KR102562575B1 - Method of manufacturing conductive polymer prepolymer - Google Patents

Method of manufacturing conductive polymer prepolymer Download PDF

Info

Publication number
KR102562575B1
KR102562575B1 KR1020220145214A KR20220145214A KR102562575B1 KR 102562575 B1 KR102562575 B1 KR 102562575B1 KR 1020220145214 A KR1020220145214 A KR 1020220145214A KR 20220145214 A KR20220145214 A KR 20220145214A KR 102562575 B1 KR102562575 B1 KR 102562575B1
Authority
KR
South Korea
Prior art keywords
conductive polymer
polymer prepolymer
paragraph
reaction
prepolymer
Prior art date
Application number
KR1020220145214A
Other languages
Korean (ko)
Inventor
이병용
이정주
김동호
홍기훈
고홍석
이진형
김상국
Original Assignee
수경화학 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 수경화학 주식회사 filed Critical 수경화학 주식회사
Priority to KR1020220145214A priority Critical patent/KR102562575B1/en
Application granted granted Critical
Publication of KR102562575B1 publication Critical patent/KR102562575B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4825Polyethers containing two hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/73Polyisocyanates or polyisothiocyanates acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7664Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
    • C08G18/7671Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups containing only one alkylene bisphenyl group
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

반응조에 디이소시아네이트계 화합물을 투입하여 용해시키는 단계; 폴리올에 소듐염이 분산된 혼합물을 상기 디이소시아네이트계 화합물이 용해된 반응조에 투입하여 1차 반응시키는 단계; 상기 1차 반응 이후 사슬연장제, 가교제 및 촉매를 투입하여 2차 반응시키는 단계; 및 상기 2차 반응 이후 용매를 투입하는 단계를 포함하고, 상기 소듐염은 소듐 헥사플루오로포스페이트(sodium hexafluorophosphate, NaPF6), 소듐 퍼클로레이트(sodium perchlorate, NaClO4), 이들의 수화물 또는 이들의 조합을 포함하는 전도성 고분자 프리폴리머의 제조 방법이 제공된다.Injecting and dissolving a diisocyanate-based compound in a reaction vessel; Injecting a mixture in which sodium salt is dispersed in polyol into a reaction vessel in which the diisocyanate-based compound is dissolved, and subjecting the mixture to a primary reaction; Injecting a chain extender, a crosslinking agent and a catalyst after the first reaction to perform a second reaction; and adding a solvent after the secondary reaction, wherein the sodium salt is sodium hexafluorophosphate (NaPF 6 ), sodium perchlorate (NaClO 4 ), a hydrate thereof, or a combination thereof A method for producing a conductive polymer prepolymer comprising the present invention is provided.

Description

전도성 고분자 프리폴리머의 제조 방법{METHOD OF MANUFACTURING CONDUCTIVE POLYMER PREPOLYMER}Manufacturing method of conductive polymer prepolymer {METHOD OF MANUFACTURING CONDUCTIVE POLYMER PREPOLYMER}

전도성 고분자 프리폴리머의 제조 방법에 관한 것이다.It relates to a method for preparing a conductive polymer prepolymer.

리튬이온전지를 제작하기 위해서는 기본적으로 활물질을 집전체에 부착시켜야 한다. 바인더는 리튬이차전지용 전극에 사용되어 전극을 기계적으로 안정화하는 역할을 한다. 또한, 바인더는 충방전이 반복적으로 진행될 때 활물질 또는 도전재 사이의 결합이 느슨해지는 것을 방지한다. 음극 활물질, 도전재, 용매 및 바인더를 혼합하여 슬러리를 만들고 이를 전극에 부착시키는데, 슬러리를 만들때 바인더를 첨가하지 않으면 집전체에 고르게 분포되질 않게 된다.In order to manufacture a lithium ion battery, it is basically necessary to attach an active material to a current collector. A binder is used in an electrode for a lithium secondary battery and serves to mechanically stabilize the electrode. In addition, the binder prevents the coupling between the active material or the conductive material from loosening when charging and discharging are repeatedly performed. A slurry is made by mixing a negative electrode active material, a conductive material, a solvent, and a binder and attached to the electrode. If the binder is not added when making the slurry, it is not evenly distributed on the current collector.

이러한 바인더는 용제계 바인더와 수계 바인더로 분류된다. 최근에는 기존에 사용하던 용제계 바인더인 폴리비닐리덴플루오라이드(PVDF) 대신, 수계 바인더인 스티렌 부타디엔 고무(styreren butadiene rubber, SBR) 및 카르복시메틸셀룰로오스(carboxy methyl cellulose, CMC)가 주로 사용된다. 활물질의 함량을 높이고 바인더의 함량을 줄여야 에너지 밀도를 높일 수 있는데, 폴리비닐리덴플루오라이드(PVDF)는 바인더 함량을 줄이는 데 한계가 있다. 반면, 수계 바인더인 스티렌 부타디엔 고무(styreren butadiene rubber, SBR) 및 카르복시메틸셀룰로오스(carboxy methyl cellulose, CMC)는 최소한의 접착만으로 서로 유연하면서도 단단히 묶어줄 수 있고, 폴리비닐리덴플루오라이드(PVDF) 보다 결착 특성이 우수하다.These binders are classified into solvent-based binders and water-based binders. Recently, styrene butadiene rubber (SBR) and carboxymethyl cellulose (CMC), which are water-based binders, are mainly used instead of polyvinylidene fluoride (PVDF), which is a solvent-based binder. Energy density can be increased by increasing the content of the active material and reducing the content of the binder, but polyvinylidene fluoride (PVDF) has limitations in reducing the binder content. On the other hand, water-based binders such as styrene butadiene rubber (SBR) and carboxymethyl cellulose (CMC) can bind each other flexibly and firmly with minimal adhesion, and bind more tightly than polyvinylidene fluoride (PVDF). characteristics are excellent.

이와 관련하여, 수계 바인더, 및 용제계 바인더인 폴리비닐리덴플루오라이드(PVDF)와 비교하여 우수한 접착강도 및 내열성을 가진 용제계 바인더로서 프리폴리머형 바인더의 개발이 요구되고 있다. In this regard, it is required to develop a prepolymer type binder as a solvent-based binder having excellent adhesive strength and heat resistance compared to a water-based binder and a solvent-based binder, polyvinylidene fluoride (PVDF).

또한, 리튬이차전지는 지속적으로 전기를 주고받아 쉽게 열이 날수 있는데, 이때 분리막이 매우 열에 취약하게 된다. 예를 들어, 폴리에틸렌(PE) 분리막의 경우 130℃ 근처에서 용융하여 기공이 용융되는 현상이 발생하고, 150℃ 이상에서는 완전히 용융된다. 이를 방지하기 위하여 세라믹 입자 등을 고분자로 코팅하거나 분리막으로서 불소계 분리막을 사용한다. 따라서 분리막의 내열도를 높이고 기공이 용융되는 현상을 방지하여 안정성을 가지도록 하는 것이 매우 중요하다. 이를 고려하여, 분리막을 코팅하는 소재 개발 또한 요구되고 있다.In addition, the lithium secondary battery can easily generate heat by continuously exchanging electricity, and at this time, the separator is very vulnerable to heat. For example, in the case of a polyethylene (PE) separator, it melts at around 130° C., causing pores to melt, and completely melts at 150° C. or higher. To prevent this, ceramic particles or the like are coated with a polymer or a fluorine-based separator is used as a separator. Therefore, it is very important to increase the heat resistance of the separation membrane and to prevent the melting of pores so that it has stability. In consideration of this, development of a material for coating the separator is also required.

