 700, 900 및 1000)의 온도 및 냉각/가열 속도는 또한 작동 유체로서 사용되는 둘 이상의 물질을 사용하여 제어될 수 있다. 예를 들어, 2 유체 시스템에서 유체 A는 초기 조직 온도에서 중간 온도로 신속하게 온도를 낮추기 위해 도입될 수 있다. 유체의 열-물리적 특성은 냉각 단계 1의 고정 최소 온도를 결정/보장한다. 그 다음 시스템은 유체 B를 사용하는 것으로 전환하여 목표 조직을 최종 온도까지 냉각시킬 수 있다. 원할 경우이 공정을 반대로 하여 조직을 중간 온도로 되돌릴 수 있다. 다중 유체 공정은 원하는 대로 많은 온도 "단계"를 규정하기 위해 2 개 초과의 작동 유체를 구현하도록 확장될 수 있다.
일부 비제한적인 예에서, 본원에 기술된 조직과 장치(100, 600, 700, 900 및 1000) 사이의 열적/기계적 접촉의 품질은 냉각/가열 계면을 가로지르는 열교환 속도를 제어하는데 중요할 수 있다. 국부적인 수직력, 겔, 페이스트 등의 계면 물질의 존재 및 두께 및 적용된 진공 레벨은 내열성 및 열 접촉 품질에 영향을 미치는 중요한 요소 중 하나이다. 이러한 각 파라미터는 조직/고온/냉각 플레이트 계면을 가로지르는 열 유동 및 냉각 속도를 조정하고 제어하는데 사용될 수 있다.
하기 예는 조직 영역을 냉각시키기 위해 2-상 열 전달 공정을 지렛대 활용하는 본원에 기술된 다양한 의료 장치가 사용되거나 구현될 수 있는 방법을 상세히 설명하고 당업자가 그것의 원리를 보다 쉽게 이해할 수 있게 하는 것을 가능하게 할 것이다. 다음의 예는 예시의 방법으로 제시된 것으로, 결코 어떤 방식으로도 제한하려는 것은 아니다.
도 53은 본원에 기술된 시스템 및 방법에 따라 조직 영역을 냉각시키기 위해 지렛대 활용된 2-상 열 전달 공정을 시험하기 위해 이용되는 시험 셋업을 도시한다. 다공성 기재는 접촉면을 포함하는 금속 애플리케이터 내에 배치되었다. 금속 애플리케이터는 6061 알루미늄으로 제조되었으며 15 밀리미터(mm)의 접촉면, 4 mm의 벽 두께 및 24 mm의 (다공성 기재를 수용하는 부분의) 외경을 포함한다. 다공성 기재는 알루미늄으로 제조되었으며 다공성 기재가 접촉면을 향하여 진행함에 따라 감소하는 가변 공극 크기를 포함하였다. 감소하는 공극 크기는 본원에 기술된 시스템 및 방법에 따라 모세관 힘들으로 인해 작동 유체가 다공성 기재 내로 자연적으로 당겨지는 것을 가능하게 한다. 시험용 작동 유체는 이소 부탄(C4H10)이었고, 작동 압력은 1 bar였다. 이소 부탄의 비등점은 1 bar에서 -11.7 ℃이다. 시험된 조직 샘플은 평균 피부 두께가 2.5 mm이고 지방 두께가 20 mm이었다. 시험을 위해, 조직 샘플은 조직 샘플과 주변 사이의 열교환을 감소시키기 위해 샘플 자체보다 약간 큰 치수를 갖는 플라스틱 인클로저에 삽입되었다. 인클로저는 이 인클로저가 애플리케이터의 접촉면과 접촉한 조직 샘플의 상면(즉, 피부 표면)을 제외한 모든 것을 덮었다. 시험된 조직 샘플은 돼지였다.
