KR102557090B1 - 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체 - Google Patents

영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체 Download PDF

Info

Publication number
KR102557090B1
KR102557090B1 KR1020180149453A KR20180149453A KR102557090B1 KR 102557090 B1 KR102557090 B1 KR 102557090B1 KR 1020180149453 A KR1020180149453 A KR 1020180149453A KR 20180149453 A KR20180149453 A KR 20180149453A KR 102557090 B1 KR102557090 B1 KR 102557090B1
Authority
KR
South Korea
Prior art keywords
block
prediction
intra
reference sample
current block
Prior art date
Application number
KR1020180149453A
Other languages
English (en)
Other versions
KR20190062302A (ko
Inventor
임성창
고현석
강정원
이진호
이하현
전동산
김휘용
Original Assignee
주식회사 엘엑스세미콘
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘엑스세미콘 filed Critical 주식회사 엘엑스세미콘
Publication of KR20190062302A publication Critical patent/KR20190062302A/ko
Priority to KR1020230064728A priority Critical patent/KR20230074102A/ko
Priority to KR1020230064733A priority patent/KR20230074681A/ko
Priority to KR1020230088962A priority patent/KR20230107196A/ko
Priority to KR1020230088969A priority patent/KR20230107198A/ko
Priority to KR1020230088971A priority patent/KR20230107199A/ko
Priority to KR1020230088954A priority patent/KR20230107531A/ko
Priority to KR1020230088966A priority patent/KR20230107197A/ko
Application granted granted Critical
Publication of KR102557090B1 publication Critical patent/KR102557090B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/157Assigned coding mode, i.e. the coding mode being predefined or preselected to be further used for selection of another element or parameter
    • H04N19/159Prediction type, e.g. intra-frame, inter-frame or bidirectional frame prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/132Sampling, masking or truncation of coding units, e.g. adaptive resampling, frame skipping, frame interpolation or high-frequency transform coefficient masking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/11Selection of coding mode or of prediction mode among a plurality of spatial predictive coding modes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/105Selection of the reference unit for prediction within a chosen coding or prediction mode, e.g. adaptive choice of position and number of pixels used for prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/119Adaptive subdivision aspects, e.g. subdivision of a picture into rectangular or non-rectangular coding blocks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/157Assigned coding mode, i.e. the coding mode being predefined or preselected to be further used for selection of another element or parameter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/184Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being bits, e.g. of the compressed video stream
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/186Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a colour or a chrominance component
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/189Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the adaptation method, adaptation tool or adaptation type used for the adaptive coding
    • H04N19/196Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the adaptation method, adaptation tool or adaptation type used for the adaptive coding being specially adapted for the computation of encoding parameters, e.g. by averaging previously computed encoding parameters
    • H04N19/197Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the adaptation method, adaptation tool or adaptation type used for the adaptive coding being specially adapted for the computation of encoding parameters, e.g. by averaging previously computed encoding parameters including determination of the initial value of an encoding parameter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/593Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving spatial prediction techniques

Abstract

화면 내 예측 모드 기반 화면 내 예측을 수행하는 영상 부호화/복호화 방법 및 장치가 제공된다. 영상 복호화 방법은 현재 블록의 화면 내 예측 모드를 복호화하는 단계, 상기 현재 블록의 화면 내 예측 모드에 기초하여 적어도 하나의 화면 내 예측 모드를 유도하는 단계, 상기 현재 블록의 화면 내 예측 모드 및 상기 유도된 화면 내 예측 모드에 기초하여, 둘 이상의 화면 내 예측 블록을 생성하는 단계, 및 상기 둘 이상의 화면 내 예측 블록에 기초하여 상기 현재 블록의 화면 내 예측 블록을 생성하는 단계를 포함할 수 있다.