또한, 리튬이온전지를 대체할 차세대 전지로 주목받고 있는 소듐고체 전지에 있어서, 고체 전해질의 열적, 기계적 안정성을 높이는 인터레이어용 소재 개발 또한 요구되고 있다. In addition, in sodium solid-state batteries, which are attracting attention as next-generation batteries to replace lithium ion batteries, development of materials for interlayers that enhance thermal and mechanical stability of solid electrolytes is also required.

일 구현예는 내열성, 접착성, 흐름성, 침투성 및 이온전도성이 우수하여 리튬이차전지용 바인더 및 분리막 코팅제와 소듐고체전지용 인터레이어에 적용 가능한 다목적의 전도성 고분자 프리폴리머의 제조 방법을 제공한다.One embodiment provides a method for preparing a multi-purpose conductive polymer prepolymer that has excellent heat resistance, adhesion, flowability, permeability and ion conductivity and is applicable to binders and separator coatings for lithium secondary batteries and interlayers for sodium solid-state batteries.

일 구현예는 반응조에 디이소시아네이트계 화합물을 투입하여 용해시키는 단계; 폴리올에 소듐염이 분산된 혼합물을 상기 디이소시아네이트계 화합물이 용해된 반응조에 투입하여 1차 반응시키는 단계; 상기 1차 반응 이후 사슬연장제, 가교제 및 촉매를 투입하여 2차 반응시키는 단계; 및 상기 2차 반응 이후 용매를 투입하는 단계를 포함하고, 상기 소듐염은 소듐 헥사플루오로포스페이트(sodium hexafluorophosphate, NaPF6), 소듐 퍼클로레이트(sodium perchlorate, NaClO4), 이들의 수화물 또는 이들의 조합을 포함하는 전도성 고분자 프리폴리머의 제조 방법을 제공한다.One embodiment comprises the steps of dissolving by introducing a diisocyanate-based compound into a reaction vessel; Injecting a mixture in which sodium salt is dispersed in polyol into a reaction vessel in which the diisocyanate-based compound is dissolved, and subjecting the mixture to a primary reaction; Injecting a chain extender, a crosslinking agent and a catalyst after the first reaction to perform a second reaction; and adding a solvent after the secondary reaction, wherein the sodium salt is sodium hexafluorophosphate (NaPF 6 ), sodium perchlorate (NaClO 4 ), a hydrate thereof, or a combination thereof It provides a method for producing a conductive polymer prepolymer comprising

상기 디이소시아네이트계 화합물은 메틸렌 디페닐 디이소시아네이트, 헥사메틸렌 디이소시아네이트 또는 이들의 조합을 포함할 수 있다.The diisocyanate-based compound may include methylene diphenyl diisocyanate, hexamethylene diisocyanate, or a combination thereof.

상기 폴리올은 폴리에틸렌글리콜, 폴리프로필렌글리콜 또는 이들의 조합을 포함할 수 있다.The polyol may include polyethylene glycol, polypropylene glycol, or a combination thereof.

상기 폴리올은 상기 폴리에틸렌글리콜일 수 있고, 상기 폴리에틸렌글리콜의 중량평균분자량은 400 g/mol 내지 1,000 g/mol 일 수 있다.The polyol may be the polyethylene glycol, and the polyethylene glycol may have a weight average molecular weight of 400 g/mol to 1,000 g/mol.

상기 폴리올은 상기 폴리프로필렌글리콜일 수 있고, 상기 폴리프로필렌글리콜의 중량평균분자량은 1,000 g/mol 내지 5,000 g/mol 일 수 있다.The polyol may be the polypropylene glycol, and the polypropylene glycol may have a weight average molecular weight of 1,000 g/mol to 5,000 g/mol.

상기 전도성 고분자 프리폴리머는 NCO기를 3.0 중량% 내지 3.4 중량%로 포함할 수 있다.The conductive polymer prepolymer may include 3.0 wt% to 3.4 wt% of NCO groups.

상기 전도성 고분자 프리폴리머의 점도는 1000 cps 내지 1500 cps 일 수 있다.The conductive polymer prepolymer may have a viscosity of 1000 cps to 1500 cps.

상기 전도성 고분자 프리폴리머의 비중은 0.97 내지 0.98 일 수 있다.The specific gravity of the conductive polymer prepolymer may be 0.97 to 0.98.

상기 전도성 고분자 프리폴리머의 내열도는 180℃ 내지 220℃ 일 수 있다.Heat resistance of the conductive polymer prepolymer may be 180°C to 220°C.

상기 전도성 고분자 프리폴리머의 접착강도는 1mm 두께의 폴리에틸렌 필름 또는 폴리프로필렌 필름의 전단에 대하여 1.1 kgf 내지 1.5 kgf 일 수 있다.The adhesive strength of the conductive polymer prepolymer may be 1.1 kgf to 1.5 kgf with respect to the shear of a polyethylene film or polypropylene film having a thickness of 1 mm.

상기 전도성 고분자 프리폴리머는 리튬이차전지용 바인더, 리튬이차전지용 분리막 코팅제, 소듐고체전지용 인터레이어, 또는 이들의 조합에 사용될 수 있다.The conductive polymer prepolymer may be used in a binder for a lithium secondary battery, a separator coating agent for a lithium secondary battery, an interlayer for a sodium solid-state battery, or a combination thereof.

일 구현예에 따라 제조된 전도성 고분자 프리폴리머는 내열성, 접착성, 흐름성, 침투성 및 이온전도성이 우수하여 리튬이차전지용 바인더 및 분리막 코팅제와 소듐고체전지용 인터레이어에 모두 적용이 가능하다. The conductive polymer prepolymer prepared according to one embodiment has excellent heat resistance, adhesiveness, flowability, permeability, and ion conductivity, and thus can be applied to both binders and separator coating agents for lithium secondary batteries and interlayers for sodium solid-state batteries.

도 1은 일 구현예에 따라 제조된 전도성 고분자 프리폴리머의 구조도이다.1 is a structural diagram of a conductive polymer prepolymer prepared according to one embodiment.

이하, 구현예들에 대하여 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 구현예들은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 구현예에 한정되지 않는다.Hereinafter, embodiments will be described in detail so that those skilled in the art can easily implement them. However, implementations may take many different forms and are not limited to the implementations described herein.

일 구현예에 따른 전도성 고분자 프리폴리머는 반응조에 디이소시아네이트계 화합물을 투입하여 용해시키는 단계; 폴리올에 소듐염이 분산된 혼합물을 상기 디이소시아네이트계 화합물이 용해된 반응조에 투입하여 1차 반응시키는 단계; 상기 1차 반응 이후 사슬연장제, 가교제 및 촉매를 투입하여 2차 반응시키는 단계; 및 상기 2차 반응 이후 용매를 투입하는 단계를 포함하여 제조될 수 있다. Dissolving the conductive polymer prepolymer according to an embodiment by introducing a diisocyanate-based compound into a reaction vessel; Injecting a mixture in which sodium salt is dispersed in polyol into a reaction vessel in which the diisocyanate-based compound is dissolved, and subjecting the mixture to a primary reaction; Injecting a chain extender, a crosslinking agent and a catalyst after the first reaction to perform a second reaction; And it may be prepared by including the step of introducing a solvent after the secondary reaction.