초기에, 조직 샘플, 인클로저 및 애플리케이터를 포함하는 모든 구성요소는 주위 공기와 열적 평형을 이뤘다. 접촉면을 조직 샘플의 표면과 결합시키고 액체 이소-부탄을 애플리케이터 내로 주입 하였다. 온도는 도시된 2-상 장치 및 열전기 냉각 모두에 대해 조직 내의 깊이가 변화할 때 시간의 함수로서 측정되었다. 온도는 Omega Hypodermic Type-E 열전쌍 HYP-1을 사용하여 측정되었다.
도 54에 도시된 바와 같이, 일단 이소 부탄이 어플리케이터의 다공성 기재에 주입되면, 2-상 냉각은 모의된 조직 내로 보다 신속하게 침투한다. 예를 들어, 200 초 후에 열전기 냉각은 조직 샘플 내로 약 5.5mm의 깊이에서 약 24 ℃에서 약 20 ℃까지만 냉각되는 반면, 2-상 냉각은 조직 샘플을 약 13 ℃로 냉각 시켰다. 또한 2-상 냉각 장치는 열전기 냉각과 비교할 때 보다 높은 온도에서 조직 샘플의 표면을 유지하면서 동시에 조직 샘플 내로 5.5mm의 깊이에서 더 낮은 온도를 유지한다. 따라서, 2-상 냉각은 열전기 냉각과 비교할 때 조직 내에서 더 깊은 곳까지 침투하여보다 따뜻한 온도에서 조직의 표면을 유지할 수 있는 보다 빠른 냉각을 제공한다.
도 55 내지 도 57은 절개 절차 중에 레이저 펄스를 겪은 후에 조직 영역의 모델을 도시한다. 비침투성 의료 장치 어레이(900)는 레이저 빔을 둘러싸는 조직과 접촉하여 배치된다. 도 55 및 도 56에 도시된 바와 같이, 레이저로부터의 열 입력은 비침투성 의료 장치 어레이(900)에 의해 빠르게 발산된다. 도 57은 온도를 레이저 빔으로부터 방사상 외측의 다양한 위치에서 시간의 함수로서 도시한다. 레이저 에너지의 전달 후(즉, 그래프에 도시된 피크), 비침투성 의료 장치 어레이(900)는 거의 순간적으로 (예: 0.2 초 미만) 레이저 빔으로부터 방사상 외측 영역의 온도를 비-손상 온도로 감소시킨다.
도 58은 도 59의 셋업을 사용하여 모델링된 종래의 냉각 장치의 냉각 성능에 대항하여 비침투성 의료 장치(1000)의 냉각 성능을 모델링하기 위해 사용된 셋업을 도시한다. 도 60은 온도 냉각이 시작된 2 초 후에 피부 표면의 온도를 도시하는 그래프이다. 도 60에 도시된 바와 같이, 종래의 냉각 시스템은 매우 불균일한 온도 프로파일을 제공하고 조직을 균일하게 냉각시키지 못했다. 역으로, 비침투성 의료 장치(1000)에 의해 지렛대 활용되는 2-상 열 전달은 상당히 증가된 냉각 용량을 제공하고 피부 온도를 종래의 냉각 장치보다 충분히 낮은 온도로 균일하게 감소시킬 수 있었다.
따라서, 본 발명은 특정 실시예 및 예와 관련하여 상술되었지만, 본 발명은 반드시 그렇게 제한되지 않으며, 실시예, 예 및 사용으로부터 복수의 다른 실시예, 예, 사용, 변형 및 수정이 본원에 첨부된 청구항들에 의해 포함되도록 의도된다. 본원에 인용된 각 특허 및 공보의 전체 개시는, 그러한 각 특허 또는 공보가 본원에서 개별적으로 참고문헌으로 인용된 것처럼, 참고로 합체되어 있다.