Description

영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체{METHOD AND APPARATUS FOR ENCODING/DECODING IMAGE AND RECORDING MEDIUM FOR STORING BITSTREAM}
본 발명은 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체에 관한 것이다. 구체적으로, 본 발명은 화면 내 예측을 이용한 영상 부호화/복호화 방법, 장치 및 본 발명의 영상 부호화 방법 또는 장치에 의해 생성된 비트스트림을 저장한 기록 매체에 관한 것이다.
최근 HD(High Definition) 영상 및 UHD(Ultra High Definition) 영상과 같은 고해상도, 고품질의 영상에 대한 수요가 다양한 응용 분야에서 증가하고 있다. 영상 데이터가 고해상도, 고품질이 될수록 기존의 영상 데이터에 비해 상대적으로 데이터량이 증가하기 때문에 기존의 유무선 광대역 회선과 같은 매체를 이용하여 영상 데이터를 전송하거나 기존의 저장 매체를 이용해 저장하는 경우, 전송 비용과 저장 비용이 증가하게 된다. 영상 데이터가 고해상도, 고품질화 됨에 따라 발생하는 이러한 문제들을 해결하기 위해서는 더 높은 해상도 및 화질을 갖는 영상에 대한 고효율 영상 부호화(encoding)/복호화(decoding) 기술이 요구된다.
영상 압축 기술로 현재 픽처의 이전 또는 이후 픽처로부터 현재 픽처에 포함된 화소값을 예측하는 화면 간 예측 기술, 현재 픽처 내의 화소 정보를 이용하여 현재 픽처에 포함된 화소값을 예측하는 화면 내 예측 기술, 잔여 신호의 에너지를 압축하기 위한 변환 및 양자화 기술, 출현 빈도가 높은 값에 짧은 부호를 할당하고 출현 빈도가 낮은 값에 긴 부호를 할당하는 엔트로피 부호화 기술 등 다양한 기술이 존재하고 이러한 영상 압축 기술을 이용해 영상 데이터를 효과적으로 압축하여 전송 또는 저장할 수 있다.
종래의 화면 내 예측 시에는 주변 블록의 주변 블록의 화면 내 예측 모드 및/또는 주변 블록의 샘플만 사용하므로, 부호화 효율 향상에 한계가 있을 수 있다. 또한, 종래의 일부 화면 내 예측 모드들 중 각도 차이가 작은 화면 내 예측 모드는 부호화 효율 향상에 한계가 있을 수 있다.
본 발명은 압축 효율이 향상된 영상 부호화/복호화 방법 및 장치를 제공하는 것을 목적으로 한다.
또한, 본 발명은 압축 효율이 향상된 화면 내 예측을 이용한 영상 부호화/복호화 방법 및 장치를 제공하는 것을 목적으로 한다.
또한, 본 발명은 본 발명의 영상 부호화/복호화 방법 또는 장치에 의해 생성된 비트스트림을 저장한 기록 매체를 제공하는 것을 목적으로 한다.
본 발명의 일 실시예에 따른 영상 복호화 방법은, 현재 블록의 화면 내 예측 모드를 복호화하는 단계, 상기 현재 블록의 화면 내 예측 모드에 기초하여 적어도 하나의 화면 내 예측 모드를 유도하는 단계, 상기 현재 블록의 화면 내 예측 모드 및 상기 유도된 화면 내 예측 모드에 기초하여, 둘 이상의 화면 내 예측 블록을 생성하는 단계, 및 상기 둘 이상의 화면 내 예측 블록에 기초하여 상기 현재 블록의 화면 내 예측 블록을 생성하는 단계를 포함할 수 있다.
본 발명에 따른 영상 복호화 방법에 있어서, 상기 유도된 화면 내 예측 모드는 상기 현재 블록의 화면 내 예측 모드에 인접한 모드일 수 있다.
본 발명에 따른 영상 복호화 방법에 있어서, 상기 현재 블록의 화면 내 예측 모드가 IPM일 때, 상기 유도된 화면 내 예측 모드는 IPM+k 또는 IPM-k를 포함하고, 상기 k는 1 이상의 정수일 수 있다.
본 발명에 따른 영상 복호화 방법에 있어서, IPM+k 및 IPM-k 중 적어도 하나가 가용하지 않은 경우, 가용한 화면 내 예측 모드만을 상기 유도된 화면 내 예측 모드로서 이용할 수 있다.
본 발명에 따른 영상 복호화 방법에 있어서, 상기 현재 블록의 화면 내 예측 블록은 상기 둘 이상의 화면 내 예측 블록을 가중합하여 생성될 수 있다.
본 발명에 따른 영상 복호화 방법에 있어서, 상기 가중합을 수행함에 있어, 상기 현재 블록의 화면 내 예측 모드에 기초한 화면 내 예측 블록에 대한 가중치는 상기 유도된 화면 내 예측 모드에 기초한 화면 내 예측 블록보다 클 수 있다.
본 발명에 따른 영상 복호화 방법에 있어서, 상기 가중합은 샘플 단위, 샘플 그룹 단위, 라인 단위 및 블록 단위 중 적어도 하나의 단위로 수행될 수 있다.
본 발명에 따른 영상 복호화 방법에 있어서, 상기 가중합은 상기 현재 블록의 화면 내 예측 블록내 경계 영역에 대해 수행될 수 있다.
본 발명에 따른 영상 복호화 방법에 있어서, 상기 경계 영역은 상기 현재 블록의 좌측 참조 샘플과 인접한 상기 화면 내 예측 블록 내 N개의 열과 상기 현재 블록의 상단 참조 샘플과 인접한 상기 화면 내 예측 블록 내 M개의 행을 포함할 수 있다.
본 발명에 따른 영상 복호화 방법에 있어서, 상기 가중치는 상기 현재 블록의 화면 내 예측 모드, 분할 깊이, 크기, 형태 및 샘플의 위치 중 적어도 하나에 기초하여 결정될 수 있다.
본 발명의 다른 실시예에 따른 영상 부호화 방법은, 현재 블록의 화면 내 예측 모드를 결정하는 단계, 상기 현재 블록의 화면 내 예측 모드에 기초하여 적어도 하나의 화면 내 예측 모드를 유도하는 단계, 상기 현재 블록의 화면 내 예측 모드 및 상기 유도된 화면 내 예측 모드에 기초하여, 둘 이상의 화면 내 예측 블록을 생성하는 단계, 및 상기 둘 이상의 화면 내 예측 블록에 기초하여 상기 현재 블록의 화면 내 예측 블록을 생성하는 단계를 포함할 수 있다.
본 발명에 따른 영상 부호화 방법에 있어서, 상기 유도된 화면 내 예측 모드는 상기 현재 블록의 화면 내 예측 모드에 인접한 모드일 수 있다.
본 발명에 따른 영상 부호화 방법에 있어서, 상기 현재 블록의 화면 내 예측 모드가 IPM일 때, 상기 유도된 화면 내 예측 모드는 IPM+k 또는 IPM-k를 포함하고, 상기 k는 1 이상의 정수일 수 있다.
본 발명에 따른 영상 부호화 방법에 있어서, IPM+k 및 IPM-k 중 적어도 하나가 가용하지 않은 경우, 가용한 화면 내 예측 모드만을 상기 유도된 화면 내 예측 모드로서 이용할 수 있다.
본 발명에 따른 영상 부호화 방법에 있어서, 상기 현재 블록의 화면 내 예측 블록은 상기 둘 이상의 화면 내 예측 블록을 가중합하여 생성될 수 있다.
본 발명에 따른 영상 부호화 방법에 있어서, 상기 가중합을 수행함에 있어, 상기 현재 블록의 화면 내 예측 모드에 기초한 화면 내 예측 블록에 대한 가중치는 상기 유도된 화면 내 예측 모드에 기초한 화면 내 예측 블록보다 클 수 있다.
본 발명에 따른 영상 부호화 방법에 있어서, 상기 가중합은 샘플 단위, 샘플 그룹 단위, 라인 단위 및 블록 단위 중 적어도 하나의 단위로 수행될 수 있다.
본 발명에 따른 영상 부호화 방법에 있어서, 상기 가중합은 상기 현재 블록의 화면 내 예측 블록내 경계 영역에 대해 수행될 수 있다.
본 발명에 따른 영상 부호화 방법에 있어서, 상기 경계 영역은 상기 현재 블록의 좌측 참조 샘플과 인접한 상기 화면 내 예측 블록 내 N개의 열과 상기 현재 블록의 상단 참조 샘플과 인접한 상기 화면 내 예측 블록 내 M개의 행을 포함할 수 있다.
본 발명의 또 다른 실시예에 따른 컴퓨터 판독 가능한 기록 매체는, 본 발명에 따른 영상 부호화 방법에 의해 생성된 비트스트림을 저장할 수 있다.
본 발명에 따르면, 압축 효율이 향상된 영상 부호화/복호화 방법 및 장치가 제공될 수 있다.
또한, 본 발명에 따르면, 압축 효율이 향상된 화면 내 예측을 이용한 영상 부호화/복호화 방법 및 장치가 제공될 수 있다.
또한, 본 발명에 따르면, 본 발명의 영상 부호화/복호화 방법 또는 장치에 의해 생성된 비트스트림을 저장한 기록 매체를 제공하는 것을 목적으로 한다.
도 1은 본 발명이 적용되는 부호화 장치의 일 실시예에 따른 구성을 나타내는 블록도이다.
도 2는 본 발명이 적용되는 복호화 장치의 일 실시예에 따른 구성을 나타내는 블록도이다.
도 3은 영상을 부호화 및 복호화할 때의 영상의 분할 구조를 개략적으로 나타내는 도면이다.
도 4는 화면 내 예측 과정의 실시예를 설명하기 위한 도면이다.
도 5는 본 발명에 따른 화면 내 예측을 설명하기 위한 도면이다.
도 6은 MPM 리스트를 구성할 때 이용되는 현재 블록의 공간적 주변 블록을 설명하기 위한 도면이다.
도 7은 휘도 블록과 색차 블록의 관계를 설명하기 위한 예시도이다.
도 8은 휘도 대응 블록으로부터 색차 블록의 화면 내 예측 모드를 유도하는 실시예를 설명하기 위한 도면이다.
도 9는 복수의 복원 샘플 라인을 설명하기 위한 도면이다.
도 10은 가용한 샘플을 이용하여 가용하지 않은 샘플을 대체하는 과정을 설명하기 위한 도면이다.
도 11은 다양한 필터 모양을 도시한 도면이다.
도 12는 블록의 형태에 따른 화면 내 예측을 설명하기 위한 도면이다.
도 13은 본 발명의 실시예에 따른 Planar 모드의 1차원 수평 예측을 설명하기 위한 도면이다.
도 14는 본 발명의 실시예에 따른 Planar 모드의 1차원 수직 예측을 설명하기 위한 도면이다.
도 15는 샘플 단위의 가중합을 이용한 Planar 모드의 화면 내 예측의 일 실시예를 설명하기 위한 도면이다.
도 16은 인접한 샘플들을 두 개의 그룹으로 분류하는 일 실시예를 설명하기 위한 도면이다.
도 17은 상기 모델들의 파라미터를 유도하기 위해 이용되는 현재 블록의 주변 샘플들을 설명하기 위한 도면이다.
도 18은 현재 블록이 비정방형 블록인 경우, 예측 파라미터를 유도하기 위해 사용되는 참조 샘플들을 예시적으로 도시한 도면이다.
도 19는 색 성분 블록의 재구성을 설명하기 위한 예시도이다.
도 20은 복수의 상단 및/또는 좌측 참조 샘플 라인을 이용하여 재구성을 수행하는 실시예를 설명하기 위한 도면이다.
도 21은 대응 블록의 화면 내 예측 모드 또는 부호화 파라미터에 따라 재구성에 이용되는 참조 샘플을 설명하기 위한 예시도이다.
도 22는 제2 색 성분 예측 대상 블록이 4x4인 경우, 재구성된 제1 색 성분 대응 블록을 설명하기 위한 예시도이다.
도 23은 제1 색 성분의 샘플 및 제2 색 성분의 샘플을 설명하기 위한 도면이다.
도 24는 암묵적 블록 분할 기반의 화면 내 예측의 일 실시예를 설명하기 위한 도면이다.
도 25는 화면 내 예측 모드 기반 화면 내 예측 블록 가중합을 설명하기 위한 예시도이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 도면에서 유사한 참조부호는 여러 측면에 걸쳐서 동일하거나 유사한 기능을 지칭한다. 도면에서의 요소들의 형상 및 크기 등은 보다 명확한 설명을 위해 과장될 수 있다. 후술하는 예시적 실시예들에 대한 상세한 설명은, 특정 실시예를 예시로서 도시하는 첨부 도면을 참조한다. 이들 실시예는 당업자가 실시예를 실시할 수 있기에 충분하도록 상세히 설명된다. 다양한 실시예들은 서로 다르지만 상호 배타적일 필요는 없음이 이해되어야 한다. 예를 들어, 여기에 기재되어 있는 특정 형상, 구조 및 특성은 일 실시예에 관련하여 본 발명의 정신 및 범위를 벗어나지 않으면서 다른 실시예로 구현될 수 있다. 또한, 각각의 개시된 실시예 내의 개별 구성요소의 위치 또는 배치는 실시예의 정신 및 범위를 벗어나지 않으면서 변경될 수 있음이 이해되어야 한다. 따라서, 후술하는 상세한 설명은 한정적인 의미로서 취하려는 것이 아니며, 예시적 실시예들의 범위는, 적절하게 설명된다면, 그 청구항들이 주장하는 것과 균등한 모든 범위와 더불어 첨부된 청구항에 의해서만 한정된다.
본 발명에서 제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. 및/또는 이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다.
본 발명의 어떤 구성 요소가 다른 구성 요소에 “연결되어” 있다거나 “접속되어” 있다고 언급된 때에는, 그 다른 구성 요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있으나, 중간에 다른 구성 요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어"있다거나 "직접 접속되어"있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.
본 발명의 실시예에 나타나는 구성부들은 서로 다른 특징적인 기능들을 나타내기 위해 독립적으로 도시되는 것으로, 각 구성부들이 분리된 하드웨어나 하나의 소프트웨어 구성단위로 이루어짐을 의미하지 않는다. 즉, 각 구성부는 설명의 편의상 각각의 구성부로 나열하여 포함한 것으로 각 구성부 중 적어도 두 개의 구성부가 합쳐져 하나의 구성부로 이루어지거나, 하나의 구성부가 복수 개의 구성부로 나뉘어져 기능을 수행할 수 있고 이러한 각 구성부의 통합된 실시예 및 분리된 실시예도 본 발명의 본질에서 벗어나지 않는 한 본 발명의 권리범위에 포함된다.
본 발명에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 발명에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다. 즉, 본 발명에서 특정 구성을 “포함”한다고 기술하는 내용은 해당 구성 이외의 구성을 배제하는 것이 아니며, 추가적인 구성이 본 발명의 실시 또는 본 발명의 기술적 사상의 범위에 포함될 수 있음을 의미한다.
본 발명의 일부의 구성 요소는 본 발명에서 본질적인 기능을 수행하는 필수적인 구성 요소는 아니고 단지 성능을 향상시키기 위한 선택적 구성 요소일 수 있다. 본 발명은 단지 성능 향상을 위해 사용되는 구성 요소를 제외한 본 발명의 본질을 구현하는데 필수적인 구성부만을 포함하여 구현될 수 있고, 단지 성능 향상을 위해 사용되는 선택적 구성 요소를 제외한 필수 구성 요소만을 포함한 구조도 본 발명의 권리범위에 포함된다.
이하, 도면을 참조하여 본 발명의 실시 형태에 대하여 구체적으로 설명한다. 본 명세서의 실시예를 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 명세서의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략하고, 도면상의 동일한 구성요소에 대해서는 동일한 참조부호를 사용하고 동일한 구성요소에 대해서 중복된 설명은 생략한다.
이하에서 영상은 동영상(video)을 구성하는 하나의 픽처(picture)를 의미할 수 있으며, 동영상 자체를 나타낼 수도 있다. 예를 들면, "영상의 부호화 및/또는 복호화"는 "동영상의 부호화 및/또는 복호화"를 의미할 수 있으며, "동영상을 구성하는 영상들 중 하나의 영상의 부호화 및/또는 복호화"를 의미할 수도 있다.
이하에서, 용어들 "동영상" 및 "비디오"는 동일한 의미로 사용될 수 있으며, 서로 교체되어 사용될 수 있다.
이하에서, 대상 영상은 부호화의 대상인 부호화 대상 영상 및/또는 복호화의 대상인 복호화 대상 영상일 수 있다. 또한, 대상 영상은 부호화 장치로 입력된 입력 영상일 수 있고, 복호화 장치로 입력된 입력 영상일 수 있다. 여기서, 대상 영상은 현재 영상과 동일한 의미를 가질 수 있다.
이하에서, 용어들 "영상", "픽처", "프레임(frame)" 및 "스크린(screen)"은 동일한 의미로 사용될 수 있으며, 서로 교체되어 사용될 수 있다.
이하에서, 대상 블록은 부호화의 대상인 부호화 대상 블록 및/또는 복호화의 대상인 복호화 대상 블록일 수 있다. 또한, 대상 블록은 현재 부호화 및/또는 복호화의 대상인 현재 블록일 수 있다. 예를 들면, 용어들 "대상 블록" 및 "현재 블록"은 동일한 의미로 사용될 수 있으며, 서로 교체되어 사용될 수 있다.
이하에서, 용어들 "블록" 및 "유닛"은 동일한 의미로 사용될 수 있으며, 서로 교체되어 사용될 수 있다. 또는 "블록"은 특정한 유닛을 나타낼 수 있다.
이하에서, 용어들 "영역(region)" 및 "세그먼트(segment)"는 서로 교체되어 사용될 수 있다.
이하에서, 특정한 신호는 특정한 블록을 나타내는 신호일 수 있다. 예를 들면, 원(original) 신호는 대상 블록을 나타내는 신호일 수 있다. 예측(prediction) 신호는 예측 블록을 나타내는 신호일 수 있다. 잔여(residual) 신호는 잔여 블록(residual block)을 나타내는 신호일 수 있다.
실시예들에서, 특정된 정보, 데이터, 플래그(flag), 색인(index) 및 요소(element), 속성(attribute) 등의 각각은 값을 가질 수 있다. 정보, 데이터, 플래그, 색인 및 요소, 속성 등의 값 "0"은 논리 거짓(logical false) 또는 제1 기정의된(predefined) 값을 나타낼 수 있다. 말하자면, 값 "0", 거짓, 논리 거짓 및 제1 기정의된 값은 서로 대체되어 사용될 수 있다. 정보, 데이터, 플래그, 색인 및 요소, 속성 등의 값 "1"은 논리 참(logical true) 또는 제2 기정의된 값을 나타낼 수 있다. 말하자면, 값 "1", 참, 논리 참 및 제2 기정의된 값은 서로 대체되어 사용될 수 있다.
행, 열 또는 색인(index)을 나타내기 위해 i 또는 j 등의 변수가 사용될 때, i의 값은 0 이상의 정수일 수 있으며, 1 이상의 정수일 수도 있다. 말하자면, 실시예들에서 행, 열 및 색인 등은 0에서부터 카운트될 수 있으며, 1에서부터 카운트될 수 있다.
용어 설명
부호화기(Encoder): 부호화(Encoding)를 수행하는 장치를 의미한다. 즉, 부호화 장치를 의미할 수 있다.
복호화기(Decoder): 복호화(Decoding)를 수행하는 장치를 의미한다. 즉, 복호화 장치를 의미할 수 있다.
블록(Block): 샘플(Sample)의 MxN 배열이다. 여기서 M과 N은 양의 정수 값을 의미할 수 있으며, 블록은 흔히 2차원 형태의 샘플 배열을 의미할 수 있다. 블록은 유닛을 의미할 수 있다. 현재 블록은 부호화 시 부호화의 대상이 되는 부호화 대상 블록, 복호화 시 복호화의 대상이 되는 복호화 대상 블록을 의미할 수 있다. 또한, 현재 블록은 부호화 블록, 예측 블록, 잔여 블록, 변환 블록 중 적어도 하나일 수 있다.
샘플(Sample): 블록을 구성하는 기본 단위이다. 비트 깊이 (bit depth, Bd)에 따라 0부터 2Bd - 1까지의 값으로 표현될 수 있다. 본 발명에서 샘플은 화소 또는 픽셀과 같은 의미로 사용될 수 있다. 즉, 샘플, 화소, 픽셀은 서로 같은 의미를 가질 수 있다.
유닛(Unit): 영상 부호화 및 복호화의 단위를 의미할 수 있다. 영상의 부호화 및 복호화에 있어서, 유닛은 하나의 영상을 분할한 영역일 수 있다. 또한, 유닛은 하나의 영상을 세분화 된 유닛으로 분할하여 부호화 혹은 복호화 할 때 그 분할된 단위를 의미할 수 있다. 즉, 하나의 영상은 복수의 유닛들로 분할될 수 있다. 영상의 부호화 및 복호화에 있어서, 유닛 별로 기정의된 처리가 수행될 수 있다. 하나의 유닛은 유닛에 비해 더 작은 크기를 갖는 하위 유닛으로 더 분할될 수 있다. 기능에 따라서, 유닛은 블록(Block), 매크로블록(Macroblock), 부호화 트리 유닛(Coding Tree Unit), 부호화 트리 블록(Coding Tree Block), 부호화 유닛(Coding Unit), 부호화 블록(Coding Block), 예측 유닛(Prediction Unit), 예측 블록(Prediction Block), 잔여 유닛(Residual Unit), 잔여 블록(Residual Block), 변환 유닛(Transform Unit), 변환 블록(Transform Block) 등을 의미할 수 있다. 또한, 유닛은 블록과 구분하여 지칭하기 위해 휘도(Luma) 성분 블록과 그에 대응하는 색차(Chroma) 성분 블록 그리고 각 블록에 대한 구문 요소를 포함한 것을 의미할 수 있다. 유닛은 다양한 크기와 형태를 가질 수 있으며, 특히 유닛의 형태는 정사각형뿐만 아니라 직사각형, 사다리꼴, 삼각형, 오각형 등 2차원으로 표현될 수 있는 기하학적 도형을 포함할 수 있다. 또한, 유닛 정보는 부호화 유닛, 예측 유닛, 잔여 유닛, 변환 유닛 등을 가리키는 유닛의 타입, 유닛의 크기, 유닛의 깊이, 유닛의 부호화 및 복호화 순서 등 중 적어도 하나 이상을 포함할 수 있다.
부호화 트리 유닛(Coding Tree Unit): 하나의 휘도 성분(Y) 부호화 트리 블록과 관련된 두 색차 성분(Cb, Cr) 부호화 트리 블록들로 구성된다. 또한, 상기 블록들과 각 블록에 대한 구문 요소를 포함한 것을 의미할 수도 있다. 각 부호화 트리 유닛은 부호화 유닛, 예측 유닛, 변환 유닛 등의 하위 유닛을 구성하기 위하여 쿼드트리(quad tree), 이진트리(binary tree), 3분할트리(ternary tree) 등 하나 이상의 분할 방식을 이용하여 분할될 수 있다. 입력 영상의 분할처럼 영상의 복/부호화 과정에서 처리 단위가 되는 샘플 블록을 지칭하기 위한 용어로 사용될 수 있다. 여기서, 쿼드트리는 4분할트리(quarternary tree)를 의미할 수 있다.
부호화 블록의 크기가 소정의 범위 내에 속하는 경우에는 쿼드트리로만 분할이 가능할 수 있다. 여기서, 소정의 범위는 쿼드트리만으로 분할이 가능한 부호화 블록의 최대 크기 및 최소 크기 중 적어도 하나로 정의될 수 있다. 쿼드트리 형태의 분할이 허용되는 부호화 블록의 최대/최소 크기를 나타내는 정보는 비트스트림을 통해 시그널링될 수 있고, 해당 정보는 시퀀스, 픽처 파라미터, 타일 그룹, 또는 슬라이스(세그먼트) 중 적어도 하나의 단위로 시그널링될 수 있다. 또는, 부호화 블록의 최대/최소 크기는 부호화기/복호화기에 기-설정된 고정된 크기일 수도 있다. 예를 들어, 부호화 블록의 크기가 256x256 내지 64x64 에 해당하는 경우에는 쿼드트리로만 분할이 가능할 수 있다. 또는 부호화 블록의 크기가 최대 변환 블록의 크기 보다 큰 경우에는 쿼드트리로만 분할이 가능할 수 있다. 이때, 상기 분할되는 블록은 부호화 블록 또는 변환 블록 중 적어도 하나일 수 있다. 이러한 경우에 부호화 블록의 분할을 나타내는 정보(예컨대, split_flag)는 쿼드트리 분할 여부를 나타내는 플래그일 수 있다. 부호화 블록의 크기가 소정의 범위 내에 속하는 경우에는 이진트리 또는 3분할트리로만 분할이 가능할 수 있다. 이 경우, 쿼드트리에 관한 상기 설명은 이진트리 또는 3분할트리에 대해서도 동일하게 적용될 수 있다.
부호화 트리 블록(Coding Tree Block): Y 부호화 트리 블록, Cb 부호화 트리 블록, Cr 부호화 트리 블록 중 어느 하나를 지칭하기 위한 용어로 사용될 수 있다.
주변 블록(Neighbor block): 현재 블록에 인접한 블록을 의미할 수 있다. 현재 블록에 인접한 블록은 현재 블록에 경계가 맞닿은 블록 또는 현재 블록으로부터 소정의 거리 내에 위치한 블록을 의미할 수 있다. 주변 블록은 현재 블록의 꼭지점에 인접한 블록을 의미할 수 있다. 여기에서, 현재 블록의 꼭지점에 인접한 블록이란, 현재 블록에 가로로 인접한 이웃 블록에 세로로 인접한 블록 또는 현재 블록에 세로로 인접한 이웃 블록에 가로로 인접한 블록일 수 있다. 주변 블록은 복원된 주변 블록을 의미할 수도 있다.
복원된 주변 블록(Reconstructed Neighbor Block): 현재 블록 주변에 공간적(Spatial)/시간적(Temporal)으로 이미 부호화 혹은 복호화된 주변 블록을 의미할 수 있다. 이때, 복원된 주변 블록은 복원된 주변 유닛을 의미할 수 있다. 복원된 공간적 주변 블록은 현재 픽처 내의 블록이면서 부호화 및/또는 복호화를 통해 이미 복원된 블록일 수 있다. 복원된 시간적 주변 블록은 참조 영상 내에서 현재 픽처의 현재 블록과 대응하는 위치의 복원된 블록 또는 그 주변 블록일 수 있다.
유닛 깊이(Depth): 유닛이 분할된 정도를 의미할 수 있다. 트리 구조(Tree Structure)에서 가장 상위 노드(Root Node)는 분할되지 않은 최초의 유닛에 대응할 수 있다. 가장 상위 노드는 루트 노드로 칭해질 수 있다. 또한, 가장 상위 노드는 최소의 깊이 값을 가질 수 있다. 이 때, 가장 상위 노드는 레벨(Level) 0의 깊이를 가질 수 있다. 레벨 1의 깊이를 갖는 노드는 최초의 유닛이 한 번 분할됨에 따라 생성된 유닛을 나타낼 수 있다. 레벨 2의 깊이를 갖는 노드는 최초의 유닛이 두 번 분할됨에 따라 생성된 유닛을 나타낼 수 있다. 레벨 n의 깊이를 갖는 노드는 최초의 유닛이 n번 분할됨에 따라 생성된 유닛을 나타낼 수 있다. 리프 노드(Leaf Node)는 가장 하위의 노드일 수 있으며, 더 분할될 수 없는 노드일 수 있다. 리프 노드의 깊이는 최대 레벨일 수 있다. 예를 들면, 최대 레벨의 기정의된 값은 3일 수 있다. 루트 노드는 깊이가 가장 얕고, 리프 노드는 깊이가 가장 깊다고 할 수 있다. 또한, 유닛을 트리 구조로 표현했을 때 유닛이 존재하는 레벨이 유닛 깊이를 의미할 수 있다.
비트스트림(Bitstream): 부호화된 영상 정보를 포함하는 비트의 열을 의미할 수 있다.
파라미터 세트(Parameter Set): 비트스트림 내의 구조 중 헤더(header) 정보에 해당한다. 비디오 파라미터 세트(video parameter set), 시퀀스 파라미터 세트(sequence parameter set), 픽처 파라미터 세트(picture parameter set), 적응 파라미터 세트(adaptation parameter set) 중 적어도 하나가 파라미터 세트에 포함될 수 있다. 또한, 파라미터 세트는 타일 그룹, 슬라이스(slice) 헤더 및 타일(tile) 헤더 정보를 포함할 수도 있다. 또한, 상기 타일 그룹은 여러 타일을 포함하는 그룹을 의미할 수 있으며, 슬라이스와 동일한 의미일 수 있다.
파싱(Parsing): 비트스트림을 엔트로피 복호화하여 구문 요소(Syntax Element)의 값을 결정하는 것을 의미하거나, 엔트로피 복호화 자체를 의미할 수 있다.
심볼(Symbol): 부호화/복호화 대상 유닛의 구문 요소, 부호화 파라미터(coding parameter), 변환 계수(Transform Coefficient)의 값 등 중 적어도 하나를 의미할 수 있다. 또한, 심볼은 엔트로피 부호화의 대상 혹은 엔트로피 복호화의 결과를 의미할 수 있다.
예측 모드(Prediction Mode): 화면 내 예측으로 부호화/복호화되는 모드 또는 화면 간 예측으로 부호화/복호화되는 모드를 지시하는 정보일 수 있다.
예측 유닛(Prediction Unit): 화면 간 예측, 화면 내 예측, 화면 간 보상, 화면 내 보상, 움직임 보상 등 예측을 수행할 때의 기본 단위를 의미할 수 있다. 하나의 예측 유닛은 더 작은 크기를 가지는 복수의 파티션(Partition) 또는 복수의 하위 예측 유닛들로 분할 될 수도 있다. 복수의 파티션들 또한 예측 또는 보상의 수행에 있어서의 기본 단위일 수 있다. 예측 유닛의 분할에 의해 생성된 파티션 또한 예측 유닛일 수 있다.
예측 유닛 파티션(Prediction Unit Partition): 예측 유닛이 분할된 형태를 의미할 수 있다.
참조 영상 리스트(Reference Picture List): 화면 간 예측 혹은 움직임 보상에 사용되는 하나 이상의 참조 영상들을 포함하는 리스트를 의미할 수 있다. 참조 영상 리스트의 종류는 LC (List Combined), L0 (List 0), L1 (List 1), L2 (List 2), L3 (List 3) 등이 있을 수 있으며, 화면 간 예측에는 1개 이상의 참조 영상 리스트들이 사용될 수 있다.
화면 간 예측 지시자(Inter Prediction Indicator): 현재 블록의 화면 간 예측 방향(단방향 예측, 쌍방향 예측 등)을 의미할 수 있다. 또는, 현재 블록의 예측 블록을 생성할 때 사용되는 참조 영상의 개수를 의미할 수 있다. 또는, 현재 블록에 대해 화면 간 예측 혹은 움직임 보상을 수행할 때 사용되는 예측 블록의 개수를 의미할 수 있다.
예측 리스트 활용 플래그(prediction list utilization flag): 특정 참조 영상 리스트 내 적어도 하나의 참조 영상을 이용하여 예측 블록을 생성하는지 여부를 나타낸다. 예측 리스트 활용 플래그를 이용하여 화면 간 예측 지시자를 도출할 수 있고, 반대로 화면 간 예측 지시자를 이용하여 예측 리스트 활용 플래그를 도출할 수 있다. 예를 들어, 예측 리스트 활용 플래그가 제1 값인 0을 지시하는 경우, 해당 참조 영상 리스트 내 참조 영상을 이용하여 예측 블록을 생성하지 않는 것을 나타낼 수 있고, 제2 값인 1을 지시하는 경우, 해당 참조 영상 리스트를 이용하여 예측 블록을 생성할 수 있는 것을 나타낼 수 있다.
참조 영상 색인(Reference Picture Index): 참조 영상 리스트에서 특정 참조 영상을 지시하는 색인을 의미할 수 있다.
참조 영상(Reference Picture): 화면 간 예측 혹은 움직임 보상을 위해서 특정 블록이 참조하는 영상을 의미할 수 있다. 또는, 참조 영상은 화면 간 예측 또는 움직임 보상을 위해 현재 블록이 참조하는 참조 블록을 포함하는 영상일 수 있다. 이하, 용어 "참조 픽처" 및 "참조 영상"은 동일한 의미로 사용될 수 있으며, 서로 교체되어 사용될 수 있다.
움직임 벡터(Motion Vector): 화면 간 예측 혹은 움직임 보상에 사용되는 2차원 벡터일 수 있다. 움직임 벡터는 부호화/복호화 대상 블록과 참조 블록 사이의 오프셋을 의미할 수 있다. 예를 들어, (mvX, mvY)는 움직임 벡터를 나타낼 수 있다. mvX는 수평(horizontal) 성분, mvY는 수직(vertical) 성분을 나타낼 수 있다.
탐색 영역(Search Range): 탐색 영역은 화면 간 예측 중 움직임 벡터에 대한 탐색이 이루어지는 2차원의 영역일 수 있다. 예를 들면, 탐색 영역의 크기는 MxN일 수 있다. M 및 N은 각각 양의 정수일 수 있다.
움직임 벡터 후보(Motion Vector Candidate): 움직임 벡터를 예측할 때 예측 후보가 되는 블록 혹은 그 블록의 움직임 벡터를 의미할 수 있다. 또한, 움직임 벡터 후보는 움직임 벡터 후보 리스트에 포함될 수 있다.
움직임 벡터 후보 리스트(Motion Vector Candidate List): 하나 이상의 움직임 벡터 후보들을 이용하여 구성된 리스트를 의미할 수 있다.
움직임 벡터 후보 색인(Motion Vector Candidate Index): 움직임 벡터 후보 리스트 내의 움직임 벡터 후보를 가리키는 지시자를 의미할 수 있다. 움직임 벡터 예측기(Motion Vector Predictor)의 색인(index)일 수 있다.
움직임 정보(Motion Information): 움직임 벡터, 참조 영상 색인, 화면 간 예측 지시자 뿐만 아니라 예측 리스트 활용 플래그, 참조 영상 리스트 정보, 참조 영상, 움직임 벡터 후보, 움직임 벡터 후보 색인, 머지 후보, 머지 색인 등 중 적어도 하나를 포함하는 정보를 의미할 수 있다.
머지 후보 리스트(Merge Candidate List): 하나 이상의 머지 후보들을 이용하여 구성된 리스트를 의미할 수 있다.
머지 후보(Merge Candidate): 공간적 머지 후보, 시간적 머지 후보, 조합된 머지 후보, 조합 양예측 머지 후보, 제로 머지 후보 등을 의미할 수 있다. 머지 후보는 화면 간 예측 지시자, 각 리스트에 대한 참조 영상 색인, 움직임 벡터, 예측 리스트 활용 플래그, 화면 간 예측 지시자 등의 움직임 정보를 포함할 수 있다.
머지 색인(Merge Index): 머지 후보 리스트 내 머지 후보를 가리키는 지시자를 의미할 수 있다. 또한, 머지 색인은 공간적/시간적으로 현재 블록과 인접하게 복원된 블록들 중 머지 후보를 유도한 블록을 지시할 수 있다. 또한, 머지 색인은 머지 후보가 가지는 움직임 정보 중 적어도 하나를 지시할 수 있다.
변환 유닛(Transform Unit): 변환, 역변환, 양자화, 역양자화, 변환 계수 부호화/복호화와 같이 잔여 신호(residual signal) 부호화/복호화를 수행할 때의 기본 단위를 의미할 수 있다. 하나의 변환 유닛은 분할되어 더 작은 크기를 가지는 복수의 하위 변환 유닛들로 분할될 수 있다. 여기서, 변환/역변환은 1차 변환/역변환 및 2차 변환/역변환 중 적어도 하나 이상을 포함할 수 있다.
스케일링(Scaling): 양자화된 레벨에 인수를 곱하는 과정을 의미할 수 있다. 양자화된 레벨에 대한 스케일링의 결과로 변환 계수를 생성할 수 있다. 스케일링을 역양자화(dequantization)라고도 부를 수 있다.
양자화 매개변수(Quantization Parameter): 양자화에서 변환 계수를 이용하여 양자화된 레벨(quantized level)을 생성할 때 사용하는 값을 의미할 수 있다. 또는, 역양자화에서 양자화된 레벨을 스케일링하여 변환 계수를 생성할 때 사용하는 값을 의미할 수도 있다. 양자화 매개변수는 양자화 스텝 크기(step size)에 매핑된 값일 수 있다.
잔여 양자화 매개변수(Delta Quantization Parameter): 예측된 양자화 매개변수와 부호화/복호화 대상 유닛의 양자화 매개변수의 차분(difference) 값을 의미할 수 있다.
스캔(Scan): 유닛, 블록 혹은 행렬 내 계수의 순서를 정렬하는 방법을 의미할 수 있다. 예를 들어, 2차원 배열을 1차원 배열 형태로 정렬하는 것을 스캔이라고 한다. 또는, 1차원 배열을 2차원 배열 형태로 정렬하는 것도 스캔 혹은 역 스캔(Inverse Scan)이라고 부를 수 있다.
변환 계수(Transform Coefficient): 부호화기에서 변환을 수행하고 나서 생성된 계수 값을 의미할 수 있다. 또는, 복호화기에서 엔트로피 복호화 및 역양자화 중 적어도 하나를 수행하고 나서 생성된 계수 값을 의미할 수도 있다. 변환 계수 또는 잔여 신호에 양자화를 적용한 양자화된 레벨 또는 양자화된 변환 계수 레벨도 변환 계수의 의미에 포함될 수 있다.
양자화된 레벨(Quantized Level): 부호화기에서 변환 계수 또는 잔여 신호에 양자화를 수행하여 생성된 값을 의미할 수 있다. 또는, 복호화기에서 역양자화를 수행하기 전 역양자화의 대상이 되는 값을 의미할 수도 있다. 유사하게, 변환 및 양자화의 결과인 양자화된 변환 계수 레벨도 양자화된 레벨의 의미에 포함될 수 있다.
넌제로 변환 계수(Non-zero Transform Coefficient): 값의 크기가 0이 아닌 변환 계수 혹은 값의 크기가 0이 아닌 변환 계수 레벨 혹은 양자화된 레벨을 의미할 수 있다.
양자화 행렬(Quantization Matrix): 영상의 주관적 화질 혹은 객관적 화질을 향상시키기 위해서 양자화 혹은 역양자화 과정에서 이용하는 행렬을 의미할 수 있다. 양자화 행렬을 스케일링 리스트(scaling list)라고도 부를 수 있다.
양자화 행렬 계수(Quantization Matrix Coefficient): 양자화 행렬 내의 각 원소(element)를 의미할 수 있다. 양자화 행렬 계수를 행렬 계수(matrix coefficient)라고도 할 수 있다.
기본 행렬(Default Matrix): 부호화기와 복호화기에서 미리 정의되어 있는 소정의 양자화 행렬을 의미할 수 있다.
비 기본 행렬(Non-default Matrix): 부호화기와 복호화기에서 미리 정의되지 않고, 사용자에 의해서 시그널링되는 양자화 행렬을 의미할 수 있다.
통계값(statistic value): 연산 가능한 특정 값들을 가지는 변수, 부호화 파라미터, 상수 등 적어도 하나에 대한 통계값은 해당 특정 값들의 평균값, 가중평균값, 가중합값, 최소값, 최대값, 최빈값, 중간값, 보간값 중 적어도 하나 이상일 수 있다.
도 1은 본 발명이 적용되는 부호화 장치의 일 실시예에 따른 구성을 나타내는 블록도이다.
부호화 장치(100)는 인코더, 비디오 부호화 장치 또는 영상 부호화 장치일 수 있다. 비디오는 하나 이상의 영상들을 포함할 수 있다. 부호화 장치(100)는 하나 이상의 영상들을 순차적으로 부호화할 수 있다.
도 1을 참조하면, 부호화 장치(100)는 움직임 예측부(111), 움직임 보상부(112), 인트라 예측부(120), 스위치(115), 감산기(125), 변환부(130), 양자화부(140), 엔트로피 부호화부(150), 역양자화부(160), 역변환부(170), 가산기(175), 필터부(180) 및 참조 픽처 버퍼(190)를 포함할 수 있다.
부호화 장치(100)는 입력 영상에 대해 인트라 모드 및/또는 인터 모드로 부호화를 수행할 수 있다. 또한, 부호화 장치(100)는 입력 영상에 대한 부호화를 통해 부호화된 정보를 포함하는 비트스트림을 생성할 수 있고, 생성된 비트스트림을 출력할 수 있다. 생성된 비트스트림은 컴퓨터 판독가능한 기록 매체에 저장될 수 있거나, 유/무선 전송 매체를 통해 스트리밍될 수 있다. 예측 모드로 인트라 모드가 사용되는 경우 스위치(115)는 인트라로 전환될 수 있고, 예측 모드로 인터 모드가 사용되는 경우 스위치(115)는 인터로 전환될 수 있다. 여기서 인트라 모드는 화면 내 예측 모드를 의미할 수 있으며, 인터 모드는 화면 간 예측 모드를 의미할 수 있다. 부호화 장치(100)는 입력 영상의 입력 블록에 대한 예측 블록을 생성할 수 있다. 또한, 부호화 장치(100)는 예측 블록이 생성된 후, 입력 블록 및 예측 블록의 차분(residual)을 사용하여 잔여 블록을 부호화할 수 있다. 입력 영상은 현재 부호화의 대상인 현재 영상으로 칭해질 수 있다. 입력 블록은 현재 부호화의 대상인 현재 블록 혹은 부호화 대상 블록으로 칭해질 수 있다.
예측 모드가 인트라 모드인 경우, 인트라 예측부(120)는 현재 블록의 주변에 이미 부호화/복호화된 블록의 샘플을 참조 샘플로서 이용할 수 있다. 인트라 예측부(120)는 참조 샘플을 이용하여 현재 블록에 대한 공간적 예측을 수행할 수 있고, 공간적 예측을 통해 입력 블록에 대한 예측 샘플들을 생성할 수 있다. 여기서 인트라 예측은 화면 내 예측을 의미할 수 있다.
예측 모드가 인터 모드인 경우, 움직임 예측부(111)는, 움직임 예측 과정에서 참조 영상으로부터 입력 블록과 가장 매치가 잘 되는 영역을 검색할 수 있고, 검색된 영역을 이용하여 움직임 벡터를 도출할 수 있다. 이때, 상기 영역으로 탐색 영역을 사용할 수 있다. 참조 영상은 참조 픽처 버퍼(190)에 저장될 수 있다. 여기서, 참조 영상에 대한 부호화/복호화가 처리되었을 때 참조 픽처 버퍼(190)에 저장될 수 있다.
움직임 보상부(112)는 움직임 벡터를 이용하는 움직임 보상을 수행함으로써 현재 블록에 대한 예측 블록을 생성할 수 있다. 여기서 인터 예측은 화면 간 예측 혹은 움직임 보상을 의미할 수 있다.
상기 움직임 예측부(111)과 움직임 보상부(112)는 움직임 벡터의 값이 정수 값을 가지지 않을 경우에 참조 영상 내의 일부 영역에 대해 보간 필터(Interpolation Filter)를 적용하여 예측 블록을 생성할 수 있다. 화면 간 예측 혹은 움직임 보상을 수행하기 위해 부호화 유닛을 기준으로 해당 부호화 유닛에 포함된 예측 유닛의 움직임 예측 및 움직임 보상 방법이 스킵 모드(Skip Mode), 머지 모드(Merge Mode), 향상된 움직임 벡터 예측(Advanced Motion Vector Prediction; AMVP) 모드, 현재 픽처 참조 모드 중 어떠한 방법인지 여부를 판단할 수 있고, 각 모드에 따라 화면 간 예측 혹은 움직임 보상을 수행할 수 있다.
감산기(125)는 입력 블록 및 예측 블록의 차분을 사용하여 잔여 블록을 생성할 수 있다. 잔여 블록은 잔여 신호로 칭해질 수도 있다. 잔여 신호는 원 신호 및 예측 신호 간의 차이(difference)를 의미할 수 있다. 또는, 잔여 신호는 원신호 및 예측 신호 간의 차이를 변환(transform)하거나, 양자화하거나, 또는 변환 및 양자화함으로써 생성된 신호일 수 있다. 잔여 블록은 블록 단위의 잔여 신호일 수 있다.
변환부(130)는 잔여 블록에 대해 변환(transform)을 수행하여 변환 계수(transform coefficient)를 생성할 수 있고, 생성된 변환 계수를 출력할 수 있다. 여기서, 변환 계수는 잔여 블록에 대한 변환을 수행함으로써 생성된 계수 값일 수 있다. 변환 생략(transform skip) 모드가 적용되는 경우, 변환부(130)는 잔여 블록에 대한 변환을 생략할 수도 있다.
변환 계수 또는 잔여 신호에 양자화를 적용함으로써 양자화된 레벨(quantized level)이 생성될 수 있다. 이하, 실시예들에서는 양자화된 레벨도 변환 계수로 칭해질 수 있다.
양자화부(140)는 변환 계수 또는 잔여 신호를 양자화 매개변수에 따라 양자화함으로써 양자화된 레벨을 생성할 수 있고, 생성된 양자화된 레벨을 출력할 수 있다. 이때, 양자화부(140)에서는 양자화 행렬을 사용하여 변환 계수를 양자화할 수 있다.
엔트로피 부호화부(150)는, 양자화부(140)에서 산출된 값들 또는 부호화 과정에서 산출된 부호화 파라미터(Coding Parameter) 값들 등에 대하여 확률 분포에 따른 엔트로피 부호화를 수행함으로써 비트스트림(bitstream)을 생성할 수 있고, 비트스트림을 출력할 수 있다. 엔트로피 부호화부(150)는 영상의 샘플에 관한 정보 및 영상의 복호화를 위한 정보에 대한 엔트로피 부호화를 수행할 수 있다. 예를 들면, 영상의 복호화를 위한 정보는 구문 요소(syntax element) 등을 포함할 수 있다.
엔트로피 부호화가 적용되는 경우, 높은 발생 확률을 갖는 심볼(symbol)에 적은 수의 비트가 할당되고 낮은 발생 확률을 갖는 심볼에 많은 수의 비트가 할당되어 심볼이 표현됨으로써, 부호화 대상 심볼들에 대한 비트열의 크기가 감소될 수 있다. 엔트로피 부호화부(150)는 엔트로피 부호화를 위해 지수 골롬(exponential Golomb), CAVLC(Context-Adaptive Variable Length Coding), CABAC(Context-Adaptive Binary Arithmetic Coding)과 같은 부호화 방법을 사용할 수 있다. 예를 들면, 엔트로피 부호화부(150)는 가변 길이 부호화(Variable Length Coding/Code; VLC) 테이블을 이용하여 엔트로피 부호화를 수행할 수 있다. 또한 엔트로피 부호화부(150)는 대상 심볼의 이진화(binarization) 방법 및 대상 심볼/빈(bin)의 확률 모델(probability model)을 도출한 후, 도출된 이진화 방법, 확률 모델, 문맥 모델(Context Model)을 사용하여 산술 부호화를 수행할 수도 있다.
엔트로피 부호화부(150)는 변환 계수 레벨(양자화된 레벨)을 부호화하기 위해 변환 계수 스캐닝(Transform Coefficient Scanning) 방법을 통해 2차원의 블록 형태(form) 계수를 1차원의 벡터 형태로 변경할 수 있다.
부호화 파라미터(Coding Parameter)는 구문 요소와 같이 부호화기에서 부호화되어 복호화기로 시그널링되는 정보(플래그, 색인 등)뿐만 아니라, 부호화 과정 혹은 복호화 과정에서 유도되는 정보를 포함할 수 있으며, 영상을 부호화하거나 복호화할 때 필요한 정보를 의미할 수 있다. 예를 들어, 유닛/블록 크기, 유닛/블록 깊이, 유닛/블록 분할 정보, 유닛/블록 형태, 유닛/블록 분할 구조, 쿼드트리 형태의 분할 여부, 이진트리 형태의 분할 여부, 이진트리 형태의 분할 방향(가로 방향 혹은 세로 방향), 이진트리 형태의 분할 형태(대칭 분할 혹은 비대칭 분할), 3분할트리 형태의 분할 여부, 3분할트리 형태의 분할 방향(가로 방향 혹은 세로 방향), 3분할트리 형태의 분할 형태(대칭 분할 혹은 비대칭 분할), 복합형트리 형태의 분할 여부, 복합형트리 형태의 분할 방향(가로 방향 혹은 세로 방향), 복합형트리 형태의 분할 형태(대칭 분할 혹은 비대칭 분할), 복합형트리 형태의 분할 트리(이진트리 혹은 3분할 트리), 예측 모드(화면 내 예측 또는 화면 간 예측), 화면 내 휘도 예측 모드/방향, 화면 내 색차 예측 모드/방향, 화면 내 분할 정보, 화면 간 분할 정보, 부호화 블록 분할 플래그, 예측 블록 분할 플래그, 변환 블록 분할 플래그, 참조 샘플 필터링 방법, 참조 샘플 필터 탭, 참조 샘플 필터 계수, 예측 블록 필터링 방법, 예측 블록 필터 탭, 예측 블록 필터 계수, 예측 블록 경계 필터링 방법, 예측 블록 경계 필터 탭, 예측 블록 경계 필터 계수, 화면 내 예측 모드, 화면 간 예측 모드, 움직임 정보, 움직임 벡터, 움직임 벡터 차분, 참조 영상 색인, 화면 간 예측 방향, 화면 간 예측 지시자, 예측 리스트 활용 플래그, 참조 영상 리스트, 참조 영상, 움직임 벡터 예측 색인, 움직임 벡터 예측 후보, 움직임 벡터 후보 리스트, 머지 모드 사용 여부, 머지 색인, 머지 후보, 머지 후보 리스트, 스킵(skip) 모드 사용 여부, 보간 필터 종류, 보간 필터 탭, 보간 필터 계수, 움직임 벡터 크기, 움직임 벡터 표현 정확도, 변환 종류, 변환 크기, 1차 변환 사용 여부 정보, 2차 변환 사용 여부 정보, 1차 변환 색인, 2차 변환 색인, 잔여 신호 유무 정보, 부호화 블록 패턴(Coded Block Pattern), 부호화 블록 플래그(Coded Block Flag), 양자화 매개변수, 잔여 양자화 매개변수, 양자화 행렬, 화면 내 루프 필터 적용 여부, 화면 내 루프 필터 계수, 화면 내 루프 필터 탭, 화면 내 루프 필터 모양/형태, 디블록킹 필터 적용 여부, 디블록킹 필터 계수, 디블록킹 필터 탭, 디블록킹 필터 강도, 디블록킹 필터 모양/형태, 적응적 샘플 오프셋 적용 여부, 적응적 샘플 오프셋 값, 적응적 샘플 오프셋 카테고리, 적응적 샘플 오프셋 종류, 적응적 루프 필터 적용 여부, 적응적 루프 필터 계수, 적응적 루프 필터 탭, 적응적 루프 필터 모양/형태, 이진화/역이진화 방법, 문맥 모델 결정 방법, 문맥 모델 업데이트 방법, 레귤러 모드 수행 여부, 바이패스 모드 수행 여부, 문맥 빈, 바이패스 빈, 중요 계수 플래그, 마지막 중요 계수 플래그, 계수 그룹 단위 부호화 플래그, 마지막 중요 계수 위치, 계수 값이 1보다 큰지에 대한 플래그, 계수 값이 2보다 큰지에 대한 플래그, 계수 값이 3보다 큰지에 대한 플래그, 나머지 계수 값 정보, 부호(sign) 정보, 복원된 휘도 샘플, 복원된 색차 샘플, 잔여 휘도 샘플, 잔여 색차 샘플, 휘도 변환 계수, 색차 변환 계수, 휘도 양자화된 레벨, 색차 양자화된 레벨, 변환 계수 레벨 스캐닝 방법, 복호화기 측면 움직임 벡터 탐색 영역의 크기, 복호화기 측면 움직임 벡터 탐색 영역의 형태, 복호화기 측면 움직임 벡터 탐색 횟수, CTU 크기 정보, 최소 블록 크기 정보, 최대 블록 크기 정보, 최대 블록 깊이 정보, 최소 블록 깊이 정보, 영상 디스플레이/출력 순서, 슬라이스 식별 정보, 슬라이스 타입, 슬라이스 분할 정보, 타일 그룹 식별 정보, 타일 그룹 타입, 타일 그룹 분할 정보, 타일 식별 정보, 타일 타입, 타일 분할 정보, 픽처 타입, 입력 샘플 비트 심도, 복원 샘플 비트 심도, 잔여 샘플 비트 심도, 변환 계수 비트 심도, 양자화된 레벨 비트 심도, 휘도 신호에 대한 정보, 색차 신호에 대한 정보 중 적어도 하나의 값 또는 조합된 형태가 부호화 파라미터에 포함될 수 있다.
여기서, 플래그 혹은 색인을 시그널링(signaling)한다는 것은 인코더에서는 해당 플래그 혹은 색인을 엔트로피 부호화(Entropy Encoding)하여 비트스트림(Bitstream)에 포함하는 것을 의미할 수 있고, 디코더에서는 비트스트림으로부터 해당 플래그 혹은 색인을 엔트로피 복호화(Entropy Decoding)하는 것을 의미할 수 있다.
부호화 장치(100)가 인터 예측을 통한 부호화를 수행할 경우, 부호화된 현재 영상은 이후에 처리되는 다른 영상에 대한 참조 영상으로서 사용될 수 있다. 따라서, 부호화 장치(100)는 부호화된 현재 영상을 다시 복원 또는 복호화할 수 있고, 복원 또는 복호화된 영상을 참조 영상으로 참조 픽처 버퍼(190)에 저장할 수 있다.
양자화된 레벨은 역양자화부(160)에서 역양자화(dequantization)될 수 있고. 역변환부(170)에서 역변환(inverse transform)될 수 있다. 역양자화 및/또는 역변환된 계수는 가산기(175)를 통해 예측 블록과 합해질 수 있다, 역양자화 및/또는 역변환된 계수와 예측 블록을 합함으로써 복원 블록(reconstructed block)이 생성될 수 있다. 여기서, 역양자화 및/또는 역변환된 계수는 역양자화 및 역변환 중 적어도 하나 이상이 수행된 계수를 의미하며, 복원된 잔여 블록을 의미할 수 있다.
복원 블록은 필터부(180)를 거칠 수 있다. 필터부(180)는 디블록킹 필터(deblocking filter), 샘플 적응적 오프셋(Sample Adaptive Offset; SAO), 적응적 루프 필터(Adaptive Loop Filter; ALF) 등 적어도 하나를 복원 샘플, 복원 블록 또는 복원 영상에 적용할 수 있다. 필터부(180)는 루프내 필터(in-loop filter)로 칭해질 수도 있다.
디블록킹 필터는 블록들 간의 경계에서 발생한 블록 왜곡을 제거할 수 있다. 디블록킹 필터를 수행할지 여부를 판단하기 위해 블록에 포함된 몇 개의 열 또는 행에 포함된 샘플을 기초로 현재 블록에 디블록킹 필터 적용할지 여부를 판단할 수 있다. 블록에 디블록킹 필터를 적용하는 경우 필요한 디블록킹 필터링 강도에 따라 서로 다른 필터를 적용할 수 있다.
샘플 적응적 오프셋을 이용하여 부호화 에러를 보상하기 위해 샘플 값에 적정 오프셋(offset) 값을 더할 수 있다. 샘플 적응적 오프셋은 디블록킹을 수행한 영상에 대해 샘플 단위로 원본 영상과의 오프셋을 보정할 수 있다. 영상에 포함된 샘플을 일정한 수의 영역으로 구분한 후 오프셋을 수행할 영역을 결정하고 해당 영역에 오프셋을 적용하는 방법 또는 각 샘플의 에지 정보를 고려하여 오프셋을 적용하는 방법을 사용할 수 있다.
적응적 루프 필터는 복원 영상 및 원래의 영상을 비교한 값에 기반하여 필터링을 수행할 수 있다. 영상에 포함된 샘플을 소정의 그룹으로 나눈 후 해당 그룹에 적용될 필터를 결정하여 그룹마다 차별적으로 필터링을 수행할 수 있다. 적응적 루프 필터를 적용할지 여부에 관련된 정보는 부호화 유닛(Coding Unit, CU) 별로 시그널링될 수 있고, 각각의 블록에 따라 적용될 적응적 루프 필터의 모양 및 필터 계수는 달라질 수 있다.
필터부(180)를 거친 복원 블록 또는 복원 영상은 참조 픽처 버퍼(190)에 저장될 수 있다. 필터부(180)를 거친 복원 블록은 참조 영상의 일부일 수 있다. 말하자면, 참조 영상은 필터부(180)를 거친 복원 블록들로 구성된 복원 영상일 수 있다. 저장된 참조 영상은 이후 화면 간 예측 혹은 움직임 보상에 사용될 수 있다.
도 2는 본 발명이 적용되는 복호화 장치의 일 실시예에 따른 구성을 나타내는 블록도이다.
복호화 장치(200)는 디코더, 비디오 복호화 장치 또는 영상 복호화 장치일 수 있다.
도 2를 참조하면, 복호화 장치(200)는 엔트로피 복호화부(210), 역양자화부(220), 역변환부(230), 인트라 예측부(240), 움직임 보상부(250), 가산기(255), 필터부(260) 및 참조 픽처 버퍼(270)를 포함할 수 있다.
복호화 장치(200)는 부호화 장치(100)에서 출력된 비트스트림을 수신할 수 있다. 복호화 장치(200)는 컴퓨터 판독가능한 기록 매체에 저장된 비트스트림을 수신하거나, 유/무선 전송 매체를 통해 스트리밍되는 비트스트림을 수신할 수 있다. 복호화 장치(200)는 비트스트림에 대하여 인트라 모드 또는 인터 모드로 복호화를 수행할 수 있다. 또한, 복호화 장치(200)는 복호화를 통해 복원된 영상 또는 복호화된 영상을 생성할 수 있고, 복원된 영상 또는 복호화된 영상을 출력할 수 있다.
복호화에 사용되는 예측 모드가 인트라 모드인 경우 스위치가 인트라로 전환될 수 있다. 복호화에 사용되는 예측 모드가 인터 모드인 경우 스위치가 인터로 전환될 수 있다.
복호화 장치(200)는 입력된 비트스트림을 복호화하여 복원된 잔여 블록(reconstructed residual block)을 획득할 수 있고, 예측 블록을 생성할 수 있다. 복원된 잔여 블록 및 예측 블록이 획득되면, 복호화 장치(200)는 복원된 잔여 블록과 및 예측 블록을 더함으로써 복호화 대상이 되는 복원 블록을 생성할 수 있다. 복호화 대상 블록은 현재 블록으로 칭해질 수 있다.
엔트로피 복호화부(210)는 비트스트림에 대한 확률 분포에 따른 엔트로피 복호화를 수행함으로써 심볼들을 생성할 수 있다. 생성된 심볼들은 양자화된 레벨 형태의 심볼을 포함할 수 있다. 여기에서, 엔트로피 복호화 방법은 상술된 엔트로피 부호화 방법의 역과정일 수 있다.
엔트로피 복호화부(210)는 변환 계수 레벨(양자화된 레벨)을 복호화하기 위해 변환 계수 스캐닝 방법을 통해 1차원의 벡터 형태 계수를 2차원의 블록 형태로 변경할 수 있다.
양자화된 레벨은 역양자화부(220)에서 역양자화될 수 있고, 역변환부(230)에서 역변환될 수 있다. 양자화된 레벨은 역양자화 및/또는 역변환이 수행된 결과로서, 복원된 잔여 블록으로 생성될 수 있다. 이때, 역양자화부(220)는 양자화된 레벨에 양자화 행렬을 적용할 수 있다.
인트라 모드가 사용되는 경우, 인트라 예측부(240)는 복호화 대상 블록 주변의 이미 복호화된 블록의 샘플 값을 이용하는 공간적 예측을 현재 블록에 대해 수행함으로써 예측 블록을 생성할 수 있다.
인터 모드가 사용되는 경우, 움직임 보상부(250)는 움직임 벡터 및 참조 픽처 버퍼(270)에 저장되어 있는 참조 영상을 이용하는 움직임 보상을 현재 블록에 대해 수행함으로써 예측 블록을 생성할 수 있다. 상기 움직임 보상부(250)는 움직임 벡터의 값이 정수 값을 가지지 않을 경우에 참조 영상 내의 일부 영역에 대해 보간 필터를 적용하여 예측 블록을 생성할 수 있다. 움직임 보상을 수행하기 위해 부호화 유닛을 기준으로 해당 부호화 유닛에 포함된 예측 유닛의 움직임 보상 방법이 스킵 모드, 머지 모드, AMVP 모드, 현재 픽처 참조 모드 중 어떠한 방법인지 여부를 판단할 수 있고, 각 모드에 따라 움직임 보상을 수행할 수 있다.
가산기(255)는 복원된 잔여 블록 및 예측 블록을 가산하여 복원 블록을 생성할 수 있다. 필터부(260)는 디블록킹 필터, 샘플 적응적 오프셋 및 적응적 루프 필터 등 적어도 하나를 복원 블록 또는 복원 영상에 적용할 수 있다. 필터부(260)는 복원 영상을 출력할 수 있다. 복원 블록 또는 복원 영상은 참조 픽처 버퍼(270)에 저장되어 인터 예측에 사용될 수 있다. 필터부(260)를 거친 복원 블록은 참조 영상의 일부일 수 있다. 말하자면, 참조 영상은 필터부(260)를 거친 복원 블록들로 구성된 복원 영상일 수 있다. 저장된 참조 영상은 이후 화면 간 예측 혹은 움직임 보상에 사용될 수 있다.
도 3은 영상을 부호화 및 복호화할 때의 영상의 분할 구조를 개략적으로 나타내는 도면이다. 도 3은 하나의 유닛이 복수의 하위 유닛으로 분할되는 실시예를 개략적으로 나타낸다.