상기 방법으로 제조된 전도성 고분자 프리폴리머는 내열성, 접착성, 흐름성, 침투성 및 이온전도성이 우수한 특성을 가진다. 이에 따라, 리튬이차전지용 바인더 및 분리막 코팅제와 소듐고체전지용 인터레이어에 모두 적용이 가능하다. The conductive polymer prepolymer prepared by the above method has excellent properties in heat resistance, adhesiveness, flowability, permeability and ionic conductivity. Accordingly, it can be applied to both the binder and separator coating agent for lithium secondary batteries and the interlayer for sodium solid-state batteries.

구체적으로, 먼저 반응조의 온도를 50℃ 내지 60℃로 승온시킨 후 디이소시아네이트계 화합물을 투입하여 완전히 용해시킨다. Specifically, first, the temperature of the reaction vessel is raised to 50° C. to 60° C., and then the diisocyanate-based compound is completely dissolved.

상기 디이소시아네이트계 화합물은 메틸렌 디페닐 디이소시아네이트, 헥사메틸렌 디이소시아네이트 또는 이들의 조합을 포함할 수 있다. The diisocyanate-based compound may include methylene diphenyl diisocyanate, hexamethylene diisocyanate, or a combination thereof.

상기 디이소시아네이트계 화합물은 전도성 고분자 프리폴리머의 총량에 대하여 15 중량% 내지 40 중량%로 사용될 수 있고, 예를 들면, 25 중량% 내지 32 중량%로 사용될 수 있다. 디이소시아네이트계 화합물이 상기 함량 범위 내로 투입되는 경우 내열성, 접착성, 흐름성, 침투성 및 이온전도성이 우수한 전도성 고분자 프리폴리머를 얻을 수 있다.The diisocyanate-based compound may be used in an amount of 15 wt % to 40 wt %, for example, 25 wt % to 32 wt %, based on the total amount of the conductive polymer prepolymer. When the diisocyanate-based compound is added within the above content range, a conductive polymer prepolymer having excellent heat resistance, adhesiveness, flowability, permeability and ionic conductivity can be obtained.

상기 반응조에 산화방지제, 열안정제 또는 이들의 조합을 포함하는 첨가제를 추가적으로 투입할 수도 있다. 상기 첨가제는 전도성 고분자 프리폴리머의 총량에 대하여 0.1 중량% 내지 10 중량%로 투입될 수 있다. 또한 상기 첨가제는 1000 rpm 내지 1200 rpm의 속도로 교반하여 분산시킨 후 반응조에 투입될 수 있다.Additives including an antioxidant, a thermal stabilizer, or a combination thereof may be additionally added to the reactor. The additive may be added in an amount of 0.1 wt % to 10 wt % based on the total amount of the conductive polymer prepolymer. In addition, the additive may be dispersed by stirring at a speed of 1000 rpm to 1200 rpm, and then introduced into the reaction vessel.

이어서, 폴리올에 소듐염이 분산된 혼합물을 서서히 투입하여 1차 반응을 수행한다. 이때 반응조는 진공 상태에서 상기 혼합물이 투입될 수 있다.Subsequently, a first reaction is performed by slowly introducing a mixture in which a sodium salt is dispersed in a polyol. At this time, the mixture may be introduced into the reactor in a vacuum state.

상기 디이소시아네이트계 화합물과 상기 폴리올에 소듐염이 분산된 혼합물은 50:50 내지 30:70의 중량비로 투입되어 반응될 수 있고, 예를 들면, 50:50 내지 40:60의 중량비로 투입될 수 있다. 상기 함량 비율 범위 내로 투입되는 경우 내열성, 접착성, 흐름성, 침투성 및 이온전도성이 우수한 전도성 고분자 프리폴리머를 제조할 수 있다.The mixture in which the diisocyanate-based compound and the sodium salt are dispersed in the polyol may be added at a weight ratio of 50:50 to 30:70 and reacted, for example, at a weight ratio of 50:50 to 40:60. there is. When added within the above content ratio range, a conductive polymer prepolymer having excellent heat resistance, adhesiveness, flowability, permeability and ionic conductivity can be prepared.

상기 폴리올에 소듐염이 분산된 혼합물은 80 중량% 내지 99 중량%의 폴리올에 1 중량% 내지 20 중량%의 소듐염이 분산된 것일 수 있고, 예를 들면, 90 중량% 내지 99 중량%의 폴리올에 1 중량% 내지 10 중량%의 소듐염이 분산된 것일 수 있다. 폴리올과 소듐염이 상기 함량 비율 범위 내로 혼합되는 경우 내열성, 접착성, 흐름성, 침투성 및 이온전도성이 우수한 전도성 고분자 프리폴리머를 제조할 수 있다.The mixture in which the sodium salt is dispersed in the polyol may be a mixture in which 1 wt% to 20 wt% of the sodium salt is dispersed in 80 wt% to 99 wt% of the polyol, for example, 90 wt% to 99 wt% of the polyol. 1% to 10% by weight of the sodium salt may be dispersed therein. When the polyol and the sodium salt are mixed within the above content ratio range, a conductive polymer prepolymer having excellent heat resistance, adhesiveness, flowability, permeability and ion conductivity can be prepared.

상기 폴리올에 소듐염이 분산된 혼합물은 1400 rpm 내지 1700 rpm의 속도로, 예를 들면, 1500 rpm 내지 1600 rpm의 속도로 완전히 용해될 때까지 10분 내지 40분 동안, 예를 들면, 20분 내지 30분 동안 동안 교반하여 분산시킴으로써 얻어질 수 있다. 상기 조건 범위 내에서 얻어진 혼합물을 전도성 고분자 프리폴리머 제조시 사용할 경우 내열성, 접착성, 흐름성, 침투성 및 이온전도성이 우수한 프리폴리머를 얻을 수 있다. The mixture in which the sodium salt is dispersed in the polyol is stirred at a rate of 1400 rpm to 1700 rpm, for example, 1500 rpm to 1600 rpm for 10 minutes to 40 minutes, for example, 20 minutes to 1600 rpm, until completely dissolved. It can be obtained by dispersing by stirring for 30 minutes. When the mixture obtained within the above conditions is used in preparing the conductive polymer prepolymer, a prepolymer having excellent heat resistance, adhesiveness, flowability, permeability and ionic conductivity can be obtained.

상기 폴리올은 OH기가 두 개 또는 세 개인 폴리올을 사용할 수 있다. 구체적으로, 상기 폴리올은 폴리에틸렌글리콜, 폴리프로필렌글리콜 또는 이들의 조합을 포함할 수 있다. As the polyol, a polyol having two or three OH groups may be used. Specifically, the polyol may include polyethylene glycol, polypropylene glycol, or a combination thereof.