Claims (126)

  1. 조직 영역에 냉각을 제공하도록 구성되는 비침투성 의료 장치에 있어서,
    상단 플레이트;
    접촉면을 포함하는 하단 플레이트;
    작동 유체를 수용하도록 구성되는 상기 상단 플레이트와 상기 하단 플레이트 사이에 배치되는 증발 구조체; 및
    부분 패턴으로 배열되는 복수의 개구들을 구비하고, 상기 개구들 각각은 상기 상단 플레이트, 상기 하단 플레이트 및 상기 증발 구조체를 관통하여 연장되며,
    상기 증발 구조체는 상기 개구로부터 연장하는 복수의 채널들을 포함하고, 상기 증발 구조체는 상기 복수의 개구들을 둘러싸는 상기 접촉면을 냉각시키기 위해 상기 작동 유체의 증발을 촉진하도록 구성되는, 비침투성 의료 장치.
  2. 삭제
  3. 제 1 항에 있어서, 베이스가 복수의 어레이 유닛들을 각각 포함하는 복수의 어레이 타일들을 포함하고, 상기 복수의 어레이 유닛들은 각각 근위 단부, 원위 단부, 및 그 위에 배치된 상기 복수의 채널들의 일부를 포함하는, 비침투성 의료 장치.
  4. 제 1 항에 있어서, 상기 증발 구조체는 다공성 기재의 형태인, 비침투성 의료 장치.
  5. 제 1 항에 있어서, 상기 증발 구조체는 금속 포움 형태인, 비침투성 의료 장치.
  6. 삭제
  7. 제 1 항에 있어서, 상기 접촉면은 오목 형상, 볼록 형상과 복수의 피크들 및 밸리들 중 적어도 하나를 형성하는, 비침투성 의료 장치.
  8. 제 1 항에 있어서, 상기 접촉면이 상기 접촉면으로부터 연장되는 복수의 돌출부들을 포함하는, 비침투성 의료 장치.
  9. 제 1 항에 있어서, 상기 하단 플레이트는 말발굽 형상, 바나나 형상 및 환형중 적어도 하나를 형성하는, 비침투성 의료 장치.
  10. 제 1 항에 있어서, 상기 개구들은 상기 상단 플레이트와 상기 하단 플레이트 사이에서 밀봉되는, 비침투성 의료 장치.
  11. 제 1 항에 있어서, 상기 작동 유체는 유체 공급원으로부터 상기 증발 구조체로 공급되는, 비침투성 의료 장치.
  12. 제 1 항에 있어서, 상기 작동 유체는 탄화수소, 수소화불화탄소, 알콜 및 물 중 적어도 하나인, 비침투성 의료 장치.
  13. 조직 영역에 냉각을 제공하도록 구성되는 의료 장치에 있어서,
    작동 유체를 수용하도록 각각 구성되는 복수의 채널들 및 증발 구조체를 통해서 연장되는 복수의 구멍들을 포함하는, 상기 증발 구조체; 및
    상기 증발 구조체와 결합하는 접촉면으로서, 상기 복수의 구멍들이 상기 접촉면을 통해서 연장되는, 상기 접촉면을 구비하고, 그리고
    상기 접촉면으로부터의 열이 상기 증발 구조체로 전달되어서 상기 복수의 채널들 내의 폐쇄 회로 내에서 작동 유체를 증발시키고 상기 복수의 구멍들에 인접한 상기 접촉면에 냉각을 제공하는, 의료 장치.
  14. 제 13 항에 있어서, 상기 작동 유체는 유체 공급원으로부터 상기 복수의 채널들로 공급되는, 의료 장치.
  15. 제 13 항에 있어서, 상기 작동 유체는 탄화수소, 수소화불화탄소, 알콜 및 물 중 적어도 하나인, 의료 장치.