영상을 효율적으로 분할하기 위해, 부호화 및 복호화에 있어서, 부호화 유닛(Coding Unit; CU)이 사용될 수 있다. 영상 부호화/복호화의 기본 단위로서 부호화 유닛이 사용될 수 있다. 또한, 영상 부호화/복호화 시 화면 내 예측 모드 및 화면 간 예측 모드가 구분되는 단위로 부호화 유닛을 사용할 수 있다. 부호화 유닛은 예측, 변환, 양자화, 역변환, 역양자화, 또는 변환 계수의 부호화/복호화의 과정을 위해 사용되는 기본 단위일 수 있다.
도 3을 참조하면, 영상(300)은 최대 부호화 유닛(Largest Coding Unit; LCU) 단위로 순차적으로 분할되고, LCU 단위로 분할 구조가 결정된다. 여기서, LCU는 부호화 트리 유닛(Coding Tree Unit; CTU)과 동일한 의미로 사용될 수 있다. 유닛의 분할은 유닛에 해당하는 블록의 분할을 의미할 수 있다. 블록 분할 정보에는 유닛의 깊이(depth)에 관한 정보가 포함될 수 있다. 깊이 정보는 유닛이 분할되는 회수 및/또는 정도를 나타낼 수 있다. 하나의 유닛은 트리 구조(tree structure)를 기초로 깊이 정보를 가지고 계층적으로 복수의 하위 유닛들로 분할될 수 있다. 말하자면, 유닛 및 상기의 유닛의 분할에 의해 생성된 하위 유닛은 노드 및 상기의 노드의 자식 노드에 각각 대응할 수 있다. 각각의 분할된 하위 유닛은 깊이 정보를 가질 수 있다. 깊이 정보는 CU의 크기를 나타내는 정보일 수 있고, 각 CU마다 저장될 수 있다. 유닛 깊이는 유닛이 분할된 회수 및/또는 정도를 나타내므로, 하위 유닛의 분할 정보는 하위 유닛의 크기에 관한 정보를 포함할 수도 있다.
분할 구조는 CTU(310) 내에서의 부호화 유닛(Coding Unit; CU)의 분포를 의미할 수 있다. 이러한 분포는 하나의 CU를 복수(2, 4, 8, 16 등을 포함하는 2 이상의 양의 정수)의 CU들로 분할할지 여부에 따라 결정할 수 있다. 분할에 의해 생성된 CU의 가로 크기 및 세로 크기는 각각 분할 전의 CU의 가로 크기의 절반 및 세로 크기의 절반이거나, 분할된 개수에 따라 분할 전의 CU의 가로 크기보다 작은 크기 및 세로 크기보다 작은 크기를 가질 수 있다. CU는 복수의 CU로 재귀적으로 분할될 수 있다. 재귀적 분할에 의해, 분할된 CU의 가로 크기 및 세로 크기 중 적어도 하나의 크기가 분할 전의 CU의 가로 크기 및 세로 크기 중 적어도 하나에 비해 감소될 수 있다. CU의 분할은 기정의된 깊이 또는 기정의된 크기까지 재귀적으로 이루어질 수 있다. 예컨대, CTU의 깊이는 0일 수 있고, 최소 부호화 유닛(Smallest Coding Unit; SCU)의 깊이는 기정의된 최대 깊이일 수 있다. 여기서, CTU는 상술된 것과 같이 최대의 부호화 유닛 크기를 가지는 부호화 유닛일 수 있고, SCU는 최소의 부호화 유닛 크기를 가지는 부호화 유닛일 수 있다. CTU(310)로부터 분할이 시작되고, 분할에 의해 CU의 가로 크기 및/또는 세로 크기가 줄어들 때마다 CU의 깊이는 1씩 증가한다. 예를 들면, 각각의 깊이 별로, 분할되지 않는 CU는 2Nx2N 크기를 가질 수 있다. 또한, 분할되는 CU의 경우, 2Nx2N 크기의 CU가 NxN 크기를 가지는 4개의 CU들로 분할될 수 있다. N의 크기는 깊이가 1씩 증가할 때마다 절반으로 감소할 수 있다.
또한, CU가 분할되는지 여부에 대한 정보는 CU의 분할 정보를 통해 표현될 수 있다. 분할 정보는 1비트의 정보일 수 있다. SCU를 제외한 모든 CU는 분할 정보를 포함할 수 있다. 예를 들면, 분할 정보의 값이 제1 값이면, CU가 분할되지 않을 수 있고, 분할 정보의 값이 제2 값이면, CU가 분할될 수 있다.
도 3을 참조하면, 깊이가 0인 CTU는 64x64 블록일 수 있다. 0은 최소 깊이일 수 있다. 깊이가 3인 SCU는 8x8 블록일 수 있다. 3은 최대 깊이일 수 있다. 32x32 블록 및 16x16 블록의 CU는 각각 깊이 1 및 깊이 2로 표현될 수 있다.
예를 들어, 하나의 부호화 유닛이 4개의 부호화 유닛으로 분할 될 경우, 분할된 4개의 부호화 유닛의 가로 및 세로 크기는 분할되기 전 부호화 유닛의 가로 및 세로 크기와 비교하여 각각 절반의 크기를 가질 수 있다. 일 예로, 32x32 크기의 부호화 유닛이 4개의 부호화 유닛으로 분할 될 경우, 분할된 4개의 부호화 유닛은 각각 16x16의 크기를 가질 수 있다. 하나의 부호화 유닛이 4개의 부호화 유닛으로 분할 될 경우, 부호화 유닛은 쿼드트리(quad-tree) 형태로 분할(쿼드트리 분할, quad-tree partition)되었다고 할 수 있다.
예를 들어, 하나의 부호화 유닛이 2개의 부호화 유닛으로 분할 될 경우, 분할된 2개의 부호화 유닛의 가로 혹은 세로 크기는 분할되기 전 부호화 유닛의 가로 혹은 세로 크기와 비교하여 절반의 크기를 가질 수 있다. 일 예로, 32x32 크기의 부호화 유닛이 2개의 부호화 유닛으로 세로로 분할 될 경우, 분할된 2개의 부호화 유닛은 각각 16x32의 크기를 가질 수 있다. 일 예로, 8x32 크기의 부호화 유닛이 2개의 부호화 유닛으로 가로로 분할 될 경우, 분할된 2개의 부호화 유닛은 각각 8x16의 크기를 가질 수 있다. 하나의 부호화 유닛이 2개의 부호화 유닛으로 분할 될 경우, 부호화 유닛은 이진트리(binary-tree) 형태로 분할(이진트리 분할, binary-tree partition)되었다고 할 수 있다.
예를 들어, 하나의 부호화 유닛이 3개의 부호화 유닛으로 분할 될 경우, 분할되기 전 부호화 유닛의 가로 혹은 세로 크기를 1:2:1의 비율로 분할함으로써, 3개의 부호화 유닛으로 분할 할 수 있다. 일 예로, 16x32 크기의 부호화 유닛이 3개의 부호화 유닛으로 가로로 분할 될 경우, 분할된 3개의 부호화 유닛은 상측부터 각각 16x8, 16x16 및 16x8의 크기를 가질 수 있다. 일 예로, 32x32 크기의 부호화 유닛이 3개의 부호화 유닛으로 세로로 분할 될 경우, 분할된 3개의 부호화 유닛은 좌측부터 각각 8x32, 16x32 및 8x32의 크기를 가질 수 있다. 하나의 부호화 유닛이 3개의 부호화 유닛으로 분할 될 경우, 부호화 유닛은 3분할트리(ternary-tree) 형태로 분할(3분할트리 분할, ternary-tree partition)되었다고 할 수 있다.
도 3의 CTU(320)는 쿼드트리 분할, 이진트리 분할 및 3분할트리 분할이 모두 적용된 CTU의 일 예이다.
전술한 바와 같이, CTU를 분할하기 위해, 쿼드트리 분할, 이진트리 분할 및 3분할트리 분할 중 적어도 하나가 적용될 수 있다. 각각의 분할은 소정의 우선 순위에 기초하여 적용될 수 있다. 예컨대, CTU에 대해 쿼드트리 분할이 우선적으로 적용될 수 있다. 더 이상 쿼드트리 분할될 수 없는 부호화 유닛은 쿼드트리의 리프 노드에 해당될 수 있다. 쿼드트리의 리프 노드에 해당하는 부호화 유닛은 이진트리 및/또는 3분할트리의 루트 노드가 될 수 있다. 즉, 쿼드트리의 리프 노드에 해당하는 부호화 유닛은 이진트리 분할되거나 3분할트리 분할되거나 또는 더 이상 분할되지 않을 수 있다. 이 때, 쿼드트리의 리프 노드에 해당하는 부호화 유닛을 이진트리 분할하거나 3분할트리 분할하여 생성된 부호화 유닛에 대해서는 다시 쿼드트리 분할이 수행되지 않도록 함으로써, 블록의 분할 및/또는 분할 정보의 시그널링을 효과적으로 수행할 수 있다.
쿼드트리의 각 노드에 해당하는 부호화 유닛의 분할은 쿼드 분할 정보를 이용하여 시그널링될 수 있다. 제1값(예컨대, '1')을 갖는 쿼드 분할 정보는 해당 부호화 유닛이 쿼드트리 분할됨을 지시할 수 있다. 제2값(예컨대, '0')을 갖는 쿼드 분할 정보는 해당 부호화 유닛이 쿼드트리 분할되지 않음을 지시할 수 있다. 쿼드 분할 정보는 소정의 길이(예컨대, 1비트)를 갖는 플래그일 수 있다.
이진트리 분할과 3분할트리 분할 사이에는 우선순위가 존재하지 않을 수 있다. 즉, 쿼드트리의 리프 노드에 해당하는 부호화 유닛은 이진트리 분할되거나 3분할트리 분할될 수 있다. 또한, 이진트리 분할 또는 3분할트리 분할에 의해 생성된 부호화 유닛은 다시 이진트리 분할 또는 3분할트리 분할되거나 또는 더 이상 분할되지 않을 수 있다.
이진트리 분할과 3분할트리 분할 사이에 우선순위가 존재하지 않는 경우의 분할은 복합형트리 분할(multi-type tree partition)이라고 호칭할 수 있다. 즉, 쿼드트리의 리프 노드에 해당하는 부호화 유닛은 복합형트리(multi-type tree)의 루트 노드가 될 수 있다. 복합형트리의 각 노드에 해당하는 부호화 유닛의 분할은 복합형트리의 분할 여부 정보, 분할 방향 정보 및 분할 트리 정보 중 적어도 하나를 이용하여 시그널링될 수 있다. 상기 복합형트리의 각 노드에 해당하는 부호화 유닛의 분할을 위해 순차적으로 분할 여부 정보, 분할 방향 정보 및 분할 트리 정보가 시그널링될 수도 있다.
제1값(예컨대, '1')을 갖는 복합형트리의 분할 여부 정보는 해당 부호화 유닛이 복합형트리 분할됨을 지시할 수 있다. 제2값(예컨대, '0')을 갖는 복합형트리의 분할 여부 정보는 해당 부호화 유닛이 복합형트리 분할되지 않음을 지시할 수 있다.
복합형트리의 각 노드에 해당하는 부호화 유닛이 복합형트리 분할되는 경우, 해당 부호화 유닛은 분할 방향 정보를 더 포함할 수 있다. 분할 방향 정보는 복합형트리 분할의 분할 방향을 지시할 수 있다. 제1값(예컨대, '1')을 갖는 분할 방향 정보는 해당 부호화 유닛이 세로 방향으로 분할됨을 지시할 수 있다. 제2값(예컨대, '0')을 갖는 분할 방향 정보는 해당 부호화 유닛이 가로 방향으로 분할됨을 지시할 수 있다.
복합형트리의 각 노드에 해당하는 부호화 유닛이 복합형트리 분할되는 경우, 해당 부호화 유닛은 분할 트리 정보를 더 포함할 수 있다. 분할 트리 정보는 복합형트리 분할을 위해 사용된 트리를 지시할 수 있다. 제1값(예컨대, '1')을 갖는 분할 트리 정보는 해당 부호화 유닛이 이진트리 분할됨을 지시할 수 있다. 제2값(예컨대, '0')을 갖는 분할 트리 정보는 해당 부호화 유닛이 3분할트리 분할됨을 지시할 수 있다.
분할 여부 정보, 분할 트리 정보 및 분할 방향 정보는 각각 소정의 길이(예컨대, 1비트)를 갖는 플래그일 수 있다.
쿼드 분할 정보, 복합형트리의 분할 여부 정보, 분할 방향 정보 및 분할 트리 정보 중 적어도 하나는 엔트로피 부호화/복호화될 수 있다. 상기 정보들의 엔트로피 부호화/복호화를 위해, 현재 부호화 유닛에 인접한 주변 부호화 유닛의 정보가 이용될 수 있다. 예컨대, 좌측 부호화 유닛 및/또는 상측 부호화 유닛의 분할 형태(분할 여부, 분할 트리 및/또는 분할 방향)는 현재 부호화 유닛의 분할 형태와 유사할 확률이 높다. 따라서, 주변 부호화 유닛의 정보에 기초하여, 현재 부호화 유닛의 정보의 엔트로피 부호화/복호화를 위한 컨텍스트 정보를 유도할 수 있다. 이때, 주변 부호화 유닛의 정보에는 해당 부호화 유닛의 쿼드 분할 정보, 복합형트리의 분할 여부 정보, 분할 방향 정보 및 분할 트리 정보 중 적어도 하나가 포함될 수 있다.
다른 실시예로서, 이진트리 분할과 3분할트리 분할 중, 이진트리 분할이 우선적으로 수행될 수 있다. 즉, 이진트리 분할이 먼저 적용되고, 이진트리의 리프 노드에 해당하는 부호화 유닛을 3분할트리의 루트 노드로 설정할 수도 있다. 이 경우, 3분할트리의 노드에 해당하는 부호화 유닛에 대해서는 쿼드트리 분할 및 이진트리 분할이 수행되지 않을 수 있다.
쿼드트리 분할, 이진트리 분할 및/또는 3분할트리 분할에 의해 더 이상 분할되지 않는 부호화 유닛은 부호화, 예측 및/또는 변환의 단위가 될 수 있다. 즉, 예측 및/또는 변환을 위해 부호화 유닛이 더 이상 분할되지 않을 수 있다. 따라서, 부호화 유닛을 예측 유닛 및/또는 변환 유닛으로 분할하기 위한 분할 구조, 분할 정보 등이 비트스트림에 존재하지 않을 수 있다.
다만, 분할의 단위가 되는 부호화 유닛의 크기가 최대 변환 블록의 크기보다 큰 경우, 해당 부호화 유닛은 최대 변환 블록의 크기와 같거나 또는 작은 크기가 될 때까지 재귀적으로 분할될 수 있다. 예컨대, 부호화 유닛의 크기가 64x64이고, 최대 변환 블록의 크기가 32x32인 경우, 상기 부호화 유닛은 변환을 위해, 4개의 32x32 블록으로 분할될 수 있다. 예컨대, 부호화 유닛의 크기가 32x64이고, 최대 변환 블록의 크기가 32x32인 경우, 상기 부호화 유닛은 변환을 위해, 2개의 32x32 블록으로 분할될 수 있다. 이 경우, 변환을 위한 부호화 유닛의 분할 여부는 별도로 시그널링되지 않고, 상기 부호화 유닛의 가로 또는 세로와 최대 변환 블록의 가로 또는 세로의 비교에 의해 결정될 수 있다. 예컨대, 부호화 유닛의 가로가 최대 변환 블록의 가로보다 큰 경우, 부호화 유닛은 세로로 2등분 될 수 있다. 또한, 부호화 유닛의 세로가 최대 변환 블록의 세로보다 큰 경우, 부호화 유닛은 가로로 2등분 될 수 있다.
부호화 유닛의 최대 및/또는 최소 크기에 관한 정보, 변환 블록의 최대 및/또는 최소 크기에 관한 정보는 부호화 유닛의 상위 레벨에서 시그널링되거나 결정될 수 있다. 상기 상위 레벨은 예컨대, 시퀀스 레벨, 픽처 레벨, 타일 레벨, 타일 그룹 레벨, 슬라이스 레벨 등일 수 있다. 예컨대, 부호화 유닛의 최소 크기는 4x4로 결정될 수 있다. 예컨대, 변환 블록의 최대 크기는 64x64로 결정될 수 있다. 예컨대, 변환 블록의 최소 크기는 4x4로 결정될 수 있다.
쿼드트리의 리프 노드에 해당하는 부호화 유닛의 최소 크기(쿼드트리 최소 크기)에 관한 정보 및/또는 복합형트리의 루트 노드에서 리프 노드에 이르는 최대 깊이(복합형트리 최대 깊이)에 관한 정보는 부호화 유닛의 상위 레벨에서 시그널링되거나 결정될 수 있다. 상기 상위 레벨은 예컨대, 시퀀스 레벨, 픽처 레벨, 슬라이스 레벨, 타일 그룹 레벨, 타일 레벨 등일 수 있다. 상기 쿼드트리 최소 크기에 관한 정보 및/또는 상기 복합형트리 최대 깊이에 관한 정보는 화면 내 슬라이스와 화면 간 슬라이스의 각각에 대해 시그널링되거나 결정될 수 있다.
CTU의 크기와 변환 블록의 최대 크기에 대한 차분 정보는 부호화 유닛의 상위 레벨에서 시그널링되거나 결정될 수 있다. 상기 상위 레벨은 예컨대, 시퀀스 레벨, 픽처 레벨, 슬라이스 레벨, 타일 그룹 레벨, 타일 레벨 등일 수 있다. 이진트리의 각 노드에 해당하는 부호화 유닛의 최대 크기(이진트리 최대 크기)에 관한 정보는 부호화 트리 유닛의 크기와 상기 차분 정보를 기반으로 결정될 수 있다. 3분할트리의 각 노드에 해당하는 부호화 유닛의 최대 크기(3분할트리 최대 크기)는 슬라이스의 타입에 따라 다른 값을 가질 수 있다. 예컨대, 화면 내 슬라이스인 경우, 3분할트리 최대 크기는 32x32일 수 있다. 또한, 예컨대, 화면 간 슬라이스인 경우, 3분할 트리 최대 크기는 128x128일 수 있다. 예컨대, 이진트리의 각 노드에 해당하는 부호화 유닛의 최소 크기(이진트리 최소 크기) 및/또는 3분할트리의 각 노드에 해당하는 부호화 유닛의 최소 크기(3분할트리 최소 크기)는 부호화 블록의 최소 크기로 설정될 수 있다.
또 다른 예로, 이진트리 최대 크기 및/또는 3분할트리 최대 크기는 슬라이스 레벨에서 시그널링되거나 결정될 수 있다. 또한, 이진트리 최소 크기 및/또는 3분할트리 최소 크기는 슬라이스 레벨에서 시그널링되거나 결정될 수 있다.
전술한 다양한 블록의 크기 및 깊이 정보에 기초하여, 쿼드 분할 정보, 복합형트리의 분할 여부 정보, 분할 트리 정보 및/또는 분할 방향 정보 등이 비트스트림에 존재하거나 존재하지 않을 수 있다.
예컨대, 부호화 유닛의 크기가 쿼드트리 최소 크기보다 크지 않으면, 상기 부호화 유닛은 쿼드 분할 정보를 포함하지 않고, 해당 쿼드 분할 정보는 제2값으로 추론될 수 있다.
예컨대, 복합형트리의 노드에 해당하는 부호화 유닛의 크기(가로 및 세로)가 이진트리 최대 크기(가로 및 세로) 및/또는 3분할트리 최대 크기(가로 및 세로)보다 큰 경우, 상기 부호화 유닛은 이진트리 분할 및/또는 3분할트리 분할되지 않을 수 있다. 그에 따라, 상기 복합형트리의 분할 여부 정보는 시그널링되지 않고, 제2값으로 추론될 수 있다.
또는, 복합형트리의 노드에 해당하는 부호화 유닛의 크기(가로 및 세로)가 이진트리 최소 크기(가로 및 세로)와 동일하거나, 부호화 유닛의 크기(가로 및 세로)가 3분할트리 최소 크기(가로 및 세로)의 두 배와 동일한 경우, 상기 부호화 유닛은 이진트리 분할 및/또는 3분할트리 분할되지 않을 수 있다. 그에 따라, 상기 복합형트리의 분할 여부 정보는 시그널링되지 않고, 제2값으로 추론될 수 있다. 왜냐하면, 상기 부호화 유닛을 이진트리 분할 및/또는 3분할트리 분할할 경우, 이진트리 최소 크기 및/또는 3분할트리 최소 크기보다 작은 부호화 유닛이 생성되기 때문이다.
또는, 복합형트리의 노드에 해당하는 부호화 유닛의 복합형트리 내의 깊이가 복합형트리 최대 깊이와 동일한 경우, 상기 부호화 유닛은 이진트리 분할 및/또는 3분할트리 분할되지 않을 수 있다. 그에 따라, 상기 복합형트리의 분할 여부 정보는 시그널링되지 않고, 제2값으로 추론될 수 있다.
또는, 복합형트리의 노드에 해당하는 부호화 유닛에 대해 수직 방향 이진트리 분할, 수평 방향 이진트리 분할, 수직 방향 3분할트리 분할 및 수평 방향 3분할트리 분할 중 적어도 하나가 가능한 경우에만, 상기 복합형트리의 분할 여부 정보를 시그널링할 수 있다. 그렇지 않은 경우, 상기 부호화 유닛은 이진트리 분할 및/또는 3분할트리 분할되지 않을 수 있다. 그에 따라, 상기 복합형트리의 분할 여부 정보는 시그널링되지 않고, 제2값으로 추론될 수 있다.
또는, 복합형트리의 노드에 해당하는 부호화 유닛에 대해 수직 방향 이진트리 분할과 수평 방향 이진트리 분할이 모두 가능하거나, 수직 방향 3분할트리 분할과 수평 방향 3분할트리 분할이 모두 가능한 경우에만, 상기 분할 방향 정보를 시그널링할 수 있다. 그렇지 않은 경우, 상기 분할 방향 정보는 시그널링되지 않고, 분할이 가능한 방향을 지시하는 값으로 추론될 수 있다.
또는, 복합형트리의 노드에 해당하는 부호화 유닛에 대해 수직 방향 이진트리 분할과 수직 방향 3분할트리 분할이 모두 가능하거나, 수평 방향 이진트리 분할과 수평 방향 3분할트리 분할이 모두 가능한 경우에만, 상기 분할 트리 정보를 시그널링할 수 있다. 그렇지 않은 경우, 상기 분할 트리 정보는 시그널링되지 않고, 분할이 가능한 트리를 지시하는 값으로 추론될 수 있다.
도 4는 화면 내 예측 과정의 실시예를 설명하기 위한 도면이다.
도 4의 중심으로부터 외곽으로의 화살표들은 화면 내 예측 모드들의 예측 방향들을 나타낼 수 있다.
화면 내 부호화 및/또는 복호화는 현재 블록의 주변 블록의 참조 샘플을 이용하여 수행될 수 있다. 주변 블록은 복원된 주변 블록일 수 있다. 예를 들면, 화면 내 부호화 및/또는 복호화는 복원된 주변 블록이 포함하는 참조 샘플의 값 또는 부호화 파라미터를 이용하여 수행될 수 있다.
예측 블록은 화면 내 예측의 수행의 결과로 생성된 블록을 의미할 수 있다. 예측 블록은 CU, PU 및 TU 중 적어도 하나에 해당할 수 있다. 예측 블록의 단위는 CU, PU 및 TU 중 적어도 하나의 크기일 수 있다. 예측 블록은 2x2, 4x4, 16x16, 32x32 또는 64x64 등의 크기를 갖는 정사각형의 형태의 블록일 수 있고, 2x8, 4x8, 2x16, 4x16 및 8x16 등의 크기를 갖는 직사각형 모양의 블록일 수도 있다.
화면 내 예측은 현재 블록에 대한 화면 내 예측 모드에 따라 수행될 수 있다. 현재 블록이 가질 수 있는 화면 내 예측 모드의 개수는 기정의된 고정된 값일 수 있으며, 예측 블록의 속성에 따라 다르게 결정된 값일 수 있다. 예를 들면, 예측 블록의 속성은 예측 블록의 크기 및 예측 블록의 형태 등을 포함할 수 있다.
화면 내 예측 모드의 개수는 블록의 크기에 관계없이 N개로 고정될 수 있다. 또는, 예를 들면, 화면 내 예측 모드의 개수는 3, 5, 9, 17, 34, 35, 36, 65, 또는 67, 131 등일 수 있다. 또는, 화면 내 예측 모드의 개수는 블록의 크기 및/또는 색 성분(color component)의 타입에 따라 상이할 수 있다. 예를 들면, 색 성분이 휘도(luma) 신호인지 아니면 색차(chroma) 신호인지에 따라 화면 내 예측 모드의 개수가 다를 수 있다. 예컨대, 블록의 크기가 커질수록 화면 내 예측 모드의 개수는 많아질 수 있다. 또는 휘도 성분 블록의 화면 내 예측 모드의 개수는 색차 성분 블록의 화면 내 예측 모드의 개수보다 많을 수 있다.
화면 내 예측 모드는 비방향성 모드 또는 방향성 모드일 수 있다. 비방향성 모드는 DC 모드 또는 플래너(Planar) 모드일 수 있으며, 방향성 모드(angular mode)는 특정한 방향 또는 각도를 가지는 예측 모드일 수 있다. 상기 화면 내 예측 모드는 모드 번호, 모드 값, 모드 숫자, 모드 각도, 모드 방향 중 적어도 하나로 표현될 수 있다. 화면 내 예측 모드의 개수는 상기 비방향성 및 방향성 모드를 포함하는 하나 이상의 M개 일 수 있다.
현재 블록을 화면 내 예측하기 위해 복원된 주변 블록에 포함되는 샘플들이 현재 블록의 참조 샘플로 이용 가능한지 여부를 검사하는 단계가 수행될 수 있다. 현재 블록의 참조 샘플로 이용할 수 없는 샘플이 존재할 경우, 복원된 주변 블록에 포함된 샘플들 중 적어도 하나의 샘플 값을 복사 및/또는 보간한 값을 이용하여 참조 샘플로 이용할 수 없는 샘플의 샘플 값으로 대체한 후, 현재 블록의 참조 샘플로 이용할 수 있다.
화면 내 예측 시 화면 내 예측 모드 및 현재 블록의 크기/형태 중 적어도 하나에 기반하여 참조 샘플 또는 예측 샘플 중 적어도 하나에 필터를 적용할 수 있다.
플래너 모드의 경우, 현재 블록의 예측 블록을 생성할 때, 예측 대상 샘플의 예측 블록 내 위치에 따라, 현재 샘플의 상단 및 좌측 참조 샘플, 현재 블록의 우상단 및 좌하단 참조 샘플의 가중합을 이용하여 예측 대상 샘플의 샘플값을 생성할 수 있다. 또한, DC 모드의 경우, 현재 블록의 예측 블록을 생성할 때, 현재 블록의 상단 및 좌측 참조 샘플들의 평균 값을 이용할 수 있다. 또한, 방향성 모드의 경우 현재 블록의 상단, 좌측, 우상단 및/또는 좌하단 참조 샘플을 이용하여 예측 블록을 생성 할 수 있다. 예측 샘플 값 생성을 위해 실수 단위의 보간을 수행 할 수도 있다.
현재 블록의 화면 내 예측 모드는 현재 블록의 주변에 존재하는 블록의 화면 내 예측 모드로부터 예측하여 엔트로피 부호화/복호화할 수 있다. 현재 블록과 주변 블록의 화면 내 예측 모드가 동일하면 소정의 플래그 정보를 이용하여 현재 블록과 주변 블록의 화면 내 예측 모드가 동일하다는 정보를 시그널링할 수 있다. 또한, 복수 개의 주변 블록의 화면 내 예측 모드 중 현재 블록의 화면 내 예측 모드와 동일한 화면 내 예측 모드에 대한 지시자 정보를 시그널링 할 수 있다. 현재 블록과 주변 블록의 화면 내 예측 모드가 상이하면 주변 블록의 화면 내 예측 모드를 기초로 엔트로피 부호화/복호화를 수행하여 현재 블록의 화면 내 예측 모드 정보를 엔트로피 부호화/복호화할 수 있다.
도 5는 본 발명에 따른 화면 내 예측을 설명하기 위한 도면이다.
현재 블록에 대한 화면 내 예측은, 화면 내 예측 모드 유도 단계(S510), 참조 샘플 구성 단계(S520) 및/또는 화면 내 예측 수행 단계(S530)를 포함할 수 있다.
단계 S510에서, 현재 블록의 화면 내 예측 모드가 유도될 수 있다. 현재 블록의 화면 내 예측 모드는 주변 블록의 화면 내 예측 모드를 이용하는 방법, 비트스트림으로부터 현재 블록의 화면 내 예측 모드를 엔트로피 부호화/복호화하는 방법, 주변 블록의 부호화 파라미터를 이용하는 방법 또는 색 성분의 화면 내 예측 모드를 이용하는 방법을 이용하여 유도될 수 있다. 상기 주변 블록의 화면 내 예측 모드를 이용하는 방법에 따르면, 주변 블록의 화면 내 예측 모드, 주변 블록의 하나 이상의 화면 내 예측 모드의 조합 및 하나 이상의 MPM을 이용하여 유도된 화면 내 예측 모드 중 적어도 하나 이상을 이용하여 현재 블록의 화면 내 예측 모드가 유도될 수 있다.
단계 S520에서, 참조 샘플 선택, 참조 샘플 패딩 및 참조 샘플 필터링 중 적어도 하나 이상을 수행하여 참조 샘플이 구성될 수 있다.
단계 S530에서, 비방향성 예측, 방향성 예측, 위치 정보 기반 예측, 색 성분간 예측 및 가중합 기반 예측 중 적어도 하나 이상을 수행하여 화면 내 예측이 수행될 수 있다. 단계 S530에서, 예측 샘플에 대한 필터링이 추가적으로 수행될 수 있다.
현재 블록의 화면 내 예측 모드를 유도하기 위해 하나 이상의 복원된 주변 블록이 이용될 수 있다. 복원된 주변 블록의 위치는 기정의된 고정 위치이거나 부호화/복호화하여 유도된 위치일 수 있다. 이하 부호화/복호화는 엔트로피 부호화 및 복호화를 의미할 수 있다. 예컨대, WxH 크기의 현재 블록의 좌상단 코너 샘플의 좌표를 (0, 0)이라 할 때, 상기 주변 블록은 (-1, H-1), (W-1, -1), (W, -1), (-1, H) 및 (-1, -1) 좌표에 인접한 블록들 및 상기 블록들의 주변 블록들 중 적어도 하나일 수 있다. 이때, 상기 W 및 H는 상기 현재 블록의 가로(W) 및 세로(H)의 길이 또는 샘플의 개수를 나타낼 수 있다.
가용하지 않은 주변 블록의 화면 내 예측 모드는 소정의 화면 내 예측 모드로 대체될 수 있다. 상기 소정의 화면 내 예측 모드는 예컨대, DC 모드, Planar 모드, 수직 모드, 수평 모드 및/또는 대각 모드일 수 있다. 예컨대, 주변 블록이 픽처, 슬라이스, 타일 그룹(Tile Group), 타일, CTU(Coding Tree Unit) 등 중 적어도 하나의 소정의 유닛의 경계 밖에 위치하거나 화면 간 예측되거나 PCM 모드로 부호화된 경우 해당 주변 블록은 비가용으로 판단될 수 있다. 또는, 상기 주변 블록이 비가용한 경우, 상기 비가용 주변 블록의 화면 내 예측 모드를 대체하지 않고, 상기 비가용 주변 블록을 이용하지 않을 수 있다.
현재 블록의 화면 내 예측 모드는 소정 위치의 주변 블록의 화면 내 예측 모드 또는 둘 이상의 주변 블록의 화면 내 예측 모드의 통계값으로 유도될 수 있다. 본 명세서에서 통계값은, 평균값, 최대값, 최소값, 최빈값, 중간값, 가중 평균값 및 보간값 중 적어도 하나를 의미할 수 있다.
또는 주변 블록들의 크기에 기초하여 현재 블록의 화면 내 예측 모드를 유도할 수 있다. 예컨대, 상대적으로 크기가 큰 주변 블록의 화면 내 예측 모드를 현재 블록의 화면 내 예측 모드로 유도할 수 있다. 또는 상대적으로 크기가 큰 블록의 화면 내 예측 모드에 상대적으로 큰 가중치를 부여하여 통계값을 계산할 수도 있다. 또는, 상대적으로 큰 가중치가 부여되는 모드들이 미리 정의되거나 시그널링될 수 있다. 예컨대, 수직 방향 모드, 수평 방향 모드, 대각 방향 모드, 비방향성 모드 중 적어도 하나에 대해 상대적으로 큰 가중치가 부여될 수 있다. 상기 모드들에 대해서는 동일한 가중치가 부여될 수도 있다.
또는 주변 블록의 화면 내 예측 모드가 방향성인지의 여부가 고려될 수 있다. 예컨대, 주변 블록의 화면 내 예측 모드가 비방향성인 경우, 상기 비방향성 모드를 현재 블록의 화면 내 예측 모드로 유도할 수 있다. 또는 상기 비방향성 모드를 제외한 다른 주변 블록의 화면 내 예측 모드를 이용하여 현재 블록의 화면 내 예측 모드를 유도할 수도 있다.
현재 블록의 화면 내 예측 모드를 유도하기 위해, 하나 이상의 MPM (Most Probable Mode) 리스트를 구성할 수 있다. MPM 리스트는 하나 이상의 MPM 후보 모드를 포함하며, MPM 후보 모드는 부호화/복호화가 완료된 적어도 하나 이상의 공간적 주변 블록의 화면 내 예측 모드 및/또는 임의의 화면 내 예측 모드를 포함할 수 있다.
현재 블록의 화면 내 예측 모드는 MPM 리스트에 포함된 MPM 후보 모드들의 통계값에 특정 K만큼의 오프셋을 가산하여 유도될 수 있다. 이때, K는 음의 정수, 0, 양의 정수 중 적어도 하나를 의미할 수 있다. 예를 들어, 현재 블록의 화면 내 예측 모드는 MPM 리스트에 포함된 MPM 후보 모드들의 최소값에 특정 K만큼의 오프셋을 가산하여 산출된 MPM 후보 모드를 MPM 리스트에 추가할 수 있다. 예를 들어, 현재 블록의 화면 내 예측 모드는 MPM 리스트에 포함된 MPM 후보 모드들의 최대값에 특정 K만큼의 오프셋을 가산하여 산출된 MPM 후보 모드를 MPM 리스트에 추가할 수 있다
도 6은 MPM 리스트를 구성할 때 이용되는 현재 블록의 공간적 주변 블록을 설명하기 위한 도면이다.
예를 들어, MPM 리스트를 구성하는 화면 내 예측 모드의 수를 6개라 가정하면, 도 6에 도시된 바와 같이, 현재 블록의 공간적 주변 블록들 (AL, JA, A, AR, JL, L, 및 BL) 중 적어도 하나로부터 MPM 리스트에 포함될 후보 모드를 최대 k개(k는 양의 정수)까지 순차적으로 유도할 수 있다. 이하의 설명에서, 예컨대, k는 5이다.
주변 블록들로부터 MPM 후보 모드를 유도하는 순서는 부호화기/복호화기에서 임의로 설정할 수 있다. 예컨대, 좌측 블록(L), 상단 블록(A), 좌하단 블록(BL), 우상단 블록(AR) 및 좌상단 블록(AL) 순서로 MPM 후보 모드를 유도할 수 있다. 또한, 좌측 블록(L), 상단 블록(A) 순서로 MPM 후보 모드를 유도할 수 있다. 비방향성 모드인 Planar 모드 및/또는 DC 모드는 발생 확률이 높은 화면 내 예측 모드로 간주할 수 있다. 따라서, 상기 공간적 주변 블록으로부터 유도된 5개의 화면 내 예측 모드 내에 Planar 모드 및/또는 DC 모드가 포함되지 않은 경우, Planar 및/또는 DC 모드를 MPM 후보 모드로서 MPM 리스트에 포함시킬 수 있다. 즉, MPM 후보 리스트에는 Planar 및/또는 DC 모드가 항상 포함될 수 있다.
만약, 하기 mrl_index 지시자가 0이 아닌 경우, MPM 후보 리스트에는 Planar 및/또는 DC 모드가 포함될 수 있다. 또한, 하기 mrl_index 지시자가 0인 경우, MPM 후보 리스트에 Planar 및/또는 DC 모드가 포함되지 않을 수 있다.
이 때, MPM 리스트상에 Planar 모드 및/또는 DC 모드가 위치하는 순서는 부호화기/복호화기에서 임의로 설정할 수 있다. 예컨대, 좌측 블록(L), 상단 블록(A), Planar 모드, DC 모드, 좌하단 블록(BL), 우상단 블록(AR) 및 좌상단 블록(AL) 순서로 MPM 리스트를 구성할 수 있다. 또한, 좌측 블록(L), 상단 블록(A), Planar 모드, DC 모드 순서로 MPM 리스트를 구성할 수 있다.
상기 구성된 MPM 리스트 내의 화면 내 예측 모드가 서로 다른 예측 모드인지에 대한 중복성 검사가 수행될 수 있다. 중복성 검사가 수행되는 경우, MPM 리스트 내에는 서로 중복되는 화면 내 예측 모드가 존재하지 않을 수 있다. 중복성 검사 이후의 MPM 리스트 내에 포함된 화면 내 예측 모드의 수가 MPM 리스트가 포함할 수 있는 화면 내 예측 모드의 최대 개수(예를 들어, 6개)보다 작은 경우, MPM 리스트에 포함된 화면 내 예측 모드 중에서 방향성을 가지는 화면 내 예측 모드에 소정의 오프셋을 가산 및/또는 감산한 화면 내 예측 모드를 추가적으로 MPM 리스트에 포함시킬 수 있다. 이 때의 오프셋 값은 1로 한정되지 않으며, 2 이상의 정수일 수 있다.
만약, 상기의 과정을 통해서도 MPM 리스트가 채워지지 않은 경우, 예컨대, MPM 후보 모드가 6개 미만인 경우, 수직 모드, 수평 모드, 대각 모드의 순서로 MPM 리스트를 채워나감으로써 최대 6개의 서로 다른 화면 내 예측 모드를 가지는 MPM 리스트를 구성할 수 있다. 디폴트 모드(수직 모드, 수평 모드, 대각 모드)가 채워지는 순서는 상기 예에 한정되지 않으며, 부호화기/복호화기에서 기 정의된 임의의 순서일 수 있다. 화면 내 예측 모드의 수가 최대 67인 경우, 모드 0은 Planar 모드, 모드 1은 DC 모드를 나타내며, 모드 2 내지 모드 66은 방향성 모드를 나타낼 수 있다. 또한, 수직 모드는 모드 50, 수평 모드는 모드 18, 대각 모드는 모드 2, 모드 34 및/또는 모드 66일 수 있다.
상기 유도한 MPM 리스트에 현재 블록의 화면 내 예측 모드와 동일한 모드가 존재하는지 여부를 나타내는 지시자(prev_intra_luma_pred_flag)를 부호화/복호화 할 수 있다.
상기 지시자가 MPM 리스트에 동일한 모드가 존재함을 나타내는 경우, MPM 리스트에 포함된 모드 중 어떤 모드가 현재 블록의 화면 내 예측 모드와 동일한지를 나타내는 인덱스 정보(mpm_idx)를 부호화/복호화하여 현재 블록의 화면 내 예측 모드를 유도할 수 있다.
상기 지시자가 MPM 리스트에 동일한 모드가 존재하지 않음을 나타내는 경우, 현재 블록의 화면 내 예측 모드를 부호화/복호화하여 현재 블록의 화면 내 예측 모드를 유도할 수 있다. 이때, MPM 리스트에 포함되지 않은 화면 내 예측 모드를 오름차순 또는 내림차순 중 적어도 하나로 정렬할 수 있다.
상기 지시자가 MPM 리스트에 현재 블록의 화면 내 예측 모드와 동일한 모드가 존재하지 않는 것을 나타내는 경우, 하나 이상의 화면 내 예측 모드에 대해 2차 MPM 리스트를 구성하고, 2차 MPM 리스트에 포함된 모드 중 어떤 모드가 현재 블록의 화면 내 예측 모드와 동일한지를 나타내는 인덱스 정보(2nd_mpm_idx)를 이용하여 현재 블록의 화면 내 예측 모드를 유도할 수 있다.
상기 지시자가 MPM 리스트 및/또는 2차 MPM 리스트에 현재 블록의 화면 내 예측 모드와 동일한 모드가 존재하지 않는 것을 나타내는 경우, 잔여 화면 내 예측 모드 색인(rem_intra_luma_pred_mode)을 이용하여 현재 블록의 화면 내 예측 모드가 부호화/복호화 될 수 있다.
색차 성분의 화면 내 예측 모드는 색차 성분 화면 내 예측 모드 색인(intra_chroma_pred_mode) 및/또는 대응하는 휘도 블록의 화면 내 예측 모드 중 적어도 하나 이상을 이용하여 유도될 수 있다.
화면 내 예측 모드를 유도하는 또 다른 실시예로서, 다른 색 성분의 화면 내 예측 모드를 이용하여 현재 블록의 화면 내 예측 모드를 유도할 수 있다. 예를 들어, 현재 블록이 색차 블록(Cb 블록 혹은 Cr 블록)인 경우, 상기 색차 블록에 대응하는 휘도 블록의 화면 내 예측 모드가 이용될 수 있다. 상기 대응하는 휘도 블록은 하나 이상일 수 있다. 상기 대응하는 휘도 블록은 휘도 블록의 위치, 색차 블록의 위치, 휘도 블록의 좌상단 샘플 위치, 색차 블록의 좌상단 샘플 위치, 휘도 블록의 크기, 색차 블록의 크기, 형태 및/또는 부호화 파라미터 중 적어도 하나에 기반하여 결정될 수 있다. 또는 상기 대응하는 휘도 블록은 휘도 블록의 크기, 형태 및/또는 부호화 파라미터 중 적어도 하나에 기반하여 결정될 수도 있다.
색차 블록에 대응하는 휘도 블록은 복수의 블록들을 포함할 수 있다. 상기 복수의 블록들의 전부 또는 일부는 상이한 화면 내 예측 모드를 가질 수 있다. 색차 블록의 화면 내 예측 모드는 대응하는 휘도 블록 내 복수의 블록들의 전부 또는 일부에 기반하여 유도될 수 있다. 이때, 색차 블록과 휘도 블록(복수의 블록들 전부 또는 일부) 간의 블록 크기, 형태, 깊이 정보 등의 비교에 기반하여 일부 블록들이 선택적으로 이용될 수 있다. 색차 블록 내 소정의 위치에 대응하는 휘도 블록 내 위치의 블록이 선택적으로 이용될 수도 있다. 상기 소정의 위치는 색차 블록의 코너 샘플(예를 들어, 좌상단 샘플) 위치 또는 중앙 샘플 위치를 의미할 수 있다. 상기 중앙 샘플 위치는 휘도/색차 블록의 좌상단 위치와 휘도/색차 블록의 가로 크기의 반, 휘도/색차 블록의 세로 크기의 반을 기초로 결정될 수 있다. 예를 들어, 상기 휘도/색차 블록의 좌상단 위치에 가로 방향으로 휘도/색차 블록의 가로 크기의 반을 가산하여 중앙 샘플의 x축 방향 위치를 결정할 수 있다. 또한, 상기 휘도/색차 블록의 좌상단 위치에 세로 방향으로 휘도/색차 블록의 세로 크기의 반을 가산하여 중앙 샘플의 y축 방향 위치를 결정할 수 있다. 이때, 상기 색차 블록의 중앙 샘플 위치에 대응하는 휘도 블록의 위치는 휘도 블록의 중앙 샘플 위치를 의미할 수 있다.
본 발명에 따른 색 성분 간 화면 내 예측 모드의 유도 방법은, 대응하는 휘도 블록의 화면 내 예측 모드를 이용하는 것에 한정되지 않는다. 예컨대, 대응하는 휘도 블록의 mpm_idx 또는 MPM list 중 적어도 하나를 이용하거나 공유하여 색차 블록의 화면 내 예측 모드를 유도할 수도 있다.
도 7은 휘도 블록과 색차 블록의 관계를 설명하기 위한 예시도이다.
도 7에 도시된 예에서, 색 성분 간 비율은 4:2:0 이며, 색차 블록에 대응하는 휘도 블록은 A, B, C, D 중 적어도 하나 이상일 수 있다.
도 7에 도시된 예에서, 색차 블록의 화면 내 예측 모드는 색차 블록 내 좌상단 위치에 대응하는 휘도 블록 내 (0, 0) 위치의 A의 화면 내 예측 모드, 색차 블록의 중앙 샘플 위치에 대응하는 휘도 블록 내 (nSW/2, nSH/2) 위치의 D의 화면 내 예측 모드, 또는 색차 블록의 또 다른 중앙 샘플 위치에 대응하는 휘도 블록 내 ((nSW/2)-1, (nSH/2)-1) 위치의 B의 화면 내 예측 모드를 이용하여 유도될 수 있다. 상기 휘도 블록 내 소정의 위치는 (0, 0), ((nSW/2)-1, (nSH/2)-1) 및 (nSW/2, nSH/2)로 한정되지 않는다. 예컨대, 상기 소정의 위치는 휘도 블록 내 우상단, 좌하단 및/또는 우하단 코너 샘플의 위치일 수 있다. 상기 nSW는 휘도 블록의 가로 크기, nSH는 휘도 블록의 세로 크기를 의미할 수 있다.
즉, 특정 색차 블록의 좌상단 위치에 대한 화면 내 예측 모드는 대응하는 휘도 블록의 좌상단 위치를 기준으로 (0, 0) 위치, 중앙 샘플 위치인 (nSW/2, nSH/2) 위치 혹은 ((nSW/2)-1, (nSH/2)-1) 위치, 우상단 코너 위치, 좌하단 코너 위치, 우하단 코너 위치 중 적어도 하나에 존재하는 휘도 블록의 화면 내 예측 모드로 유도될 수 있다. 예를 들어, 특정 색차 블록의 좌상단 위치에 대한 화면 내 예측 모드는 대응하는 휘도 블록의 좌상단 위치를 기준으로 중앙 샘플 위치인 (nSW/2, nSH/2) 위치에 존재하는 휘도 블록의 화면 내 예측 모드로 유도될 수 있다.
상기 색차 블록 내 위치 중 적어도 하나 혹은 휘도 블록 내 위치 중 적어도 하나는 각 블록의 좌상단 위치를 기준으로 산출될 수 있다. 예를 들어, 휘도 블록 내 중앙 샘플 위치는 휘도 블록의 좌상단 위치 (0, 0)에 (nSW/2, nSH/2)를 가산하여 산출될 수 있다.
상기 소정의 위치는 휘도 블록의 형태 혹은 색차 블록의 형태에 기초하여 선택될 수 있다. 예컨대, 색차 블록이 정사각형인 경우, 상기 소정의 위치는 중앙 샘플 위치일 수 있다. 예컨대, 색차 블록이 직사각형인 경우, 상기 소정의 위치는 좌상단 샘플 위치일 수 있다. 상기 예에서, 색차 블록이 정사각형인 경우와 직사각형인 경우에서의 상기 소정의 위치는 반대일 수도 있다.
다른 실시예로서, 색차 블록의 크기에 대응하는 휘도 블록 내의 하나 이상의 화면 내 예측 모드의 통계값을 이용하여 색차 블록의 화면 내 예측 모드를 유도할 수 있다.
도 7에 도시된 예에서, 예컨대, 휘도 블록 A와 D의 화면 내 예측 모드의 통계값 중 하나에 해당하는 모드 또는 색차 블록의 크기에 대응하는 휘도 블록 내의 A, B, C, D 의 화면 내 예측 모드의 통계값 중 하나에 해당하는 모드를 색차 블록의 화면 내 예측 모드로 유도할 수 있다.
이용 가능한 휘도 블록의 화면 내 예측 모드가 복수 개 존재하는 경우, 그 중 전부 또는 일부가 선택될 수 있다. 상기 선택은 휘도 블록 혹은 색차 블록 내의 소정의 위치에 기반하거나, 색차 블록 및/또는 휘도 블록의 크기, 형태 및/또는 깊이에 기반하여 수행될 수 있다. 상기 선택된 휘도 블록의 화면 내 예측 모드를 이용하여 색차 블록의 화면 내 예측 모드를 유도할 수 있다.
예를 들어, 색차 블록 내 좌상단 샘플 위치에 대응하는 휘도 블록 내 (0, 0) 위치의 A와 휘도 블록 내 중앙 샘플 위치 (nSW/2, nSH/2)에 대응하는 휘도 블록 D의 크기가 비교하여 상대적으로 큰 휘도 블록 D의 화면 내 예측 모드를 이용하여 색차 블록의 화면 내 예측 모드를 유도할 수 있다.
또는, 색차 블록 내 소정의 위치에 대응하는 휘도 블록이 색차 블록보다 크거나 같으면, 해당 휘도 블록의 화면 내 예측 모드를 이용하여 색차 블록의 화면 내 예측 모드를 유도할 수 있다.
또는, 색차 블록의 크기가 소정의 범위에 해당하는 경우, 색차 블록 내 좌상단 샘플 위치 (0, 0)에 대응하는 휘도 블록의 화면 내 예측 모드를 이용하여 색차 블록의 화면 내 예측 모드를 유도할 수 있다.
또는, 색차 블록의 크기가 소정의 범위에 해당하는 경우, 색차 블록 내 소정의 위치에 대응하는 휘도 블록 내 소정의 위치들인 (0, 0), ((nSW/2)-1, (nSH/2)-1) (nSW/2, nSH/2)에 존재하는 블록의 크기를 비교하여 큰 블록의 화면 내 예측 모드를 이용하여 색차 블록의 화면 내 예측 모드를 유도할 수 있다.
상기 소정의 범위는 비트스트림을 통해 시그널링되는 정보, 블록(색차 블록 및/또는 휘도 블록)의 크기(및/또는 깊이)에 관한 정보 및 부호화기/복호화기에서 미리 정의된 정보 중 적어도 하나에 기초하여 유도될 수 있다.
또는, 색차 블록의 형태가 직사각형인 경우, 색차 블록 내 중앙 샘플 위치 에 대응하는 휘도 블록 내 중앙 샘플 위치 (nSW/2, nSH/2)의 화면 내 예측 모드 혹은 색차 블록의 또 다른 중앙 샘플 위치에 대응하는 휘도 블록 내 또 다른 중앙 샘플 위치 ((nSW/2)-1, (nSH/2)-1)의 화면 내 예측 모드를 이용하여 색차 블록의 화면 내 예측 모드를 유도할 수 있다.
또는, 휘도 블록 내 복수의 블록들 중, 색차 블록과 같은 형태를 갖는 블록이 이용될 수 있다. 예컨대, 색차 블록이 정방형 또는 비정방형인 경우, 휘도 블록 내 복수의 블록들 중 정방형 또는 비정방형의 블록이 이용될 수 있다.
도 7을 참조하여 설명한 예에서, 휘도 블록의 화면 내 예측 모드를 이용하여 색차 블록의 화면 내 예측 모드를 유도한다는 의미는, 휘도 블록의 화면 내 예측 모드가 색차 블록의 화면 내 예측 모드로서 그대로 이용되는 경우를 포함한다. 또한, 휘도 블록의 화면 내 예측 모드를 이용하는 것에 한정되지 않으며, 휘도 블록의 mpm_idx, MPM 리스트를 포함하여, 휘도 블록의 화면 내 예측 모드 유도시 이용된 정보를 이용할 수도 있다.
또는, 상기 소정의 위치에 대응하는 휘도 블록의 화면 내 예측 모드를 이용하여 색차 블록에 대한 MPM 리스트를 구성할 수도 있다. 이 경우, 색차 블록에 대한 mpm_idx 정보가 부호화되어 시그널링될 수 있다. 색차 블록에 대한 MPM 리스트는 휘도 블록에 대한 MPM 리스트와 유사한 방법으로 구성될 수 있다. 그러나, 색차 블록의 MPM 후보는 주변 색차 블록의 화면 내 예측 모드 및/또는 대응하는 휘도 블록의 화면 내 예측 모드를 포함할 수 있다.
MPM flag가 0인 경우, 하나 이상의 화면 내 예측 모드를 포함하는 2차 MPM 리스트를 구성하고, 2차 MPM 인덱스(2nd_mpm_idx)를 이용하여 현재 블록의 화면 내 예측 모드를 유도할 수 있다. 이때, 현재 블록의 화면 내 예측 모드가 2차 MPM 리스트에 포함되는지를 지시하는 2차 지시자(예컨대, 2차 MPM flag)가 부호화/복호화될 수 있다. 2차 MPM 리스트는 1차 MPM 리스트와 유사하게 주변 블록의 화면 내 예측 모드들을 이용하여 구성될 수 있다. 이때, 1차 MPM 리스트에 포함된 화면 내 예측 모드는 2차 MPM 리스트에 포함되지 않을 수 있다. MPM 리스트의 개수는 1개 또는 2개로 한정되지 않으며, N개의 MPM 리스트가 이용될 수 있다.
현재 블록의 화면 내 예측 모드가 복수의 MPM 리스트 중 하나에 포함되지 않는 경우, 현재 블록의 휘도 성분 화면 내 예측 모드는 부호화/복호화될 수 있다. 또한, 색차 성분 화면 내 예측 모드는 대응하는 휘도 성분 화면 내 예측 모드에 기초하여 유도되거나, 부호화/복호화될 수 있다.
또 다른 실시예로서, 휘도 대응 블록으로부터 색차 블록의 화면 내 예측 모드를 유도할 때, 색차 블록의 중앙에 대응하는 휘도 블록의 위치에 더 높은 우선 순위를 두어 색차 블록의 화면 내 예측 모드의 예측 부호화 효율을 높일 수 있다.
도 8은 휘도 대응 블록으로부터 색차 블록의 화면 내 예측 모드를 유도하는 실시예를 설명하기 위한 도면이다.
도 8에 도시된 실시예에서, 색 성분간 비율은 4:2:0이며, 색차 블록에 대응하는 휘도 대응 블록은 CR1, CR2, CR3, CR4, TL(Top-Left), TR(Top-Right), BL(Bottom-Left) 및 BR(Bottom-Right) 위치 중 적어도 하나일 수 있다.
CR1, CR2, CR3, CR4, TL, TR, BL 및 BR 위치 중 적어도 하나에 대응하는 휘도 블록의 화면 내 예측 모드를 색차 블록의 화면 내 예측 모드로 유도할 수 있다.
상기 CR1, CR2, CR3, CR4, TL, TR, BL 및 BR 위치의 순서대로 가용한 화면 내 예측 모드를 색차 블록의 화면 내 예측 모드로 유도할 수 있다. 그러나 상기 순서로 한정되지 않으며, 상기 순서는 색차 블록의 크기 및 형태 중 적어도 하나에 기초하여 결정될 수 있다.
휘도 대응 블록으로부터 색차 블록의 화면 내 예측 모드를 유도할 때, 휘도 대응 블록 및 색차 블록 중 적어도 하나의 부호화 파라미터를 이용할 수 있다.
색차 블록의 MPM 리스트는 아래의 화면 내 예측 모드들 중 적어도 하나를 포함하도록 구성될 수 있다. 또는, 색차 블록에서 사용할 수 있는 화면 내 예측 모드는 아래의 화면 내 예측 모드들 중 적어도 하나를 포함할 수 있다. 여기서, MPM 리스트 내 후보 모드가 서로 중복되지 않도록 색차 블록의 MPM 리스트를 구성할 수 있다.
- 색차 블록의 공간적 주변 블록(좌측, 상단, 좌하단, 우상단 및 좌상단 중 적어도 하나)의 화면 내 예측 모드
- Planar 모드 및 DC 모드 중 적어도 하나
- 색차 블록에 대응하는 휘도 대응 블록 CR1, CR2, CR3, CR4, TL(Top-Left), TR(Top-Right), BL(Bottom-Left) 및 BR(Bottom-Right) 위치에 존재하는 화면 내 예측 모드 중 적어도 하나
- 수직 모드, 수평 모드 및 대각모드 중 적어도 하나
현재 블록이 복수의 서브 블록(sub block)으로 분할되는 경우, 분할된 각각의 서브 블록에 대한 화면 내 예측 모드를 유도하기 위해 전술한 방법 중 적어도 하나가 적용될 수 있다.
서브 블록의 크기 및/또는 형태는 소정의 크기 및/또는 형태(예컨대, 4x4)이거나 현재 블록의 크기 및/또는 형태에 따라 결정될 수 있다. 또는, 서브 블록의 크기는 현재 블록의 주변 블록의 분할 여부에 기반하여 결정되거나 현재 블록의 주변 블록의 화면 내 예측 모드에 기반하여 결정될 수 있다. 예컨대, 주변 블록의 화면 내 예측 모드가 상이한 경계를 기준으로 현재 블록이 분할될 수 있다. 또는, 주변 블록이 화면 내 부호화 블록인지 화면 간 부호화 블록인지에 기반하여 현재 블록이 분할될 수 있다.
현재 블록의 화면 내 예측 모드가 주변 블록의 화면 내 예측 모드를 이용하여 유도됨을 나타내는 지시자(예컨대, NDIP_flag)가 부호화/복호화될 수 있다. 상기 지시자는 현재 블록 또는 서브 블록 중 적어도 하나의 단위마다 부호화/복호화될 수 있다. 이때 현재 블록 또는 서브 블록의 크기가 소정의 크기 또는 소정의 크기 범위에 해당하는 경우에만 상기 지시자가 부호화/복호화될 수 있다.
현재 블록의 크기가 소정의 크기에 해당하는지의 판단은 현재 블록의 가로 또는 세로의 길이에 기초하여 수행될 수 있다. 예컨대, 가로 또는 세로의 길이가 분할 가능한 길이이면, 현재 블록의 크기가 소정의 크기에 해당하는 것으로 판단될 수 있다.
화면 내 예측 모드를 유도함에 있어, 화면 내 예측에 관한 정보를 비트스트림으로부터 엔트로피 부호화/복호화 할 수 있다. 예를 들어, 화면 내 예측에 관한 정보는 아래의 정보들 중 적어도 하나 이상을 포함할 수 있다.
MPM 리스트에 현재 블록의 화면 내 예측 모드와 동일한 모드가 존재하는지 여부를 나타내는 지시자: prev_intra_luma_pred_flag
MPM 리스트에 포함된 모드 중 어떤 모드가 현재 블록의 화면 내 예측 모드와 동일한지를 나타내는 인덱스 정보: mpm_idx
2차 MPM 리스트에 포함된 모드 중 어떤 모드가 현재 블록의 화면 내 예측 모드와 동일한지를 나타내는 인덱스 정보: 2nd_mpm_idx
잔여 화면 내 예측 모드 색인: rem_intra_luma_pred_mode
색차 성분 화면 내 예측 모드 색인: intra_chroma_pred_mode
상기 화면 내 예측에 관한 정보 중 적어도 하나 이상을 블록의 크기, 형태 중 적어도 하나 이상에 기반하여 시그널링 하지 않을 수 있다. 시그널링되지 않는 정보는 소정의 값으로 유도되거나, 이전 또는 상위 블록에 관한 정보로 유도될 수 있다.
예를 들어, 현재 블록의 크기가 소정의 크기에 해당하는 경우, 현재 블록에 대한 화면 내 예측에 관한 정보 중 하나 이상을 시그널링 하지 않고 이전에 부호화/복호화한 상위 블록 크기에 해당하는 화면 내 예측에 관한 하나 이상의 정보를 이용할 수 있다.
상기 화면 내 예측에 관한 정보 중 적어도 하나 이상을 엔트로피 부호화/복호화할 때, 아래의 이진화(binarization) 방법 중 적어도 하나 이상을 이용할 수 있다.
- 절삭된 라이스(Truncated Rice) 이진화 방법
- K차수 지수-골롬(K-th order Exp_Golomb) 이진화 방법
- 제한된 K차수 지수-골롬(K-th order Exp_Golomb) 이진화 방법
- 고정 길이(Fixed-length) 이진화 방법
- 단항(Unary) 이진화 방법
- 절삭된 단항(Truncated Unary) 이진화 방법
상기 화면내 예측에 관한 정보는 VPS(video parameter set), SPS(sequence parameter set), PPS(picture parameter set), APS(adaptation parameter set), 슬라이스(slice) 헤더, 타일 그룹(tile group) 헤더, 타일(tile) 헤더, 부호화 유닛, 예측 유닛, 변환 유닛, 블록, 부호화 블록, 예측 블록, 변환 블록 중 적어도 하나를 통하여 시그널링 될 수 있다. 소정의 블록 크기 이하에서는 화면 내 예측에 관한 정보 중 적어도 하나 이상이 시그널링되지 않을 수 있다. 이 경우, 이전에 부호화/복호화된 블록(예컨대, 상위 블록)의 화면 내 예측에 관한 정보가 이용될 수 있다.
상기 유도된 화면 내 예측 모드에 기초하여, 화면 내 예측을 위한 참조 샘플이 구성될 수 있다. 이하의 설명에서 현재 블록은 예측 블록 또는 예측 블록보다 작은 크기/형태를 가지는 서브 블록을 의미할 수 있다. 참조 샘플은 현재 블록의 주변에 복원된 하나 이상의 샘플 또는 샘플 조합을 이용하여 구성될 수 있다. 또한, 구성된 참조 샘플에 대하여 필터링이 적용될 수 있다.
참조 샘플 구성에 사용되는 복원 샘플 라인의 개수 및/또는 위치는 부호화 트리 블록 내 현재 블록의 위치에 따라 달라질 수 있다. 복수의 복원 샘플 라인 상의 각 복원 샘플은 그대로 참조 샘플로 사용될 수 있다. 또는 복원 샘플에 소정의 필터를 적용하고, 필터링된 복원 샘플을 이용하여 참조 샘플을 생성할 수도 있다. 필터가 적용되는 복원 샘플들은 동일한 복원 샘플 라인에 속하거나 다른 복원 샘플 라인에 속할 수 있다. 여기서, X 축 방향 혹은 Y 축 방향으로 연속되는 복수 참조 샘플 라인들을 현재 블록의 화면 내 예측에 이용할 수 있고, 연속되는 복수 참조 샘플 라인들 중 적어도 하나의 참조 샘플 라인이 제외된 형태로 복수 참조 샘플 라인들을 현재 블록의 화면 내 예측에 이용할 수 있다. 상기 참조 샘플 라인은 복원 샘플 라인을 의미할 수 있다.
상기 복수의 참조 샘플 라인을 사용하는지 여부를 나타내는 지시자가 시그널링될 수 있다. 예를 들어, SPS, PPS, Tile header, Tile group header, Slice header 중 적어도 하나에 mrl_enabled_flag 와 같은 지시자가 포함되어 시그널링될 수 있다. 상기 플래그는 단일 참조 샘플 라인을 사용하는지 또는 복수 참조 샘플 라인을 사용하는지 여부를 나타내는 지시자일 수 있다.
상기 지시자가 복수 참조 샘플 라인을 사용함을 나타내는 경우, 참조 샘플 라인 인덱스가 추가로 시그널링될 수 있다. 예를 들어, mrl_index가 시그널링되어 몇 번째 참조 샘플 라인이 구성되고 이용되는지 결정할 수 있다.
상기 mrl_index가 0이면 현재 블록에 인접한 첫번째 참조 샘플 라인이 구성되는 것을 의미할 수 있다. 또한, mrl_index가 1이면 두번째 참조 샘플 라인, 2이면 세번째 참조 샘플 라인, 3이면 네번째 참조 샘플 라인이 구성되는 것을 의미할 수 있다. 첫번째 참조 샘플 라인 내지 네번째 참조 샘플 라인은 예를 들어, 도 9에 도시된 복원 샘플 라인 1 내지 복원 샘플 라인 4를 각각 의미할 수 있다. 상기 mrl_index는 연속되는 복수 참조 샘플 라인들 중 적어도 하나의 참조 샘플 라인을 제외하고 남는 복수 참조 샘플 라인들 중 어떤 참조 샘플 라인이 현재 블록의 화면 내 예측을 위해 구성되는 것인지를 지시할 수 있다. 즉, mrl_index의 지시 대상이 되는 상기 복수 참조 샘플 라인들은 서로 연속되지 않는 참조 샘플 라인들일 수 있다. 상기 복수 참조 샘플 라인들이 서로 연속된다는 것은 복수 참조 샘플 라인들이 x 축 방향 혹은 y 축 방향으로 서로 인접한 것을 의미할 수 있다.
상기 mrl_index는 화면 내 예측 모드, MPM 정보, 현재 블록의 가로 및 세로 길이, CTU 상단 경계 여부, 색 성분 중 적어도 하나에 기반하여 시그널링될 수 있다. 이때, 상기 mrl_index 지시자가 시그널링되지 않는 경우에는, 현재 블록에 인접한 첫 번째 참조 샘플 라인이 구성되고 이용될 수 있다.
예를 들어, 화면 내 예측 모드가 소정의 모드에 해당하는 경우, 상기 mrl_index 지시자가 시그널링될 수 있다. 상기 화면 내 예측 모드는 현재 블록 또는 현재 블록에 인접한 주변 블록 중 적어도 하나의 화면 내 예측 모드일 수 있다. 상기 소정의 모드는 비방향성 예측 모드, 방향성 예측 모드, 수직/수평 모드, 짝수 번호 모드, 홀수 번호 모드 중 적어도 하나일 수 있다. 예컨대, 현재 블록의 좌측 또는 상단에 인접한 블록의 화면 내 예측 모드가 방향성 예측 모드에 해당하는 경우, 상기 mrl_index 지시자가 시그널링될 수 있다. 또는 상기 주변 블록의 화면 내 예측 모드가 짝수 또는 홀수의 값을 갖는 경우, 상기 mrl_index 지시자가 시그널링될 수 있다. 또한, 상기 mrl_index가 0인 경우, 현재 블록은 Planar 모드 혹은 DC 모드를 이용해서 화면 내 예측을 수행할 수 있다. 또 다른 예로, 상기 mrl_index가 0이 아닌 경우, 현재 블록은 Planar 모드 혹은 DC 모드로 화면 내 예측을 수행하지 않을 수 있다.