상기 폴리올의 예시 중에서 폴리에틸렌글리콜을 사용할 수 있다. 상기 폴리에틸렌글리콜은 중량평균분자량이 400 g/mol 내지 1,000 g/mol 인 것을 사용할 수 있고, 예를 들면, 400 g/mol 내지 900 g/mol 인 것을 사용할 수 있다. 또한 상기 폴리에틸렌글리콜은 점도가 100 cps 내지 300 cps 인 것을 사용할 수 있고, 예를 들면, 150 cps 내지 250 cps 인 것을 사용할 수 있다. 상기 범위 내의 중량평균분자량을 가진 폴리에틸렌글리콜을 사용할 경우 내열성, 접착성, 흐름성, 침투성 및 이온전도성이 우수한 전도성 고분자 프리폴리머를 얻을 수 있다.Among examples of the polyol, polyethylene glycol may be used. The polyethylene glycol may have a weight average molecular weight of 400 g/mol to 1,000 g/mol, for example, 400 g/mol to 900 g/mol. In addition, the polyethylene glycol may have a viscosity of 100 cps to 300 cps, for example, 150 cps to 250 cps. When polyethylene glycol having a weight average molecular weight within the above range is used, a conductive polymer prepolymer having excellent heat resistance, adhesiveness, flowability, permeability and ionic conductivity can be obtained.

또한, 상기 폴리올의 예시 중에서 폴리프로필렌글리콜을 사용할 수도 있다. 상기 폴리프로필렌글리콜은 중량평균분자량이 1,000 g/mol 내지 5,000 g/mol 인 것을 사용할 수 있고, 예를 들면, 1,000 g/mol 내지 2,000 g/mol 인 것을 사용할 수 있다. 또한 상기 폴리프로필렌글리콜은 점도가 100 cps 내지 300 cps 인 것을 사용할 수 있고, 예를 들면, 150 cps 내지 250 cps 인 것을 사용할 수 있다. 상기 범위 내의 중량평균분자량을 가진 폴리프로필렌글리콜을 사용할 경우 내열성, 접착성, 흐름성, 침투성 및 이온전도성이 우수한 전도성 고분자 프리폴리머를 얻을 수 있다.In addition, polypropylene glycol may be used among examples of the polyol. The polypropylene glycol may have a weight average molecular weight of 1,000 g/mol to 5,000 g/mol, for example, 1,000 g/mol to 2,000 g/mol. In addition, the polypropylene glycol may have a viscosity of 100 cps to 300 cps, for example, 150 cps to 250 cps. When polypropylene glycol having a weight average molecular weight within the above range is used, a conductive polymer prepolymer having excellent heat resistance, adhesiveness, flowability, permeability and ionic conductivity can be obtained.

상기 소듐염은 소듐 헥사플루오로포스페이트(sodium hexafluorophosphate, NaPF6), 소듐 퍼클로레이트(sodium perchlorate, NaClO4), 이들의 수화물 또는 이들의 조합을 포함할 수 있다. The sodium salt may include sodium hexafluorophosphate (NaPF 6 ), sodium perchlorate (NaClO 4 ), a hydrate thereof, or a combination thereof.

상기 1차 반응은 반응조 온도롤 70℃ 내지 100℃, 예를 들면, 80℃ 내지 90℃로 승온시키고, 100 rpm 내지 150 rpm의 속도, 예를 들면, 110 rpm 내지 150rpm의 속도에서 30분 내지 2시간 동안, 예를 들면, 1시간 내지 2시간 동안 수행될 수 있다. 상기 1차 반응, 즉, 반응조에서 상기 디이소시아네이트계 화합물과 상기 폴리올에 소듐염이 분산된 혼합물의 반응이 상기 조건 범위 내로 수행되는 경우 내열성, 접착성, 흐름성, 침투성 및 이온전도성이 우수한 전도성 고분자 프리폴리머를 얻을 수 있다.The first reaction is carried out by raising the temperature of the reaction tank to 70 ° C to 100 ° C, for example, 80 ° C to 90 ° C, and at a speed of 100 rpm to 150 rpm, for example, 110 rpm to 150 rpm for 30 minutes to 2 It may be performed for a period of time, for example, 1 hour to 2 hours. Conductive polymer with excellent heat resistance, adhesiveness, flowability, permeability and ion conductivity when the primary reaction, that is, the reaction of the mixture in which the diisocyanate-based compound and the sodium salt are dispersed in the polyol in the reaction tank is performed within the above range of conditions A prepolymer can be obtained.

이어서, 사슬연장제, 가교제 및 촉매를 투입하여 2차 반응을 수행한다. 구체적으로, 접착성 강화 및 가교 반응을 위해 사슬연장제 및 가교제를 순차적으로 투입한 후, 촉매를 투입할 수 있다. Subsequently, a secondary reaction is performed by introducing a chain extender, a crosslinking agent and a catalyst. Specifically, a catalyst may be introduced after sequentially introducing a chain extender and a crosslinking agent for adhesion enhancement and crosslinking reaction.

상기 사슬연장제는 1,3-부틸렌글리콜(1,3-BD)을 사용할 수 있으나, 이에 한정되지는 않는다. The chain extender may use 1,3-butylene glycol (1,3-BD), but is not limited thereto.

상기 사슬연장제는 전도성 고분자 프리폴리머의 총량에 대하여 0.1 중량% 내지 5 중량%로 투입될 수 있고, 예를 들면, 0.5 중량% 내지 2 중량%로 투입될 수 있다. The chain extender may be added in an amount of 0.1 wt % to 5 wt %, for example, 0.5 wt % to 2 wt %, based on the total amount of the conductive polymer prepolymer.

상기 가교제는 트리메틸올프로판(trimethylolpropane, TMP)을 사용할 수 있으나, 이에 한정되지는 않는다. The crosslinking agent may use trimethylolpropane (TMP), but is not limited thereto.

상기 가교제는 전도성 고분자 프리폴리머의 총량에 대하여 0.1 중량% 내지 5 중량%로 투입될 수 있고, 예를 들면, 0.5 중량% 내지 2 중량%로 투입될 수 있다. 가교제가 상기 함량 범위 내로 투입되는 경우 내열성, 접착성, 흐름성, 침투성 및 이온전도성이 우수한 전도성 고분자 프리폴리머를 얻을 수 있다.The crosslinking agent may be added in an amount of 0.1 wt % to 5 wt %, for example, 0.5 wt % to 2 wt %, based on the total amount of the conductive polymer prepolymer. When the crosslinking agent is added within the above content range, a conductive polymer prepolymer having excellent heat resistance, adhesiveness, flowability, permeability and ionic conductivity can be obtained.

상기 촉매는 디-N-부틸비스(도데실티오)틴(di-N-butylbis(dodecylthio)tin)을 사용할 수 있으나, 이에 한정되지는 않는다. As the catalyst, di-N-butylbis(dodecylthio)tin may be used, but is not limited thereto.

상기 촉매는 전도성 고분자 프리폴리머의 총량에 대하여 0.01 중량% 내지 1 중량%로 투입될 수 있고, 예를 들면, 0.01 중량% 내지 0.1 중량%로 투입될 수 있다. The catalyst may be added in an amount of 0.01 wt % to 1 wt %, for example, 0.01 wt % to 0.1 wt %, based on the total amount of the conductive polymer prepolymer.

상기 2차 반응은 10분 내지 1시간 동안, 예를 들면, 20분 내지 50분 동안 수행될 수 있다. The secondary reaction may be performed for 10 minutes to 1 hour, for example, 20 minutes to 50 minutes.