  16. 제 13 항에 있어서, 상기 접촉면은 오목 형상, 볼록 형상과 복수의 피크들 및 밸리들 중 적어도 하나를 형성하는, 의료 장치.
  17. 제 13 항에 있어서, 상기 접촉면은 상기 접촉면으로부터 연장되는 복수의 돌출부들을 포함하는, 의료 장치.
  18. 제 13 항에 있어서, 상기 증발 구조체는 상단 플레이트 및 하단 플레이트 사이에서 밀봉되고, 상기 하단 플레이트는 말발굽 형상, 바나나 형상 및 환형 중 적어도 하나를 형성하는, 의료 장치.
  19. 제 13 항에 있어서, 상기 증발 구조체는 상단 플레이트 및 하단 플레이트 사이에서 밀봉되고, 상기 접촉면은 상기 하단 플레이트 상에 형성되는, 의료 장치.
  20. 제 19 항에 있어서, 상기 복수의 구멍들은 상기 상단 플레이트 및 상기 하단 플레이트를 통해서 연장되는, 의료 장치.
  21. 삭제
  22. 삭제
  23. 삭제
  24. 삭제
  25. 삭제
  26. 삭제
  27. 삭제
  28. 삭제
  29. 삭제
  30. 삭제
  31. 삭제
  32. 삭제
  33. 삭제
  34. 삭제
  35. 삭제
  36. 삭제
  37. 삭제
  38. 삭제
  39. 삭제
  40. 삭제
  41. 삭제
  42. 삭제
  43. 삭제
  44. 삭제
  45. 삭제
  46. 삭제
  47. 삭제
  48. 삭제
  49. 삭제
  50. 삭제
  51. 삭제
  52. 삭제
  53. 삭제
  54. 삭제
  55. 삭제
  56. 삭제
  57. 삭제
  58. 삭제
  59. 삭제
  60. 삭제
  61. 삭제
  62. 삭제
  63. 삭제
  64. 삭제
  65. 삭제
  66. 삭제
  67. 삭제
  68. 삭제
  69. 삭제
  70. 삭제
  71. 삭제
  72. 삭제
  73. 삭제
  74. 삭제
  75. 삭제
  76. 삭제
  77. 삭제
  78. 삭제
  79. 삭제
  80. 삭제
  81. 삭제
  82. 삭제
  83. 삭제
  84. 삭제
  85. 삭제
  86. 삭제
  87. 삭제
  88. 삭제
  89. 삭제
  90. 삭제
  91. 삭제
  92. 삭제
  93. 삭제
  94. 삭제
  95. 삭제
  96. 삭제
  97. 삭제
  98. 삭제
  99. 삭제
  100. 삭제
  101. 삭제
  102. 삭제
  103. 삭제
  104. 삭제
  105. 삭제
  106. 삭제
  107. 삭제
  108. 삭제
  109. 삭제
  110. 삭제
  111. 삭제
  112. 삭제
  113. 삭제
  114. 삭제
  115. 삭제
  116. 삭제
  117. 삭제
  118. 삭제
  119. 삭제
  120. 삭제
  121. 삭제
  122. 삭제
  123. 삭제
  124. 삭제
  125. 삭제
  126. 삭제
KR1020197023890A 2017-01-19 2018-01-19 조직의 열 치료를 위한 시스템 및 방법 KR102564586B1 (ko)