예를 들어, 현재 블록의 MPM 정보에 기반하여 상기 mrl_index 지시자가 시그널링될 수 있다. 상기 MPM 정보는 MPM 플래그, MPM 인덱스, MPM 리스트, MPM 후보 중 적어도 하나일 수 있다. 예컨대, 현재 블록의 화면 내 예측 모드에 대한 MPM 플래그가 매칭함을 나타내는 경우, 상기 mrl_index 지시자가 시그널링될 수 있다. 또는 MPM 후보 리스트 내에 방향성 예측 모드가 존재하거나 방향성 예측 모드만이 존재하는 경우, 상기 mrl_index 지시자가 시그널링될 수 있다. 또는 MPM 후보 리스트 내에 비방향성 예측 모드가 존재하는 경우, 상기 mrl_index 지시자가 시그널링될 수 있다. 또는 상기 mrl_index 지시자에 기반하여 상기 현재 블록의 MPM 정보가 다르게 시그널링될 수 있다. 예를 들어, 상기 mrl_index 지시자가 0이 아닌 경우에는 상기 MPM 정보 중 적어도 하나를 시그널링하지 않을 수 있다. 예컨대, 상기 mrl_index 지시자가 0이 아닌 경우에 MPM 플래그 또는 잔여 모드 정보가 시그널링되지 않을 수 있다. 즉, 상기 mrl_index 지시자가 0이 아닌 경우, 잔여 모드를 유도하는 과정이 수행되지 않을 수 있고, 현재 블록의 화면 내 예측 모드는 잔여 모드를 이용해서 유도되지 않을 수 있다. 한편, 상기 mrl_index 지시자가 0이 아닌 경우에 MPM 인덱스가 시그널링될 수 있으며, 상기 MPM 인덱스를 이용하여 현재 블록의 화면 내 예측 모드를 유도할 수 있다. 예컨대, mrl_index 지시자가 0이 아닌 경우, MPM 플래그의 파싱 없이 MPM 모드인 것으로 결정될 수 있다.
예를 들어, 현재 블록의 가로 및 세로 길이가 소정의 범위를 만족하는 경우, 상기 mrl_index 지시자가 시그널링될 수 있다. 예컨대, 가로 또는 세로의 길이가 소정의 크기(예컨대, 4) 보다 큰 경우, 상기 mrl_index 지시자가 시그널링될 수 있다.
예를 들어, 현재 블록이 CTU 상단 경계에 위치하는지 여부에 기반하여 상기 mrl_index 지시자가 시그널링될 수 있다. 예컨대, 현재 블록이 CTU 상단 경계에 위치하는 경우, 상기 mrl_index 지시자가 시그널링되지 않을 수 있다. 즉, 현재 블록의 좌상단 위치의 y 축 방향 위치가 CTU의 상단 위치와 동일하지 않을 경우 mrl_index 지시자가 시그널링될 수 있다. 상기 현재 블록의 좌상단 위치의 y 축 방향 위치가 CTU의 상단 위치와 동일하지 않을 경우는 현재 블록의 좌상단 위치의 y 축 방향 위치를 CTU 크기만큼 모듈로(modulo) 연산을 수행한 결과가 0보다 클 경우로 판단할 수 있다.
예를 들어, 현재 블록의 색 성분이 휘도(luma) 신호에 해당하는 경우 상기 mrl_index 지시자가 시그널링되고, 색차(chroma) 신호에 해당하는 경우 상기 mrl_index 지시자가 시그널링되지 않을 수 있다.
또는, 상기 mrl_index 지시자는 추가적으로 이용되는 참조 샘플 라인을 의미할 수 있다. 예를 들어, 현재 블록에 인접한 첫 번째 참조 샘플 라인은 항상 이용하고, 상기 mrl_index 지시자가 지시하는 참조 샘플 라인이 추가적으로 구성되고 이용될 수 있다.
복수의 참조 샘플 라인이 이용되는 경우, 각 참조 샘플 라인마다 필터링 적용 여부를 다르게 할 수 있다. 예를 들어, 현재 블록에 인접한 참조 샘플 라인에 대하여는 화면 내 예측 모드 및 블록의 크기/형태에 기반하여 필터링이 적용되고, 현재 블록으로부터 두번째 이상에 위치하는 참조 샘플 라인에 대하여는 필터링이 적용되지 않을 수 있다. 또한, 하나의 참조 샘플 라인에 있어서, 좌측 참조 샘플 및 상단 참조 샘플 중 하나에 대해서만 필터링이 수행될 수도 있다. 어느 참조 샘플을 필터링할지 여부는 현재 블록의 형태, 크기 및 화면 내 예측 모드 중 적어도 하나에 기초하여 결정될 수 있다. 현재 블록의 형태는 현재 블록의 가로와 세로의 크기 비교 또는 비율(ratio)에 의해 결정될 수 있다.
상기 구성된 참조 샘플은 ref[m, n], 주변의 복원된 샘플 또는 이를 필터링 한 샘플은 rec[m, n]으로 나타낼 수 있다. 이때, m 또는 n은 샘플의 위치를 나타내는 소정의 정수 값일 수 있다. 현재 블록 내의 왼쪽 상단 샘플 위치가 (0, 0)일 때, 현재 블록의 왼쪽 상단의 참조 샘플의 위치는 (-1, -1)로 설정될 수 있다.
도 9는 복수의 복원 샘플 라인을 설명하기 위한 도면이다.
참조 샘플은 현재 블록에 인접한 하나 이상의 복원 샘플 라인을 선택함으로써 구성될 수 있다. 예를 들어, 도 9에서 복수 개의 복원 샘플 라인 중 하나의 라인을 선택하여 참조 샘플을 구성할 수 있다.
예컨대, 복원 샘플 라인 중 특정 라인이 고정적으로 또는 적응적으로 선택될 수 있다.
다른 실시 예로서, 도 9에서 복수 개의 복원 샘플 라인 중 하나 이상의 복원 샘플 라인을 선택하고, 선택된 하나 이상의 복원 샘플 라인을 조합함으로써 참조 샘플을 구성할 수 있다.
예컨대, 수학식 1과 같이 현재 블록으로부터의 거리에 따라 다른 가중치가 적용된 가중 평균을 이용하여 참조 샘플을 구성할 수 있다.
Figure 112018118831960-pat00001
또는, 현재 블록으로부터의 거리 및 화면 내 예측 모드 중 적어도 하나에 기반하여 복수의 복원 샘플들의 평균값, 최대값, 최소값, 중간값, 최빈값 중 적어도 하나 이상의 계산값을 이용하여 참조 샘플을 구성할 수 있다.
또는, 연속하는 복수의 복원 샘플들의 값의 변화(변화량)에 기초하여 참조 샘플을 구성할 수 있다. 예컨대, 연속하는 두 개의 복원 샘플들의 값이 임계치 이상 차이나는지 여부, 연속하는 복수의 복원 샘플들의 값이 연속적으로 또는 불연속적으로 변하는지 여부 등 적어도 하나 이상에 기초하여 참조 샘플을 구성할 수 있다. 예컨대, rec[-1, -1]과 rec[-2, -1]이 임계치 이상 차이나는 경우, ref[-1, -1]은 rec[-1, -1]로 결정되거나, rec[-1, -1]에 소정의 가중치를 부여한 가중 평균을 적용한 값으로 결정될 수 있다. 예컨대, 연속하는 복수의 복원 샘플들의 값이 현재 블록에 가까워질수록 n씩 변하는 경우, 참조 샘플 ref[-1, -1] = rec[-1, -1]-n으로 결정될 수 있다.
또 다른 실시 예로서, 도 9에서 2 개 이상의 복원 샘플 라인을 선택하여 참조 샘플을 구성할 수 있다. 일 예로, 복원 샘플 라인 1 과 복원 샘플 라인 2 를 고정적으로 선택하거나, 복원 샘플 라인 1 내지 복원 샘플 라인 4에 해당하는 4개의 라인을 선택하여 참조 샘플을 구성할 수 있다.
일 예로, 복원 샘플 라인 1, 복원 샘플 라인 2, 복원 샘플 라인 4에 해당하는 3개의 라인 중 적어도 하나를 선택하여 참조 샘플을 구성할 수 있다. 즉, mrl_index 지시자가 0인 경우 복원 샘플 라인 1을 지시할 수 있으며, mrl_index 지시자가 1인 경우 복원 샘플 라인 2를 지시할 수 있으며, mrl_index 지시자가 2인 경우 복원 샘플 라인 4를 지시할 수 있다.
일 예로, 복원 샘플 라인 1, 복원 샘플 라인 3, 복원 샘플 라인 4에 해당하는 3개의 라인 중 적어도 하나를 선택하여 참조 샘플을 구성할 수 있다. 즉, mrl_index 지시자가 0인 경우 복원 샘플 라인 1을 지시할 수 있으며, mrl_index 지시자가 1인 경우 복원 샘플 라인 3를 지시할 수 있으며, mrl_index 지시자가 2인 경우 복원 샘플 라인 4를 지시할 수 있다.
일 예로, 복원 샘플 라인 1, 복원 샘플 라인 3에 해당하는 2개의 라인 중 적어도 하나를 선택하여 참조 샘플을 구성할 수 있다. 즉, mrl_index 지시자가 0인 경우 복원 샘플 라인 1을 지시할 수 있으며, mrl_index 지시자가 1인 경우 복원 샘플 라인 3를 지시할 수 있다.
상기 복원 샘플 라인 1 내지 4는 복원 샘플 라인에 대한 인덱스를 1로부터 시작하여 계산했을 때의 예이다. 만약, 복원 샘플 라인에 대한 인덱스를 0으로부터 시작하여 계산했을 때, 상기 복원 샘플 라인 1 내지 4는 복원 샘플 라인 0 내지 3과 동일한 의미를 가질 수 있다.
또는, 2 개 이상의 복원 샘플 라인을 적응적으로 선택하여 참조 샘플을 구성할 수도 있다. 일 예로, 1 개의 라인은 고정적으로 선택하고 다른 1 개 이상의 라인은 적응적으로 선택하여 참조 샘플을 구성할 수 있다.
상기 고정적으로 선택되는 라인은 부호화기/복호화기에서 미리 정의될 수 있다. 미리 정의된 경우, 상기 고정적으로 선택된 라인에 대한 정보는 시그널링되지 않을 수 있다.
상기 적응적으로 선택되는 라인에 대한 정보는 지시자 또는 인덱스의 형태로 시그널링될 수 있다. 상기 적응적으로 선택되는 라인은 현재 블록이나 주변 블록의 크기/형태, 화면 내 예측 모드 등의 부호화 파라미터 중 적어도 하나를 이용하여 결정될 수 있다. 이 경우, 선택에 필요한 정보는 시그널링되지 않을 수 있다.
상기 참조 샘플 라인은 하나 이상의 샘플로 구성될 수 있다. 예를 들어, 현재 블록의 가로 또는 세로의 길이와 동일한 길이로 구성될 수 있다. 또는 상기 가로 또는 세로 길이의 2 배에 해당하는 길이로 구성될 수 있다. 또는 상기 가로 및 세로 길이의 2배에 1, 2, 3, … N 개의 샘플을 더한 길이로 구성될 수 있다. 즉, 상기 참조 샘플 라인은 2*(W+H) + N 으로 구성할 수 있으며, N은 1 이상의 정수일 수 있다.
상기 현재 블록의 상단에 인접한 참조 샘플을 구성하는 방법과 좌측에 인접한 참조 샘플을 구성하는 방법은 상이할 수 있다. 예를 들어, 상단의 참조 샘플 라인의 개수와 좌측의 참조 샘플 라인의 개수를 다르게 구성할 수 있다. 예를 들어, 현재 블록의 가로 또는 세로의 크기, 화면 내 예측 모드 중 적어도 하나에 따라 상단에 인접한 참조 샘플 라인은 1 개, 좌측에 인접한 참조 샘플 라인은 2 개로 구성할 수 있다. 예를 들어, 상단의 참조 샘플 라인의 길이와 좌측의 참조 샘플 라인의 길이를 다르게 구성할 수 있다. 예를 들어, 현재 블록의 가로 또는 세로의 크기, 화면 내 예측 모드 중 적어도 하나에 따라 상기 길이를 다르게 구성할 수 있다.
상기 참조 샘플 라인의 길이는 각 참조 샘플 라인마다 다르게 구성할 수 있다. 예를 들어, 도 9에서 복원 샘플 라인 2 내지 복원 샘플 라인 4의 길이는 복원 샘플 라인 1보다 하나 이상의 샘플만큼 길게 구성할 수 있다.
상기 참조 샘플 라인의 길이는 상기 복원 샘플 라인마다 상이할 수 있다. 예를 들어, 복원 샘플 라인 n은 복원 샘플 라인 n-1보다 m개의 샘플만큼 길게 또는 짧게 구성될 수 있다. 도 9에 도시된 예에서는, 복원 샘플 라인 n은 복원 샘플 라인 n-1보다 1 개의 샘플만큼 길게 구성된다.
전술한 바와 같이, 가장 가까운 참조 샘플 라인만을 이용하여 참조 샘플을 구성할지 또는 복수의 참조 샘플 라인들을 이용하여 참조 샘플을 구성할지 여부에 관한 정보는 부호화/복호화될 수 있다. 예컨대 상기 정보는, 시퀀스, 픽처, 슬라이스, 타일 그룹, 타일, CTU, CU, PU, TU 레벨 중 적어도 하나의 레벨에서 부호화/복호화될 수 있다. 또한, 복수의 참조 샘플 라인들의 이용가능성에 대한 정보가 보다 상위 레벨에서 시그널링될 수도 있다.
상기 참조 샘플 구성에 사용되는 복원 샘플 라인의 개수, 위치, 구성 방법 중 적어도 하나는 현재 블록의 상단 또는 좌측의 경계가 픽처, 슬라이스, 타일 그룹, 타일, 부호화 트리 블록(CTB) 중 적어도 하나의 경계에 해당하는 경우에 따라 다르게 할 수 있다. 예를 들어, 상기 2 개 이상의 참조 샘플 라인을 구성하는 경우, 현재 블록의 상단 경계가 픽처, 타일 그룹, 타일, 슬라이스, 부호화 트리 블록(CTB) 중 적어도 하나에 해당하는 경우, 상단에 인접한 참조 샘플 라인을 1 개로 구성할 수 있다. 예컨대, 현재 블록의 상단 경계가 CTU의 상단 경계인 경우에는 1 개의 참조 샘플 라인만을 구성하고 그 이외의 경우는 2 개 이상의 참조 샘플 라인을 구성할 수 있다. 이때, CTU 상단 경계의 참조 샘플 라인을 1 개만 사용함으로써 메모리에 저장하기 위한 라인 버퍼(line buffer)를 감소하는 효과를 볼 수 있다.
또한, 상기 복수 참조 샘플 라인들 중 적어도 하나는 디블록킹 필터, 적응적 샘플 오프셋, 적응적 루프 내 필터가 수행되지 않은 라인일 수 있다. 예를 들어, 복수 참조 샘플 라인들 중 현재 블록에 가장 인접한 참조 샘플 라인을 제외한 나머지 참조 샘플 라인들 중 적어도 하나에 대해서는 디블록킹 필터, 적응적 샘플 오프셋, 적응적 루프 내 필터가 수행되지 않을 수 있다.
참조 샘플을 선택함에 있어, 참조 샘플을 포함하고 있는 블록의 가용성(availability) 판단 및 참조 샘플 패딩(padding)을 수행할 수 있다. 예를 들어, 참조 샘플을 포함하고 있는 블록이 가용한 경우에는 해당하는 상기 참조 샘플을 이용할 수 있다. 한편, 상기 참조 샘플을 포함하고 있는 블록이 가용하지 않은 경우에는 주변의 가용한 하나 이상의 참조 샘플을 이용하여 상기 가용하지 않은 참조 샘플을 패딩함으로써 대체할 수 있다.
참조 샘플이 픽처, 타일 그룹, 타일, 슬라이스, 부호화 트리 블록(CTB) 및 소정의 경계 중 적어도 하나의 경계 밖에 존재하는 경우, 상기 참조 샘플은 가용하지 않다고 판단될 수 있다. 현재 블록이 제한된 화면 내 예측(CIP: constrained intra prediction)으로 부호화되는 경우에, 상기 참조 샘플을 포함한 블록이 화면 간 모드로 부호화/복호화되어 있으면 상기 참조 샘플은 가용하지 않다고 판단될 수 있다.
도 10은 가용한 샘플을 이용하여 가용하지 않은 샘플을 대체하는 과정을 설명하기 위한 도면이다.
상기 주변의 복원된 샘플이 가용하지 않다고 판단되는 경우, 주변의 가용한 복원된 샘플을 이용하여 상기 가용하지 않은 샘플을 대체할 수 있다. 예를 들어, 도 10과 같이 가용한 샘플과 가용하지 않은 샘플이 존재하는 경우 하나 이상의 가용한 샘플을 이용하여 상기 가용하지 않은 샘플을 채울 수 있다.
비가용 샘플의 샘플값은 소정의 순서에 따라, 가용 샘플의 샘플값으로 대체될 수 있다. 비가용 샘플의 대체에 이용되는 가용 샘플은 비가용 샘플에 인접한 가용 샘플일 수 있다. 인접한 가용 샘플이 없는 경우, 가장 먼저 출현하는 또는 가장 가까운 가용 샘플이 이용될 수 있다. 비가용 샘플의 대체 순서는 예컨대, 좌하단에서 우상단의 순서일 수 있다. 또는 우상단에서 좌하단의 순서일 수 있다. 또는 좌상단 코너에서 우상단 및/또는 좌하단의 순서일 수 있다. 또는 우상단 및/또는 좌하단에서 좌상단 코너의 순서일 수 있다.
예를 들어, 왼쪽 아래의 샘플 위치인 0부터 시작하여 가용한 샘플로 가용하지 않은 샘플을 채울 수 있다. 즉, 처음의 가용하지 않은 샘플 4개는 ‘a' 값으로 채우고, 다음의 가용하지 않은 샘플 13개는 ‘b' 값으로 채울 수 있다.
예를 들어, 가용한 샘플들의 조합을 이용하여 채울 수 있다. 예를 들어, 가용하지 않은 샘플의 양쪽 끝에 위치한 가용한 샘플의 평균값 또는 보간을 이용하여 상기 가용하지 않은 샘플을 채울 수 있다. 즉, 처음의 가용하지 않은 샘플 4개는 ‘a'의 값으로 채우고, 다음의 가용하지 않은 샘플 13개는 ‘b'와 ‘c'의 평균값 또는 'b'와 'c'의 보간을 이용하여 채울 수 있다.
또는, 13개의 비가용 샘플은 가용 샘플 b와 c의 샘플값 사이의 임의의 값으로 대체될 수 있다. 이 경우, 비가용 샘플들은 서로 다른 값으로 대체될 수 있다. 예컨대, 비가용 샘플은 가용 샘플 a에 근접할수록 a의 값에 근접한 값으로 대체될 수 있다. 마찬가지로 비가용 샘플은 가용 샘플 b에 근접할수록 b의 값에 근접한 값으로 대체될 수 있다. 즉, 비가용 샘플로부터 가용 샘플 a 및/또는 b까지의 거리에 기초하여, 비가용 샘플의 값이 결정될 수 있다. 비가용 샘플의 대체를 위해 상기 방법들을 포함하는 복수의 방법 중 하나 이상이 선택적으로 적용될 수 있다. 비가용 샘플의 대체 방법은 비트스트림에 포함된 정보에 의해 시그널링 되거나, 부호화기와 복호화기가 미리 정한 방법이 이용될 수 있다. 또는 비가용 샘플의 대체 방법은 미리 정한 방식에 의해 유도될 수 있다. 예컨대, 가용 샘플 a와 b의 값의 차이 및/또는 비가용 샘플의 개수에 기초하여 비가용 샘플의 대체 방법을 선택할 수 있다. 예컨대, 두 개의 가용 샘플의 값의 차이와 임계값의 비교 및/또는 비가용 샘플의 개수와 임계값의 비교에 기초하여 비가용 샘플의 대체 방법이 선택될 수 있다. 예컨대, 두 개의 가용 샘플의 값의 차이가 임계값보다 크거나, 및/또는 비가용 샘플의 개수가 임계값보다 큰 경우, 비가용 샘플들은 서로 다른 값을 갖도록 대체될 수 있다. 비가용 샘플의 대체 방법의 선택은 소정의 단위로 수행될 수 있다. 예컨대, 비디오, 시퀀스, 픽처, 슬라이스, 타일 그룹, 타일, 부호화 트리 유닛, 부호화 유닛, 예측 유닛, 변환 유닛 중 적어도 하나 이상의 단위에 대해 비가용 샘플의 대체 방법이 선택될 수 있다. 이 때, 비가용 샘플의 대체 방법의 선택은 상기 소정의 단위로 시그널링되는 정보에 기초하거나, 상기 소정의 단위로 유도될 수 있다. 또는 부호화기와 복호화기에서 미리 정한 방법이 적용될 수도 있다.
상기 참조 샘플이 소정의 위치에 해당하는 경우, 상기 참조 샘플을 포함하는 블록의 가용성을 판단하지 않고 패딩을 수행할 수 있다. 예를 들어, 도 10에서, 현재 블록의 좌상단 코너 샘플의 위치를 (0, 0)이라 할 때, x좌표 또는 y좌표가 W+H 이상인 위치의 참조 샘플에 대해서는 상기 가용성 판단을 수행하지 않고 주변의 참조 샘플을 이용하여 패딩할 수 있다.
예를 들어, ref[W+H, -2] 의 샘플에 대해 가용성 판단을 수행하지 않고 ref[W+H-1, -2]의 값으로 패딩할 수 있다. 예를 들어, ref[W+H, -3] 및 ref[W+H+1, -3] 의 샘플에 대해 가용성 판단을 수행하지 않고 ref[W+H-1, -3] 의 값으로 패딩할 수 있다. 즉, x좌표 또는 y좌표가 W+H 이상인 샘플에 대해서는 가용성 판단을 수행하지 않고, 동일 샘플 라인 상의 가장 가까운 샘플을 이용하여 패딩을 수행할 수 있다.
현재 블록의 좌상단 코너 샘플의 위치를 (0, 0)이라 할 때, 현재 블록의 상단에 존재하는 참조 샘플 중 x좌표가 W 이상이고 W+H 미만인 위치에 존재하는 참조 샘플에 대해 상기 가용성 판단 및 패딩이 수행될 수 있다. 또한, 상기 현재 블록의 좌측에 존재하는 참조 샘플 중 y좌표가 H 이상이고, W+H 미만인 위치에 존재하는 참조 샘플에 대해 상기 가용성 판단 및 패딩이 수행될 수 있다.
예를 들어, 현재 블록의 좌상단 코너 샘플의 위치를 (0, 0)이라 할 때, rec[x, -1] (x = -1 ~ W+H-1) 및/또는 rec[-1, y] (y = 0 ~ H+W-1)에 해당하는 참조 샘플에 대해 상기 가용성 판단 및 패딩이 수행될 수 있다.
상기 패딩을 수행함에 있어, 복수의 참조 샘플 라인이 이용될 수 있다. 예를 들어, 현재 블록에 인접한 첫 번째 참조 샘플 라인에 대해 패딩을 수행하는 경우, 두 번째 인접한 참조 샘플 라인이 이용될 수 있다. 예를 들어, 아래의 수학식 2를 이용하여 패딩이 수행될 수 있다. 즉, 첫 번째 복원 샘플 라인과 두 번째 복원 샘플 라인으로부터 선택된 복수의 샘플 값의 가중 평균을 이용하여 첫 번째 참조 샘플 라인의 샘플 값을 유도할 수 있다. 이 때, 선택되는 복원 샘플들은 현재 샘플 위치 및/또는 현재 샘플에 인접한 위치의 샘플들일 수 있다.
Figure 112018118831960-pat00002
이하에서는, 화면 내 예측을 위한 참조 샘플의 필터링에 대해 자세히 설명하도록 한다.
필터링 수행 여부는 블록의 크기, 블록의 형태, 화면 내 예측 모드, 분할 깊이(또는 분할 뎁스) 및 픽셀 성분 중 적어도 하나에 기초하여 결정될 수 있다.
본 발명의 일 실시 예에 따르면, 참조 샘플의 필터링 수행 여부는 현재 블록의 크기에 기초하여 결정될 수 있다. 이때, 현재 블록의 크기 N(단, N은 양의 정수)은 블록의 가로(W), 블록의 세로(H), 블록의 가로와 세로의 합(W+H), 블록 내 픽셀의 개수(WxH) 중 적어도 하나로 정의될 수 있다.
일 예로, 현재 블록의 크기 N이 소정의 값 T(단, T는 양의 정수) 이상인 경우에만 필터링이 수행될 수 있다.
다른 예로, 현재 블록의 크기 N이 소정의 값 T(단, T는 양의 정수) 이하인 경우에만 필터링이 수행될 수 있다.
또 다른 예로, 현재 블록의 크기 N이 소정의 값 T1 이상이고 T2 이하인 경우에만 필터링이 수행될 수 있다. (단 T1, T2는 양의 정수이고 T2>T1)
또 다른 예로, 현재 블록의 크기 N이 소정의 값 T1 이하이고 T2 이상인 경우에만 필터링이 수행될 수 있다. (단 T1, T2는 양의 정수이고 T2>T1)
본 발명의 일 실시 예에 따르면, 참조 샘플의 필터링 수행 여부는 현재 블록의 형태에 기초하여 결정될 수 있다. 여기서, 블록의 형태는 정방형 블록 및 비정방형 블록을 포함할 수 있다. 그리고, 비정방형 블록은 가로가 세로보다 긴 비정방형 블록 혹은 세로가 가로보다 긴 비정방형 블록으로 구분될 수도 있다.
일 예로, 현재 블록이 정방형 블록인 경우에만 필터링이 수행될 수 있다.
다른 예로, 현재 블록이 비정방형 블록인 경우에만 필터링을 수행될 수도 있다.
한편, 현재 블록이 비정방형 블록인 경우, 현재 블록의 가로 값(W) 또는 현재 블록의 세로 값(H)에 기초하여 상단과 좌측 참조 샘플에 대한 필터링 수행 여부가 결정될 수 있다.
일 예로, 현재 블록의 가로 값(W)에 따라 상단 참조 샘플에 대한 필터링 수행 여부가 결정될 수 있고, 현재 블록의 세로 값(H)에 따라 좌측 참조 샘플에 대한 필터링 수행 여부가 결정될 수 있다.
다른 예로, 현재 블록의 가로 값(W)과 현재 블록의 세로 값(H) 중 큰 값을 기준으로 상단 및 좌측 샘플에 대한 필터링 수행 여부가 결정될 수 있다.
또 다른 예로, 현재 블록의 가로 값(W)과 현재 블록의 세로 값(H) 중 작은 값을 기준으로 상단 및 좌측 샘플에 대한 필터링 수행 여부가 결정될 수 있다.
본 발명의 일 실시 예에 따르면, 참조 샘플의 필터링 수행 여부는 현재 블록의 화면 내 예측 모드에 기초하여 결정될 수 있다.
일 예로, 비방향성 모드인 PLANAR 및/또는 DC 모드에 대하여 필터링이 수행될 수 있다.
다른 예로, 비방향성 모드인 PLANAR 및/또는 DC 모드에 대하여 필터링이 수행되지 않을 수 있다.
또 다른 예로, 방향성 모드 중 수직 및/또는 수평 모드에 대해서는 모든 블록 크기에 대하여 필터링이 수행되지 않을 수 있다.
현재 블록의 화면 내 예측 모드가 CurMode이고, 수평 방향 모드의 번호 또는 인덱스가 Hor_Idx, 수직 방향 모드의 번호 또는 인덱스가 Ver_Idx라고 정의되는 경우, min{abs(CurMode-Hor_Idx), abs(CurMode-Ver_Idx)}>Th를 만족시키는 CurMode에 대해서만 참조 샘플 필터링을 수행할 수 있다. 이때, 임계값 Th는 임의의 양의 정수가 될 수 있고, 현재 블록의 크기에 따라 적응적으로 결정되는 값일 수 있다. 일 예로, 현재 블록의 크기가 커질수록 임계값 Th가 작아질 수 있다. min{abs(CurMode-Hor_Idx), abs(CurMode-Ver_Idx)}>Th 일 때 참조 샘플 필터링이 수행되므로, 상기 min{abs(CurMode-Hor_Idx), abs(CurMode-Ver_Idx)}>Th 는 화면 내 예측 모드에 따른 참조 샘플 필터링 수행 조건을 의미할 수 있다. 즉, 상기 조건을 만족할 경우 참조 샘플 필터링이 수행될 수 있다.
현재 블록의 분할 깊이(또는 분할 뎁스)에 따라 참조 샘플 필터링 수행 여부를 결정할 수 있다.
현재 블록의 픽셀 성분에 따라 참조 샘플 필터링 수행 여부가 결정될 수 있다. 여기서, 픽셀 성분은 밝기 성분(Luma) 및 색차 성분(Chroma, 일 예로, Cb 및 Cr) 중 적어도 하나를 포함할 수 있다.
일 예로, 밝기 성분에만 참조 샘플 필터링이 수행되고 색차 성분에는 참조 샘플 필터링이 수행되지 않을 수 있다.
한편, 밝기 성분과 색차 성분과 관련 없이 모든 성분에 참조 샘플 필터링이 수행될 수 있다.
앞에서 설명한 바와 같이 현재 블록의 크기, 형태, 화면 내 예측 모드, 분할 깊이(또는 분할 뎁스), 픽셀 성분 중 적어도 하나에 기반한 각 필터링 수행 조건의 조합으로 현재 블록의 상단 및/또는 좌측 참조 샘플의 최종 필터링 수행 여부를 결정할 수 있다.
필터의 유형은 영상의 특성, 블록의 크기, 블록의 형태, 화면 내 예측 모드, 분할 깊이(또는 분할 뎁스), 화면 내 예측 모드에 따른 참조 샘플 필터링 수행 조건 만족 여부 및 픽셀 성분 중 적어도 하나에 기초하여 결정될 수 있다. 여기서, 필터 유형은 필터의 종류를 의미할 수 있다.
필터의 유형은 n탭 필터(n-tap filter), 선형 필터(linear filter), 비선형 필터(non-linear filter), 양방향 필터(bilateral filter), 평활화 필터(smoothing filter), 경계 보존 필터(edge-preserving filter) 및 순서 기반 필터(Order-statistic filter) 중 어느 하나로 결정될 수 있다. 필터의 유형에 따라 필터의 길이, 필터의 탭수 및 필터의 계수 중 적어도 하나가 기 설정되어 있을 수 있다. 상기 n은 양의 정수를 의미할 수 있다.
현재 블록의 픽셀 성분에 기초하여 필터의 유형이 결정될 수 있다.
일 예로, 색차 성분에 대한 필터의 유형은 밝기 성분의 필터의 유형과 동일하게 설정될 수 있다.
한편, 밝기 성분의 필터의 유형과 색차 성분 필터의 유형은 독립적으로 결정될 수도 있다.
필터의 길이 및 필터의 계수 중 적어도 하나는 필터의 유형에 따라 결정될 수 있다. 그러나, 참조 샘플 필터링에 사용되는 필터의 유형이 결정된 경우라도 필터의 길이 및 필터의 계수 중 적어도 하나는 적응적으로 변경될 수도 있다.
필터의 길이는 영상의 특성, 블록의 크기, 블록의 형태, 화면 내 예측 모드 및 분할 깊이(또는 분할 뎁스), 참조 샘플 필터링 수행 여부, 화면 내 예측 모드에 따른 참조 샘플 필터링 수행 조건 만족 여부 및 픽셀 성분 중 적어도 하나에 기초하여 결정될 수 있다. 여기서, 필터의 길이는 필터의 탭수(number of tap)를 의미할 수 있다.
본 발명의 일 실시 예에 따르면, 참조 샘플의 필터링에 적용되는 필터의 길이는 현재 블록의 크기에 기초하여 결정될 수 있다. 이때, 현재 블록의 크기 N(단, N은 양의 정수)은 블록의 가로(W), 블록의 세로(H), 블록 가로 세로의 합(W+H), 블록 내 픽셀의 개수(WxH) 중 적어도 하나로 정의될 수 있다. 여기서, 참조 샘플은 상단 참조 샘플 및 좌측 참조 샘플 중 적어도 하나를 의미할 수 있다.
블록 크기 N값에 따라 필터의 길이가 적응적으로 결정될 수 있다.
일 예로, N값이 Th_1보다 작은 경우, L_1 길이의 필터링이 적용될 수 있고, N값이 Th_1보다 크거나 같고 Th_2보다 작은 경우, L_2 길이의 필터링이 적용될 수 있고, N값이 Th_(K-1)보다 크거나 같고 Th_K보다 작은 경우, L_K 길이의 필터링이 적용될 수 있다. 단, L_1부터 L_K는 L_1 < L_2 < … < L_K를 만족하는 양의 정수이고, Th_1부터 Th_K는 Th_1 < Th_2 < … < Th_K를 만족하는 양의 정수일 수 있다. 또는, L_1부터 L_K는 L_1 < L_2 < … < L_K를 만족하는 양의 정수이고, Th_1부터 Th_K는 Th_K < Th_K-1 < … < Th_1를 만족하는 양의 정수일 수 있다. K는 소정의 양의 정수일 수 있다.
한편, 필터의 길이는 블록 크기 N값과 관계없이 고정된 필터 길이가 사용될 수도 있다.
복수개의 참조 샘플 라인에 필터링을 적용하는 경우, 상기 조건에 따라 결정된 필터의 길이가 모든 참조 샘플 라인에 동일하게 적용될 수 있고, 또는 각 샘플 라인에 대해 서로 다른 독립적인 필터 길이가 적용될 수 있다.
일 예로, 첫번째 상단 및/또는 좌측 참조 샘플 라인에 적용할 필터의 길이는 앞서 설명한 조건에 따라 결정하고, 두번째 이상의 상단 및/또는 좌측 참조 샘플 라인들에 대한 필터의 길이는 첫번째 참조 샘플 라인에 적용된 필터의 길이보다 감소된 필터의 길이로 결정될 수 있다. 반대로, 두번째 이상의 상단 및/또는 좌측 참조 샘플 라인들에 대한 필터의 길이는 첫번째 참조 샘플 라인에 적용된 필터의 길이보다 증가된 필터의 길이로 결정될 수 있다.
본 발명의 일 실시 예에 따르면, 현재 블록의 형태를 기초로 상단 및/또는 좌측 참조 샘플에 적용되는 필터의 길이가 결정될 수 있다.
일 예로, 현재 블록의 형태가 정방형인 경우(즉, 현재 블록의 가로(W) 및 현재 블록의 세로(H)가 동일한 경우), 상단 참조 샘플과 좌측 참조 샘플에 동일 길이의 필터가 적용될 수 있다. 그리고, 현재 블록의 형태가 비정방형인 경우, 상단 참조 샘플과 좌측 참조 샘플에 각각 다른 길이의 필터가 적용될 수 있다.
일 예로, 현재 블록의 가로(W)가 현재 블록의 세로(H)보다 큰 경우, 상단 참조 샘플에 좌측 참조 샘플에 적용되는 필터의 길이보다 더 긴 필터가 적용될 수 있고, 현재 블록의 가로(W)가 현재 블록의 세로(H)보다 작은 경우, 좌측 참조 샘플에 상단 참조 샘플에 적용되는 필터의 길이보다 더 긴 필터가 적용될 수 있다.
또한, 현재 블록의 가로(W) 또는 현재 블록의 세로(H)에 따라 상단과 좌측 참조 샘플에 적용하는 필터의 길이가 독립적으로 결정될 수 있다.
또한, 현재 블록의 형태가 정방형인 경우에도, 상단 참조 샘플과 좌측 참조 샘플에 각각 다른 길이의 필터가 적용될 수도 있다.
한편, 블록 형태에 관계없이 상단 및 좌측 참조 샘플에 동일한 필터 길이가 적용될 수도 있다.
본 발명의 일 실시 예에 따르면, 현재 블록의 화면 내 예측 모드를 기초로 상단 및/또는 좌측 참조 샘플에 적용되는 필터의 길이가 결정될 수 있다.
일 예로, 현재 블록의 화면 내 예측 모드가 수직 방향 모드들 중 하나인 경우, 상단 참조 샘플에 좌측 샘플에 적용되는 필터의 길이보다 더 긴 필터가 적용될 수 있다. 그리고, 현재 블록의 화면 내 예측 모드가 수평 방향 모드들 중 하나인 경우, 좌측 참조 샘플에 상단 샘플에 적용되는 필터의 길이보다 더 긴 필터가 적용될 수 있다.
반대로, 현재 블록의 화면 내 예측 모드가 수직 방향 모드들 중 하나인 경우, 좌측 참조 샘플에 상단 샘플에 적용되는 필터의 길이보다 더 긴 필터가 적용될 수 있다. 그리고, 현재 블록의 화면 내 예측 모드가 수평 방향 모드들 중 하나인 경우, 상단 참조 샘플에 좌측 샘플에 적용되는 필터의 길이보다 더 긴 필터가 적용될 수도 있다.
한편, 현재 블록의 화면 내 예측 모드에 관계없이 상단 및 좌측 참조 샘플에 동일한 필터 길이가 적용될 수도 있다.
현재 블록의 픽셀 성분에 기초하여 필터의 길이가 결정될 수 있다.
일 예로, 색차 성분에 대한 필터의 길이는 밝기 성분의 필터의 길이와 동일하게 설정될 수 있다.
한편, 밝기 성분의 필터의 길이와 색차 성분 필터의 길이는 독립적으로 결정될 수도 있다.
필터의 계수는 영상의 특성, 블록의 크기, 블록의 형태, 화면 내 예측 모드, 분할 깊이(또는 분할 뎁스), 참조 샘플 필터링 수행 여부, 화면 내 예측 모드에 따른 참조 샘플 필터링 수행 조건 만족 여부 및 픽셀 성분 중 적어도 하나에 기초하여 결정될 수 있다. 여기서, 필터의 계수는 필터의 계수 세트(set)을 의미할 수 있다.
이상, 화면 내 예측을 위한 참조 샘플의 필터링에 대해 자세히 설명하였다. 상술한 필터링 수행 여부 결정 방법, 필터의 유형 결정 방법, 필터의 길이 결정 방법 및 필터의 계수 결정 방법은 화면 내 예측을 위한 참조 샘플의 필터링뿐만 아니라 도 1에 따른 부호화기 또는 도 2에 따른 복호화기의 다음 단계에서도 동일하게 적용될 수 있다.
- 인트라 예측부에서의 보간(interpolation) 필터링, 화면 내 예측 블록에 대한 경계 영역 필터링
- 움직임 보상부에서의 예측 블록을 생성하기 위한 보간 필터링, 생성된 예측 블록에 대한 보간 필터링, 화면 간 예측 블록에 대한 경계 영역 필터링
- 움직임 예측부에서의 예측 블록을 생성하기 위한 보간 필터링
- 필터부에서의 de-blocking 필터링, SAO(Sample Adaptive Offset) 필터링, ALF(Adaptive Loop Filtering)
- 부호화기 또는 복호화기에서 움직임 정보를 보정(또는 refinement 또는 fine-tuning)하기 위하여 수행되는 단계인, OBMC(Overlapped Block Motion Compensation), FRUC(Frame rate up conversion) 및 BIO(Bi-directional Optical Flow) 중 적어도 하나의 필터링
따라서, 이하의 명세서에서 필터링은 인트라 예측부에서의 참조 샘플 필터링/보간 필터링/경계 영역 필터링, 움직임 예측부 및 움직임 보상부에서의 예측 블록을 생성하기 위한 보간 필터링/생성된 예측 블록에 대한 보간 필터링/생성된 예측 블록에 대한 경계 영역 필터링, 필터부에서의 인루프 필터링 및 부호화기 및 복호화기에서 움직임 정보 보정을 위한 OBMC, FRUC 및 BIO 중 적어도 하나의 필터링을 의미할 수 있다. 본 발명의 일 실시 예에 따르면, 필터링 수행 여부, 필터의 유형, 필터의 길이 및 필터의 계수 중 적어도 하나는 블록의 크기, 블록의 형태, 예측 모드, 화면 내 예측 모드, 화면 간 예측 모드, 영상의 지역적 특성, 영상의 전역적 특성, 참조 샘플 필터링 수행 여부, 화면 내 예측 모드에 따른 참조 샘플 필터링 수행 조건 만족 여부, 픽셀의 성분 및 기타 부호화 파라미터 중 적어도 하나에 기초하여 결정될 수 있다.
일 예로, 인트라 예측부의 보간 필터링에서 이용되는 필터의 유형은 영상의 특성, 블록의 크기, 블록의 형태, 화면 내 예측 모드, 분할 깊이(또는 분할 뎁스), 참조 샘플 필터링 수행 여부, 화면 내 예측 모드에 따른 참조 샘플 필터링 수행 조건 만족 여부 및 픽셀 성분 중 적어도 하나에 기초하여 결정될 수 있다.
또한, 인트라 예측부의 보간 필터링에서 이용되는 필터의 계수는 영상의 특성, 블록의 크기, 블록의 형태, 화면 내 예측 모드, 분할 깊이(또는 분할 뎁스), 참조 샘플 필터링 수행 여부, 화면 내 예측 모드에 따른 참조 샘플 필터링 수행 조건 만족 여부 및 픽셀 성분 중 적어도 하나에 기초하여 결정될 수 있다.
예를 들어, 참조 샘플에 필터링이 수행된 경우 혹은 화면 내 예측 모드에 따른 참조 샘플 필터링 수행 조건이 만족된 경우, 보간 필터링 시에 제1 필터 계수 세트가 사용될 수 있고, 참조 샘플에 필터링이 수행되지 않은 경우 혹은 화면 내 예측 모드에 따른 참조 샘플 필터링 수행 조건이 만족되지 않은 경우, 보간 필터링 시에 제2 필터 계수 세트가 사용될 수 있다.
즉, 참조 샘플 필터링 수행 여부 혹은 화면 내 예측 모드에 따른 참조 샘플 필터링 수행 조건 만족 여부에 따라 적어도 하나 이상의 필터 계수가 포함된 필터 계수 세트로부터 필터 계수가 결정될 수 있다.
인트라 예측부에서의 보간 필터링에 사용되는 필터 계수 세트는 움직임 보상부에서 휘도 혹은 색차 예측 블록을 생성하기 위해 사용되는 보간 필터 계수 세트와 동일한 필터 계수 세트일 수 있다.
또한, 인트라 예측부에서의 보간 필터링에서 보간 필터링 대상이 되는 참조 샘플에 대해서 필터링이 수행되지 않은 경우, 화면 내 예측 모드에 따른 참조 샘플 필터링 수행 조건이 만족 여부에 따라 서로 다른 보간 필터 계수를 사용할 수 있다.
또 다른 예로, 인트라 예측부에서의 보간 필터링에서 보간 필터링 대상이 되는 참조 샘플에 대해서 필터링이 수행된 경우, 화면 내 예측 모드에 따른 참조 샘플 필터링 수행 조건이 만족 여부에 따라 서로 다른 보간 필터 계수를 사용할 수 있다.
여기서, 필터 계수 세트에는 서로 다른 K개의 필터 계수로 이루어진 세트를 의미할 수 있다. 또한, 상기 K는 양의 정수일 수 있다. 또한, 상기 필터 계수 세트 혹은 상기 필터는 보간 필터 계수 세트 혹은 보간 필터 계수를 의미할 수 있다.
본 발명의 일 실시 예에 따른 필터링은 밝기 성분(Luma)과 색차 성분(Chroma, 예를 들어 Cb, Cr) 중 적어도 하나를 포함하는 픽셀 성분에 아래 중 하나의 방법으로 적용될 수 있다.
일 예로, 밝기 성분에 필터링을 적용하고 색차 성분에 필터링을 적용하지 않을 수 있다. 반대로, 밝기 성분에 필터링을 적용하지 않고 색차 성분에 필터링을 적용할 수 있다. 한편, 밝기 성분과 색차 성분 모두에 필터링을 적용할 수 있다.
일 예로, 밝기 성분과 색차 성분에 동일한 필터링을 적용할 수 있다. 한편, 밝기 성분과 색차 성분에 서로 다른 필터링을 적용할 수 있다.
일 예로, 색차 성분 중 Cb와 Cr에 동일한 필터링을 적용할 수 있다. 한편, 색차 성분 중 Cb와 Cr에 서로 다른 필터링을 적용할 수 있다.
이하에서는, 본 발명의 일 실시 예에 따른 필터링의 적용 방향, 필터링을 하기 위해 사용되는 화소 영역 및 필터링의 적용 화소 단위에 대해 설명하도록 한다.
본 발명의 일 실시 예에 따른 필터링의 적용 방향은 수평 방향, 수직 방향, 임의의 각도를 갖는 방향 중 어느 하나일 수 있다.
본 발명의 일 실시 예에 따른 필터링을 하기 위해 사용되는 화소 영역은 대상 화소의 수평 방향에 위치한 화소들, 대상 화소의 수직 방향에 위치한 화소들, 대상 화소를 포함하는 복수개의 수평 방향 라인에 위치한 화소들, 대상 화소를 포함하는 복수개의 수직 방향 라인에 위치한 화소들, 대상 화소를 포함하는 십자 영역 내의 화소들 및 대상 화소를 포함하는 기하학적 영역 내의 화소들 중 어느 하나일 수 있다.
본 발명의 일 실시 예에 따른 필터링의 적용 화소 단위는 정수 화소 단위(integer pel) 및/또는 소수 화소 단위(fractional pel)일 수 있다. 여기서, 소수 단위는 1/2 (half-pel), 1/4 (quarter-pel), 1/8 pel, 1/16 pel, 1/32 pel, 1/64 pel, … , 1/N pel 이 될 수 있고, N은 양의 정수일 수 있다.
아래에서는, 본 발명의 일 실시 예에 따른 n탭 필터, 평활화 필터, 경계 보존 필터, 1D 필터, 2D 필터 및 순서 기반 필터를 자세히 설명하도록 한다. 여기서, n은 양의 정수일 수 있다.
본 발명의 일 실시 예에 따른 n탭 필터에 의한 필터링은 아래와 같은 수학식 3을 이용하여 수행될 수 있다. 여기서, 필터링을 수행할 대상 화소는 X이고, 필터링에 이용되는 화소는 {b1, b2, … , bn}이고, 필터의 계수는{c1, c2, … , cn}이며, 필터링 된 후의 대상 화소 값은 (X')이고, n은 양의 정수이다.
필터링을 수행하는 일 예로, 필터링 대상 화소가 'b0, 0'이고, 대상 화소에 길이가 8이며, 필터의 계수가 { -1, 4, -11, 40, 40, -11, 4, -1 } 인 8 탭 필터(8-tap filter)가 적용되는 경우, 수학식 4와 같이 필터링된 값을 구할 수 있다.
한편, 필터링을 수행할 대상 화소 X에 대하여 필터링을 위해 사용되는 영역의 일부가 픽처 경계 또는 블록 경계 또는 서브 블록 경계 밖에 위치할 경우, 대상 화소 X에 대한 필터링은 아래 중 어느 하나로 수행될 수 있다
- 대상 화소 X에 대하여 필터링을 수행하지 않음
- 대상 화소 X에 대해서 픽처 또는 블록 또는 서브 블록 경계 안에 존재하는 필터링을 위해 사용되는 영역만을 이용하여 필터링을 수행
본 발명의 일 실시 예에 따른 평활화 필터(Smoothing filter)의 길이는 임의의 양의 정수일 수 있다. 그리고, 평활화 필터의 계수(또는 Filter coefficients)는 아래 중 적어도 하나로 결정될 수 있다.
일 예로, 평활화 필터의 계수는 가우시안 함수(Gaussian Function)를 통하여 유도될 수 있다. 1D, 2D 가우시안 함수는 아래의 수학식 5와 같이 표현될 수 있다.
필터 계수는 수학식 5로부터 유도된 픽셀 범위(0 ~ 2BitDepth) 안에 양자화된 값일 수 있다.
일 예로, 1/32 pel 단위로 길이가 4인(4-tap) 1D 가우시안 함수를 이용하여 필터링을 수행하는 경우, 각 정수/소수 단위 위치에서 대상 화소에 적용되는 필터 계수는 아래 표 1와 같을 수 있다. 이때, 표 1에서 0 은 정수 단위 화소를 나타낼 수 있고, 17/32 ~ 31/32까지의 필터 계수는 16/32 ~ 1/32의 필터 계수를 대칭하여 유도될 수 있다.
다른 예로, 1/32 pel 단위로 길이가 4인 1D 가우시안 함수를 이용하여 필터링을 수행하는 경우, 각 정수/소수 단위 위치에서 대상 화소에 적용되는 필터 계수는 아래 표 2와 같을 수 있다.
상기 표 2에서 필터 계수의 총합은 M비트로 표현될 수 있다. 여기서, 상기 필터 계수의 총합은 2<<M을 초과하지 않을 수 있다. 예를 들어, 상기 M은 6을 포함한 양의 정수일 수 있다. 상기 M이 6인 경우, 상기 필터 계수의 총합은 2<<6인 64를 초과하지 않을 수 있다.
상기 표 2의 필터 계수 중 적어도 하나는 상기 제1 필터 계수 세트 내 필터 계수 중 적어도 하나를 의미할 수 있다.
단, 가우시안 함수로부터 유도될 수 있는 필터 계수는 위 표 1 및 표 2에 기재된 계수 값에 특정되지 않으며, 블록의 크기, 형태, 화면 내/화면 간 예측 모드, 영상의 지역적 특성, 영상의 전역적 특성, 참조 샘플 필터링 수행 여부, 화면 내 예측 모드에 따른 참조 샘플 필터링 수행 조건 만족 여부, 픽셀 성분 및 부호화 파라미터 중 적어도 하나에 기초하여 결정될 수 있다.
상기 표 1 및 표 2 내 필터 계수는 M-탭(tap) 필터 계수의 일 예일 수 있고, 상기 M은 4를 포함한 양의 정수일 수 있다.
상기 가우시안 함수로부터 유도된 필터 계수는 인트라 예측부에서의 참조 샘플 필터링/보간 필터링/경계 영역 필터링, 움직임 예측부 및 움직임 보상부에서의 예측 블록을 생성하기 위한 보간 필터링/생성된 예측 블록에 대한 보간 필터링/생성된 예측 블록에 대한 경계 영역 필터링, 필터부에서의 인루프 필터링 및 부호화기 및 복호화기에서 움직임 정보 보정을 위한 OBMC, FRUC 및 BIO 중 적어도 하나에서 사용될 수 있다.
다른 예로, 평활화 필터의 계수는 DCT 기반 함수(DCT-based Function)를 통하여 유도될 수 있다. 순방향, 역방향(소수 단위 포함)의 DCT 변환은 아래의 수학식 6과 같이 표현될 수 있다.
필터 계수는 상기 수학식 6으로부터 유도된 픽셀 범위(0 - 2BitDepth) 범위 안에 양자화된 값일 수 있다.
일 예로, 도 13에서 ¼, ½, ¾ 등 소수 단위 위치에 적용되는 필터 계수는 아래와 같을 수 있다.
또 다른 예로, 1/32 pel 단위로 길이가 4인 DCT 기반 함수를 이용하여 필터링을 수행하는 경우, 각 정수/소수 단위 위치에서 대상 화소에 적용되는 필터 계수는 아래 표 3과 같을 수 있다.
상기 표 3에서 필터 계수의 총합은 M비트로 표현될 수 있다. 여기서, 상기 필터 계수의 총합은 2<<M을 초과하지 않을 수 있다. 예를 들어, 상기 M은 6을 포함한 양의 정수일 수 있다. 상기 M이 6인 경우, 상기 필터 계수의 총합은 2<<6인 64를 초과하지 않을 수 있다.
상기 표 3의 필터 계수 중 적어도 하나는 상기 제2 필터 계수 세트 내 필터 계수 중 적어도 하나를 의미할 수 있다.
단, DCT 기반 함수로부터 유도될 수 있는 필터 계수는 상기 계수 값 및 표 4에 특정되지 않으며, 블록의 크기, 형태, 화면 내/화면 간 예측 모드, 영상의 지역적 특성, 영상의 전역적 특성, 참조 샘플 필터링 수행 여부, 화면 내 예측 모드에 따른 참조 샘플 필터링 수행 조건 만족 여부, 픽셀 성분 및 부호화 파라미터 중 적어도 하나에 기초하여 결정될 수 있다.
상기 계수 값 및 표 3의 필터 계수는 M-탭(tap) 필터 계수의 일 예일 수 있고, 상기 M은 4를 포함한 양의 정수일 수 있다.
상기 DCT 기반 함수로부터 유도된 필터 계수는 인트라 예측부에서의 참조 샘플 필터링/보간 필터링/경계 영역 필터링, 움직임 예측부 및 움직임 보상부에서의 예측 블록을 생성하기 위한 보간 필터링/생성된 예측 블록에 대한 보간 필터링/생성된 예측 블록에 대한 경계 영역 필터링, 필터부에서의 인루프 필터링 및 부호화기 및 복호화기에서 움직임 정보 보정을 위한 OBMC, FRUC 및 BIO 중 적어도 하나에서 사용될 수 있다.
상기 구성된 하나 이상의 참조 샘플들에 대해서 필터링이 수행될 수 있다. 상기 필터링은 현재 블록의 화면 내 예측 모드, 현재 블록의 크기 및 현재 블록의 형태 중 적어도 하나 이상에 기초하여 적응적으로 수행될 수 있다. 예컨대, 필터링 적용 여부, 필터 유형, 필터 세기 및 필터 계수 중 적어도 하나가 적응적으로 결정될 수 있다.
예를 들어, 복수의 참조 샘플 라인의 각각에 대해 필터링 적용 여부를 다르게 할 수 있다. 예를 들어, 현재 블록에 인접한 첫 번째 참조 샘플 라인에 대해서는 필터링을 적용하고 두 번째 참조 샘플 라인에 대해서는 필터링을 적용하지 않을 수 있다. 예를 들어, 동일한 참조 샘플에 대해 필터링을 적용한 값과 적용하지 않은 값을 같이 사용할 수 있다.
예를 들어, 현재 블록의 화면 내 예측 모드, 현재 블록의 크기 및 현재 블록의 형태 중 적어도 하나에 따라 3-tap 필터, 5-tap 필터, 7-tap 필터, N-tap 필터 중 적어도 하나 이상을 다르게 선택하여 적용할 수 있다. 이 때, N은 양의 정수일 수 있다.
예를 들어, 현재 블록의 화면 내 예측 모드, 현재 블록의 크기 및 현재 블록의 형태 중 적어도 하나에 따라 필터 모양을 다르게 선택하여 적용할 수 있다. 예컨대, 도 11은 다양한 필터 모양을 도시한 도면이다.
현재 블록의 형태는 현재 블록의 가로의 길이와 세로의 길이를 비교하여 판단 및 결정될 수 있다. 예를 들어, 현재 블록이 가로로 긴 직사각형인지 세로로 긴 직사각형인지에 따라 필터 적용 유무, 필터 유형, 필터 세기 및 필터 계수 중 적어도 하나가 적응적으로 결정될 수 있다. 또는 현재 블록이 정방형인지 직사각형인지에 따라 필터 적용 유무, 필터 유형, 필터 세기 및 필터 계수 중 적어도 하나가 적응적으로 결정될 수 있다.
예를 들어, 동일한 참조 샘플에 대해 필터링을 수행한 값과 수행하지 않은 값 중 적어도 하나를 사용하여 화면 내 예측을 수행할 수 있다.
예를 들어, 현재 블록의 화면 내 예측 모드(intra_pred_mode)가 방향성 화면 내 예측 모드인 경우, 수직 모드와의 차이 값과 수평 모드와의 차이값 중 더 작은 값을 도출할 수 있다. 상기 도출된 값이 블록 크기에 할당된 임계값 보다 큰 경우에는 필터링을 수행하고, 작거나 같은 경우에는 필터링을 수행하지 않을 수 있다.
필터링을 수행하는 또 다른 실시예로, 소정 크기 이상의 현재 블록에 대해 쌍일차 보간 필터링(bi-linear interpolation filtering)을 수행할 수 있다. 예를 들어, 현재 블록에 대하여 수직 방향과 수평 방향의 2차 미분 값을 구할 수 있고, 이 값이 특정 임계값보다 작은 경우, 참조 샘플에 대해 쌍일차 보간 필터링을 수행할 수 있다.
참조 샘플의 잡음(noise) 제거 및 화면 내 예측 이후 생성되는 잔여 신호의 양의 감소를 위해, 상기 구성한 하나 이상의 참조 샘플에 대해서 현재 블록의 화면 내 예측 모드, 블록의 크기, 블록의 형태, 필터 계수, 필터 모양 및 필터 탭 수 중 적어도 하나에 따라 상기 참조 샘플 필터링의 수행 횟수를 다르게 결정할 수 있다.
예를 들어, 화면 내 예측 모드가 비방향성 화면 내 예측 모드인 경우 필터링 수행 횟수를 N번으로 결정할 수 있다. 예를 들어, 화면 내 예측 모드가 방향성 화면 내 예측 모드인 경우 필터링 수행 횟수를 N번으로 결정할 수 있다. 예를 들어, 현재 블록의 크기가 8x8 이상일 경우 필터링 수행 횟수를 N번으로 결정할 수 있다. 예를 들어, 현재 블록의 크기가 16x16 이하일 경우 필터링 수행 횟수를 N번으로 결정할 수 있다. 예를 들어, 현재 블록의 형태가 정방형인 경우 필터링 수행 횟수를 N번으로 결정할 수 있다. 예를 들어, 현재 블록의 형태가 비정방형이며, 높이가 넓이보다 큰 경우 좌측 참조 샘플 중 적어도 하나에 대해 필터링 수행 횟수를 N번으로 결정할 수 있다. 예를 들어, 현재 블록의 형태가 비정방형이며, 넓이가 높이보다 큰 경우 상단 참조 샘플 중 적어도 하나에 대해 필터링 수행 횟수를 N번으로 결정할 수 있다. 이때, N은 2이상의 양의 정수이다.
예를 들어, 복수 개의 참조 샘플 라인 별로 상기 참조 샘플 필터링의 수행 횟수를 다르게 결정할 수 있다. 예를 들어, 복원 샘플 라인 1에 대해서는 필터링 수행 횟수를 N번으로 결정할 수 있고, 복원 샘플 라인 2에 대해서는 필터링 수행 횟수를 M번으로 결정할 수 있다. 이때, N은 2이상의 양의 정수이고, M은 N보다 작은 양의 정수일 수 있다. 예컨대, M은 1일 수 있다. 예컨대, 복원 샘플 라인과 현재 블록의 거리가 가까울수록 필터링 수행 횟수는 증가할 수 있다. 또는 참조 샘플 필터링은 복원 샘플 라인 1에 대해서만 수행되고, 복원 샘플 라인 2 이상에 대해서는 수행되지 않을 수 있다.
상기 참조 샘플 필터링 수행 횟수에 대한 정보는 엔트로피 부호화/복호화될 수 있다. 또는, 부호화기와 복호화기에서 미리 설정된 기준에 따라 상기 참조 샘플 필터링 수행 횟수를 결정할 수 있다. 또는, 현재 블록 및 주변 블록 중 적어도 하나의 부호화 파라미터(블록의 크기, 블록의 형태, 화면 내 예측 모드, 필터 계수, 필터 모양, 필터 탭 수 등)를 이용하여 적응적으로 참조 샘플 필터링 수행 횟수를 결정할 수 있다.
상기 유도된 화면 내 예측 모드 및 참조 샘플을 기반으로 상기 현재 블록에 대한 화면 내 예측을 수행할 수 있다.
예를 들어, 현재 블록에 대해 비방향성 화면 내 예측이 수행될 수 있다. 비방향성 화면 내 예측 모드는 예컨대, DC 모드, Planar 모드, LM 모드 중 적어도 하나일 수 있다.
DC 모드의 경우, 상기 구성한 참조 샘플 중 하나 이상의 참조 샘플들의 평균값을 이용하여 예측을 수행할 수 있다. 이 때, 현재 블록의 경계에 위치한 하나 이상의 예측 샘플에 대해 필터링이 적용될 수 있다. DC 예측은 현재 블록의 크기 및 형태 중 적어도 하나에 기초하여 적응적으로 수행될 수 있다. 또한, 현재 블록의 크기 및 형태 중 적어도 하나에 기초하여, DC 모드에 이용되는 참조 샘플의 범위가 특정될 수 있다.
도 12는 블록의 형태에 따른 화면 내 예측을 설명하기 위한 도면이다.
예를 들어, 현재 블록의 형태가 도 12의 (a)와 같이 정사각형인 경우, 현재 블록의 상단과 좌측의 참조 샘플의 평균값을 이용하여 DC 예측을 수행할 수 있다.
예를 들어, 현재 블록이 비정방형인 경우, 현재 블록의 좌측 또는 상단에 인접한 주변 샘플이 선택적으로 이용될 수 있다. 현재 블록의 형태가 도 12의 (b)와 같이 직사각형인 경우, 현재 블록의 가로 및 세로 중 긴 쪽에 인접한 참조 샘플들의 평균값을 이용하여 예측을 수행할 수 있다. 이때, 현재 블록의 가로 및 세로 길이 중 짧은 쪽에 인접한 현재 블록 내의 예측 샘플에 대해서 경계 필터링을 수행할 수 있다. 상기 경계 필터링은 좌측 참조 샘플과 인접한 현재 블록 내 N개의 열에 포함된 적어도 하나의 예측 샘플 및/또는 상단 참조 샘플과 인접한 현재 블록 내 M개의 행에 포함된 적어도 하나의 예측 샘플에 대해 수행될 수 있다. 이때, N과 M은 0을 포함한 양의 정수일 수 있다. 또는 현재 블록의 가로 및 세로 길이 중 긴 쪽에 인접한 참조 샘플과 짧은 쪽에 인접한 참조 샘플의 가중합을 이용하여 예측을 수행할 수 있으며, 이때 긴 쪽에 인접한 참조 샘플에 상대적으로 큰 가중치를 부여하여 가중합을 수행할 수 있다.
예를 들어, 현재 블록의 크기가 소정의 크기에 해당하거나 또는 소정의 범위에 포함되는 경우, 현재 블록의 상단 또는 좌측의 참조 샘플 중 소정의 샘플들이 선택되고, 선택된 샘플들의 평균값을 이용하여 예측을 수행할 수 있다. 상기 소정의 크기는 부호화기/복호화기에 기-약속된 고정된 크기 NxM일 수 있다. N과 M은 0보다 큰 정수이며, N과 M은 서로 동일하거나 상이할 수 있다. 소정의 범위는 현재 블록의 참조 샘플을 선택하기 위한 임계값을 의미할 수 있다. 상기 임계값은 최소값 및 최대값 중 적어도 하나로 구현될 수 있다. 상기 최소값 및/또는 최소값은 부호화기/복호화기에 기-약속된 고정된 값일 수도 있고, 부호화기에서 부호화되어 시그널링되는 가변적인 값일 수도 있다.
예를 들어, 하나 이상의 평균값을 이용하여 예측을 수행할 수 있다. 현재 블록이 정방형 또는 비정방형인 경우, 상단 참조 샘플을 이용한 제1 평균값과 좌측 참조 샘플을 이용한 제2 평균값 중 적어도 하나를 이용할 수 있다. 상기 현재 블록의 DC 예측 값은 상기 제1 평균값 또는 제2 평균값일 수 있다. 또는 상기 현재 블록의 DC 예측 값은 상기 제1 평균값과 제2 평균값의 가중합을 통하여 획득된 값일 수 있다. 예를 들어, 상기 제1 및 제2 평균값에 대한 가중치는 1:1 일 수 있다.
현재 블록이 WxH일 때, 블록 크기 및/또는 형태에 따라 DC 값을 계산하기 위해 사용되는 소정의 참조 샘플의 범위를 다르게 할 수 있다. 예를 들어, W, H, W*H 및/또는 W+H가 제1 크기 이하일 경우, 제1 그룹의 참조 샘플이 이용될 수 있다. 또는, W, H, W*H 및/또는 W+H가 제2 크기 이상일 경우, 제2 그룹의 참조 샘플이 이용될 수 있다. 제1 그룹의 참조 샘플 및/또는 제2 그룹의 참조 샘플은 좌측, 상단, 하단, 우측 참조 샘플로부터 선택된 하나 이상의 참조 샘플을 포함할 수 있다. 상기 계산된 DC 값은 현재 블록의 화면 내 예측 블록의 샘플 값으로 할당될 수 있다.
상기 방법에 따르면, 모든 DC 값의 계산을 위해 시프트 연산을 이용할 수 있다. 예컨대, 상기 방법은 샘플 길이로 표현되는 현재 블록의 가로, 세로 또는 가로와 세로의 합이 2의 자승이 아닐 경우에도 적용될 수 있다. 상기 방법은 루마 DC 예측 및 크로마 DC 예측에 모두 적용될 수 있다. 또는 루마 DC 예측 및 크로마 DC 예측 중 한 쪽에만 적용될 수도 있다.
예를 들어, 상기 현재 블록이 비정방형인 경우, 가로의 길이 또는 세로의 길이 중 하나에 기반하여 예측을 수행할 수 있다. 예를 들어, 상단 참조 샘플과 좌측 참조 샘플의 합을 상기 현재 블록의 가로의 길이 또는 세로의 길이 중 큰 쪽으로 나누어 예측값을 구할 수 있다. 이 때, 상기 큰 쪽에 해당하는 값을 이용한 나눗셈은 시프트 연산으로 수행될 수 있다.
다른 실시예로서, 현재 블록의 좌측 주변 블록 및 상단 주변 블록 중 현재 블록과 상관성이 높은 블록의 샘플 값으로부터 현재 블록을 예측함으로써, 화면 내 예측의 정확도를 향상시킬 수 있다.
주변 블록과 현재 블록의 상관성은 현재 블록의 크기, 형태, 분할 깊이, 예측 모드(인터 또는 인트라), 인트라 예측 모드를 포함하는 부호화 파라미터 및/또는 주변 블록의 부호화 파라미터 중 적어도 하나에 기초하여 결정될 수 있다. 예컨대, 현재 블록의 가로와 세로 중 긴 쪽에 인접한 주변 블록의 상관성이 높은 것으로 결정할 수 있다. 또는 인트라 모드로 예측된 주변 블록의 상관성이 높은 것으로 결정할 수 있다. 또는 현재 블록의 인트라 예측 모드와 유사한 방향성을 갖는 인트라 예측 모드로 예측된 주변 블록의 상관성이 높은 것으로 결정할 수 있다. 현재 블록이 비방향성 인트라 예측된 경우, 비방향성 인트라 예측된 주변 블록의 상관성이 높은 것으로 결정할 수 있다.