이어서, 2차 반응 이후, 반응조 온도를 50℃ 내지 80℃로 줄이고 투입 예정량의 절반의 용매를 1차 투입한 후 10분 내지 30분 동안 교반시킬 수 있다. 이후 나머지 절반의 용매를 2차 투입하고 다시 10분 내지 30분 동안 교반시킬 수 있다. 상기 조건 내로 수행되는 경우 내열성, 접착성, 흐름성, 침투성 및 이온전도성이 우수한 전도성 고분자 프리폴리머를 얻을 수 있다.Then, after the second reaction, the reaction tank temperature may be reduced to 50° C. to 80° C., and half of the solvent of the predetermined amount may be first added, followed by stirring for 10 minutes to 30 minutes. Thereafter, the second half of the solvent may be added and stirred again for 10 to 30 minutes. When performed under the above conditions, a conductive polymer prepolymer having excellent heat resistance, adhesiveness, flowability, permeability and ionic conductivity can be obtained.

상기 용매는 톨루엔, n-프로필 아세테이트(n-propyl acetate, NPAC) 등을 사용할 수 있으나, 이에 한정되지는 않는다.As the solvent, toluene, n-propyl acetate (n-propyl acetate, NPAC), etc. may be used, but is not limited thereto.

이어서, 반응이 완전히 종료된 후, 50℃ 내지 80℃의 온도로 유지한 상태에서 산화방지제, 경화촉매 등의 첨가제를 추가적으로 투입할 수 있다.Subsequently, after the reaction is completely completed, additives such as antioxidants and curing catalysts may be additionally added while maintaining the temperature at 50° C. to 80° C.

일 구현예에 따라 제조된 전도성 고분자 프리폴리머는 NCO기를 3.0 중량% 내지 3.4 중량%로 포함할 수 있고, 예를 들면, 3.1 중량% 내지 3.3 중량%로 포함할 수 있다. 전도성 고분자 프리폴리머가 NCO기를 상기 함량 범위 내로 포함할 경우 내열성, 접착성, 흐름성, 침투성 및 이온전도성이 우수한 전도성 고분자 프리폴리머를 얻을 수 있다.The conductive polymer prepolymer prepared according to one embodiment may include 3.0 wt% to 3.4 wt% of NCO groups, for example, 3.1 wt% to 3.3 wt%. When the conductive polymer prepolymer includes the NCO group within the above range, the conductive polymer prepolymer excellent in heat resistance, adhesiveness, flowability, permeability and ionic conductivity can be obtained.

상기 전도성 고분자 프리폴리머의 점도는 1000 cps 내지 1500 cps 일 수 있고, 예를 들면, 1000 cps 내지 1300 cps 일 수 있다. 전도성 고분자 프리폴리머의 점도가 상기 범위 내인 경우 내열성, 접착성, 흐름성, 침투성 및 이온전도성이 우수한 전도성 고분자 프리폴리머를 얻을 수 있다.The conductive polymer prepolymer may have a viscosity of 1000 cps to 1500 cps, for example, 1000 cps to 1300 cps. When the viscosity of the conductive polymer prepolymer is within the above range, the conductive polymer prepolymer having excellent heat resistance, adhesiveness, flowability, permeability and ionic conductivity may be obtained.

상기 전도성 고분자 프리폴리머의 비중은 0.97 내지 0.98 일 수 있다. 전도성 고분자 프리폴리머의 비중이 상기 범위 내인 경우 내열성, 접착성, 흐름성, 침투성 및 이온전도성이 우수한 전도성 고분자 프리폴리머를 얻을 수 있다.The specific gravity of the conductive polymer prepolymer may be 0.97 to 0.98. When the specific gravity of the conductive polymer prepolymer is within the above range, the conductive polymer prepolymer having excellent heat resistance, adhesiveness, flowability, permeability and ionic conductivity can be obtained.

상기 전도성 고분자 프리폴리머의 내열도는 180℃ 내지 220℃ 일 수 있고, 예를 들면, 185℃ 내지 215℃ 일 수 있다. 전도성 고분자 프리폴리머의 내열도가 상기 범위 내인 경우 내열성, 접착성, 흐름성, 침투성 및 이온전도성이 우수한 전도성 고분자 프리폴리머를 얻을 수 있다.The heat resistance of the conductive polymer prepolymer may be 180°C to 220°C, for example, 185°C to 215°C. When the heat resistance of the conductive polymer prepolymer is within the above range, the conductive polymer prepolymer having excellent heat resistance, adhesiveness, flowability, permeability and ion conductivity can be obtained.

상기 전도성 고분자 프리폴리머의 접착강도는 1mm 두께의 폴리에틸렌 필름 또는 폴리프로필렌 필름의 전단에 대하여 1.1 kgf 내지 1.5 kgf 일 수 있고, 예를 들면, 1.1 kgf 내지 1.3 kgf 일 수 있다. 전도성 고분자 프리폴리머의 접착강도가 상기 범위 내인 경우 내열성, 접착성, 흐름성, 침투성 및 이온전도성이 우수한 전도성 고분자 프리폴리머를 얻을 수 있다.The adhesive strength of the conductive polymer prepolymer may be 1.1 kgf to 1.5 kgf, for example, 1.1 kgf to 1.3 kgf with respect to the shear of a polyethylene film or polypropylene film having a thickness of 1 mm. When the adhesive strength of the conductive polymer prepolymer is within the above range, the conductive polymer prepolymer excellent in heat resistance, adhesiveness, flowability, permeability and ion conductivity can be obtained.

이와 같이 제조된 전도성 고분자 프리폴리머의 구조는 도 1을 참고할 수 있다. 도 1은 일 구현예에 따른 전도성 고분자 프리폴리머의 구조도이다. 도 1을 참고하면, 좌측 구조는 폴리올에 소듐염이 분산된 혼합물을 나타낸 것으로, 1차 반응으로 디이소시아네이트계 화합물과의 가교가 일어나기 전의 구조도이다. 이러한 구조의 폴리올에 소듐염이 분산된 혼합물을 디이소시아네이트계 화합물이 용해된 반응조에 투입하여 혼합할 경우, 가교가 일어나 우측 구조와 같이 서로 연결된 단단한 구조가 형성될 수 있다. The structure of the conductive polymer prepolymer prepared as described above may be referred to FIG. 1 . 1 is a structural diagram of a conductive polymer prepolymer according to an embodiment. Referring to FIG. 1, the left structure shows a mixture in which sodium salt is dispersed in a polyol, and is a structural diagram before crosslinking with a diisocyanate-based compound occurs in the first reaction. When a mixture in which sodium salt is dispersed in a polyol having such a structure is put into a reaction vessel in which a diisocyanate-based compound is dissolved and mixed, crosslinking may occur to form a rigid structure connected to each other as shown in the right structure.

상기 구조를 가진 전도성 고분자 프리폴리머는 가교 결합으로 인한 고강성 및 고내열성을 가질 뿐 아니라 접착성, 흐름성, 침투성 및 이온전도성이 우수하다. 이에 따라, 리튬이차전지용 바인더로 사용할 경우 활물질과의 혼합 및 분산이 용이하며, 소듐고체전지용 인터레이어로 사용할 경우에도 고체전해질의 열적, 기계적 안정성에 대응하기 충분하다. 따라서, 일 구현예에 따른 전도성 고분자 프리폴리머는 리튬이차전지용 바인더, 리튬이차전지용 분리막 코팅제, 소듐고체전지용 인터레이어, 또는 이들의 조합에 유용하게 사용될 수 있다.The conductive polymer prepolymer having the above structure not only has high stiffness and high heat resistance due to crosslinking, but also has excellent adhesiveness, flowability, permeability and ionic conductivity. Accordingly, when used as a binder for a lithium secondary battery, it is easy to mix and disperse with an active material, and when used as an interlayer for a sodium solid-state battery, it is sufficient to cope with the thermal and mechanical stability of the solid electrolyte. Accordingly, the conductive polymer prepolymer according to one embodiment may be usefully used for a binder for a lithium secondary battery, a separator coating agent for a lithium secondary battery, an interlayer for a sodium solid-state battery, or a combination thereof.