Applications Claiming Priority (15)

Application Number Priority Date Filing Date Title
US201762447997P 2017-01-19 2017-01-19
US62/447,997 2017-01-19
US201762482027P 2017-04-05 2017-04-05
US62/482,027 2017-04-05
US201762500047P 2017-05-02 2017-05-02
US62/500,047 2017-05-02
US201762511837P 2017-05-26 2017-05-26
US62/511,837 2017-05-26
US201762523492P 2017-06-22 2017-06-22
US62/523,492 2017-06-22
US201762532343P 2017-07-13 2017-07-13
US62/532,343 2017-07-13
US201762541650P 2017-08-04 2017-08-04
US62/541,650 2017-08-04
PCT/US2018/014578 WO2018136830A1 (en) 2017-01-19 2018-01-19 Systems and methods for thermal treatment of tissue

Publications (2)

Publication Number Publication Date
KR20190109741A KR20190109741A (ko) 2019-09-26
KR102564586B1 true KR102564586B1 (ko) 2023-08-09

Family

ID=62908742

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020197023890A KR102564586B1 (ko) 2017-01-19 2018-01-19 조직의 열 치료를 위한 시스템 및 방법

Country Status (7)

Country Link
US (1) US20200054482A1 (ko)
EP (1) EP3570794A4 (ko)
KR (1) KR102564586B1 (ko)
CN (1) CN110430846A (ko)
CA (1) CA3054037A1 (ko)
IL (1) IL268167B2 (ko)
WO (1) WO2018136830A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220006067A (ko) 2019-04-10 2022-01-14 악티쿠스 엘엘씨 진공 구동 물 증발에 기초한 냉각 및 냉동
KR102569680B1 (ko) * 2020-06-05 2023-08-25 주식회사 리센스메디컬 레이저 시술 장치 및 그 시술 방법

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005107834A1 (en) * 2004-04-30 2005-11-17 Clawson Burrell E Apparatus and methods for isolating human body areas for localized cooling

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5802865A (en) * 1997-09-05 1998-09-08 The Sharper Image Evaporative personal cooler
US6257011B1 (en) * 1999-09-16 2001-07-10 U T Battelle Llc Personal cooling apparatus and method
CA2763127A1 (en) * 2001-05-23 2002-11-28 Palomar Medical Technologies, Inc. Cooling system for a photocosmetic device
US6772825B2 (en) * 2002-11-04 2004-08-10 Charles A. Lachenbruch Heat exchange support surface
US7077858B2 (en) * 2003-09-22 2006-07-18 Coolhead Technologies, Inc. Flexible heat exchangers for medical cooling and warming applications
US7721349B1 (en) * 2005-06-25 2010-05-25 Ted Nathan Strauss Flexible personal evaporative cooling system with warming potential
US8246611B2 (en) * 2006-06-14 2012-08-21 Candela Corporation Treatment of skin by spatial modulation of thermal heating
CA2719770A1 (en) * 2008-03-27 2009-10-01 The General Hospital Corporation Apparatus and method for surface cooling
US9265654B2 (en) * 2009-05-11 2016-02-23 Steven H. Gallaher Cooling article of clothing and method of use for same
US8857203B2 (en) * 2012-03-06 2014-10-14 Hamilton Sundstrand Corporation Personal thermal regulation system
US9295512B2 (en) * 2013-03-15 2016-03-29 Myoscience, Inc. Methods and devices for pain management

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005107834A1 (en) * 2004-04-30 2005-11-17 Clawson Burrell E Apparatus and methods for isolating human body areas for localized cooling

Also Published As

Publication number Publication date
CA3054037A1 (en) 2018-07-26
EP3570794A4 (en) 2020-08-12
EP3570794A1 (en) 2019-11-27
US20200054482A1 (en) 2020-02-20
IL268167A (en) 2019-09-26
IL268167B2 (en) 2023-11-01
KR20190109741A (ko) 2019-09-26
WO2018136830A1 (en) 2018-07-26
CN110430846A (zh) 2019-11-08
IL268167B1 (en) 2023-07-01

Similar Documents

Publication Publication Date Title
CN102143724B (zh) 用于皮肤病学色素减退的方法和装置
AU2004308417B2 (en) Cryosurgical devices for endometrial ablation
US6648904B2 (en) Method and apparatus for controlling the temperature of a surface
KR102251171B1 (ko) 피부 조직의 극저온 처리를 위한 방법 및 장치
US10993827B2 (en) Hand-held cryotherapy device including cryogen temperature pressure controller and method thereof
KR100746323B1 (ko) 냉동 치료 및 관리를 위한 롤러형 피부관리기
US6565556B1 (en) Device for carrying out cryosurgical interventions, especially for treating tumors
US20150265330A1 (en) Cryoprobe for Low Pressure Systems
TW201540254A (zh) 用於影響組織的色素形成之方法及設備
JP7443489B2 (ja) 熱管理デバイスおよびシステム
JP2006130055A (ja) ペルチェモジュール/素子による凍結治療装置およびペルチェモジュール/素子による凍結治療温度制御方法
KR102564586B1 (ko) 조직의 열 치료를 위한 시스템 및 방법
US20200222103A1 (en) Systems and methods for thermal treatment of tissue
Maruyama et al. The flexible cryoprobe using Peltier effect for heat transfer control
RU2261063C1 (ru) Криоинструмент
Maruyama et al. Development of precise-temperature-controlled cooling apparatus for medical application by using Peltier effect

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right