현재 블록이 정사각형인 경우, 현재 블록의 좌측 참조 샘플의 평균값을 이용하여 예측을 수행할 수 있다. 이때, 현재 블록의 상단 참조 샘플에 대해서만 참조 샘플 필터링을 수행할 수 있다. 추가적으로, 현재 블록의 좌측 참조 샘플에 대해서 참조 샘플 필터링을 수행할 수 있다. 이때, 현재 블록의 예측 블록 내 상단 경계에 대해서 경계 필터링을 수행할 수 있다. 추가적으로, 현재 블록의 예측 블록 내 좌측 경계에 대해서 경계 필터링을 수행할 수 있다.
또는 현재 블록이 정사각형인 경우, 현재 블록의 상단 참조 샘플의 평균값을 이용하여 예측을 수행할 수 있다. 이때, 현재 블록의 좌측 참조 샘플에 대해서만 참조 샘플 필터링을 수행할 수 있다. 추가적으로, 현재 블록의 상단 참조 샘플에 대해서 참조 샘플 필터링을 수행할 수 있다. 이때, 현재 블록의 예측 블록 내 좌측 경계에 대해서 경계 필터링을 수행할 수 있다. 추가적으로, 현재 블록의 예측 블록 내 상단 경계에 대해서 경계 필터링을 수행할 수 있다.
현재 블록의 부호화 파라미터 및 주변 블록의 부호화 파라미터 중 적어도 하나에 기초하여 상기 DC 모드의 수행 여부를 결정할 수 있다.
좌측 참조 샘플에 대한 참조 샘플 필터링과 상단 참조 샘플에 대한 참조 샘플 필터링 시 2가지 필터링 간에 필터링 수행 여부, 필터 계수, 필터 모양, 필터 탭 수 중 적어도 하나를 다르게 결정할 수 있다.
예를 들어, 현재 블록의 크기에 따라 좌측 참조 샘플에 대한 참조 샘플 필터링과 상단 참조 샘플에 대한 참조 샘플 필터링에서 필터링 수행 여부, 필터 계수, 필터 모양, 필터 탭 수 중 적어도 하나를 다르게 결정할 수 있다.
예를 들어, 현재 블록의 형태에 따라 좌측 참조 샘플에 대한 참조 샘플 필터링과 상단 참조 샘플에 대한 참조 샘플 필터링에서 필터링 수행 여부, 필터 계수, 필터 모양, 필터 탭 수 중 적어도 하나를 다르게 결정할 수 있다.
현재 블록의 예측 블록 내 좌측 경계에 대한 경계 필터링과 상단 경계에 대한 경계 필터링의 2개의 필터링 간에 필터링 수행 여부, 필터 계수, 필터 모양, 필터 탭 수 중 적어도 하나를 다르게 결정할 수 있다.
예를 들어, 현재 블록의 크기에 따라 예측 블록 내 좌측 경계에 대한 경계 필터링과 상단 경계에 대한 경계 필터링에서 필터링 수행 여부, 필터 계수, 필터 모양, 필터 탭 수 중 적어도 하나를 다르게 결정할 수 있다.
예를 들어, 현재 블록의 형태에 따라 예측 블록 내 좌측 경계에 대한 경계 필터링과 상단 경계에 대한 경계 필터링에서 필터링 수행 여부, 필터 계수, 필터 모양, 필터 탭 수 중 적어도 하나를 다르게 결정할 수 있다.
상기 경계 필터링은 좌측 참조 샘플과 인접한 예측 블록 내 N개의 열에 포함된 적어도 하나의 샘플 및/또는 상단 참조 샘플과 인접한 예측 블록 내 M개의 행에 포함된 적어도 하나의 샘플에 대해 수행될 수 있다. 이때, N과 M은 0을 포함한 양의 정수일 수 있다.
예를 들어, 복수의 참조 샘플 라인을 이용하여 DC 예측을 수행할 수 있다. 예를 들어, 도 12의 (c)에서와 같이 2 개의 참조 샘플 라인을 이용하여 예측을 수행할 수 있다.
예컨대, 상기 2 개의 참조 샘플 라인에 포함되는 참조 샘플들의 평균 값을 상기 현재 블록의 DC 예측 값으로 결정할 수 있다.
또는, 현재 블록에 인접한 제1 라인의 참조 샘플과 제2 라인의 참조 샘플에 대해 각각 다른 가중치를 부여할 수 있다. 예를 들어, 제1 라인의 참조 샘플과 제2 라인의 참조 샘플 값에 각각 3:1의 가중치를 적용한 값(예컨대, (3*제1 라인 참조 샘플 + 제2 라인 참조 샘플 +2) >> 2의 값)을 구하고, 이들 값들의 평균 값을 상기 현재 블록의 DC 예측 값으로 결정할 수 있다. 또는, (3*제1 라인 참조 샘플 - 제2 라인 참조 샘플) >> 1의 값을 구하고, 이들 값들의 평균 값을 상기 현재 블록의 DC 예측 값으로 결정할 수도 있다. 상기 가중치는 전술한 예로 한정되지 않으며, 임의의 가중치가 될 수 있다. 이 때, 현재 블록에 인접한 참조 샘플 라인일수록 상대적으로 더 큰 가중치가 부여될 수 있다. 이용될 수 있는 참조 샘플 라인의 수는 두 개로 한정되지 않으며, 3 개 이상의 참조 샘플 라인이 이용될 수도 있다.
Planar 모드의 경우, 상기 현재 블록의 화면 내 예측 대상 샘플의 위치에 따라 상기 구성한 하나 이상의 참조 샘플로부터의 거리를 고려한 가중합으로 예측을 수행할 수 있다.
현재 블록의 참조 샘플 또는 예측 샘플에 대하여 필터링을 수행할 수 있다. 예컨대, 참조 샘플에 대하여 필터링을 적용한 후, Planar 예측을 수행하고, 하나 이상의 예측 샘플에 대하여 필터링을 적용할 수 있다. 상기 예측 샘플 중 필터링 대상 샘플은 현재 블록 내의 상단 또는 좌측 경계의 1, 2, 또는 N 개의 라인일 수 있다.
상기 Planar 예측을 수행하기 위해, 하나 이상의 참조 샘플의 가중합을 이용할 수 있다. 예를 들어, 도 12의 (d)와 같이 5 개의 참조 샘플을 이용할 수 있다. 예컨대, [x, y] 위치의 대상 샘플을 예측하기 위해, 참조 샘플 r[-1, -1], r[x, -1], r[-1, y], r[W, -1], r[-1, H]가 이용될 수 있다. 이 때, W 및 H 는 각각 현재 블록의 가로 및 세로의 길이일 수 있다. 일예로, 아래의 수학식 7을 이용하여 예측 샘플 pred[x, y]를 생성할 수 있다. 수학식 7에서, a, b, c, d, e 는 가중치를 나타낼 수 있다. N은 log2(a+b+c+d+e) 일 수 있다.
본 발명의 다른 실시예에 따르면, 화면 내 예측의 정확도 향상을 위해, Planar 모드의 경우, 1차원 수평 예측 블록과 1차원 수직 예측 블록에 서로 다른 가중치를 적용한 가중합으로 화면 내 예측이 수행될 수 있다. 본 실시예에 따른 Planar 모드의 화면 내 예측 수행 여부는 현재 블록의 부호화 파라미터 및 주변 블록의 부호화 파라미터 중 적어도 하나에 기반하여 결정될 수 있다.
도 13은 본 발명의 실시예에 따른 Planar 모드의 1차원 수평 예측을 설명하기 위한 도면이다.
도 13에 도시된 바와 같이, 4x4 현재 블록에 대한 1차원 수평 예측 블록(PH0 내지 PH15로 구성)이 생성될 수 있다. 도 13에서 굵은 선 안에 있는 블록은 현재 블록을 나타내며, 굵은 선 밖에 있는 샘플들은 현재 블록의 주변 참조 샘플을 의미할 수 있다. 즉, TL, TR, BL은 현재 블록의 주변 참조 샘플을 의미할 수 있다. 1차원 수평 예측 블록을 생성하기 위한 보간 방법으로 쌍일차 보간(bilinear interpolation)이 사용될 수 있다. 즉, 샘플 간의 거리를 이용한 가중합으로 1차원 수평 예측 블록을 구성할 수 있다.
L0 샘플과 TR 샘플 사이에 있는 PH0 내지 PH3 샘플은 L0 샘플 값과 TR 샘플 값을 이용한 보간으로 생성될 수 있다. L1 샘플과 TR 샘플 사이에 있는 PH4 내지 PH7 샘플은 L1 샘플 값과 TR 샘플 값을 이용한 보간으로 생성될 수 있다. L2 샘플과 TR 샘플 사이에 있는 PH8 내지 PH11 샘플은 L2 샘플 값과 TR 샘플 값을 이용한 보간으로 생성될 수 있다. L3 샘플과 TR 샘플 사이에 있는 PH12 내지 PH15 샘플은 L3 샘플 값과 TR 샘플 값을 이용한 보간으로 생성될 수 있다.
도 14는 본 발명의 실시예에 따른 Planar 모드의 1차원 수직 예측을 설명하기 위한 도면이다.
도 14에 도시된 바와 같이, 4x4 현재 블록에 대한 1차원 수직 예측 블록(PV0 내지 PV15로 구성)이 생성될 수 있다. 도 14에서 굵은 선 안에 있는 블록은 현재 블록을 나타내며, 굵은 선 밖에 있는 샘플들은 현재 블록의 주변 참조 샘플을 의미할 수 있다. 즉, TL, TR, BL은 현재 블록의 주변 참조 샘플을 의미할 수 있다. 1차원 수직 예측 블록을 생성하기 위한 보간 방법으로 쌍일차 보간(bilinear interpolation)이 사용될 수 있다. 즉, 샘플 간의 거리를 이용한 가중합으로 1차원 수직 예측 블록을 구성할 수 있다.
T0 샘플과 BL 샘플 사이에 있는 PV0 내지 PV3 샘플은 T0 샘플 값과 BL 샘플 값을 이용한 보간으로 생성될 수 있다. T1 샘플과 BL 샘플 사이에 있는 PV4 내지 PV7 샘플은 T1 샘플 값과 BL 샘플 값을 이용한 보간으로 생성될 수 있다. T2 샘플과 BL 샘플 사이에 있는 PV8 내지 PV11 샘플은 T2 샘플 값과 BL 샘플 값을 이용한 보간으로 생성될 수 있다. T3 샘플과 BL 샘플 사이에 있는 PV12 내지 PV15 샘플은 T3 샘플 값과 BL 샘플 값을 이용한 보간으로 생성될 수 있다.
본 발명에 따른 Planar 모드의 화면 내 예측에서, 1차원 수평 예측 블록과 1차원 수직 예측 블록을 생성한 뒤에 가중합을 계산하여 화면 내 예측 블록을 생성할 수 있다. 이 때, 가중합에 이용되는 가중치는 예측 블록마다 상이할 수 있다. 상기 생성된 1차원 수평 예측 블록 내 각 샘플과 1차원 수직 예측 블록 내 각 샘플에 대해서 각각의 블록 내 대응하는 위치에 따라 평균값, 가중치를 이용한 가중평균값, 가중치를 이용한 가중합 값 등을 계산하여 화면 내 예측 블록을 생성할 수 있다. 이때, 가중합은 샘플 단위, 샘플 그룹 단위, 라인 단위 및 블록 단위 중 적어도 하나의 단위로 계산될 수 있다.
또한, 상기 가중합은 화면 내 예측 블록 내 경계 영역에 대해 수행될 수 있다. 이때, 경계 영역은 좌측 참조 샘플과 인접한 화면 내 예측 블록 내 N개의 열 및/또는 상단 참조 샘플과 인접한 화면 내 예측 블록 내 M개의 행일 수 있다. 이때, N과 M은 0을 포함한 양의 정수일 수 있다. N과 M은 상이하거나 동일할 수 있다. N과 M 중 적어도 하나는 블록의 크기 및 형태 중 적어도 하나에 기초하여 결정될 수 있다. 또는 N과 M에 관한 정보가 비트스트림에 포함되어 시그널링될 수 있다. 또는 N과 M은 부호화기/복호화기에서 기정의될 수 있다.
가중치 값은 현재 블록의 크기, 형태, 블록 내 샘플의 위치 중 적어도 하나에 따라 다르게 적용될 수 있다. 또한, 가중치 값은 현재 블록 및 주변 블록 중 적어도 하나의 부호화 파라미터에 기반하여 결정될 수 있다. 상기 가중치 값은 {1/2, 1/2}, {3/4, 1/4}, {1/8, 7/8}, {3/8, 5/8} 등일 수 있다.
또는, 주변 블록의 샘플 값에 따라서 아래와 같이 가중치가 결정될 수 있다.
예컨대, TL 값과 TR 값 간의 차이 (수평 방향의 샘플 값들 간의 차이)와 TL 값과 BL 값 간의 차이 (수직 방향의 샘플 값들 간의 차이)를 서로 비교하여 차이가 작은 방향에 해당하는 1차원 예측 블록에 상대적으로 큰 가중치를 적용할 수 있다. 여기서, TR 대신 상단 참조 샘플들 중 적어도 하나가 사용될 수 있다. 또한, BL 대신 좌측 참조 샘플들 중 적어도 하나가 사용될 수 있다. 예를 들어, 수직 방향의 샘플 값들 간의 차이가 수평 방향의 샘플 값들 간의 차이보다 작은 경우 1차원 수직 예측 블록에 상대적으로 큰 가중치가 적용될 수 있다.
반대로, 수직 방향의 샘플 값들 간의 차이가 수평 방향의 샘플 값들 간의 차이보다 작은 경우 1차원 수직 예측 블록에 상대적으로 작은 가중치가 적용될 수 있다.
또는, 주변 블록의 화면 내 예측 모드에 따라서 아래와 같이 가중치가 결정될 수 있다.
예컨대, TL이 속한 블록의 화면 내 예측 모드와 TR이 속한 블록의 화면 내 예측 모드 값들 간의 차이 (수평 방향의 화면 내 예측 모드들 간의 차이)와 TL이 속한 블록의 화면 내 예측 모드와 BL이 속한 블록의 화면 내 예측 모드 값들 간의 차이 (수직 방향의 화면 내 예측 모드들 간의 차이)를 서로 비교하여 차이 값이 작은 방향에 해당하는 1차원 예측 블록에 상대적으로 큰 가중치를 적용하여 화면 내 예측 블록을 생성할 수 있다. 여기서, TR 대신 상단 참조 샘플들 중 적어도 하나가 사용될 수 있다. 또한, BL 대신 좌측 참조 샘플들 중 적어도 하나가 사용될 수 있다. 예를 들어, 수직 방향의 화면 내 예측 모드들 간의 차이가 수평 방향의 화면 내 예측 모드들 간의 차이보다 작은 경우 1차원 수직 예측 블록에 상대적으로 큰 가중치가 적용될 수 있다.
반대로, 수직 방향의 화면 내 예측 모드들 간의 차이가 수평 방향의 화면 내 예측 모드들 간의 차이보다 작은 경우 1차원 수직 예측 블록에 상대적으로 작은 가중치가 적용될 수 있다.
가중치를 결정하는 또 다른 실시예로서, TL이 속한 블록의 화면 내 예측 모드, TR이 속한 블록의 화면 내 예측 모드 및 BL이 속한 블록의 화면 내 예측 모드 중 적어도 하나의 화면 내 예측 모드가 가지는 방향성과 유사한 방향(수직 방향, 수평 방향, 비방향성 및 특정 방향성 중 적어도 하나)에 해당하는 1차원 예측 블록에 상대적으로 큰 가중치를 적용할 수 있다. 여기서, TR 대신 상단 참조 샘플들 중 적어도 하나가 사용될 수 있다. 또한, BL 대신 좌측 참조 샘플들 중 적어도 하나가 사용될 수 있다. 예를 들어, TR이 속한 블록의 화면 내 예측 모드와 BL이 속한 블록의 화면 내 예측 모드가 모두 수직 모드일 경우 1차원 수직 예측 블록에 상대적으로 큰 가중치가 적용될 수 있다. 또한, TL 대신 현재 블록의 참조 샘플들 중 적어도 하나가 사용될 수 있다. 여기서, 화면 내 예측 모드의 방향성의 유사 여부는 임계값과의 비교를 통해 결정될 수 있다. 예를 들어, 화면 내 예측 모드의 방향성이 소정의 임계값 보다 작을 경우 해당 화면 내 예측 모드의 방향성은 특정 방향과 유사하다고 할 수 있다. 또는, 화면 내 예측 모드의 방향성과 특정 방향의 차이 값이 소정의 임계값 범위에 포함될 경우 해당 화면 내 예측 모드의 방향성은 특정 방향과 유사하다고 할 수 있다.
또는, TR이 속한 블록의 화면 내 예측 모드 (수직 방향) 및 BL이 속한 블록의 화면 내 예측 모드 (수평 방향) 중 하나가 방향성 모드이고 다른 하나가 비방향성 모드인 경우, 상기 방향성 모드의 방향에 해당하는 1차원 예측 블록에 상대적으로 큰 가중치가 적용될 수 있다. 여기서, TR 대신 상단 참조 샘플들 중 적어도 하나가 사용될 수 있다. 또한, BL 대신 좌측 참조 샘플들 중 적어도 하나가 사용될 수 있다. 예를 들어, TR이 속한 블록의 화면 내 예측 모드가 DC 모드인 경우, 1차원 수평 예측 블록에 상대적으로 큰 가중치가 적용될 수 있다. 또한, TL 대신 현재 블록의 참조 샘플들 중 적어도 하나가 사용될 수 있다.
반대로, 상기 방향성 모드의 방향에 해당하는 1차원 예측 블록에 상대적으로 작은 가중치가 적용될 수 있다.
소정의 비방향성 화면 내 예측 모드 혹은 소정의 방향성 화면 내 예측 모드를 이용하여 생성한 화면 내 예측 블록과 상기 1차원 수직 예측 블록 또는 1차원 수평 예측 블록의 가중합을 통하여 현재 블록에 대한 화면 내 예측 블록을 구성할 수 있다. 이때, 가중합은 샘플 단위, 샘플 그룹 단위, 라인 단위, 블록 단위 중 적어도 하나의 단위로 계산될 수 있다.
또한, 상기 가중합은 화면 내 예측 블록 내 경계 영역에 대해 수행될 수 있다. 이때, 경계 영역은 좌측 참조 샘플과 인접한 화면 내 예측 블록 내 N개의 열 및/또는 상단 참조 샘플과 인접한 화면 내 예측 블록 내 M개의 행일 수 있다. 이때, N과 M은 0을 포함한 양의 정수일 수 있다. N과 M은 상이하거나 동일한 값을 가질 수 있다. N과 M 중 적어도 하나는 블록의 크기 및 형태 중 적어도 하나에 기초하여 결정될 수 있다. 또는 N과 M에 관한 정보가 비트스트림에 포함되어 시그널링될 수 있다. 또는 N과 M은 부호화기/복호화기에서 기정의될 수 있다.
가중치 값은 상기 현재 블록의 화면 내 예측 모드, 블록의 크기, 블록의 형태 및 샘플의 위치 중 적어도 하나에 따라 다르게 적용될 수 있다.
상기 가중합 수행 여부에 대한 정보는 엔트로피 부호화/복호화될 수 있다. 또는, 부호화기와 복호화기에서 미리 설정된 기준에 따라 상기 가중합 수행 여부를 결정할 수 있다. 또는, 현재 블록 및 주변 블록 중 적어도 하나의 블록의 크기, 블록의 형태, 화면 내 예측 모드 등의 부호화 파라미터 중 적어도 하나를 이용하여 적응적으로 가중합 수행 여부가 결정될 수 있다.
상기 Planar 모드에서, 예측 블록 내 좌측 경계 및 상단 경계 중 적어도 하나에 대해 경계 필터링이 수행될 수 있다. 상기 경계 필터링은 화면 내 예측 모드, 블록의 크기, 블록의 형태, 필터 계수, 필터 모양 및 필터 탭 수 중 적어도 하나에 기반하여 수행될 수 있다.
상기 경계 필터링은 좌측 참조 샘플과 인접한 예측 블록 내 N개의 열에 포함된 적어도 하나의 샘플 및/또는 상단 참조 샘플과 인접한 예측 블록 내 M개의 행에 포함된 적어도 하나의 샘플에 대해 수행될 수 있다. 이때, N과 M은 0을 포함한 양의 정수일 수 있다. N과 M은 상이하거나 동일한 값을 가질 수 있다. N과 M 중 적어도 하나는 블록의 크기 및 형태 중 적어도 하나에 기초하여 결정될 수 있다. 또는 N과 M에 관한 정보가 비트스트림에 포함되어 시그널링될 수 있다. 또는 N과 M은 부/복호화기에서 기정의될 수 있다.
상기 1차원 수평 예측 블록과 1차원 수직 예측 블록 중 적어도 하나를 지시하는 화면 내 예측 모드는 휘도 성분의 화면 내 예측 모드 및 색차 성분의 화면 내 예측 모드 중 하나로 사용될 수 있다. 즉, 상기 1차원 수평 예측 블록과 1차원 수직 예측 블록 중 적어도 하나를 이용하여 현재 블록의 화면 내 예측 블록을 생성할 수 있다.
다른 실시예로서, Planar 모드의 화면 내 예측의 정확도 향상을 위해, 샘플 단위의 가중합을 이용하여 화면 내 예측이 수행될 수 있다. 샘플 단위의 가중합을 이용한 Planar 모드의 수행 여부는 현재 블록의 부호화 파라미터 및 주변 블록의 부호화 파라미터 중 적어도 하나에 기반하여 결정될 수 있다.
도 15는 샘플 단위의 가중합을 이용한 Planar 모드의 화면 내 예측의 일 실시예를 설명하기 위한 도면이다.
도 15에 도시된 바와 같이, 4x4 현재 블록에 대해 샘플 단위의 가중합을 이용한 화면 내 예측이 수행되어, 화면 내 예측 블록이 생성될 수 있다. 도 15에서 굵은 선 안에 있는 블록은 현재 블록을 나타내며, 굵은 선 밖에 있는 샘플들은 현재 블록의 주변 참조 샘플을 의미할 수 있다. 즉, TL, TR, BL은 현재 블록의 주변 참조 샘플을 의미할 수 있다. 여기서, WT, WL, WTR, WBL은 가중치를 나타낸다. 현재 블록의 화면 내 예측 블록 내의 샘플들의 각각은 주변 참조 샘플들의 가중합으로 계산될 수 있다. 상기 가중합에 이용되는 주변 참조 샘플들 및 가중치들은 각 샘플의 블록 내 위치에 기초하여 결정될 수 있다.
이때, 가중합은 샘플 단위, 샘플 그룹 단위, 라인 단위 및 블록 단위 중 적어도 하나의 단위로 계산될 수 있다.
또한, 상기 가중합은 화면 내 예측 블록 내 경계 영역에 대해 수행될 수 있다. 이때, 경계 영역은 좌측 참조 샘플과 인접한 화면 내 예측 블록 내 N개의 열 및/또는 상단 참조 샘플과 인접한 화면 내 예측 블록 내 M개의 행일 수 있다. 이때, N과 M은 0을 포함한 양의 정수일 수 있다. N과 M은 상이하거나 동일할 수 있다. N과 M 중 적어도 하나는 블록의 크기 및 형태 중 적어도 하나에 기초하여 결정될 수 있다. 또는 N과 M에 관한 정보가 비트스트림에 포함되어 시그널링될 수 있다. 또는 N과 M은 부호화기/복호화기에서 기정의될 수 있다.
가중치 값은 상기 현재 블록의 화면 내 예측 모드, 블록의 크기, 블록의 형태 및 샘플의 위치 중 적어도 하나에 따라 다르게 적용할 수 있다.
상기 가중치는 샘플 간의 거리에 기초하여 결정될 수 있다. 이때, 상기 가중치는 현재 블록 및 주변 블록 중 적어도 하나의 부호화 파라미터에 기반하여 결정될 수 있다.
상기 Planar 모드에서 현재 화면 내 예측 블록 내 좌측 경계 및 상단 경계 중 적어도 하나에 대해 화면 내 예측 모드, 블록의 크기, 블록의 형태, 필터 계수, 필터 모양 및 필터 탭 수 중 적어도 하나에 기반한 경계 필터링이 수행될 수 있다.
상기 경계 필터링은 좌측 참조 샘플과 인접한 화면 내 예측 블록 내 N개의 열에 포함된 적어도 하나의 샘플 및/또는 상단 참조 샘플과 인접한 화면 내 예측 블록 내 M개의 행에 포함된 적어도 하나의 샘플에 대해 수행될 수 있다. 이때, N과 M은 0을 포함한 양의 정수일 수 있다. N과 M은 상이하거나 동일할 수 있다. N과 M 중 적어도 하나는 블록의 크기 및 형태 중 적어도 하나에 기초하여 결정될 수 있다. 또는 N과 M에 관한 정보가 비트스트림에 포함되어 시그널링될 수 있다. 또는 N과 M은 부호화기/복호화기에서 기정의될 수 있다.
Planar 모드로 생성된 화면 내 예측 블록의 예측 정확도 향상을 위해, Planar 모드로 생성된 화면 내 예측 블록에 오프셋 값을 더해줄 수 있다. 상기 오프셋 값은 샘플 단위, 샘플 그룹 단위, 라인 단위 및 블록 단위 중 적어도 하나의 단위로 Planar 모드로 생성된 화면 내 예측 블록에 더해질 수 있다. 또한, 상기 오프셋 값은 화면 내 예측 블록 내 경계 영역에 대해 더해질 수 있다. 이때, 경계 영역은 좌측 참조 샘플과 인접한 화면 내 예측 블록 내 N개의 열 및/또는 상단 참조 샘플과 인접한 화면 내 예측 블록 내 M개의 행일 수 있다. 이때, N과 M은 0을 포함한 양의 정수일 수 있다. N과 M은 상이하거나 동일할 수 있다. N과 M 중 적어도 하나는 블록의 크기 및 형태 중 적어도 하나에 기초하여 결정될 수 있다. 또는 N과 M에 관한 정보가 비트스트림에 포함되어 시그널링될 수 있다. 또는 N과 M은 부호화기/복호화기에서 기정의될 수 있다.
상기 오프셋 값은 Planar 모드로 생성된 화면 내 예측 블록 내 샘플들 중 적어도 하나의 샘플 값 또는 샘플 값들의 통계값과 현재 블록의 주변 참조 샘플들 중 적어도 하나의 샘플 값 또는 샘플 값들의 통계값과의 차이 값으로 결정될 수 있다.
예를 들어, Planar 모드로 생성된 화면 내 예측 블록 내 샘플들 전체의 평균값과 현재 블록의 주변 참조 샘플들 전체의 평균값과의 차이를 오프셋 값으로 결정할 수 있다.
예를 들어, Planar 모드로 생성된 화면 내 예측 블록 내 상단 경계 및 좌측 경계에 위치한 샘플들의 평균값과 현재 블록의 상단 및 좌측 참조 샘플들의 평균값과의 차이를 오프셋 값으로 결정할 수 있다. 이때 오프셋 값은 Planar 모드로 생성된 화면 내 예측 블록 내 상단 경계 및 좌측 경계에 위치한 샘플들에 더해질 수 있다.
예를 들어, Planar 모드로 생성된 화면 내 예측 블록 내 상단에 위치한 샘플들의 평균값과 현재 블록의 상단 참조 샘플들의 평균값과의 차이를 오프셋 값으로 결정할 수 있다. 이때 오프셋 값은 Planar 모드로 생성된 화면 내 예측 블록 내 상단에 위치한 샘플들에 더해질 수 있다.
예를 들어, Planar 모드로 생성된 화면 내 예측 블록 내 좌측에 위치한 샘플들의 평균값과 현재 블록의 좌측 참조 샘플들의 평균값과의 차이를 오프셋 값으로 결정할 수 있다. 이때 오프셋 값은 Planar 모드로 생성된 화면 내 예측 블록 내 좌측에 위치한 샘플들에 더해질 수 있다.
상기 실시예에서, 통계값으로서 평균값이 사용되었으나, 이에 한정되지 않으며, 전술한 다양한 통계값 중 적어도 하나가 이용될 수 있다.
Planar 모드로 생성된 화면 내 예측 블록에 오프셋 값을 더할지 여부는 현재 블록의 부호화 파라미터 및 주변 블록의 부호화 파라미터 중 적어도 하나에 기반하여 결정될 수 있다. 또는 오프셋 가산 수행 여부, 어떤 오프셋을 가산할 지에 관한 오프셋 타입 등의 정보 중 적어도 하나가 비트스트림에 포함되어 시그널링될 수도 있다.
상기 Planar 모드에서 현재 화면 내 예측 블록 내 좌측 경계 및 상단 경계 적어도 하나에 대해 화면 내 예측 모드, 블록의 크기, 블록의 형태, 필터 계수, 필터 모양 및 필터 탭 수 중 적어도 하나에 기반한 경계 필터링이 수행될 수 있다.
상기 경계 필터링은 좌측 참조 샘플과 인접한 화면 내 예측 블록 내 N개의 열에 포함된 적어도 하나의 샘플 및/또는 상단 참조 샘플과 인접한 화면 내 예측 블록 내 M개의 행에 포함된 적어도 하나의 샘플에 대해 수행될 수 있다. 이때, N과 M은 0을 포함한 양의 정수일 수 있다. N과 M은 상이하거나 동일할 수 있다. N과 M 중 적어도 하나는 블록의 크기 및 형태 중 적어도 하나에 기초하여 결정될 수 있다. 또는 N과 M에 관한 정보가 비트스트림에 포함되어 시그널링될 수 있다. 또는 N과 M은 부호화기/복호화기에서 기정의될 수 있다.
Planar 모드로 생성된 화면 내 예측 블록의 예측 정확도 향상을 위해, Planar 모드로 생성된 화면 내 예측 블록에 오프셋 값을 더해주는 상기 실시예는 Planar 모드 이외의 다른 화면 내 예측 모드에도 적용될 수 있다. 이 경우, 상기 설명에서 Planar 모드는 방향성 모드 또는 DC 모드로 대체될 수 있다.
다른 실시 예로서, 복수 개의 참조 샘플 라인을 이용하여 Planar 예측을 수행할 수 있다. 예를 들어, 2 개의 참조 샘플 라인의 가중합을 이용하여 예측할 수 있다. 예를 들어, 2 개의 참조 샘플 라인에 포함된 참조 샘플들의 가중합이 이용될 수 있다. 이 경우, 제1 참조 샘플 라인에서 선택된 참조 샘플과 인접한 참조 샘플이 제2 참조 샘플 라인으로부터 선택될 수 있다. (-1, -1) 좌표의 참조 샘플에 대해서는 (-2, -2) 좌표의 참조 샘플이 선택될 수 있다. 상기 선택된 참조 샘플들의 가중합으로써 Planar 예측이 수행될 수 있으며, 가중치는 DC 예측에서 설명된 바와 같다.
방향성 예측 모드의 경우, 수평 모드, 수직 모드 및 소정의 각도를 가지는 모드 중 적어도 하나 이상의 모드일 수 있다.
수평 또는 수직 모드의 경우, 예측 대상 샘플의 위치에서 수평 또는 수직 선상에 존재하는 하나 이상의 참조 샘플을 이용하여 예측을 수행할 수 있다. 복수의 참조 샘플 라인이 이용될 수 있으며, 예컨대, 2 개의 참조 샘플 라인이 이용되는 경우, 수평 또는 수직 선상의 2 개의 참조 샘플을 이용하여 예측을 수행할 수 있다. 마찬가지로, N 개의 참조 샘플 라인이 이용되는 경우, 수평 또는 수직 선상의 N 개의 참조 샘플들이 이용될 수 있다.
수직 모드의 경우, 첫 번째 참조 샘플 라인 상의 제1 참조 샘플(예컨대, r[x, -1])과 두 번째 참조 샘플 라인 상의 제2 참조 샘플(예컨대, r[x, -2]) 의 통계값으로 예측을 수행할 수 있다.
예를 들어, (3*r[x, -1] + r[x, -2] +2)>>2 의 값을 계산하여 수직 모드의 예측값을 결정할 수 있다. 또는, (3*r[x, -1] - r[x, -2] +1)>>1 의 값을 계산하여 수직 모드의 예측값을 결정할 수 있다. 또는, (r[x, -1] + r[x, -2] +1)>>1 의 값을 계산하여 수직 모드의 예측값을 결정할 수 있다.
예를 들어, 수직 선상의 샘플 값의 변화량이 고려될 수 있다. 예컨대, (r[x, -1] + (r[x, -1] - r[x, -2])>>N) 의 값을 계산하여 수직 모드의 예측값을 결정할 수 있다. 이 때, N은 1 이상의 정수일 수 있다. 상기 N은 고정된 값일 수 있다. 또는 예측 대상 샘플의 y 좌표가 증가함에 따라 N 값도 증가할 수 있다. 예를 들어, N = y+1 일 수 있다.
수평 모드의 경우에도, 상기 수직 모드에 대해 설명된 하나 이상의 방법이 이용될 수 있다.
소정의 각도를 가지는 모드의 경우, 화면 내 예측 대상 샘플의 위치에서 소정의 각도선 상 및 그 주변에 존재하는 하나 이상의 참조 샘플을 이용하여 예측을 수행 할 수 있다. 이 때, 상기 이용되는 참조 샘플은 N개로 2, 3, 4, 5, 6 개 중 적어도 하나일 수 있다. 또한, N 개의 참조 샘플에 N-tap 필터 즉, 예를 들어 2-tap, 3-tap, 4-tap, 5-tap, 6-tap 필터 중 적어도 하나를 적용함으로써 예측을 수행할 수 있다. 이 때, 참조 샘플의 적어도 하나는 현재 블록의 상단에, 나머지는 현재 블록의 좌측에 각각 위치할 수도 있다. 현재 블록의 상단에 위치하는 참조 샘플들(또는 좌측에 위치하는 참조 샘플들)은 서로 동일한 라인에 위치한 것일 수도 있고, 상이한 라인에 위치한 것일 수도 있다.
다른 실시 예로서, 화면 내 예측은 위치 정보에 기반하여 수행될 수 있다. 이 때 위치 정보는 부호화/복호화될 수 있으며 상기 위치에 있는 복원된 샘플 블록을 현재 블록의 화면 내 예측 블록으로 유도할 수 있다. 또는 복호화기에서 현재 블록과 유사한 블록을 검색하여 찾아낸 블록을 현재 블록의 화면 내 예측 블록으로 유도할 수 있다. 상기 유사한 블록을 검색하는 것은 부호화기 또는 복호화기에서 수행될 수 있으며, 상기 검색이 수행되는 범위(검색 범위)는 소정의 범위 내로 제한될 수 있다. 예컨대, 현재 블록을 포함하고 있는 픽처 중 복원된 샘플 블록이 상기 검색 범위일 수 있다. 또는 현재 블록을 포함하고 있는 CTU 또는 소정의 CU 크기가 상기 검색 범위일 수 있다. 즉, CTU 내에서 복원된 샘플 중 현재 블록과 유사한 블록을 찾아서 위치 정보 기반의 화면 내 예측을 수행할 수 있다. 상기 검색은 템플릿 기반으로 수행할 수 있다. 예컨대, 현재 블록 주변에 인접한 하나 이상의 복원 샘플을 템플릿으로 하고, 상기 템플릿과 유사한 샘플을 CTU 내에서 검색할 수 있다.
상기 CTU가 화면 내 부호화 모드로만 구성된 경우 또는 휘도 블록과 색차 블록이 서로 다른 분할 구조를 갖는 경우에 상기 위치 정보 기반 화면 내 예측을 수행할 수 있다. 예컨대, 화면 간 예측이 가능한 P/B 슬라이스의 경우, 현재 CTU 가 화면 내 부호화 모드로만 구성되었음을 나타내는 정보가 시그널링될 수 있다. 이때, 상기 정보가 화면 내 부호화 모드로만 구성됨을 나타내는 경우, 상기 위치 정보 기반의 화면 내 예측이 수행될 수 있다. 또는 현재 CTU의 휘도 블록과 색차 블록이 서로 다른 분할 구조를 갖는 것을 나타내는 경우(예컨대, dual_tree 또는 separate_tree가 1인 경우), 위치 정보 기반의 화면 내 예측이 가용할 수 있다. 반대로, CTU 내에 화면 내 부호화 블록과 화면 간 부호화 블록이 모두 존재하거나 휘도 블록과 색차 블록이 동일한 분할 구조를 갖는 경우, 위치 정보 기반의 화면 내 예측이 비가용할 수 있다.
다른 실시 예로서, 색 성분간 화면 내 예측이 수행될 수 있다. 예를 들어, 현재 블록의 복원된 휘도 성분을 이용하여 색차 성분에 대한 화면 내 예측을 수행할 수 있다. 또는, 현재 블록의 복원된 하나의 색차 성분 Cb를 이용하여 다른 색차 성분 Cr에 대한 화면 내 예측을 수행할 수 있다.
색 성분간 화면 내 예측은 색 성분 블록 재구성 단계, 예측 파라미터 유도 단계 및/또는 색 성분간 예측 수행 단계를 포함할 수 있다. 상기 색 성분은 휘도(luma) 신호, 색차(chroma) 신호, Red, Green, Blue, Y, Cb, Cr 중 적어도 하나를 의미할 수 있다. 제2 색 성분, 제3 색 성분, 제4 색 성분 중 적어도 하나 이상을 이용하여 상기 제1 색 성분에 대한 예측을 수행할 수 있다. 이 때, 예측에 이용되는 색 성분의 신호는 원본 신호, 복원된 신호, 잔차/레지듀얼 신호, 예측 신호 중 적어도 하나일 수 있다.
제2 색 성분 대상 블록에 대해 화면 내 예측을 수행할 때, 상기 대상 블록에 대응하는 제1 색 성분 대응 블록의 샘플 및/또는 대응 블록의 주변 블록의 샘플 중 적어도 하나 이상의 샘플을 이용할 수 있다. 예를 들어, 색차 성분 블록 Cb 또는 Cr에 대해 화면 내 예측을 수행할 때, 상기 색차 성분 블록에 대응하는 복원된 휘도 성분 블록 Y를 이용할 수 있다.
휘도 성분을 이용하여 색차 성분을 예측하는 경우, 아래의 수학식 8이 사용될 수 있다.
Figure 112018118831960-pat00012
상기 수학식 8에서, PredC (i, j)는 현재 블록에 대한 예측 색차 샘플을 나타내고, recL(i, j)는 현재 블록의 복원된 휘도 샘플을 나타낼 수 있다. 이 때, recL'(i, j)는 다운 샘플링된 복원된 휘도 샘플일 수 있다. 파라미터 α 및 β는 현재 블록 주변의 복원된 휘도 샘플 및 복원된 색차 샘플 사이의 회귀 오차(regression error)를 최소화함으로써 유도될 수 있다.
휘도 성분을 이용하여 색차 성분을 예측하기 위한 두 가지 모드가 존재할 수 있다. 상기 두 가지의 모드는 단일 모델 모드(single model mode)와 복합 모델 모드(multiple model mode)를 포함할 수 있다. 단일 모델 모드는 현재 블록에 대해서 휘도 성분으로부터 색차 성분을 예측할 때, 하나의 선형 모델을 이용할 수 있다. 복합 모델 모드는 두 가지 선형 모델을 이용할 수 있다.
복합 모델 모드의 경우, 현재 블록에 인접한 샘플들(인접 휘도 샘플들 및 인접 색차 샘플들)은 두 개의 그룹으로 분류될 수 있다. 즉, 각각의 그룹에 대한 파라미터 α 및 β가 각각 유도될 수 있다. 또한, 인접 휘도 샘플들의 분류에 사용된 규칙에 기초하여 현재 블록의 휘도 샘플들의 분류가 수행될 수 있다.
도 16은 인접한 샘플들을 두 개의 그룹으로 분류하는 일 실시예를 설명하기 위한 도면이다.
도 16에 있어서, 예를 들어, 인접 샘플들을 두 개의 그룹으로 분류하기 위한 임계치가 계산될 수 있다. 임계치는 복원된 인접 휘도 샘플들의 평균값으로 계산될 수 있다. 그러나, 이에 한정되지 않으며, 본 명세서에서 인지하고 있는 다양한 통계값 중 적어도 하나가 평균값 대신 이용될 수 있다. 인접 샘플이 임계치보다 크면 제1 그룹으로, 그렇지 않으면 제2 그룹으로 분류할 수 있다. 예컨대, 현재 블록의 예측 색차 샘플(PredC[x, y])은 이웃 휘도 샘플(Rec'L[x, y])이 임계치(Threshold)보다 큰지 아닌지에 따라 아래의 수학식 9에 의해 유도될 수 있다.
상기에서, 복합 모델 모드는 두 가지 선형 모델을 이용하는 것으로 설명되었으나, 이에 한정되지 않으며, 둘 이상의 선형 모델을 이용하는 경우를 포함할 수 있다. 이 때, N 개의 선형 모델을 이용하는 경우, 샘플들은 N 개의 그룹으로 분류될 수 있으며, 이를 위해, N-1 개의 임계치가 계산될 수 있다.
전술한 바와 같이, 휘도 성분으로부터 색차 성분을 예측할 때, 선형 모델이 이용될 수 있다. 이 때, 선형 모델은 단순 선형 모델(이하, 'LM1'이라 함), 복합 선형 모델(이하, 'LM2'라 함), 복합 필터 선형 모델(이하, 'LM3'이라 함)을 포함할 수 있다. 상기 모델들의 파라미터는 현재 블록 주변의 복원된 휘도 샘플 및 복원된 색차 샘플 사이의 회귀 오차(regression error)를 최소화함으로써 유도될 수 있다.
도 17은 상기 모델들의 파라미터를 유도하기 위해 이용되는 현재 블록의 주변 샘플들(이하, '인접 데이터 셋'이라 함)을 설명하기 위한 도면이다.
LM1의 파라미터를 유도하기 위한 인접 데이터 셋은, 도 17에 도시된 라인 영역 B와 라인 영역 C의 휘도 샘플과 색차 샘플의 쌍으로 구성될 수 있다. LM2 및 LM3의 파라미터를 유도하기 위한 인접 데이터 셋은, 도 17에 도시된 라인 영역 B, 라인 영역 C, 라인 영역 E 및 라인 영역 F의 휘도 샘플과 색차 샘플의 쌍으로 구성될 수 있다.
그러나, 인접 데이터 셋은 상기 설명한 예로 한정되지 않는다. 예컨대, 현재 블록 내의 휘도 샘플과 색차 샘플 사이의 다양한 선형 관계를 커버하기 위해, 각 모드에 대해 N 개의 인접 데이터 셋을 이용할 수 있다. 예컨대, N은 2 이상의 정수로서, 특히 3일 수 있다.
복수의 인접 데이터 셋은 예컨대, T0 = {B, C}, T1 = {B, C, E, F}, T2 = {A, B, C, D}, T3 = {C, D, F, H}, T4 = {A, B, E, G} 중 적어도 하나일 수 있다. 예컨대, LM1에 대한 인접 데이터 셋으로서, T0가 이용될 수 있다. 또한, LM2 또는 LM3에 대한 인접 데이터 셋으로서, T1 또는 T2가 이용될 수 있다.
LM1의 다른 실시예로서, 최종 예측 색차 샘플 P(x, y)은 DC, Planar 또는 방향성 모드로 예측하여 획득된 선형 예측 샘플 P0(x, y)와 선형 예측 샘플 P1(x, y)의 조합(예컨대, 통계값)으로서 생성될 수 있다. 예컨대, 아래의 수학식 10이 이용될 수 있다.
다른 실시예로서, LM1 및/또는 LM2는 방향성 선형 예측에 이용될 수 있다. 현재 색차 블록이 방향성 선형 모드로 부호화된 경우, LM1 및 LM2 중 대응하는 모드를 지시하는 플래그가 시그널링될 수 있다.
선형 모델의 파라미터는 상단 템플릿과 좌측 템플릿을 모두 사용하여 계산될 수 있다. 또는 두 개의 LM 모드들(LM_A 모드 및 LM_L 모드)이 존재하고, 상단 템플릿과 좌측 템플릿은 각각 LM_A 모드 및 LM_L 모드에서 사용될 수 있다. 즉, LM_A 모드에서는 상단 템플릿(또는 상단 복원 샘플)만을 이용하여 선형 모델 파라미터를 구할 수 있다. 현재 블록의 좌측상단 코너 샘플의 위치를 (0, 0)이라 할 때, 상단 템플릿은 (0, -n) 내지 (W+H-1, -n) 혹은 (2xW-1, -n)까지 확장될 수 있다. 즉, 상단 템플릿은 현재 블록의 가로 크기에 대해 2배의 크기로 샘플들이 구성될 수 있다. 이 때, n은 1 이상의 정수일 수 있다. 마찬가지로, LM_L 모드에서는 좌측 템플릿(또는 좌측 복원 샘플)만을 이용하여 선형 모델 파라미터를 구할 수 있다. 좌측 템플릿은 (-n, 0) 내지 (-n, H+W-1) 혹은 (-n, 2xH-1)까지 확장될 수 있다. 즉, 좌측 템플릿은 현재 블록의 세로 크기에 대해 2배의 크기로 샘플들이 구성될 수 있다. 이 때, n은 1 이상의 정수일 수 있다. 여기서, W와 H는 각각 현재 블록의 가로 및 세로의 길이를 의미할 수 있다.
선형 모델의 파라미터를 유도하기 위해 2의 제곱승개의 샘플들이 이용될 수 있다. 현재 색차 블록이 정사각형이 아닐 경우, 선형 모델의 파라미터를 유도하기 위해 이용되는 샘플들은, 현재 블록의 가로 및 세로 중 짧은 쪽의 개수를 기준으로 결정될 수 있다. 한 실시 예에 따르면, 현재 블록의 크기가 n x m이고, n > m 일 때, 상단에 인접한 n 개의 샘플들 중 m 개의 샘플들이, 예컨대, 서브샘플링을 균등하게 수행함으로써, 선택될 수 있다. 이 경우, 선형 모델의 파라미터를 유도하기 위해 이용되는 샘플들의 개수는 2m 개일 수 있다. 다른 실시 예로서, 현재 블록의 크기가 n x m이고, n > m 일 때, 상단에 인접한 n 개의 샘플들 중 m 개의 샘플들은 사용하지 않을 수 있다. 예컨대, n 개의 샘플들 중, 현재 블록의 가로 및 세로 중 짧은 쪽에서 가장 멀리 떨어진 m 개의 샘플들은 사용하지 않을 수 있다. 이 경우, 선형 모델의 파라미터를 유도하기 위해 이용되는 샘플들의 개수는 n 개(상단에 인접한 샘플 n-m개 + 좌측에 인접한 샘플 m개)일 수 있다.
또는, 현재 블록이 비정방형인 경우, 추가적으로 (n-W-H) 개의 샘플들이 (W+H) 개의 샘플들로부터 동일한 간격으로 추출될 수 있다. 이 때, n은 선형 모델의 예측 파라미터를 계산하기 위해 이용되는 참조 샘플들의 개수를 의미할 수 있다. n은 (W+H)보다 작지 않고, 2의 제곱승의 값을 갖는 가장 작은 정수일 수 있다.
전술한 바와 같이, 예측 파라미터를 유도하기 위해 필요한 샘플의 개수는 2의 제곱승개일 수 있다.
도 18은 현재 블록이 비정방형 블록인 경우, 예측 파라미터를 유도하기 위해 사용되는 참조 샘플들을 예시적으로 도시한 도면이다.
일 실시예에 따르면, 현재 블록이 비정방형 블록인 경우, 도 18의 (a)에 도시된 바와 같이, 블록의 세로 및 가로 중, 짧은 쪽에 위치하는 이웃 샘플들의 개수와 매칭되도록 긴 쪽에 위치하는 이웃 샘플들을 일정한 간격으로 서브 샘플링할 수 있다.
다른 실시예에 따르면, 도 18의 (b)에 도시된 바와 같이, 긴 쪽에 위치하는 이웃 샘플들 중, 짧은 쪽으로부터 가장 먼 위치의 샘플들은 사용되지 않을 수 있다. 또한, 긴 쪽에 위치하는 샘플들 중, 사용되지 않는 샘플들의 개수는 짧은 쪽에 위치하는 이웃 샘플들의 개수와 동일할 수 있다.
즉, 도 18을 참조하여 설명한 실시예를 이용함으로써, 예측 파라미터를 유도하기 위해 필요한 2의 제곱승개의 샘플을 구성할 수 있다
부호화기는 선형 모델이 적용되는지 여부에 관한 정보를 전송할 수 있다. 선형 모델이 적용될 수 있는지에 관한 정보는 예컨대, 시퀀스 파라미터 셋(SPS)을 통해 전송될 수 있다. 선형 모델이 적용되는 경우, 부호화기는 색차 블록 단위로 LM_A 모드 및 LM_L 모드 중 적어도 하나가 적용되는지 여부에 관한 정보를 전송할 수 있다. LM_A 모드 및 LM_L 모드 중 적어도 하나가 적용되는 경우, 부호화기는 둘 중 하나를 지시하는 정보를 전송할 수 있다. 해당 정보는 룩업 테이블에 대한 인덱스 정보로서 전송될 수 있다. 상기 룩업 테이블은 색차 블록의 화면 내 예측 모드를 유도하기 위한 것일 수 있다. 상기 룩업 테이블은 LM_A 모드 및 LM_L 모드뿐만 아니라, 상단 템플릿과 좌측 템플릿을 모두 사용하는 LM 모드에 관한 정보도 포함할 수 있다.
상기 LM_A 모드 혹은 LM_L 모드를 시그널링할 때 상단 템플릿과 좌측 템플릿을 모두 사용하여 선형 모델의 파라미터를 산출하는 CCLM(cross component linear model) 모드 보다 더 긴 길이의 빈 스트링(bin string)을 할당할 수 있다.
예를 들어, 색차 블록의 화면 내 예측 모드가 상단 템플릿과 좌측 템플릿을 모두 사용하여 선형 모델의 파라미터를 산출하는 CCLM 모드인 경우, M개의 빈(bin)을 이용해서 엔트로피 부호화/복호화할 수 있다.
예를 들어, 색차 블록의 화면 내 예측 모드가 LM_A 모드 혹은 LM_L 모드인 경우, N개의 빈을 이용해서 엔트로피 부호화/복호화할 수 있다.
여기서, 상기 M은 N보다 작거나 같을 수 있고, 양의 정수일 수 있다. 일 예로 상기 M은 1 혹은 2이며, N은 3 혹은 4일 수 있다.
또한, 상기 상단 템플릿과 좌측 템플릿을 모두 사용하여 선형 모델의 파라미터를 산출하는 CCLM 모드를 지시하는 플래그를 엔트로피 부호화/복호화한 후, 상기 플래그가 특정 값인 경우 LM_A 모드 혹은 LM_L 모드를 추가로 지시하는 플래그 혹은 인덱스를 엔트로피 부호화/복호화할 수 있다.
색 성분간 화면 내 예측의 다른 실시예들로서, 좌측 선형 모델 모드, 상단 선형 모델 모드, CbCr 선형 모델 모드 및 퓨전 선형 모델 모드 중 하나가 이용될 수 있다.
좌측 선형 모델 모드, 상단 선형 모델 모드 및 CbCr 선형 모델 모드는 색 성분간 선형 모델의 예측 파라미터를 유도하는 방법일 수 있다.
좌측 선형 모델 모드의 경우, 현재 블록에 이웃하는 2개의 좌측 칼럼에 포함된 복원된 샘플들을 이용하여, 복원된 이웃 휘도 성분과 이웃 색차(Cb) 성분 사이의 선형 모델의 예측 파라미터를 결정할 수 있다.
상단 선형 모델 모드의 경우, 현재 블록에 이웃하는 2개의 상단 열에 포함된 복원된 샘플들을 이용하여, 복원된 이웃 휘도 성분과 이웃 색차(Cb) 성분 사이의 선형 모델의 예측 파라미터를 결정할 수 있다.
좌측 선형 모델 모드와 상단 선형 모델 모드는 현재 블록의 복원된 상단 이웃 샘플 또는 복원된 좌측 이웃 샘플이 가용하지 않을 때, 암묵적으로 사용될 수 있다.
CbCr 선형 모델 모드의 경우, 두 개의 선형 모델이 유도될 수 있다. 두 개의 선형 모델 중 하나는 복원된 휘도 성분과 Cb 성분 사이의 선형 모델이고, 다른 하나는 복원된 Cb 성분과 Cr 성분 사이의 선형 모델일 수 있다.
퓨전 선형 모델 모드는 선형 모델을 이용한 예측과 다른 모드를 이용한 예측을 조합한 형태로 선형 모델을 이용한 예측 블록과 다른 모드를 이용한 예측 블록의 가중합을 이용하여 화면 내 예측을 수행하는 예측 모드일 수 있다. 다른 모드는 예컨대, DM(Derived Mode) 모드, DC 모드, Planar 모드, 수직 모드, 수평 모드, 방향성 모드일 수 있다.
또는, Cr 성분 블록에 대해 화면 내 예측을 수행할 때, Cb 성분 블록을 이용할 수 있다. 또는, 제4 색 성분 블록에 대해 화면 내 예측을 수행할 때, 상기 블록에 대응하는 제1 색 성분 블록, 제2 색 성분 블록, 제3 색 성분 블록 중 적어도 하나 이상의 조합을 이용할 수 있다.
색 성분간 화면 내 예측을 수행할 지 여부는 현재 대상 블록의 크기 및 형태 중 적어도 하나에 기반하여 결정될 수 있다. 예를 들어, 대상 블록의 크기가 CTU 크기이거나, 소정의 크기 이상이거나, 소정의 크기 범위에 해당하는 경우, 상기 대상 블록에 대해 색 성분간 화면 내 예측을 수행할 수 있다. 또는, 대상 블록의 형태가 소정의 형태인 경우, 상기 대상 블록에 대해 색 성분간 화면 내 예측을 수행할 수 있다. 상기 소정의 형태는 정사각형일 수 있다. 이 경우, 대상 블록이 직사각형이면, 색 성분간 화면 내 예측은 수행되지 않을 수도 있다. 상기 소정의 형태가 직사각형인 경우, 전술한 실시예는 반대로 동작할 수 있다.
또는, 색 성분간 화면 내 예측을 수행할 지 여부는 예측 대상 블록에 대응하는 대응 블록 및 대응 블록의 주변 블록 중 적어도 하나 이상의 부호화 파라미터에 기초하여 결정될 수도 있다. 예를 들어, CIP(Constrained intra prediction) 환경하에서 대응 블록이 화면 간 예측된 경우, 색 성분간 화면 내 예측은 수행되지 않을 수 있다. 또는, 대응 블록의 화면 내 예측 모드가 소정의 모드에 해당하는 경우, 색 성분간 화면 내 예측이 수행될 수 있다. 또는, 대응 블록 및 주변 블록의 CBF 정보 중 적어도 하나 이상에 기초하여 색 성분간 화면 내 예측 수행 여부를 결정할 수도 있다. 상기 부호화 파라미터는 블록의 예측 모드에 한정되지 않으며, 부호화/복호화에 이용될 수 있는 전술한 다양한 파라미터가 이용될 수 있다.
색 성분 블록 재구성 단계에 대해 이하에서 설명한다.
제1 색 성분 블록을 이용하여 제2 색 성분 블록을 예측할 때, 상기 제1 색 성분 블록을 재구성할 수 있다. 예를 들어, 영상의 색 공간이 YCbCr 이며, 색 성분간 비율이 4:4:4, 4:2:2, 4:2:0 중 하나일 경우 색 성분간 블록의 크기가 상이할 수 있다. 따라서, 크기가 다른 제1 색 성분 블록을 이용하여 제2 색 성분 블록을 예측할 때, 두 블록의 크기를 같게 하기 위해 상기 제1 색 성분 블록을 재구성할 수 있다. 이 때, 재구성된 블록은 상기 제1 색 성분 대응 블록의 샘플 및 주변 블록의 샘플 중 적어도 하나 이상을 포함할 수 있다.
도 19는 색 성분 블록의 재구성을 설명하기 위한 예시도이다.
도 19의 (a)에서, p1[x, y]는 제1 색 성분 블록의 (x, y) 위치의 샘플을 나타낼 수 있다. 도 19의 (b)에서, p1'[x, y]은 상기 제1 색 성분 블록을 재구성한 블록의 (x, y) 위치의 샘플을 나타낼 수 있다.
제1 색 성분 블록의 크기가 제2 색 성분 블록의 크기보다 큰 경우, 상기 제1 색 성분 블록을 다운 샘플링(down-sampling)하여 제2 색 성분 블록의 크기와 같은 크기의 블록으로 재구성할 수 있다. 상기 다운 샘플링은 하나 이상의 샘플에 대해 N-tap 필터를 적용하여 수행될 수 있다(N은 1이상의 정수). 이 때, 아래의 수학식 11 내지 수학식 15 중 적어도 하나 이상의 수학식이 이용될 수 있다. 복수의 다운 샘플링 방법 중 하나가 선택적으로 사용되는 경우, 부호화기는 하나의 다운 샘플링 방법을 소정의 방법으로 선택할 수 있다. 예컨대, 부호화기는 최적의 효과를 갖는 다운 샘플링 방법을 선택할 수 있다. 선택된 다운 샘플링 방법은 부호화되어 복호화기로 시그널링될 수 있다. 시그널링되는 정보는 다운 샘플링 방법을 지시하는 인덱스 정보일 수 있다.
Figure 112018118831960-pat00015
Figure 112018118831960-pat00016
Figure 112018118831960-pat00017
Figure 112018118831960-pat00018
Figure 112018118831960-pat00019
상기 하나 이상의 샘플에 대해 N-tap 필터를 적용하는 경우, 주변 블록의 참조 샘플은 복수의 참조 샘플 라인에 포함될 수 있다. 이때, 제1 색 성분 블록에 인접한 복수의 참조 샘플 라인 중 제1 색 성분 블록에 인접한 참조 샘플 라인일수록 필터 적용 시 상대적으로 큰 필터 계수 혹은 가중치를 사용할 수 있다. 예를 들어, 도 9의 복원 샘플 라인 1에 대해서는 3/4의 필터 계수를 사용하고, 복원 샘플 라인 2에 대해서는 1/4의 필터 계수를 사용할 수 있다. 이때, 필터 계수 혹은 가중치는 샘플 단위, 샘플 그룹 단위, 라인 단위 및 블록 단위 중 적어도 하나의 단위에서 서로 다른 값을 사용할 수 있다. 필터 계수 혹은 가중치는 상기 현재 블록의 화면 내 예측 모드, 블록의 분할 깊이, 블록의 크기, 블록의 형태 및 샘플의 위치 중 적어도 하나 이상에 따라 다르게 적용할 수 있다. 상기 복수의 참조 샘플 라인 사용 여부는 현재 블록의 부호화 파라미터 및 주변 블록의 부호화 파라미터 중 적어도 하나에 기반하여 결정될 수 있다.
둘 이상의 샘플을 이용하여 다운 샘플링을 수행하는 방법은 상기 수학식 11 내지 수학식 15의 실시예로 한정되지 않는다. 예컨대, 다운 샘플링된 값 p1'[x, y]를 계산하기 위해 이용될 수 있는 둘 이상의 샘플들은 p1[2x, 2y] 및 이에 인접한 샘플들로부터 선택될 수 있다. 상기 인접한 샘플들은 p1[2x-1, 2y-1], p[2x-1, 2y], p1[2x-1, 2y+1], p1[2x, 2y-1], p1[2x, 2y+1], p1[2x+1, 2y-1], p1[2x+1, 2y], p1[2x+1, 2y+1]로부터 선택될 수 있다. 둘 이상의 샘플들을 이용하여 평균 또는 가중 평균을 계산함으로써 다운 샘플링을 수행할 수 있다.
또는, 상기 다운 샘플링은 하나 이상의 샘플 중에서 특정 샘플을 선택하여 수행될 수 있다. 이 때, 아래의 수학식 16 내지 수학식 19 중 적어도 하나 이상의 수학식이 이용될 수 있다.
Figure 112018118831960-pat00020
Figure 112018118831960-pat00021
Figure 112018118831960-pat00022
Figure 112018118831960-pat00023
제1 색 성분 블록의 크기가 제2 색 성분 블록의 크기보다 작은 경우, 상기 제1 색 성분 블록을 업 샘플링(up-sampling)하여 제2 색 성분 블록의 크기와 같은 크기의 블록으로 재구성할 수 있다. 이 때, 아래의 수학식 20이 이용될 수 있다.
Figure 112018118831960-pat00024
상기 재구성 과정을 수행함에 있어, 하나 이상의 샘플에 대해 필터를 적용할 수 있다. 예를 들어, 상기 제1 색 성분 대응 블록, 대응 블록의 주변 블록, 제2 색 성분 대상 블록, 대상 블록의 주변 블록 중 적어도 하나 이상에 포함된 하나 이상의 샘플에 대해 필터를 적용할 수 있다.
전술한 참조 샘플 구성 단계에서, 복수의 참조 샘플 라인 중 소정의 라인에 해당하는 mrl_index 지시자가 시그널링될 수 있다. 이 때, 상기 재구성 과정에서는 상기 시그널링된 mrl_index 지시자에 해당하는 소정의 라인을 이용하여 재구성을 수행할 수 있다. 예컨대, 상기 mrl_index 지시자가 0인 경우, 제1 색 성분 대응 블록에 인접한 첫번째 및 두번째 참조 샘플 라인을 이용하여 재구성 과정을 수행할 수 있다. 또는 상기 mrl_index 지시자가 1인 경우, 제1 색 성분 대응 블록에 인접한 두번째 및 세번째 참조 샘플 라인을 이용하여 재구성 과정을 수행할 수 있다. 또는 상기 mrl_index 지시자가 3인 경우, 제1 색 성분 대응 블록에 인접한 세번째 및 네번째 참조 샘플 라인을 이용하여 재구성 과정을 수행할 수 있다. 제2 색 성분 대상 블록에 대하여 상기 mrl_index 지시자에 해당하는 참조 샘플 라인을 이용할 수 있다.
상기 재구성 과정을 수행함에 있어, 제2 색 성분 대상 블록의 경계 또는 대응하는 제1 색 성분 대응 블록의 경계 중 적어도 하나가 소정 영역의 경계에 해당하는 경우 재구성에 이용되는 참조 샘플을 다르게 선택할 수 있다. 이 때, 상단의 참조 샘플 라인의 개수와 좌측의 참조 샘플 라인의 개수가 서로 다를 수 있다. 상기 소정 영역은 예컨대, 픽처, 슬라이스, 타일 그룹, 타일, CTU, CU 중 적어도 하나일 수 있다.
예를 들어, 상기 제1 색 성분 대응 블록의 상단 경계가 상기 소정 영역의 경계에 해당하는 경우, 상단의 참조 샘플은 이용하지 않고 좌측의 참조 샘플만을 이용하여 재구성을 수행할 수 있다. 상기 제1 색 성분 대응 블록의 좌측 경계가 상기 소정 영역의 경계에 해당하는 경우, 좌측의 참조 샘플은 이용하지 않고 상단의 참조 샘플만을 이용하여 재구성을 수행할 수 있다. 또는, N개의 상단 참조 샘플 라인과 M개의 좌측 참조 샘플 라인을 이용할 수 있으며, 이때, N은 M 보다 작을 수 있다. 예컨대, 상단 경계가 상기 소정 영역의 경계에 해당하는 경우, N은 1일 수 있고, 좌측 경계가 상기 소정 영역의 경계에 해당하는 경우, M은 1일 수 있다.
또는, 상기 소정 영역의 경계에 해당하는지의 여부에 관계없이, 상기 제1 색 성분 대응 블록의 N개의 상단 참조 샘플 라인 및/또는 M개의 좌측 참조 샘플 라인을 이용하여 재구성을 수행할 수도 있다.
도 20은 복수의 상단 및/또는 좌측 참조 샘플 라인을 이용하여 재구성을 수행하는 실시예를 설명하기 위한 도면이다.
도 20의 (a)에 도시된 바와 같이, 4개의 상단 참조 샘플 라인 및 4개의 좌측 참조 샘플 라인을 이용하여 재구성을 수행할 수 있다.
예를 들어, 제1 색 성분 대응 블록의 상단 또는 좌측의 경계가 상기 소정 영역의 경계에 해당하는 경우, 재구성에 이용되는 상단 및 좌측 참조 샘플 라인의 개수는 상이할 수 있다. 예컨대, 도 20의 (b) 내지 (d)에 도시된 바와 같이, 2개의 상단 참조 샘플 라인 및 4개의 좌측 참조 샘플 라인을 이용하거나, 1개의 상단 참조 샘플 라인 및 3개의 좌측 참조 샘플 라인을 이용하거나, 1개의 상단 참조 샘플 라인 및 2개의 좌측 참조 샘플 라인을 이용할 수 있다.
이용되는 참조 샘플 라인의 수는 상기 예에 한정되지 않으며, N개의 상단 참조 샘플 라인과 M개의 좌측 참조 샘플 라인이 이용될 수 있다. N, M은 동일하거나 상이할 수 있다. 상단 및 좌측의 경계가 모두 상기 소정 영역의 경계에 해당하는 경우, N과 M은 동일할 수 있으며, 예컨대 1일 수 있다. 또는, 동일한 조건에서 N은 M보다 작게 설정될 수 있다. 이는 좌측 참조 샘플 라인보다 상단 참조 샘플 라인을 저장하는데 더 많은 자원(메모리)이 필요하기 때문이다.
또는, 도 20의 (e)에 도시된 바와 같이, 제1 색 성분 대응 블록의 가로 및 세로의 길이를 벗어나지 않는 하나 이상의 참조 샘플을 이용하여 재구성을 수행할 수도 있다.