이하에서는 본 발명의 구체적인 실시예들을 제시한다.  다만, 하기에 기재된 실시예들은 본 발명을 구체적으로 예시하거나 설명하기 위한 것에 불과하며, 이로서 본 발명이 제한되어서는 아니된다. 또한, 여기에 기재되지 않은 내용은 이 기술 분야에서 숙련된 자이면 충분히 기술적으로 유추할 수 있는 것이므로 그 설명을 생략한다.Hereinafter, specific embodiments of the present invention are presented. However, the embodiments described below are only intended to specifically illustrate or explain the present invention, and the present invention should not be limited thereto. In addition, since the content not described herein can be sufficiently technically inferred by those skilled in the art, the description thereof will be omitted.

(전도성 고분자 프리폴리머의 제조)(Manufacture of conductive polymer prepolymer)

실시예 1Example 1

반응조 온도를 60℃로 승온한 후 메틸렌 디페닐 디이소시아네이트(BASF社, M) 25 중량%(메틸렌 디페닐 디이소시아네이트 총량에 대하여 NCO기 함량 33 중량%, 비중 1.25)를 투입하여 완전히 용해시켰다.After raising the temperature of the reaction vessel to 60 ° C., 25% by weight of methylene diphenyl diisocyanate (BASF, M) (NCO group content 33% by weight, specific gravity 1.25 based on the total amount of methylene diphenyl diisocyanate) was added and completely dissolved.

이어서, 열안정제(FA-06, ZIKO) 0.8 중량%를 1100 rpm의 속도로 고속 교반하여 분산시킨 후 반응조에 투입하였다. Subsequently, 0.8% by weight of a heat stabilizer (FA-06, ZIKO) was dispersed by high-speed stirring at a speed of 1100 rpm, and then introduced into the reaction vessel.

이어서, 중량평균분자량이 2,000 g/mol인 폴리프로필렌글리콜(KONIX PP-2000) 95 중량% 내에 소듐 헥사플루오로포스페이트(NaPF6) 5 중량%를 분산시켜 얻은 혼합물을 준비하였다. 이때 1500 rpm의 속도로 완전히 용해될 때까지 30분 동안 고속 교반하여 분산시켰다. Subsequently, a mixture obtained by dispersing 5% by weight of sodium hexafluorophosphate (NaPF 6 ) in 95% by weight of polypropylene glycol (KONIX PP-2000) having a weight average molecular weight of 2,000 g/mol was prepared. At this time, it was dispersed by stirring at high speed for 30 minutes at a rate of 1500 rpm until completely dissolved.

상기 얻어진 혼합물, 즉, 폴리프로필렌글리콜에 소듐 헥사플루오로포스페이트(NaPF6)이 분산된 혼합물 42.3 중량%를 반응조를 진공상태로 한 후에 서서히 투입하였다. 투입이 완료되면 반응조 온도를 80℃로 승온하고, 150 rpm의 속도로 1시간 동안 1차 반응을 수행하였다. The obtained mixture, that is, 42.3% by weight of a mixture in which sodium hexafluorophosphate (NaPF 6 ) was dispersed in polypropylene glycol was gradually added after the reactor was evacuated. When the addition was completed, the temperature of the reactor was raised to 80 ° C., and the first reaction was performed at a speed of 150 rpm for 1 hour.

이어서, 사슬연장제로서 1,3-부틸렌글리콜 1 중량% 및 가교제로서 트리메틸올프로판(TMP) 0.8 중량%를 순차적으로 첨가하였고, 이후 촉매로서 디-N-부틸비스(도데실티오)틴 0.1 중량%를 첨가하여, 30분 동안 2차 반응을 수행하였다.Subsequently, 1% by weight of 1,3-butylene glycol as a chain extender and 0.8% by weight of trimethylolpropane (TMP) as a crosslinking agent were sequentially added, followed by 0.1% by weight of di-N-butylbis(dodecylthio)tin as a catalyst. A secondary reaction was carried out for 30 minutes by adding wt%.

이어서, 반응조 온도를 60℃로 줄이고 n-프로필 아세테이트(NPAC) 15 중량%를 투입한 후 20분 동안 교반하였고, n-프로필 아세테이트(NPAC) 15 중량%를 투입하여 다시 20분 동안 교반하였다. Subsequently, after reducing the temperature of the reactor to 60 ° C., 15% by weight of n-propyl acetate (NPAC) was added and stirred for 20 minutes, and 15% by weight of n-propyl acetate (NPAC) was added and stirred for another 20 minutes.

이후 온도를 60℃로 유지한 상태에서 반응을 종료하여, 전도성 고분자 프리폴리머를 제조하였다. Thereafter, the reaction was terminated while maintaining the temperature at 60° C. to prepare a conductive polymer prepolymer.

실시예 2Example 2

실시예 1에서 폴리프로필렌글리콜 대신 중량평균분자량이 400 g/mol인 폴리에틸렌글리콜을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 전도성 고분자 프리폴리머를 제조하였다. A conductive polymer prepolymer was prepared in the same manner as in Example 1, except that polyethylene glycol having a weight average molecular weight of 400 g/mol was used instead of polypropylene glycol in Example 1.

실시예 3Example 3

실시예 1에서 소듐 헥사플루오로포스페이트(NaPF6) 대신 소듐 퍼클로레이트(NaClO4)를 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 전도성 고분자 프리폴리머를 제조하였다. A conductive polymer prepolymer was prepared in the same manner as in Example 1, except that sodium perchlorate (NaClO 4 ) was used instead of sodium hexafluorophosphate (NaPF 6 ) in Example 1.

실시예 4Example 4

실시예 2에서 소듐 헥사플루오로포스페이트(NaPF6) 대신 소듐 퍼클로레이트(NaClO4)를 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 전도성 고분자 프리폴리머를 제조하였다. A conductive polymer prepolymer was prepared in the same manner as in Example 1, except that sodium perchlorate (NaClO 4 ) was used instead of sodium hexafluorophosphate (NaPF 6 ) in Example 2.

비교예 1Comparative Example 1

실시예 1에서 폴리프로필렌글리콜에 소듐 헥사플루오로포스페이트(NaPF6)가 분산된 혼합물 대신 폴리프로필렌글리콜을 사용하여 1차 반응을 수행한 것을 제외하고는, 실시예 1과 동일한 방법으로 전도성 고분자 프리폴리머를 제조하였다. A conductive polymer prepolymer was prepared in the same manner as in Example 1, except that polypropylene glycol was used instead of the mixture in which sodium hexafluorophosphate (NaPF 6 ) was dispersed in polypropylene glycol in Example 1, and the primary reaction was performed. manufactured.

비교예 2Comparative Example 2

실시예 2에서 폴리에틸렌글리콜에 소듐 헥사플루오로포스페이트(NaPF6)가 분산된 혼합물 대신 폴리에틸렌글리콜을 사용하여 1차 반응을 수행한 것을 제외하고는, 실시예 1과 동일한 방법으로 전도성 고분자 프리폴리머를 제조하였다. A conductive polymer prepolymer was prepared in the same manner as in Example 1, except that the primary reaction was performed using polyethylene glycol instead of the mixture in which sodium hexafluorophosphate (NaPF 6 ) was dispersed in polyethylene glycol in Example 2. .

평가 1: 전도성 고분자 프리폴리머의 물성Evaluation 1: Physical properties of conductive polymer prepolymer

실시예 1 내지 4와 비교예 1 및 2에서 제조된 전도성 고분자 프리폴리머의 물성을 다음과 같은 방법으로 측정하여, 그 결과를 하기 표 1에 나타내었다.The physical properties of the conductive polymer prepolymers prepared in Examples 1 to 4 and Comparative Examples 1 and 2 were measured in the following manner, and the results are shown in Table 1 below.

점도viscosity

Brookfild 점도계를 이용하여 측정하였다.Measured using a Brookfield viscometer.

비중importance

비중컵을 이용하여 측정하였다.Specific gravity was measured using a cup.

내열도heat resistance

KS C 2344 규격, 너비 25mm, 길이 100mm의 시험편 3개에 대하여 각각 측정한 후 평균치를 적용하였다.Three specimens of KS C 2344 standard, 25 mm in width and 100 mm in length were individually measured and the average value was applied.

NCO기 함유량NCO group content

적정법을 이용하여 측정하였다.It was measured using the titration method.

접착강도adhesive strength

UTM 기기를 이용하여 측정하였다.It was measured using a UTM instrument.

실시예 1Example 1 실시예 2Example 2 실시예 3Example 3 실시예 4Example 4 비교예 1Comparative Example 1 비교예 2Comparative Example 2 점도(cps)Viscosity (cps) 11501150 12001200 11501150 12601260 60006000 70007000 비중importance 0.970.97 0.980.98 0.970.97 0.980.98 0.970.97 0.980.98 내열도(℃)Heat resistance (℃) 210210 190190 205205 198198 130130 140140 NCO기 함유량(중량%)NCO group content (% by weight) 3.153.15 3.183.18 3.123.12 3.23.2 77 88 접착강도(kgf/cm2)Adhesion strength (kgf/cm 2 ) 1.21.2 1.151.15 1.21.2 1.151.15 0.70.7 0.80.8

* 표 1에서 NCO기 함유량(중량%)은 전도성 고분자 프리폴리머의 총량을 기준으로 함* In Table 1, the NCO group content (% by weight) is based on the total amount of the conductive polymer prepolymer.

상기 표 1을 통하여, 일 구현예에 따라 제조된 실시예 1 내지 4의 전도성 고분자 프리폴리머는 비교예 1 및 2와 비교하여 내열성, 접착성, 흐름성, 침투성 및 이온전도성이 모두 우수함을 확인할 수 있다. 이에 따라, 우수한 접착성 및 내열성이 특히 요구되는 리튬이차전지용 바인더, 내열성 및 안정성이 특히 요구되는 리튬이차전지용 분리막 코팅제, 또한 내열성, 기계적 안정성 및 이온전도성이 특히 요구되는 소듐고체전지용 인터레이어용 소재로 유용하게 사용될 수 있음을 알 수 있다. Through Table 1, it can be seen that the conductive polymer prepolymers of Examples 1 to 4 prepared according to one embodiment are superior in heat resistance, adhesiveness, flowability, permeability and ionic conductivity compared to Comparative Examples 1 and 2. . Accordingly, it is a binder for lithium secondary batteries requiring excellent adhesion and heat resistance, a separator coating agent for lithium secondary batteries requiring heat resistance and stability, and an interlayer material for sodium solid battery requiring heat resistance, mechanical stability and ion conductivity. It can be seen that it can be useful.

이상을 통해 본 발명의 바람직한 실시예에 대하여 설명하였지만, 본 발명은 이에 한정되는 것이 아니고 특허청구범위와 발명의 상세한 설명 및 첨부한 도면의 범위 안에서 여러 가지로 변형하여 실시하는 것이 가능하고 이 또한 본 발명의 범위에 속하는 것은 당연하다.Although the preferred embodiments of the present invention have been described above, the present invention is not limited thereto, and it is possible to make various modifications and practice within the scope of the claims and the detailed description of the invention and the accompanying drawings, and this is also the present invention. It goes without saying that it falls within the scope of the invention.

Claims (11)

반응조에 디이소시아네이트계 화합물을 투입하여 용해시키는 단계;
폴리올에 소듐염이 분산된 혼합물을 상기 디이소시아네이트계 화합물이 용해된 반응조에 투입하여 1차 반응시키는 단계;
상기 1차 반응 이후 사슬연장제, 가교제 및 촉매를 투입하여 2차 반응시키는 단계; 및
상기 2차 반응 이후 용매를 투입하는 단계를 포함하고,
상기 소듐염은 소듐 헥사플루오로포스페이트(sodium hexafluorophosphate, NaPF6), 소듐 퍼클로레이트(sodium perchlorate, NaClO4), 이들의 수화물 또는 이들의 조합을 포함하는 전도성 고분자 프리폴리머의 제조 방법.
Injecting and dissolving a diisocyanate-based compound in a reaction vessel;
Injecting a mixture in which sodium salt is dispersed in polyol into a reaction vessel in which the diisocyanate-based compound is dissolved, and subjecting the mixture to a primary reaction;
Injecting a chain extender, a crosslinking agent and a catalyst after the first reaction to perform a second reaction; and
Including the step of introducing a solvent after the second reaction,
The sodium salt is sodium hexafluorophosphate (NaPF 6 ), sodium perchlorate (NaClO 4 ), a conductive polymer prepolymer comprising a hydrate thereof or a combination thereof Manufacturing method.
제1항에서,
상기 디이소시아네이트계 화합물은 메틸렌 디페닐 디이소시아네이트, 헥사메틸렌 디이소시아네이트 또는 이들의 조합을 포함하는 전도성 고분자 프리폴리머의 제조 방법.
In paragraph 1,
The diisocyanate-based compound is a method for preparing a conductive polymer prepolymer comprising methylene diphenyl diisocyanate, hexamethylene diisocyanate, or a combination thereof.
제1항에서,
상기 폴리올은 폴리에틸렌글리콜, 폴리프로필렌글리콜 또는 이들의 조합을 포함하는 전도성 고분자 프리폴리머의 제조 방법.
In paragraph 1,
The polyol is a method for producing a conductive polymer prepolymer comprising polyethylene glycol, polypropylene glycol, or a combination thereof.
제3항에서,
상기 폴리올은 상기 폴리에틸렌글리콜이고,
상기 폴리에틸렌글리콜의 중량평균분자량은 400 g/mol 내지 1,000 g/mol 인 전도성 고분자 프리폴리머의 제조 방법.
In paragraph 3,
The polyol is the polyethylene glycol,
Method for producing a conductive polymer prepolymer wherein the weight average molecular weight of the polyethylene glycol is 400 g / mol to 1,000 g / mol.
제3항에서,
상기 폴리올은 상기 폴리프로필렌글리콜이고,
상기 폴리프로필렌글리콜의 중량평균분자량은 1,000 g/mol 내지 5,000 g/mol 인 전도성 고분자 프리폴리머의 제조 방법.
In paragraph 3,
The polyol is the polypropylene glycol,
Method for producing a conductive polymer prepolymer wherein the polypropylene glycol has a weight average molecular weight of 1,000 g/mol to 5,000 g/mol.
제1항에서,
상기 전도성 고분자 프리폴리머는 NCO기를 3.0 중량% 내지 3.4 중량%로 포함하는 전도성 고분자 프리폴리머의 제조 방법.
In paragraph 1,
The conductive polymer prepolymer is a method for producing a conductive polymer prepolymer containing an NCO group of 3.0% to 3.4% by weight.
제1항에서,
상기 전도성 고분자 프리폴리머의 점도는 1000 cps 내지 1500 cps인 전도성 고분자 프리폴리머의 제조 방법.
In paragraph 1,
A method for producing a conductive polymer prepolymer having a viscosity of 1000 cps to 1500 cps.
제1항에서,
상기 전도성 고분자 프리폴리머의 비중은 0.97 내지 0.98인 전도성 고분자 프리폴리머의 제조 방법.
In paragraph 1,
Method for producing a conductive polymer prepolymer having a specific gravity of 0.97 to 0.98.
제1항에서,
상기 전도성 고분자 프리폴리머의 내열도는 180℃ 내지 220℃인 전도성 고분자 프리폴리머의 제조 방법.
In paragraph 1,
Method for producing a conductive polymer prepolymer wherein the heat resistance of the conductive polymer prepolymer is 180 ° C to 220 ° C.
제1항에서,
상기 전도성 고분자 프리폴리머의 접착강도는 1mm 두께의 폴리에틸렌 필름 또는 폴리프로필렌 필름의 전단에 대하여 1.1 kgf 내지 1.5 kgf인 전도성 고분자 프리폴리머의 제조 방법.
In paragraph 1,
The adhesive strength of the conductive polymer prepolymer is 1.1 kgf to 1.5 kgf with respect to the shear of a polyethylene film or polypropylene film having a thickness of 1 mm.
제1항에서,
상기 전도성 고분자 프리폴리머는 리튬이차전지용 바인더, 리튬이차전지용 분리막 코팅제, 소듐고체전지용 인터레이어, 또는 이들의 조합에 사용되는 전도성 고분자 프리폴리머의 제조 방법.
In paragraph 1,
The conductive polymer prepolymer is a method for producing a conductive polymer prepolymer used in a binder for a lithium secondary battery, a separator coating agent for a lithium secondary battery, an interlayer for a sodium solid-state battery, or a combination thereof.
KR1020220145214A 2022-11-03 2022-11-03 Method of manufacturing conductive polymer prepolymer KR102562575B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220145214A KR102562575B1 (en) 2022-11-03 2022-11-03 Method of manufacturing conductive polymer prepolymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220145214A KR102562575B1 (en) 2022-11-03 2022-11-03 Method of manufacturing conductive polymer prepolymer