상기 재구성을 수행함에 있어, 제1 색 성분 대응 블록 및 그 주변 블록, 제2 색 성분 대상 블록 및 그 주변 블록 중 적어도 하나의 블록의 크기, 형태, 부호화 파라미터 중 적어도 하나에 따라 제1 색 성분 대응 블록의 참조 샘플 재구성을 다르게 수행할 수 있다.
예를 들어, 제1 색 성분 대응 블록 또는 주변 블록 중 부호화 모드가 화면 간 부호화 모드인 블록의 샘플은 이용하지 않고, 화면 내 부호화 모드인 블록의 샘플을 이용하여 참조 샘플을 재구성할 수 있다.
도 21은 대응 블록의 화면 내 예측 모드 또는 부호화 파라미터에 따라 재구성에 이용되는 참조 샘플을 설명하기 위한 예시도이다.
제1 색 성분 대응 블록의 화면 내 예측 모드에 따라 제1 색 성분 블록의 참조 샘플 재구성을 다르게 수행할 수 있다. 예컨대, 대응 블록의 화면 내 예측 모드가 DC 모드 또는 Planar 모드와 같이 비방향성 모드이거나, 상단 참조 샘플과 좌측 참조 샘플을 모두 이용하는 방향성 모드인 경우, 도 21의 (a)에 도시된 바와 같이, 상단 및 좌측에 존재하는 참조 샘플 중 적어도 하나 이상을 이용하여 재구성을 수행할 수 있다. 또는, 대응 블록의 화면 내 예측 모드가 상단 참조 샘플과 우상단 참조 샘플을 이용하는 방향성 모드인 경우, 도 21의 (b)에 도시된 바와 같이, 상단 및 우상단에 존재하는 참조 샘플 중 적어도 하나 이상을 이용하여 재구성을 수행할 수 있다. 또는, 대응 블록의 화면 내 예측 모드가 좌측 및 좌하단의 참조 샘플을 이용하는 방향성 모드인 경우, 도 21의 (c)에 도시된 바와 같이, 좌측 및 좌하단에 존재하는 참조 샘플 중 적어도 하나 이상을 이용하여 재구성을 수행할 수 있다.
또는, 제1 색 성분 대응 블록 또는 주변 블록 중 적어도 하나 이상의 양자화 파라미터에 따라 제1 색 성분 대응 블록의 참조 샘플 재구성을 다르게 수행할 수 있다. 예를 들어, 도 21의 (d)에 도시된 바와 같이, 주변 블록의 양자화 파라미터 값(QP)이 상대적으로 작은 위쪽 블록에 속한 참조 샘플을 이용하여 재구성을 수행 할수 있다.
또는, 제2 색 성분 대상 블록의 형태가 직사각형인 경우, 정사각형인 제1 색 성분 대응 블록 주변의 참조 샘플을 이용하여 재구성을 수행할 수 있다.
또는, 제2 색 성분 대상 블록이 2개의 블록(예컨대, 2개의 16x8 블록)으로 분할되고, 제1 색 성분 대응 블록은 예컨대, 32x16 블록인 경우, 32x32 블록 주변의 참조 샘플을 이용하여 재구성을 수행할 수 있다. 이때 상기 제2 색 성분 대응 블록 중 아래쪽에 위치한 두번째 16x8 블록에 대응하는 제1 색 성분 블록의 참조 샘플로서 상기 재구성한 32x32 블록 주변의 참조 샘플을 공유할 수 있다.
예측 파라미터 유도 단계에 대해 이하에서 설명한다.
상기 재구성한 제1 색 성분 대응 블록의 참조 샘플과 제2 색 성분 예측 대상 블록의 참조 샘플 중 적어도 하나 이상을 이용하여 예측 파라미터를 유도할 수 있다. 이하, 제1 색 성분 및 제1 색 성분 블록은 재구성한 제1 색 성분 및 재구성한 제1 색 성분 블록을 의미할 수 있다.
도 22는 제2 색 성분 예측 대상 블록이 4x4인 경우, 재구성된 제1 색 성분 대응 블록을 설명하기 위한 예시도이다. 이때, 참조 샘플 라인은 N개 일 수 있다.
예측 파라미터는, 도 22의 (a)에 도시된 바와 같이 재구성된 제1 색 성분 대응 블록 또는 제2 색 성분 예측 대상 블록의 상단과 좌측의 참조 샘플을 이용하여 유도될 수 있다.
예를 들어, 예측 파라미터는, 제1 색 성분 대응 블록의 화면 내 예측 모드에 기반하여, 상기 재구성된 제1 색 성분의 참조 샘플을 적응적으로 이용함으로써 유도될 수 있다. 이때, 제2 색 성분의 참조 샘플도 상기 제1 색 성분 대응 블록의 화면 내 예측 모드에 기반하여 적응적으로 이용될 수 있다.
제1 색 성분 대응 블록의 화면 내 예측 모드가 DC 모드 또는 Planar 모드와 같이 비방향성 모드이거나, 상단 참조 샘플과 좌측 참조 샘플을 모두 이용하는 방향성 모드인 경우, 도 22의 (a)에 도시된 바와 같이 제1 색 성분 대응 블록의 상단과 좌측 참조 샘플을 이용할 수 있다.
제1 색 성분 대응 블록의 화면 내 예측 모드가 상단 참조 샘플을 이용하는 방향성 모드인 경우, 도 22의 (b) 또는 (c)에 도시된 바와 같이, 제1 색 성분 대응 블록의 상단 참조 샘플을 이용할 수 있다.
제1 색 성분 대응 블록의 화면 내 예측 모드가 좌측 참조 샘플을 이용하는 방향성 모드인 경우, 도 22의 (d) 또는 (e)에 도시된 바와 같이, 제1 색 성분 대응 블록의 좌측 참조 샘플을 이용할 수 있다.
또는, 제1 색 성분 대응 블록의 화면 내 예측 모드가 방향성 모드인 경우, 각 모드마다 예측에 이용하는 참조 샘플을 상기 제1 색 성분의 참조 샘플로 이용할 수 있다. 예를 들어, 상기 화면 내 예측 모드가 수직 모드이면 도 22의 (b)에 도시된 참조 샘플을 이용할 수 있다. 상기 화면 내 예측 모드가 수평 모드이면 도 22의 (d)에 도시된 참조 샘플을 이용할 수 있다. 상기 화면 내 예측 모드가 우상단 대각선 모드이면 도 22의 (c)에 도시된 참조 샘플을 이용할 수 있다. 상기 화면 내 예측 모드가 좌하단 대각선 모드이면 도 22의 (e)에 도시된 참조 샘플을 이용할 수 있다. 상기 화면 내 예측 모드가 수직 모드와 우상단 대각선 모드의 사이에 존재하는 모드이면 도 22의 (f)에 도시된 참조 샘플을 이용할 수 있다. 상기 화면 내 예측 모드가 45도 대각선에 해당하는 방향성 모드인 경우, 도 22의 (g)와 같이 우상단 또는 좌하단의 참조 샘플 중 적어도 하나를 이용할 수 있다. 화면 내 예측 모드에 따라 이용되는 참조 샘플은 룩업 테이블(Look-up table)로 저장하여 이용할 수 있다.
예측 파라미터의 유도는 제1 색 성분 블록 및/또는 제2 색 성분 블록의 크기 및/또는 형태에 따라 상기 제1 색 성분 또는 제2 색 성분의 참조 샘플을 적응적으로 이용하여 수행될 수 있다.
예를 들어, 상기 제2 색 성분 대상 블록의 크기가 64x64인 경우, 상기 제1 색 성분 또는 제2 색 성분 블록의 상단 또는 좌측의 참조 샘플 중 32개, 16개 또는 8개의 참조 샘플이 이용될 수 있다. 상기와 같이, 제2 색 성분 대상 블록의 크기가 소정의 크기에 해당하는 경우, 상기 제1 또는 제2 색 성분 블록의 참조 샘플이 적응적으로 이용될 수 있다. 상기 소정의 크기는 64x64로 한정되지 않으며, 비트스트림을 통해 시그널링되거나, 현재 블록의 부호화 파라미터 및 주변 블록의 부호화 파라미터에 기초하여 유도되는 크기일 수 있다.
또는, 제2 색 성분 대상 블록의 형태가 직사각형인 경우, 가로 및 세로 중 긴 쪽에 인접한 참조 샘플이 이용될 수 있다. 예컨대, 상기 대상 블록의 형태가 32x8인 경우, 상기 제1 색 성분 또는 제2 색 성분 블록의 상단 참조 샘플이 이용될 수 있다.
또는, 제2 색 성분 대상 블록의 형태가 직사각형인 경우, 정사각형 블록의 참조 샘플을 이용할 수 있다. 예컨대, 상기 대상 블록의 형태가 32x8인 경우, 32x32 블록의 주변에 위치한 참조 샘플이 이용될 수 있다.
예측 파라미터의 유도는 상기 재구성된 제1 색 성분 블록의 참조 샘플 및 제2 색 성분 블록의 참조 샘플을 이용하여 수행될 수 있다. 상기 색 성분의 참조 샘플간 연관성, 변화량, 평균값, 분포 등 중 적어도 하나에 기반하여 예측 파라미터가 유도될 수 있다. 이 때, LS(Least Square), LMS(Least Mean Square) 등의 방법 중 적어도 하나가 이용될 수 있다.
LMS 방법을 이용하여 예측 파라미터를 유도하는 경우, 예측 파라미터는 a, b 또는 알파, 베타 중 적어도 하나일 수 있다. 아래의 수학식 21을 이용하여, 제1 색 성분 참조 샘플과 제2 색 성분 참조 샘플 간의 에러를 최소화하는 예측 파라미터를 유도할 수 있다.
Figure 112018118831960-pat00025
상기 수학식 21에서, p2n은 제2 색 성분의 참조 샘플, p1'n은 재구성된 제1 색 성분의 참조 샘플을 나타낼 수 있다. N은 이용되는 참조 샘플의 가로 또는 세로의 개수, a 및 b 는 예측 파라미터를 나타낼 수 있다.
이 때, 아래의 수학식 22을 이용하여, 참조 샘플 간의 연관성을 계산할 수 있다.
Figure 112018118831960-pat00026
상기 수학식 22에서, BitDepth는 비트 심도를 나타낼 수 있다. p1'은 재구성된 제1 색 성분의 샘플, p2는 제2 색 성분의 샘플을 나타낼 수 있다.
도 23은 제1 색 성분의 샘플 및 제2 색 성분의 샘플을 설명하기 위한 도면이다.
예측 파라미터를 유도할 때, 참조 샘플이 존재하지 않는 영역이 있는 경우 존재하는 참조 샘플만을 이용하여 예측 파라미터를 유도할 수 있다.
상기 예측 파라미터를 하나 이상 유도할 수 있다. 예를 들어, 상기 예측 파라미터를 유도하기 위해 이용하는 참조 샘플의 값이 특정 조건을 만족하는 참조 샘플들로부터 제1 예측 파라미터를 유도할 수 있다. 또한, 상기 특정 조건을 만족하지 않는 참조 샘플들로부터 제2 예측 파라미터를 유도할 수 있다. 상기 특정 조건은 참조 샘플의 값이 참조 샘플의 통계값(예컨대, 평균값) 보다 작은 경우에 해당할 수 있다.
본 발명의 다른 실시예에 따르면, 참조 샘플을 이용하여 예측 파라미터를 유도하지 않고, 기본 예측 파라미터(default parameter)가 이용될 수도 있다. 상기 기본 예측 파라미터는 부호화기와 복호화기에서 기정의될 수 있다. 예컨대, 예측 파라미터 a, b는 각각 1, 0일 수 있다.
또는, 예측 파라미터가 유도되는 경우, 유도된 예측 파라미터는 부호화/복호화될 수 있다.
Y, Cb, Cr 간의 색 성분간 예측을 수행하는 경우, Cb 와 Cr을 예측하기 위한 예측 파라미터를 Y로부터 각각 유도할 수도 있다. 또는 Cr을 예측하기 위한 예측 파라미터를 Cb로부터 유도할 수 있다. 또는 Cr을 예측하기 위한 예측 파라미터를 유도하지 않고, Cb를 예측하기 위해 Y로부터 유도한 예측 파라미터를 이용할 수 있다.
색 성분간 예측 수행 단계에 대해 이하에서 설명한다.
전술한 바와 같이, 예측 파라미터가 유도되면, 유도된 예측 파라미터 중 적어도 하나를 이용하여 색 성분간 화면 내 예측을 수행할 수 있다.
예를 들어, 아래의 수학식 23를 이용하여, 재구성된 제1 색 성분의 복원된 신호에 상기 유도된 예측 파라미터를 적용함으로써, 제2 색 성분 대상 블록에 대한 예측을 수행할 수 있다.
Figure 112018118831960-pat00027
상기 수학식 23에 있어서, p2[x, y]는 제2 색 성분 대상 블록의 예측 블록일 수 있다. p1'[x, y]는 제1 색 성분 블록 또는 재구성된 제1 색 성분 블록일 수 있다.
또는, 아래의 수학식 24을 이용하여, 재구성된 제1 색 성분의 잔차 신호에 상기 유도된 예측 파라미터를 적용함으로써 제2 색 성분 대상 블록에 대한 예측을 수행할 수도 있다.
Figure 112018118831960-pat00028
상기 수학식 24에 있어서, p1'_residual은 재1 색 성분의 잔차 신호를 나타낼 수 있다. 또한, p2_pred는 제2 색 성분 대상 블록에 대해 화면 내 예측을 수행하여 예측한 신호를 나타낼 수 있다.
상기 수학식 23 혹은 수학식 24으로부터 계산된 예측 샘플은 샘플 단위, 샘플 그룹 단위, 라인 단위, 블록 단위 중 적어도 하나 이상의 단위만큼만 제2 색 성분 대상 블록에 포함될 수 있다. 또한, 상기 계산된 예측 샘플은 화면 내 예측 블록 내 경계 영역에 적용될 수 있다. 이때, 경계 영역은 좌측 참조 샘플과 인접한 화면 내 예측 블록 내 N개의 열 및/또는 상단 참조 샘플과 인접한 화면 내 예측 블록 내 M개의 행일 수 있다. 이때, N과 M은 0을 포함한 양의 정수일 수 있다. N과 M은 화면 내 예측 모드, 블록의 분할 깊이, 블록의 형태 및 블록의 크기 중 적어도 하나에 기초하여 동일하거나 상이한 값으로 결정될 수 있다.
색 성분 간 화면 내 예측의 예측 정확도 향상을 위해, 상기 색 성분 간 화면 내 예측 수행 시, 제1 색 성분 대응 블록의 참조 샘플과 제2 색 성분 예측 대상 블록의 참조 샘플을 각각 상단에 존재하는 참조 샘플로만 구성하여 색 성분 간 화면 내 예측을 수행함으로써 수직 방향 색 성분 간 화면 내 예측 블록을 생성할 수 있다. 예컨대, LM_A 모드인 경우, 상단 참조 샘플만을 이용할 수 있다. 또한, 제1 색 성분 대응 블록의 참조 샘플과 제2 색 성분 예측 대상 블록의 참조 샘플을 각각 좌측에 존재하는 참조 샘플로만 구성하여 색 성분 간 화면 내 예측을 수행함으로써 수평 방향 색 성분 간 화면 내 예측 블록을 생성할 수 있다. 예컨대, LM_L 모드인 경우, 좌측 참조 샘플만을 이용할 수 있다. 상기 수직 방향 색 성분 간 화면 내 예측 블록과 수평 방향 색 성분 간 화면 내 예측 블록의 통계값을 계산하여 제2 색 성분 대상 블록의 화면 내 예측 블록을 생성할 수도 있다. 상기 통계값은 예컨대 가중합일 수 있다.
이때, 가중합은 샘플 단위, 샘플 그룹 단위, 라인 단위, 블록 단위 중 적어도 하나의 단위로 계산될 수 있다.
가중치 값은 상기 현재 블록의 화면 내 예측 모드, 블록의 분할 깊이, 블록의 크기, 블록의 형태 및 샘플의 위치 중 적어도 하나에 따라 다르게 적용할 수 있다.
이때, 샘플 단위, 샘플 그룹 단위, 라인 단위, 블록 단위 중 적어도 하나의 단위의 가중치가 상이할 수 있다.
상기 가중합 수행 여부에 대한 정보가 엔트로피 부호화/복호화될 수 있다. 또는, 부호화기와 복호화기에서 미리 설정된 기준에 따라 상기 가중합 수행 여부를 결정할 수 있다. 또는, 현재 블록 및 주변 블록 중 적어도 하나의 블록의 분할 깊이, 블록의 크기, 블록의 형태, 화면 내 예측 모드 등의 부호화 파라미터 중 적어도 하나를 이용하여 적응적으로 가중합 수행 여부를 결정할 수 있다.
색 성분 간 화면 내 예측의 예측 정확도 향상을 위해, 제2 색 성분 대상 블록을 샘플 그룹 단위로 구분하여 복수의 영역을 나눈 뒤, 각 영역에 대해서 상기 재구성 과정, 상기 예측 파라미터 유도, 상기 색 성분간 화면 내 예측 과정 중 적어도 하나를 수행할 수 있다. 이때, 각 영역 별로 사용되는 제1 색 성분 대응 블록의 샘플 및 주변 블록의 참조 샘플, 예측 파라미터, 색 성분간 화면 내 예측 샘플 값이 달라질 수 있다. 상기 영역은 현재 블록의 부호화 파라미터 및 주변 블록의 부호화 파라미터 중 적어도 하나에 기반하여 결정될 수 있다.
색 성분 간 화면 내 예측의 예측 정확도 향상을 위해, 상기 색 성분간 화면 내 예측을 NxM 블록 크기 이상에만 적용할 수 있다. 이때, N과 M은 화면 내 예측 모드, 블록의 분할 깊이, 블록의 형태 및 블록의 크기 중 적어도 하나에 기초하여 동일하거나 상이한 양의 정수값으로 결정될 수 있다. 또한, 상기 NxM 블록 크기 이상에만 적용될 때는 색 성분간 화면 내 예측 사용 여부에 관한 정보를 엔트로피 부호화/복호화하지 않을 수 있다. 또는, 부호화기와 복호화기에서 미리 설정된 기준에 따라 상기 색 성분간 화면 내 예측 사용 여부를 결정할 수 있다. 또는, 현재 블록 및 주변 블록 중 적어도 하나의 블록의 분할 깊이, 블록의 크기, 블록의 형태, 화면 내 예측 모드 등의 부호화 파라미터 중 적어도 하나를 이용하여 적응적으로 색 성분간 화면 내 예측 사용 여부를 결정할 수 있다.
색 성분간 화면 내 예측 수행 시, 제2 색 성분 대상 블록은 제1 색 성분 대응 블록 내 샘플을 이용하지만 제2 색 성분 대상 블록의 주변 참조 샘플들을 사용하지 않으므로, 제2 색 성분 대상 블록 내 샘플과 제2 색 성분 대상 블록의 주변 참조 샘플 사이의 불연속성(discontinuity)이 발생할 수 있다. 상기 불연속성을 감소시키기 위해, 제2 색 성분 대상 블록을 생성한 후, 제2 색 성분 대상 블록 내 경계 영역에 대하여 경계 필터링을 수행할 수 있다. 상기 경계 필터링 수행 여부는 현재 블록의 부호화 파라미터 및 주변 블록의 부호화 파라미터 중 적어도 하나에 기반하여 결정될 수 있다. 즉, 제2 색 성분 대상 블록 내 좌측 경계 및 상단 경계 중 적어도 하나에 대해 화면 내 예측 모드, 블록의 분할 깊이, 블록의 크기, 블록의 형태, 필터 계수, 필터 모양 및 필터 탭 수 중 적어도 하나에 기반하여 경계 필터링을 수행할 수 있다.
예를 들어, 좌측 참조 샘플과 인접한 제2 색 성분 대상 블록 내 N개의 열에 포함된 적어도 하나의 샘플 및/또는 상단 참조 샘플과 인접한 제2 색 성분 대상 블록 내 M개의 행에 포함된 적어도 하나의 샘플에 대해 경계 필터링을 수행할 수 있다. 여기서, 이때, N과 M은 0을 포함한 양의 정수이며, N은 제2 색 성분 대상 블록의 가로 길이 W보다 작거나 같은 양의 정수일 수 있고, M은 제2 색 성분 대상 블록의 세로 길이 H보다 작거나 같은 양의 정수일 수 있다. 예를 들어, 제2 색 성분 대상 블록과 인접한 상단과 좌측의 참조 샘플을 한 줄씩 이용하여 경계 필터링을 수행할 수 있다. N과 M은 화면 내 예측 모드, 블록의 분할 깊이, 블록의 형태 및 블록의 크기 중 적어도 하나에 기초하여 동일하거나 상이한 양의 정수값으로 결정될 수 있다.
상기 유도한 예측 파라미터가 하나 이상인 경우, 상기 제1 색 성분의 복원된 샘플에 상기 하나 이상의 예측 파라미터를 적용할 수 있다. 예를 들어, 상기 제1 색 성분의 복원된 샘플이 특정 조건을 만족하는 경우, 상기 특정 조건을 만족하는 참조 샘플로부터 유도된 제1 예측 파라미터를 적용하여 색 성분간 화면 내 예측을 수행할 수 있다. 또한, 상기 제1 색 성분의 복원된 샘플이 상기 특정 조건을 만족하지 않는 경우, 상기 특정 조건을 만족하지 않는 참조 샘플로부터 유도된 제2 예측 파라미터를 적용하여 색 성분간 화면 내 예측을 수행할 수 있다. 상기 특정 조건은 참조 샘플의 값이 상기 제1 색 성분의 참조 샘플의 통계값(예컨대, 평균값) 보다 작은 경우에 해당할 수 있다.
상기 색 성분간 예측 방법은 화면 간 예측 모드에도 적용할 수 있다. 예를 들어, 현재 블록에 대한 화면 간 예측을 수행함에 있어, 제1 색 성분에 대해서는 화면 간 예측을 수행하고 제2 색 성분에 대해서는 색 성분간 예측 또는 화면 간 예측과 색 성분간 예측을 결합한 예측을 수행할 수 있다. 예컨대 상기 제1 색 성분은 휘도 성분, 제2 색 성분은 색차 성분일 수 있다.
상기 휘도 성분의 예측 샘플 또는 복원 샘플을 이용하여 색 성분간 예측을 수행할 수 있다. 예를 들어, 상기 휘도 성분에 대하여 화면 간 예측을 수행한 후, 예측 샘플에 대해 색 성분간 예측 파라미터를 적용하여 색차 성분에 대한 예측을 수행할 수 있다. 이때 상기 예측 샘플은 움직임 보상, 움직임 보정, OBMC(Overlapped block motion compensation), BIO(Bi-directional optical flow) 중 적어도 하나를 수행한 샘플을 의미할 수 있다.
또한, 상기 색 성분간 예측은 제1 색 성분의 부호화 파라미터에 따라 적응적으로 수행할 수 있다. 예를 들어, 상기 제1 색 성분의 CBF 정보에 따라 상기 색 성분간 예측의 수행여부를 결정할 수 있다. 상기 CBF 정보는 잔차 신호의 존재 유무를 나타내는 정보일 수 있다. 즉, 상기 제1 색 성분의 CBF가 1인 경우, 제2 색 성분에 대해 색 성분간 예측을 수행할 수 있다. 상기 제1 색 성분의 CBF가 0인 경우, 제2 색 성분에 대해 색 성분간 예측을 수행하지 않고 상기 화면 간 예측을 수행할 수 있다. 또는, 상기 색 성분간 예측을 수행하는지 여부를 나타내는 플래그를 시그널링할 수 있다.
상기 제1 색 성분의 부호화 파라미터가 소정의 조건에 만족하는 경우, 상기 색 성분간 예측을 수행하는지 여부를 나타내는 플래그를 시그널링할 수 있다. 예를 들어, 상기 제1 색 성분의 CBF가 1인 경우, 상기 플래그를 시그널링하여 색 성분 예측 수행 여부를 결정할 수 있다.
상기 제2 색 성분에 대하여 색 성분간 예측을 수행함에 있어, 제2 색 성분에 대한 화면 간 움직임 예측 또는 보상 값을 이용할 수 있다. 예를 들어, 상기 제1 색 성분에 대한 화면 간 예측 정보를 이용하여 제2 색 성분에 대한 화면 간 움직임 예측 또는 보상을 수행할 수 있다. 또한, 상기 제2 색 성분에 대한 색 성분간 예측 값과 화면 간 움직임 보상 값의 가중합을 통하여 예측을 수행할 수 있다.
본 발명의 다른 실시예에 따르면, 현재 블록의 화면 내 예측 시 암묵적 블록 분할 기반의 화면 내 예측을 수행할 수 있다.
종래의 화면 내 예측 시에는 주변 블록의 화면 내 예측 모드, 주변 블록의 샘플만 사용하므로, 부호화 효율에 한계가 있을 수 있다. 부호화 효율의 향상을 위해, 암묵적 블록 분할 기반 화면 내 예측 방법은 주변 블록의 크기 및/또는 분할 정보를 이용해서 현재 블록의 암묵적 블록 분할에 이용할 수 있다.
도 24는 암묵적 블록 분할 기반의 화면 내 예측의 일 실시예를 설명하기 위한 도면이다.
도 24에 도시된 바와 같이, 주변 블록은 다양한 형태로 분할될 수 있으며, 주변 블록의 크기 및/또는 분할 정보에 따라 현재 블록을 암묵적으로 분할할 수 있다. 여기서, 가는 실선은 주변 블록의 경계를 나타내고, 굵은 실선은 현재 블록의 외곽 경계를 나타내고, 점선은 현재 블록의 암묵적 블록 분할 경계를 나타낸다. 즉, 현재 블록을 기준으로 좌측에 존재하는 주변 블록들의 크기 및/또는 분할된 정도, 상단에 존재하는 주변 블록들의 크기 및/또는 분할된 정도에 따라 현재 블록이 암묵적으로 분할될 수 있다.
현재 블록 내에서 암묵적으로 분할된 영역은 현재 블록의 서브 블록이 될 수 있으며, 해당 서브 블록 단위로 전술한 화면 내 예측 모드 유도, 참조 샘플 구성, 비방향성 화면 내 예측, 방향성 화면 내 예측, 위치 정보 기반 화면 내 예측 및 색 성분간 화면 내 예측 중 적어도 하나가 수행될 수 있다. 이때, 서브 블록 단위로 주변에 복원된 샘플에 기초하여 화면 내 예측에 이용할 참조 샘플을 구성할 수 있다.
상기 서브 블록 단위로 해당 서브 블록의 화면 내 예측 모드, 해당 서브 블록의 공간적 주변에 존재하는 블록의 화면 내 예측 모드 중 적어도 하나 이상을 이용하여 화면 내 예측 블록들을 생성한 후, 상기 화면 내 예측 블록들에 대해 통계값을 계산하여 해당 서브 블록의 화면 내 예측 블록으로 이용할 수 있다. 상기 통계값은 예컨대, 가중합일 수 있다.
이때, 가중합은 샘플 단위, 샘플 그룹 단위, 라인 단위, 블록 단위 중 적어도 하나의 단위로 계산될 수 있다.
또한, 상기 가중합은 화면 내 예측 블록 내 경계 영역에 수행될 수 있다. 이때, 경계 영역은 좌측 참조 샘플과 인접한 화면 내 예측 블록 내 N개의 열 및/또는 상단 참조 샘플과 인접한 화면 내 예측 블록 내 M개의 행일 수 있다. 이때, N과 M은 0을 포함한 양의 정수일 수 있다. N과 M은 화면 내 예측 모드, 블록의 분할 깊이, 블록의 형태 및 블록의 크기 중 적어도 하나에 기초하여 동일하거나 상이한 값으로 결정될 수 있다. 이때, 현재 블록은 서브 블록, 서브 블록 그룹 또는 블록일 수 있다.
가중치 값은 상기 현재 블록의 화면 내 예측 모드, 블록의 분할 깊이, 블록의 크기, 블록의 형태 및 샘플의 위치 중 적어도 하나 이상에 따라 다르게 적용할 수 있다.
상기 암묵적 블록 분할 수행 여부에 대한 정보는 엔트로피 부호화/복호화될 수 있다. 또는, 부호화기와 복호화기에서 미리 설정된 기준에 따라 상기 암묵적 블록 분할 수행 여부를 결정할 수 있다. 또는, 현재 블록 및 주변 블록 중 적어도 하나의 부호화 파라미터 (블록의 분할 깊이, 블록의 크기, 블록의 형태, 화면 내 예측 모드 등) 중 적어도 하나를 이용하여 적응적으로 암묵적 블록 분할 수행 여부를 결정할 수 있다.
상기 암묵적 블록 분할 기반 화면 내 예측에서, 현재 화면 내 예측 블록 내 좌측 경계 및 상단 경계 중 적어도 하나에 대해 경계 필터링이 수행될 수 있다. 상기 경계 필터링은 현재 블록의 화면 내 예측 모드, 블록의 분할 깊이, 블록의 크기, 블록의 형태, 필터 계수, 필터 모양 및 필터 탭 수 중 적어도 하나에 기반하여 수행될 수 있다. 이때, 현재 블록은 서브 블록 단위, 서브 블록 그룹 단위 또는 블록 단위일 수 있다.
상기 경계 필터링은 좌측 참조 샘플과 인접한 화면 내 예측 블록 내 N개의 열 내 적어도 하나의 샘플 및/또는 상단 참조 샘플과 인접한 화면 내 예측 블록 내 M개의 행 내 적어도 하나의 샘플에 대해 수행될 수 있다. 이때, N과 M은 0을 포함한 양의 정수일 수 있다. N과 M은 화면 내 예측 모드, 블록의 분할 깊이, 블록의 형태 및 블록의 크기 중 적어도 하나에 기초하여 동일하거나 상이한 값으로 결정될 수 있다.
암묵적 블록 분할 기반 화면 내 예측에 의해 생성되는 서브 블록들 중 적어도 하나 이상에 오프셋을 더해줄 수 있다. 이때, 오프셋은 샘플 단위, 샘플 그룹 단위, 라인 단위, 서브 블록 단위 및 블록 단위 중 적어도 하나의 단위로 계산될 수 있다. 즉, 해당 단위 별로 오프셋 값이 달라질 수 있다. 또한, 오프셋 값은 상기 현재 블록의 화면 내 예측 모드, 블록의 분할 깊이, 블록의 크기, 블록의 형태 및 샘플의 위치 중 적어도 하나 이상에 따라 다르게 적용될 수 있다. 예를 들어, 오프셋 값은 서브 블록 내 샘플들의 통계값과 주변 참조 샘플의 통계값의 차이일 수 있다. 또한, 상기 오프셋 값은 서브 블록 내 경계 영역에 더해질 수 있다. 이때, 경계 영역은 좌측 참조 샘플과 인접한 서브 블록 내 N개의 열 및/또는 상단 참조 샘플과 인접한 서브 블록 내 M개의 행일 수 있다. 이때, N과 M은 0을 포함한 양의 정수일 수 있다. N과 M은 화면 내 예측 모드, 블록의 분할 깊이, 블록의 형태 및 블록의 크기 중 적어도 하나에 기초하여 동일하거나 상이한 값으로 결정될 수 있다.
상기 암묵적 블록 분할 경계(서브 블록들 간 경계)에 대해 저역 통과 필터링(low-pass filtering)을 수행하여, 경계에서 발생하는 블록킹 현상을 감소시킬 수 있다.
암묵적 블록 분할된 형태로 변환, 역변환, 양자화, 역양자화, 변환 계수 부호화/복호화 등이 수행될 수 있고, 암묵적으로 분할되지 않은 현재 블록 형태로 변환, 역변환, 양자화, 역양자화, 변환 계수 부호화/복호화 등이 수행될 수도 있다.
본 발명의 또 다른 실시예에 따르면, 현재 블록의 화면 내 예측 시 화면 내 예측 모드 기반 화면 내 예측 블록 가중합을 수행할 수 있다. 예를 들어, 방향성을 가지는 65가지 화면 내 예측 모드는 인접한 모드들 간에 약 2.8도만큼의 각도 차이만 있으므로, 각도 차이가 작은 일부 화면 내 예측 모드는 부호화 효율 향상에 큰 기여를 하지 않을 수 있다. 따라서, 해당 화면 내 예측 모드 대신 다수의 화면 내 예측 모드를 사용하여 화면 내 예측 블록 가중합을 수행함으로써 부호화 효율을 향상시킬 수 있다. 또한, 현재 블록의 화면 내 예측 모드와 해당 화면 내 예측 모드로부터 유도된 화면 내 예측 모드를 함께 이용함으로써, 화면 내 예측 블록 내 샘플들의 평활화로 인해 잔여 신호가 감소하여 부호화 효율이 향상될 수 있다. 예컨대, 상기 유도된 화면 내 예측 모드는 상기 현재 블록의 화면 내 예측 모드에 인접한 모드일 수 있다.
도 25는 화면 내 예측 모드 기반 화면 내 예측 블록 가중합을 설명하기 위한 예시도이다.
도 25에 도시된 예에서, 현재 블록의 화면 내 예측 모드는 IPM인 경우, IPM, 현재 블록의 화면 내 예측 모드에 인접한 화면 내 예측 모드 IPM-1 (현재 블록의 화면 내 예측 모드 번호에서 1을 뺀 화면 내 예측 모드), 현재 블록의 화면 내 예측 모드에 인접한 화면 내 예측 모드 IPM+1 (현재 블록의 화면 내 예측 모드 번호에 1을 더한 화면 내 예측 모드)의 각각을 이용하여, 3개의 화면 내 예측 블록(PIPM, PIPM-1 및 PIPM + 1)을 생성하고, 생성된 3개의 화면 내 예측 블록을 가중합하여, 현재 블록의 화면 내 예측 블록 PIPM으로 사용할 수 있다. 이때, 가중합 계산 시 각 화면 내 예측 블록에 적용되는 가중치는 WIPM, WIPM-1 및 WIPM+1일 수 있다.
상기 IPM+1 및 IPM-1 대신에, IPM+k 및 IPM-k에 해당하는 화면 내 예측 모드가 이용될 수도 있다. 이때, K는 2 이상의 정수일 수 있다.
IPM+k 또는 IPM-k가 가용하지 않은 경우, 가용한 화면 내 예측 모드만을 이용할 수 있다. 본 발명의 다른 실시예에 따르면, 현재 블록의 IPM이 방향성 모드이고, IPM+k 및 IPM-k 중 적어도 하나가 비방향성 모드인 경우, 해당 비방향성 모드는 가용하지 않은 것으로 판단할 수 있다. 본 발명의 또 다른 실시예에 따르면, 현재 블록의 IPM이 비방향성 모드이고, IPM+k 및 IPM-k 중 적어도 하나가 방향성 모드인 경우, 해당 방향성 모드는 가용하지 않은 것으로 판단할 수 있다. 본 발명의 또 다른 실시예에 따르면, 방향성/비방향성 여부와 관계없이 현재 블록의 IPM, IPM+k 및 IPM-k 중 적어도 하나가 이용될 수 있다.
화면 내 예측 모드 기반 화면 내 예측 블록 가중합 수행 시에 사용하는 화면 내 예측 모드는 상기 예와 같이 3가지로 한정되는 것은 아니고 N개 이상을 사용할 수 있다. 여기서, N은 2 이상의 양의 정수이다.
화면 내 예측 모드 기반 화면 내 예측 블록 가중합에 사용되는 화면 내 예측 모드는 현재 블록의 화면 내 예측 모드에 인접한 화면 내 예측 모드뿐만 아니라, 현재 블록의 공간적/시간적 주변 블록의 화면 내 예측 모드 중 적어도 하나 이상을 사용할 수 있다. 이때, 공간적 주변 블록은 현재 블록에 공간적으로 인접한 상단 블록, 좌측 블록, 우상단 코너 블록, 좌하단 코너 블록, 좌상단 코너 블록 중 적어도 하나일 수 있다. 이때, 시간적 주변 블록은 현재 블록의 위치에 기초하여 특정되는 참조 픽처 내 블록일 수 있다. 예컨대, 시간적 주변 블록은 현재 블록의 위치와 동일 위치의 블록이거나, 동일 위치의 블록에 공간적으로 인접한 블록(상단/하단/좌측/우측 블록, 우상단 코너 블록, 좌하단 코너 블록, 좌상단 코너 블록 및 우하단 코너 블록 중 적어도 하나)일 수 있다. 상기 공간적 주변 블록 및/또는 시간적 주변 블록이 복수일 경우, 소정의 우선 순위에 따라 하나 이상의 블록이 이용될 수 있다.
화면 내 예측 모드 기반 화면 내 예측 블록 가중합에 사용되는 화면 내 예측 모드는 방향성 화면 내 예측 모드, 비방향성 화면 내 예측 모드, 색 성분간 화면 내 예측 모드 중 적어도 하나 이상을 포함할 수 있다.
또한, 현재 블록의 화면 내 예측 모드를 이용해 생성한 화면 내 예측 블록과 현재 블록에 대한 화면 간 예측 블록을 생성한 후, 생성된 화면 내 예측 블록과 생성된 화면 간 예측 블록의 가중합을 계산하여 현재 블록의 예측 블록으로 사용할 수 있다. 즉, 생성된 화면 내 예측 블록과 생성된 화면 간 예측 블록의 가중합을 계산하여 현재 블록의 예측 블록으로 사용할 때도 화면 내 예측 모드 기반 화면 내 예측 블록 가중합을 계산한다고 할 수 있다. 즉, 화면 내 예측 모드 기반 화면 내 예측 블록 가중합 수행 시 화면 내 예측 블록으로만 가중합을 수행하는 것이 아니라, 화면 내 예측 블록과 화면 간 예측 블록을 이용하여 가중합을 수행할 수도 있다. 여기서, 화면 내 예측 블록으로만 가중합을 수행하는 방법에 대해서 상세히 기술하되, 화면 내 예측 블록과 화면 간 예측 블록의 가중합 수행에도 본 발명의 실시예에 따라 유사하게 적용될 수 있다.
화면 내 예측 모드 기반 화면 내 예측 블록 가중합은 현재 블록의 화면 내 예측 모드에 따라 수행될 수 있다. 예를 들어, 현재 블록의 화면 내 예측 모드가 홀수 혹은 짝수일 때만 화면 내 예측 모드 기반 화면 내 예측 블록 가중합이 수행될 수 있다. 예를 들어, 현재 블록의 화면 내 예측 모드가 방향성 혹은 비방향성 화면 내 예측 모드일 때만 화면 내 예측 모드 기반 화면 내 예측 블록 가중합이 수행될 수 있다. 예를 들어, 현재 블록의 화면 내 예측 모드가 색 성분간 화면 내 예측 모드일 때만 화면 내 예측 모드 기반 화면 내 예측 블록 가중합이 수행될 수 있다. 예를 들어, 현재 블록의 화면 내 예측 모드가 방향성 화면 내 예측 모드이며 홀수일 때만 화면 내 예측 모드 기반 화면 내 예측 블록 가중합이 수행될 수 있다. 예를 들어, 현재 블록의 화면 내 예측 모드가 방향성 화면 내 예측 모드이며 짝수일 때만 화면 내 예측 모드 기반 화면 내 예측 블록 가중합이 수행될 수 있다. 예를 들어, 현재 블록의 화면 내 예측 모드 값과 주변 블록의 화면 내 예측 모드 값의 차이가 임계값과 비교하여 작을 경우에만 화면 내 예측 모드 기반 화면 내 예측 블록 가중합이 수행될 수 있다. 예를 들어, 현재 블록의 화면 내 예측 모드가 공간적 주변 블록의 화면 내 예측 모드와 서로 다를 경우에만 화면 내 예측 모드 기반 화면 내 예측 블록 가중합이 수행될 수 있다.
화면 내 예측 모드 기반 화면 내 예측 블록 가중합은 현재 블록 및 주변 블록 중 적어도 하나의 부호화 파라미터에 따라 수행될 수 있다.
마찬가지로, 화면 내 예측 모드 기반 화면 내 예측 블록 가중합 수행 시에 사용하는 가중치는 상기 예와 같이 3가지로 한정되는 것은 아니고, M개 이상을 사용할 수 있다. 여기서, M은 2 이상의 양의 정수이다.
예를 들어, 화면 내 예측 블록 3가지에 대해 가중합을 계산할 경우, 적용되는 상기 가중치는 {1/4, 2/4, 1/4}, {1/8, 2/8, 3/8}, {1/8, 6/8, 1/8}, {3/16, 10/16, 3/16}, {1/16, 14/16, 1/16} 등 일 수 있다. 상기 가중치의 예에서 현재 블록의 화면 내 예측 모드에 적용되는 가중치는 가중치 집합 중 가운데에 존재하는 값일 수 있다. 예를 들어, 화면 내 예측 모드 IPM을 사용하여 생성된 화면 내 예측 블록에 적용되는 가중치는 2/4이고, 화면 내 예측 모드 IPM-1과 IPM+1을 사용하여 생성된 화면 내 예측 블록들에 적용되는 가중치는 각각 1/4일 수 있다. 여기서, 현재 블록의 화면 내 예측 모드에 사용되는 가중치가 다른 화면 내 예측 모드에 사용되는 가중치보다 상대적으로 큰 값을 가질 수 있다.
화면 내 예측 모드 기반 화면 내 예측 블록 가중합 계산 시 가중합은 샘플 단위, 샘플 그룹 단위, 라인 단위 및 블록 단위 중 적어도 하나의 단위로 계산될 수 있다. 즉, 해당 단위 별로 가중치 값이 달라질 수 있다. 또한, 상기 가중합은 화면 내 예측 블록 내 경계 영역에 대해 수행될 수 있다. 이때, 경계 영역은 좌측 참조 샘플과 인접한 화면 내 예측 블록 내 N개의 열 및/또는 상단 참조 샘플과 인접한 화면 내 예측 블록 내 M개의 행일 수 있다. 이때, N과 M은 0을 포함한 양의 정수일 수 있다. N과 M은 화면 내 예측 모드, 블록의 분할 깊이, 블록의 형태 및 블록의 크기 중 적어도 하나에 기초하여 동일하거나 상이한 값으로 결정될 수 있다. 또한, 가중치 값은 상기 현재 블록의 화면 내 예측 모드, 블록의 분할 깊이, 블록의 크기, 블록의 형태 및 샘플의 위치 중 적어도 하나 이상에 따라 다르게 적용할 수 있다.
화면 내 예측 모드 기반 화면 내 예측 블록 가중합 계산 시 다수의 화면 내 예측 모드를 이용해서 생성되는 화면 내 예측 블록들 중 적어도 하나 이상에 오프셋을 더해줄 수 있다. 이때, 오프셋은 샘플 단위, 샘플 그룹 단위, 라인 단위 및 블록 단위 중 적어도 하나의 단위로 계산될 수 있다. 즉, 해당 단위 별로 오프셋 값이 달라질 수 있다. 또한, 오프셋 값은 상기 현재 블록의 화면 내 예측 모드, 블록의 분할 깊이, 블록의 크기, 블록의 형태 및 샘플의 위치 중 적어도 하나 이상에 따라 다르게 적용할 수 있다. 예를 들어, 오프셋 값은 현재 블록의 화면 내 예측 블록 내 샘플들의 통계값과 주변 참조 샘플의 통계값의 차이일 수 있다. 또한, 상기 오프셋 값은 화면 내 예측 블록 내 경계 영역에 더해질 수 있다. 이때, 경계 영역은 좌측 참조 샘플과 인접한 화면 내 예측 블록 내 N개의 열 및/또는 상단 참조 샘플과 인접한 화면 내 예측 블록 내 M개의 행일 수 있다. 이때, N과 M은 0을 포함한 양의 정수일 수 있다. N과 M은 화면 내 예측 모드, 블록의 분할 깊이, 블록의 형태 및 블록의 크기 중 적어도 하나에 기초하여 동일하거나 상이한 값으로 결정될 수 있다.
화면 내 예측 모드 기반 화면 내 예측 블록 가중합이 수행된 화면 내 예측 블록 내 좌측 경계 및 상단 경계 적어도 하나에 대해 화면 내 예측 모드, 블록의 분할 깊이, 블록의 크기, 블록의 형태, 필터 계수, 필터 모양 및 필터 탭 수 중 적어도 하나에 기반하여 경계 필터링을 수행할 수 있다. 상기 경계 필터링은 좌측 참조 샘플과 인접한 화면 내 예측 블록 내 N개의 열에 포함된 적어도 하나의 샘플 및/또는 상단 참조 샘플과 인접한 화면 내 예측 블록 내 M개의 행에 포함된 적어도 하나의 샘플에 대해 수행될 수 있다. 이때, N과 M은 0을 포함한 양의 정수일 수 있다. N과 M은 화면 내 예측 모드, 블록의 분할 깊이, 블록의 형태 및 블록의 크기 중 적어도 하나에 기초하여 동일하거나 상이한 값으로 결정될 수 있다.
상기 화면 내 예측 모드 기반 화면 내 예측 블록 가중합 수행 여부에 대한 정보는 엔트로피 부호화/복호화될 수 있다. 또는, 부호화기와 복호화기에서 미리 설정된 기준에 따라 상기 화면 내 예측 모드 기반 화면 내 예측 블록 가중합 수행 여부를 결정할 수 있다. 또는, 현재 블록 및 주변 블록 중 적어도 하나의 블록의 분할 깊이, 블록의 크기, 블록의 형태, 화면 내 예측 모드 등의 부호화 파라미터 중 적어도 하나를 이용하여 적응적으로 화면 내 예측 모드 기반 화면 내 예측 블록 가중합 수행 여부를 결정할 수 있다.
화면 내 예측 모드 기반 화면 내 예측 블록 가중합이 현재 블록의 화면 내 예측 모드에 따라 수행될 경우, 해당하는 화면 내 예측 모드가 지시하는 화면 내 예측 방법 대신 화면 내 예측 모드 기반 화면 내 예측 블록 가중합이 수행되므로, 화면 내 예측 모드 기반 화면 내 예측 블록 가중합 수행 여부에 대한 정보는 엔트로피 부호화/복호화되지 않을 수 있다.
상기 화면 내 예측 모드 기반 화면 내 예측 블록 가중합을 사용하여 산출된 현재 블록의 화면 내 예측 블록 내 샘플에 대해 저역 통과 필터링(low-pass filtering)을 수행할 수 있다.
화면 내 예측 모드 기반 화면 내 예측 블록 가중합은 현재 블록의 크기가 NxM이상일 경우에만 적용될 수 있다. 이때, N과 M은 양의 정수일 수 있다. N과 M은 동일하거나 상이할 수 있다. N과 M은 부호화기/복호화기에서 기 정의된 값이거나, 시그널링되는 정보에 의해 유도되는 값일 수 있다.
화면 내 예측 모드 기반 화면 내 예측 블록 가중합은 현재 블록이 휘도 성분 블록일 때만 적용될 수 있다. 유사하게, 화면 내 예측 모드 기반 화면 내 예측 블록 가중합은 현재 블록이 색차 성분 블록일 때만 적용될 수 있다.
화면 내 예측 모드 기반 화면 내 예측 블록 가중합 계산 시, 가중합 대신 다수의 화면 내 예측 블록들 내 샘플들의 중간값을 계산하여 현재 블록의 화면 내 예측 블록을 생성할 수 있다.
상기 화면 내 또는 화면 간 예측을 수행함에 있어, 제1 색 성분에 대하여 화면 내 예측, 제2 색 성분에 대하여 화면 간 예측을 수행할 수 있다. 예를 들어, 상기 제1 색 성분은 휘도 성분, 제2 색 성분은 색차 성분일 수 있다. 또는 그 반대로 제1 색 성분은 색차 성분, 제2 색 성분은 휘도 성분일 수 있다.
상기 예측 샘플에 대하여 필터링을 적용함에 있어, 현재 블록의 화면 내 예측 모드, 가로 및 세로 크기, 블록 형태, 복수의 참조 샘플 라인 기반의 예측, 색 성분 중 적어도 하나에 기반하여 필터링의 적용 여부를 다르게 할 수 있다. 상기 필터링은 하나 이상의 참조 샘플을 이용하여, 하나 이상의 예측 샘플에 대하여 필터링을 적용하는 것일 수 있다.
예를 들어, 현재 블록의 화면 내 예측 모드가 소정의 모드에 해당하는 경우, 상기 예측 샘플에 대한 필터링을 적용할 수 있다. 예컨대, 상기 소정의 모드는 비방향성 모드, 방향성 모드, 수평 모드, 수직 모드 중 적어도 하나일 수 있다.
예를 들어, 현재 블록의 크기가 소정의 범위에 해당하는 경우, 상기 예측 샘플에 대한 필터링을 적용할 수 있다. 예컨대, 현재 블록의 가로의 크기가 64보다 작고, 세로의 크기가 64보다 작은 경우, 상기 필터링을 적용할 수 있다. 또는 현재 블록의 가로 및 세로의 크기가 소정의 크기보다 크거나 또는 소정의 크기보다 작은 경우 상기 필터링을 적용할 수 있다.
예를 들어, 예측에 사용된 참조 샘플 라인에 기반하여 상기 예측 샘플에 대한 필터링을 적용할 수 있다. 예컨대, 상기 예측에 사용된 참조 샘플이 현재 블록에 인접한 첫 번째 참조 샘플 라인에 해당하는 경우, 상기 필터링을 적용할 수 있다. 한편, 상기 예측에 사용된 참조 샘플 라인이 현재 블록에 인접한 두 번째 이상의 참조 샘플 라인에 해당하는 경우, 상기 필터링을 적용하지 않을 수 있다. 상기 참조 샘플 라인을 판단함에 있어 mrl_index가 이용될 수 있다. 예컨대, 현재 블록에 대한 상기 인덱스가 0인 경우, 상기 필터링을 적용하고, 상기 인덱스가 0 보다 큰 경우, 상기 필터링을 적용하지 않을 수 있다.
예를 들어, 현재 블록의 색 성분이 휘도 신호인 경우 상기 필터링을 적용하고, 색차 신호인 경우 상기 필터링을 적용하지 않을 수 있다.
상기 하나 이상의 예측 방법을 결합하여 현재 블록에 대한 예측을 수행할 수 있다.
예를 들어, 소정의 비방향성 화면 내 예측 모드를 이용하여 예측한 값과 소정의 방향성 화면 내 예측 모드를 이용하여 예측한 값의 가중합을 통하여 현재 블록에 대한 예측을 수행할 수 있다. 이때, 가중치는 현재 블록의 화면 내 예측 모드, 현재 블록의 크기/형태 및 예측 대상 샘플의 위치 중 적어도 하나에 따라서 다르게 적용될 수 있다.
예를 들어, 소정의 화면 내 예측 모드를 이용하여 예측한 값과 소정의 화면 간 예측 모드를 이용하여 예측한 값의 가중합을 통하여 현재 블록에 대한 예측을 수행할 수 있다. 이때, 가중치는 부호화 모드, 화면 내 예측 모드, 화면 간 예측 모드, 현재 블록의 크기/형태 중 적어도 하나에 따라서 다르게 적용될 수 있다. 예컨대, 화면 내 예측 모드가 DC 또는 Planar와 같이 비방향성 모드인 경우, 화면 내 예측 샘플과 화면 간 예측 샘플에 각각 1/2에 해당하는 가중치를 적용할 수 있다. 또는, 상기 화면 내 예측 모드가 수직 모드인 경우, 화면 내 예측 샘플에 대한 가중치 값이 상단 참조 샘플에서 멀어질수록 감소할 수 있다. 마찬가지로, 상기 화면 내 예측 모드가 수평 모드인 경우, 화면 내 예측 샘플에 대한 가중치 값이 좌측 참조 샘플에서 멀어질수록 감소할 수 있다. 상기 화면 내 예측 샘플에 적용한 가중치값과 화면 간 예측 샘플에 적용한 가중치값의 합은 2의 자승(예컨대, 4, 8, 16, 32)일 수 있다. 또한, 현재 블록의 크기가 소정의 범위에 해당하는 경우, 화면 내 예측 샘플과 화면 간 예측 샘플에 각각 1/2에 해당하는 가중치를 적용할 수 있다.
상기 화면 내 예측 모드는 DC 모드 또는 Planar 모드 중 적어도 하나로 고정되거나 시그널링되어 결정될 수 있다. 또는, MPM 후보 모드 중 하나일 수 있으며 MPM 인덱스를 시그널링하여 상기 화면 내 예측 모드를 결정할 수 있다. 상기 MPM 후보 모드는 주변 블록의 화면 내 예측 모드를 이용하여 유도될 수 있으며 상기 주변 블록의 모드는 소정의 대표 모드로 변경될 수 있다. 예컨대, 주변 블록의 화면 내 예측 모드가 수직 방향의 방향성 모드인 경우, 수직 모드로 변경되고, 수평 방향의 방향성 모드인 경우, 수평 모드로 변경될 수 있다.
상기 화면 간 예측 모드는 스킵 모드, 머지 모드, AMVP 모드 중 적어도 하나일 수 있다. 즉, 현재 블록의 화면 간 예측 모드가 머지 모드인 경우, 머지 인덱스에 해당하는 움직임 정보로 예측한 화면 간 예측 값과 DC 또는 Planar 모드를 이용하여 예측된 값의 가중합을 통하여 현재 블록에 대한 예측을 수행할 수 있다.
예를 들어, 복수 참조 샘플 라인을 이용한 하나 이상의 예측 샘플의 가중합을 통하여 현재 블록의 화면 내 예측을 수행할 수 있다. 예컨대, 현재 블록에 인접한 첫 번째 참조 샘플 라인을 이용하여 예측한 제1 예측값과 두 번째 이상의 참조 샘플 라인을 이용하여 예측한 제2 예측값의 가중합을 통하여 예측을 수행할 수 있다. 상기 제2 예측값을 생성하기 위해 이용한 참조 샘플 라인은 mrl_index 가 지시하는 참조 샘플 라인일 수 있다. 상기 제1 예측값과 제2 예측값에 대한 가중치는 동일할 수 있다. 또는 상기 제1 예측값과 제2 예측값에 적용될 가중치는 현재 블록의 화면 내 예측 모드, 현재 블록의 크기/형태 및 예측 대상 샘플의 위치에 따라 가변적으로 결정될 수도 있다. 상기 제1 예측값은 소정의 모드를 이용하여 예측한 값일 수 있다. 예컨대, DC, Planar 모드 중 적어도 하나일 수 있다. 상기 제2 예측값은 상기 화면 내 예측 모드 유도 단계에서 유도된 현재 블록의 화면 내 예측 모드를 이용하여 예측한 값일 수 있다.
상기 하나 이상의 예측 샘플에 대한 가중합으로 예측을 수행하는 경우, 상기 예측 샘플에 대한 필터링을 수행하지 않을 수 있다.
예를 들어, 소정의 비방향성 화면내 예측 모드를 이용하여 예측한 블록과 소정의 방향성 화면내 예측 모드를 이용하여 예측한 블록의 가중합을 통하여 상기 현재 블록에 대한 화면내 예측 블록을 구성할 수 있다. 이때, 가중치(weighting) 값은 상기 현재 블록의 화면내 예측 모드, 블록의 크기, 샘플의 위치 중 적어도 하나 이상에 따라서 다르게 적용할 수 있다.
예를 들어, 소정의 화면내 예측 모드를 이용하여 예측한 값과 소정의 화면간 예측 모드를 이용하여 예측한 값의 가중합을 통하여 현재 블록에 대한 예측을 수행할 수 있다. 이때, 가중치는 부호화 모드, 화면내 예측 모드, 화면간 예측 모드, 현재 블록의 크기/형태 중 적어도 하나에 따라서 다르게 적용될 수 있다.
예를 들어, 상기 하나 이상의 화면내 예측 모드를 결합함에 있어, 현재 블록에 대한 화면내 예측 모드를 이용하여 예측한 값과 MPM 리스트에 있는 소정의 모드를 이용하여 예측한 값의 가중합을 통하여 예측 블록을 구성할 수 있다.
상기 적어도 하나 이상의 화면내 예측 방법을 이용할 때, 하나 이상의 참조 샘플 셋(set)을 이용하여 화면내 예측을 수행할 수 있다. 예를 들어, 상기 구성한 참조 샘플에 필터링을 적용하지 않은 참조 샘플로 화면내 예측한 블록과 필터링을 적용한 참조 샘플로 화면내 예측한 블록의 가중합을 통하여 상기 현재 블록에 대한 화면내 예측을 수행할 수 있다.
상기 적어도 하나 이상의 화면내 예측 방법을 이용할 때, 주변의 복원된 샘플을 이용한 필터링 과정을 수행할 수 있다. 이때, 상기 필터링 과정의 수행 여부는 현재 블록의 화면내 예측 모드 또는 블록의 크기, 형태 중 적어도 하나에 기반하여 결정할 수 있다. 상기 필터링 과정은 상기 화면내 예측을 수행하는 과정에 포함되어 하나의 단계로 수행될 수 있다. 상기 필터링 과정을 수행함에 있어, 현재 블록의 화면내 예측 모드, 블록의 크기, 형태 중 적어도 하나에 기반하여 필터 탭, 계수, 적용 라인 수, 적용 샘플 수 중 적어도 하나를 다르게 결정할 수 있다.
상기 현재 블록이 서브 블록으로 분할되어 각 서브 블록에 대한 화면내 예측 모드를 주변 블록의 화면내 예측 모드를 이용하여 유도하고 화면내 예측을 수행함에 있어, 현재 블록 내의 각 서브 블록에 대해 필터링을 적용할 수 있다. 예를 들어, 현재 블록 전체에 저역 통과 필터를 적용할 수 있다. 또는 각 서브 블록의 경계에 위치하는 샘플에 대해 필터를 적용할 수 있다.
상기 현재 블록이 서브 블록으로 분할되어 각 서브 블록에 대한 화면내 예측을 수행함에 있어 각 서브 블록은 부호화/복호화 블록, 예측 블록, 변환 블록 중 적어도 하나를 의미할 수 있다. 예를 들어, 상기 현재 블록의 크기가 64x64 이고 서브 블록의 크기가 16x16인 경우, 각 서브 블록인 예측 블록에 대한 화면내 예측 모드 유도 및 화면내 예측을 수행할 수 있다. 이때, 상기 하나 이상의 서브 블록이 8x8 또는 4x4로 추가 분할되는 경우, 각 8x8 또는 4x4 블록은 변환 블록을 의미할 수 있으며 상기 16x16 블록의 화면내 예측 모드를 이용할 수 있다.
상기 방향성 화면내 예측을 수행함에 있어, 현재 블록은 하나 이상의 N개의 방향성 화면내 예측 모드를 이용하여 부호화/복호화 될 수 있으며, N은 33, 65 등을 포함하는 양의 정수를 가질 수 있다. 이때, 각 방향성 화면내 예측 모드는 각도의 값을 가질 수 있다.
상기 방향성 화면내 예측에서, 현재 블록은 M개의 샘플 단위 방향성 화면내 예측 모드로 부호화/복호화 될 수 있고, M은 양의 정수를 가질 수 있다. 이때, 샘플 단위의 방향성 화면내 예측 모드는 현재 블록 내의 하나 이상의 예측 대상 샘플 단위로 상기 하나 이상의 방향성 화면내 예측 모드를 이용하여 예측하는 모드를 의미할 수 있다.
상기의 실시예들은 부호화기 및 복호화기에서 같은 방법으로 수행될 수 있다.
상기 실시예들 중 적어도 하나 혹은 적어도 하나의 조합을 이용해서 영상을 부호화/복호화할 수 있다.
상기 실시예를 적용하는 순서는 부호화기와 복호화기에서 상이할 수 있고, 상기 실시예를 적용하는 순서는 부호화기와 복호화기에서 동일할 수 있다.
휘도 및 색차 신호 각각에 대하여 상기 실시예를 수행할 수 있고, 휘도 및 색차 신호에 대한 상기 실시예를 동일하게 수행할 수 있다.
본 발명의 상기 실시예들이 적용되는 블록의 형태는 정방형(square) 형태 혹은 비정방형(non-square) 형태를 가질 수 있다.
본 발명의 상기 실시예들은 부호화 블록, 예측 블록, 변환 블록, 블록, 현재 블록, 부호화 유닛, 예측 유닛, 변환 유닛, 유닛, 현재 유닛 중 적어도 하나의 크기에 따라 적용될 수 있다. 여기서의 크기는 상기 실시예들이 적용되기 위해 최소 크기 및/또는 최대 크기로 정의될 수도 있고, 상기 실시예가 적용되는 고정 크기로 정의될 수도 있다. 또한, 상기 실시예들은 제1 크기에서는 제1의 실시예가 적용될 수도 있고, 제2 크기에서는 제2의 실시예가 적용될 수도 있다. 즉, 상시 실시예들은 크기에 따라 복합적으로 적용될 수 있다. 또한, 본 발명의 상기 실시예들은 최소 크기 이상 및 최대 크기 이하일 경우에만 적용될 수도 있다. 즉, 상기 실시예들을 블록 크기가 일정한 범위 내에 포함될 경우에만 적용될 수도 있다.
예를 들어, 현재 블록의 크기가 8x8 이상일 경우에만 상기 실시예들이 적용될 수 있다. 예를 들어, 현재 블록의 크기가 4x4일 경우에만 상기 실시예들이 적용될 수 있다. 예를 들어, 현재 블록의 크기가 16x16 이하일 경우에만 상기 실시예들이 적용될 수 있다. 예를 들어, 현재 블록의 크기가 16x16 이상이고 64x64 이하일 경우에만 상기 실시예들이 적용될 수 있다.
본 발명의 상기 실시예들은 시간적 계층(temporal layer)에 따라 적용될 수 있다. 상기 실시예들이 적용 가능한 시간적 계층을 식별하기 위해 별도의 식별자(identifier)가 시그널링되고, 해당 식별자에 의해 특정된 시간적 계층에 대해서 상기 실시예들이 적용될 수 있다. 여기서의 식별자는 상기 실시예가 적용 가능한 최하위 계층 및/또는 최상위 계층으로 정의될 수도 있고, 상기 실시예가 적용되는 특정 계층을 지시하는 것으로 정의될 수도 있다. 또한, 상기 실시예가 적용되는 고정된 시간적 계층이 정의될 수도 있다.
예를 들어, 현재 영상의 시간적 계층이 최하위 계층일 경우에만 상기 실시예들이 적용될 수 있다. 예를 들어, 현재 영상의 시간적 계층 식별자가 1 이상인 경우에만 상기 실시예들이 적용될 수 있다. 예를 들어, 현재 영상의 시간적 계층이 최상위 계층일 경우에만 상기 실시예들이 적용될 수 있다.
본 발명의 상기 실시예들이 적용되는 슬라이스 종류(slice type) 혹은 타일 그룹 종류가 정의되고, 해당 슬라이스 종류 혹은 타일 그룹 종류에 따라 본 발명의 상기 실시예들이 적용될 수 있다.
상술한 실시예들에서, 방법들은 일련의 단계 또는 유닛으로서 순서도를 기초로 설명되고 있으나, 본 발명은 단계들의 순서에 한정되는 것은 아니며, 어떤 단계는 상술한 바와 다른 단계와 다른 순서로 또는 동시에 발생할 수 있다. 또한, 당해 기술 분야에서 통상의 지식을 가진 자라면 순서도에 나타난 단계들이 배타적이지 않고, 다른 단계가 포함되거나, 순서도의 하나 또는 그 이상의 단계가 본 발명의 범위에 영향을 미치지 않고 삭제될 수 있음을 이해할 수 있을 것이다.
상술한 실시예는 다양한 양태의 예시들을 포함한다. 다양한 양태들을 나타내기 위한 모든 가능한 조합을 기술할 수는 없지만, 해당 기술 분야의 통상의 지식을 가진 자는 다른 조합이 가능함을 인식할 수 있을 것이다. 따라서, 본 발명은 이하의 특허청구범위 내에 속하는 모든 다른 교체, 수정 및 변경을 포함한다고 할 것이다.
이상 설명된 본 발명에 따른 실시예들은 다양한 컴퓨터 구성요소를 통하여 수행될 수 있는 프로그램 명령어의 형태로 구현되어 컴퓨터 판독 가능한 기록 매체에 기록될 수 있다. 상기 컴퓨터 판독 가능한 기록 매체는 프로그램 명령어, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 상기 컴퓨터 판독 가능한 기록 매체에 기록되는 프로그램 명령어는 본 발명을 위하여 특별히 설계되고 구성된 것들이거나 컴퓨터 소프트웨어 분야의 당업자에게 공지되어 사용 가능한 것일 수도 있다. 컴퓨터 판독 가능한 기록 매체의 예에는, 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체, CD-ROM, DVD와 같은 광기록 매체, 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical media), 및 ROM, RAM, 플래시 메모리 등과 같은 프로그램 명령어를 저장하고 수행하도록 특별히 구성된 하드웨어 장치가 포함된다. 프로그램 명령어의 예에는, 컴파일러에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용해서 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드도 포함된다. 상기 하드웨어 장치는 본 발명에 따른 처리를 수행하기 위해 하나 이상의 소프트웨어 모듈로서 작동하도록 구성될 수 있으며, 그 역도 마찬가지이다.
이상에서 본 발명이 구체적인 구성요소 등과 같은 특정 사항들과 한정된 실시예 및 도면에 의해 설명되었으나, 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명이 상기 실시예들에 한정되는 것은 아니며, 본 발명이 속하는 기술분야에서 통상적인 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형을 꾀할 수 있다.
따라서, 본 발명의 사상은 상기 설명된 실시예에 국한되어 정해져서는 아니 되며, 후술하는 특허청구범위뿐만 아니라 이 특허청구범위와 균등하게 또는 등가적으로 변형된 모든 것들은 본 발명의 사상의 범주에 속한다고 할 것이다.

Claims (20)

  1. 영상 복호화 장치에 의해 수행되는 영상 복호화 방법으로서,
    하나 이상의 MPM 리스트에 기초하여 현재 블록의 화면 내 예측 모드를 유도하는 단계;
    상기 현재 블록에 인접한 복수의 참조 샘플 라인들로부터 하나의 참조 샘플 라인을 선택하는 단계;
    상기 선택된 참조 샘플 라인에 기초하여 상기 현재 블록의 화면 내 예측을 위한 참조 샘플을 구성하는 단계; 및
    상기 화면 내 예측 모드와 상기 참조 샘플에 기초하여 상기 현재 블록에 대해 화면 내 예측을 수행함으로써 상기 현재 블록의 예측 블록을 생성하는 단계를 포함하고,
    상기 참조 샘플 라인은 참조 샘플 라인 인덱스에 의해 선택되고,
    상기 참조 샘플 라인 인덱스는, 현재 블록의 상단 경계가 CTU의 상단 경계인지 여부에 기반하여 시그널링되고,
    상기 참조 샘플 라인 인덱스가 시그널링되지 않는 경우, 상기 선택된 참조 샘플 라인은 첫 번째 참조 샘플 라인인 것을 특징으로 하는, 영상 복호화 방법.
  2. 삭제
  3. 삭제
  4. 삭제
  5. 삭제
  6. 삭제
  7. 삭제
  8. 삭제
  9. 삭제
  10. 삭제
  11. 영상 부호화 장치에 의해 수행되는 영상 부호화 방법으로서,
    현재 블록의 화면 내 예측 모드를 결정하는 단계;
    상기 현재 블록에 인접한 복수의 참조 샘플 라인들로부터 하나의 참조 샘플 라인을 선택하는 단계;
    상기 선택된 참조 샘플 라인에 기초하여 상기 현재 블록의 화면 내 예측을 위한 참조 샘플을 구성하는 단계;
    상기 화면 내 예측 모드와 상기 참조 샘플에 기초하여 상기 현재 블록에 대해 화면 내 예측을 수행함으로써 상기 현재 블록의 예측 블록을 생성하는 단계;
    상기 참조 샘플 라인을 지시하는 참조 샘플 라인 인덱스를 부호화 하는 단계; 및
    하나 이상의 MPM 리스트에 기초하여 상기 현재 블록의 화면 내 예측 모드를 부호화하는 단계를 포함하고,
    상기 참조 샘플 라인 인덱스는 상기 현재 블록의 상단 경계가 CTU의 상단 경계인지 여부에 기반하여 부호화되고,
    상기 참조 샘플 라인 인덱스가 부호화되지 않는 경우, 상기 선택된 참조 샘플 라인은 첫 번째 참조 샘플 라인인 것을 특징으로 하는, 영상 부호화 방법.
  12. 삭제
  13. 삭제
  14. 삭제
  15. 삭제
  16. 삭제
  17. 삭제
  18. 삭제
  19. 삭제
  20. 영상 부호화 장치에 의해 수행되는 영상 부호화 방법에 의해 생성된 비트스트림을 저장한 컴퓨터 판독 가능한 기록 매체로서,
    상기 영상 부호화 방법은,
    현재 블록의 화면 내 예측 모드를 결정하는 단계;
    상기 현재 블록에 인접한 복수의 참조 샘플 라인들로부터 하나의 참조 샘플 라인을 선택하는 단계;
    상기 선택된 참조 샘플 라인에 기초하여 상기 현재 블록의 화면 내 예측을 위한 참조 샘플을 구성하는 단계;
    상기 화면 내 예측 모드와 상기 참조 샘플에 기초하여 상기 현재 블록에 대해 화면 내 예측을 수행함으로써 상기 현재 블록의 예측 블록을 생성하는 단계;
    상기 선택된 참조 샘플 라인을 지시하는 참조 샘플 라인 인덱스를 부호화 하는 단계; 및
    하나 이상의 MPM 리스트에 기초하여 상기 현재 블록의 화면 내 예측 모드를 부호화하는 단계를 포함하고,
    상기 참조 샘플 라인 인덱스는 상기 현재 블록의 상단 경계가 CTU의 상단 경계인지 여부에 기반하여 부호화되고,
    상기 참조 샘플 라인 인덱스가 부호화되지 않는 경우, 상기 선택된 참조 샘플 라인은 첫 번째 참조 샘플 라인인 것을 특징으로 하는, 컴퓨터 판독 가능한 기록 매체.
KR1020180149453A 2017-11-28 2018-11-28 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체 KR102557090B1 (ko)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020230064728A KR20230074102A (ko) 2017-11-28 2023-05-19 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체
KR1020230064733A KR20230074681A (ko) 2017-11-28 2023-05-19 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체
KR1020230088962A KR20230107196A (ko) 2017-11-28 2023-07-10 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한기록 매체
KR1020230088969A KR20230107198A (ko) 2017-11-28 2023-07-10 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한기록 매체
KR1020230088971A KR20230107199A (ko) 2017-11-28 2023-07-10 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한기록 매체
KR1020230088954A KR20230107531A (ko) 2017-11-28 2023-07-10 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한기록 매체
KR1020230088966A KR20230107197A (ko) 2017-11-28 2023-07-10 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한기록 매체