Publications (1)

Publication Number Publication Date
KR102562575B1 true KR102562575B1 (en) 2023-08-04

Family

ID=87568497

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220145214A KR102562575B1 (en) 2022-11-03 2022-11-03 Method of manufacturing conductive polymer prepolymer

Country Status (1)

Country Link
KR (1) KR102562575B1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0733977A (en) * 1993-07-23 1995-02-03 Bridgestone Corp Conductive polyurethane elastomer
KR20010010433A (en) * 1999-07-20 2001-02-15 전종한 Conductive Polyurethane Composition
KR100343545B1 (en) * 1994-12-22 2002-11-23 에스케이케미칼주식회사 Solution type polyurethane resin for use in magnetic tapes
KR20160032017A (en) * 2013-07-18 2016-03-23 다이이치 고교 세이야쿠 가부시키가이샤 Binder for electrode of lithium secondary cell
KR20190033058A (en) * 2016-07-22 2019-03-28 이 아이 듀폰 디 네모아 앤드 캄파니 Polyurethane polymers containing polysaccharides

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0733977A (en) * 1993-07-23 1995-02-03 Bridgestone Corp Conductive polyurethane elastomer
KR100343545B1 (en) * 1994-12-22 2002-11-23 에스케이케미칼주식회사 Solution type polyurethane resin for use in magnetic tapes
KR20010010433A (en) * 1999-07-20 2001-02-15 전종한 Conductive Polyurethane Composition
KR20160032017A (en) * 2013-07-18 2016-03-23 다이이치 고교 세이야쿠 가부시키가이샤 Binder for electrode of lithium secondary cell
KR20190033058A (en) * 2016-07-22 2019-03-28 이 아이 듀폰 디 네모아 앤드 캄파니 Polyurethane polymers containing polysaccharides

Similar Documents

Publication Publication Date Title
KR102086274B1 (en) Solid electrolyte composition, sheet for all-solid-state secondary battery, electrode sheet for all-solid-state secondary battery, manufacturing method thereof, all-solid secondary battery and manufacturing method thereof
EP3480870A1 (en) Battery electrode plate preparation method
EP2771380B1 (en) Polyurethane based membranes and/or separators for electrochemical cells
JP3946389B2 (en) Electrode active material composition for lithium ion polymer battery, polymer electrolyte matrix composition, and method for producing lithium ion polymer battery using the same
KR101420028B1 (en) Aqueous carbon filler dispersion coating liquid, conductivity-imparting material, electrode plate for an electrical storage device, manufacturing method therefor, and electrical storage device
KR20170129452A (en) Separator for rechargeable battery and rechargeable lithium battery including the same
TWI513784B (en) An adhesive for a separator for a nonaqueous electrolyte battery containing a polymer containing 2-cyanoethyl group, and an insulating film and a battery using the same
CN108370061A (en) Solid electrolyte composition, binder particles, solid state secondary battery piece, solid state secondary battery electrode slice and solid state secondary battery and their manufacturing method
KR101938236B1 (en) Negative electrode slurry for secondary battery for improving dispensability and reducing resistance and negative electrode comprising the same
TW201330369A (en) Polyurethane-based electrode binder compositions and electrodes thereof for electrochemical cells
TW201327972A (en) Polyurethane based electrolyte systems for electrochemical cells
KR20020077341A (en) Films for electrochemical components and method for producing the same
CN109473677B (en) Lithium ion battery, silicon cathode water system binder and preparation method thereof
KR102038070B1 (en) Binder for secondary battery electrode, composition comprising the same and secondary battery using the same
US11038176B1 (en) Method and system for water based phenolic binders for silicon-dominant anodes
KR20150134735A (en) Negative electrode for rechargeable lithium battery and rechargeable lithium battery including the same
EP3355384A1 (en) Flexible thin-films for battery electrodes
EP3761404B1 (en) Anode slurry composition, and anode and secondary battery manufactured using same
KR102479898B1 (en) Method of manufacturing urethane-based prepolymer
KR20190122690A (en) Binder composition for non-aqueous secondary battery electrodes, conductive material paste composition for non-aqueous secondary battery electrodes, slurry composition for non-aqueous secondary battery electrodes, electrode for non-aqueous secondary battery and non-aqueous secondary battery
CN110627997A (en) Thermoplastic polyurethane adhesive for lithium ion battery and preparation method and application thereof
KR20200044701A (en) Dispersant for separator of non-aqueous electrolyte battery comprising 2-cyanoethyl group-containing polymer, separator of non-aqueous electrolyte battery, and non-aqueous electrolyte battery
CN111436221B (en) Binder and composition for secondary battery electrode, secondary battery, and method for producing secondary battery electrode
KR102562575B1 (en) Method of manufacturing conductive polymer prepolymer
CN116525779A (en) Composite coated conversion positive electrode material, preparation method thereof and battery

Legal Events

Date Code Title Description
GRNT Written decision to grant