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR1020170160139 2017-11-28
KR20170160139 2017-11-28
KR20170168473 2017-12-08
KR1020170168473 2017-12-08
KR1020180071216 2018-06-21
KR20180071216 2018-06-21

Related Child Applications (7)

Application Number Title Priority Date Filing Date
KR1020230064733A Division KR20230074681A (ko) 2017-11-28 2023-05-19 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체
KR1020230064728A Division KR20230074102A (ko) 2017-11-28 2023-05-19 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체
KR1020230088962A Division KR20230107196A (ko) 2017-11-28 2023-07-10 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한기록 매체
KR1020230088954A Division KR20230107531A (ko) 2017-11-28 2023-07-10 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한기록 매체
KR1020230088971A Division KR20230107199A (ko) 2017-11-28 2023-07-10 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한기록 매체
KR1020230088969A Division KR20230107198A (ko) 2017-11-28 2023-07-10 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한기록 매체
KR1020230088966A Division KR20230107197A (ko) 2017-11-28 2023-07-10 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한기록 매체

Publications (2)

Publication Number Publication Date
KR20190062302A KR20190062302A (ko) 2019-06-05
KR102557090B1 true KR102557090B1 (ko) 2023-07-19

Family

ID=66665186

Family Applications (10)

Application Number Title Priority Date Filing Date
KR1020180149453A KR102557090B1 (ko) 2017-11-28 2018-11-28 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체
KR1020230064733A KR20230074681A (ko) 2017-11-28 2023-05-19 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체
KR1020230064728A KR20230074102A (ko) 2017-11-28 2023-05-19 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체
KR1020230088954A KR20230107531A (ko) 2017-11-28 2023-07-10 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한기록 매체
KR1020230088962A KR20230107196A (ko) 2017-11-28 2023-07-10 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한기록 매체
KR1020230088966A KR20230107197A (ko) 2017-11-28 2023-07-10 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한기록 매체
KR1020230088971A KR20230107199A (ko) 2017-11-28 2023-07-10 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한기록 매체
KR1020230088969A KR20230107198A (ko) 2017-11-28 2023-07-10 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한기록 매체
KR1020230116952A KR20230132419A (ko) 2017-11-28 2023-09-04 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체
KR1020230116959A KR20230132420A (ko) 2017-11-28 2023-09-04 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체

Family Applications After (9)

Application Number Title Priority Date Filing Date
KR1020230064733A KR20230074681A (ko) 2017-11-28 2023-05-19 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체
KR1020230064728A KR20230074102A (ko) 2017-11-28 2023-05-19 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체
KR1020230088954A KR20230107531A (ko) 2017-11-28 2023-07-10 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한기록 매체
KR1020230088962A KR20230107196A (ko) 2017-11-28 2023-07-10 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한기록 매체
KR1020230088966A KR20230107197A (ko) 2017-11-28 2023-07-10 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한기록 매체
KR1020230088971A KR20230107199A (ko) 2017-11-28 2023-07-10 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한기록 매체
KR1020230088969A KR20230107198A (ko) 2017-11-28 2023-07-10 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한기록 매체
KR1020230116952A KR20230132419A (ko) 2017-11-28 2023-09-04 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체
KR1020230116959A KR20230132420A (ko) 2017-11-28 2023-09-04 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체

Country Status (5)

Country Link
US (10) US11218704B2 (ko)
EP (1) EP3737093A4 (ko)
KR (10) KR102557090B1 (ko)
CN (9) CN111434109A (ko)
WO (1) WO2019107911A1 (ko)

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2567861A (en) * 2017-10-27 2019-05-01 Sony Corp Image data encoding and decoding
US11445173B2 (en) * 2017-11-13 2022-09-13 Mediatek Singapore Pte. Ltd. Method and apparatus for Intra prediction fusion in image and video coding
KR102523002B1 (ko) * 2017-12-14 2023-04-18 엘지전자 주식회사 영상 코딩 시스템에서 인터 예측에 따른 영상 디코딩 방법 및 장치
CN116405674A (zh) * 2017-12-22 2023-07-07 数码士有限公司 视频信号处理方法和设备
CA3101176A1 (en) 2018-06-27 2020-01-02 Kt Corporation Method and apparatus for processing video signal
US11509889B2 (en) 2018-06-27 2022-11-22 Kt Corporation Method and apparatus for processing video signal
US11151748B2 (en) * 2018-07-13 2021-10-19 Electronics And Telecommunications Research Institute 3D point cloud data encoding/decoding method and apparatus
RU2771250C1 (ru) * 2018-09-07 2022-04-29 Б1 Инститьют Оф Имидж Текнолоджи, Инк. Способ и устройство кодирования/декодирования изображения
HUE063986T2 (hu) * 2018-09-16 2024-02-28 Huawei Tech Co Ltd Eljárás és berendezés predikcióhoz
CN110933412B (zh) 2018-09-19 2023-07-25 北京字节跳动网络技术有限公司 用于帧内块复制的基于历史的运动矢量预测值
CN112889291A (zh) * 2018-10-08 2021-06-01 北京达佳互联信息技术有限公司 对跨分量线性模型的简化
CN111083491A (zh) 2018-10-22 2020-04-28 北京字节跳动网络技术有限公司 细化运动矢量的利用
WO2020084476A1 (en) 2018-10-22 2020-04-30 Beijing Bytedance Network Technology Co., Ltd. Sub-block based prediction
US11197005B2 (en) * 2018-11-08 2021-12-07 Qualcomm Incorporated Cross-component prediction for video coding
WO2020098643A1 (en) 2018-11-12 2020-05-22 Beijing Bytedance Network Technology Co., Ltd. Simplification of combined inter-intra prediction
CN113170171B (zh) 2018-11-20 2024-04-12 北京字节跳动网络技术有限公司 组合帧间帧内预测模式的预测细化
EP3861742A4 (en) 2018-11-20 2022-04-13 Beijing Bytedance Network Technology Co., Ltd. DIFFERENCE CALCULATION BASED ON SPATIAL POSITION
WO2020111843A1 (ko) * 2018-11-28 2020-06-04 주식회사 윌러스표준기술연구소 화면 내 예측 필터링을 이용한 비디오 신호 처리 방법 및 장치
WO2020145775A1 (ko) * 2019-01-13 2020-07-16 엘지전자 주식회사 Mrl 기반 인트라 예측을 수행하는 영상 코딩 방법 및 장치
WO2020164479A1 (en) * 2019-02-11 2020-08-20 Beijing Bytedance Network Technology Co., Ltd. Video block partition based on quinary tree
US20220132109A1 (en) * 2019-02-21 2022-04-28 Lg Electronics Inc. Image decoding method and apparatus using intra prediction in image coding system
WO2020177756A1 (en) 2019-03-06 2020-09-10 Beijing Bytedance Network Technology Co., Ltd. Size dependent inter coding
US11889085B2 (en) * 2019-03-08 2024-01-30 Telefonaktiebolaget Lm Ericsson (Publ) Methods providing encoding/decoding of dependent/independent partitions and related devices
WO2020182207A1 (en) * 2019-03-13 2020-09-17 Beijing Bytedance Network Technology Co., Ltd. Partitions on sub-block transform mode
US20200296359A1 (en) * 2019-03-15 2020-09-17 Qualcomm Incorporated Video coding with unfiltered reference samples using different chroma formats
WO2020192180A1 (zh) * 2019-03-25 2020-10-01 Oppo广东移动通信有限公司 图像分量的预测方法、编码器、解码器及计算机存储介质
KR20210129224A (ko) * 2019-04-15 2021-10-27 엘지전자 주식회사 스케일링 리스트 기반 비디오 또는 영상 코딩
US11190758B2 (en) * 2019-04-25 2021-11-30 Qualcomm Incorporated Block-based quantized residual domain pulse code modulation assignment for intra prediction mode derivation
WO2020256466A1 (ko) * 2019-06-19 2020-12-24 한국전자통신연구원 화면 내 예측 모드 및 엔트로피 부호화/복호화 방법 및 장치
JP7448568B2 (ja) * 2019-06-25 2024-03-12 オッポ広東移動通信有限公司 画像成分の予測方法、装置およびコンピュータ記憶媒体
US11375196B2 (en) * 2019-09-19 2022-06-28 Tencent America LLC Method of context modeling for entropy coding of transform coefficient flags with transform skip, and coding method with the same
US11356685B2 (en) * 2019-09-23 2022-06-07 Qualcomm Incorproated Signaling number of sub-pictures in high-level syntax for video coding
CN114902678A (zh) * 2019-10-29 2022-08-12 Lg电子株式会社 基于变换的图像编码方法及其设备
KR102529117B1 (ko) * 2019-10-29 2023-05-04 엘지전자 주식회사 변환에 기반한 영상 코딩 방법 및 그 장치
CN114667730A (zh) * 2019-11-01 2022-06-24 北京字节跳动网络技术有限公司 交叉分量视频编解码的块尺寸限制
KR20210063258A (ko) * 2019-11-22 2021-06-01 한국전자통신연구원 적응적 루프내 필터링 방법 및 장치
CN114731430A (zh) * 2019-12-05 2022-07-08 交互数字Vc控股法国有限公司 与多个变换选择、矩阵加权帧内预测或多参考线帧内预测结合的用于视频编码和解码的帧内子分区
CN114930849A (zh) * 2020-01-10 2022-08-19 Lg 电子株式会社 基于变换的图像编译方法及其装置
CN115606177A (zh) * 2020-03-21 2023-01-13 抖音视界有限公司(Cn) 在跨分量视频编解码中使用相邻样点
EP4122204A4 (en) * 2020-04-18 2024-02-14 Beijing Bytedance Network Tech Co Ltd SYNTAX FOR SIGNALING CROSS-COMPONENT VIDEO CODING
US11449979B2 (en) * 2020-10-09 2022-09-20 Applied Materials Israel Ltd. Measuring a pattern
US20220312004A1 (en) * 2021-03-23 2022-09-29 Tencent America LLC Method and apparatus for video coding
CN113194352B (zh) * 2021-04-28 2023-04-07 中国建设银行股份有限公司 一种多媒体播放进度记录方法、装置、设备及存储介质
CN113489974B (zh) * 2021-07-02 2023-05-16 浙江大华技术股份有限公司 帧内预测方法、视频/图像编解码方法及相关装置
KR20240051257A (ko) * 2021-08-30 2024-04-19 베이징 다지아 인터넷 인포메이션 테크놀로지 컴퍼니 리미티드 디코더 측 인트라 모드 도출을 위한 방법 및 장치
US20230069089A1 (en) * 2021-08-31 2023-03-02 Mediatek Inc. Video decoder with hardware shared between different processing circuits and associated video decoding method
WO2023122968A1 (zh) * 2021-12-28 2023-07-06 Oppo广东移动通信有限公司 帧内预测方法、设备、系统、及存储介质
WO2023128704A1 (ko) * 2021-12-30 2023-07-06 엘지전자 주식회사 Cclm(cross-component linear model) 인트라 예측에 기반한 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장하는 기록 매체

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101403341B1 (ko) 2007-03-28 2014-06-09 삼성전자주식회사 영상의 부호화, 복호화 방법 및 장치
WO2017176030A1 (ko) 2016-04-06 2017-10-12 주식회사 케이티 비디오 신호 처리 방법 및 장치

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6711211B1 (en) 2000-05-08 2004-03-23 Nokia Mobile Phones Ltd. Method for encoding and decoding video information, a motion compensated video encoder and a corresponding decoder
JP3790178B2 (ja) * 2002-03-22 2006-06-28 日本電信電話株式会社 映像符号化におけるイントラ・インター判定方法,映像符号化装置,映像符号化プログラムおよびそのプログラムの記録媒体
CN1843037B (zh) * 2003-08-26 2010-09-22 汤姆森特许公司 用于编码混合内部-相互编码块的方法和装置
KR101452860B1 (ko) * 2009-08-17 2014-10-23 삼성전자주식회사 영상의 부호화 방법 및 장치, 영상 복호화 방법 및 장치
KR20110068793A (ko) 2009-12-16 2011-06-22 한국전자통신연구원 영상 부호화 및 복호화를 위한 장치 및 방법
KR20110123651A (ko) 2010-05-07 2011-11-15 한국전자통신연구원 생략 부호화를 이용한 영상 부호화 및 복호화 장치 및 그 방법
KR101530284B1 (ko) 2010-07-16 2015-06-19 삼성전자주식회사 영상의 인트라 예측 부호화, 복호화 방법 및 장치
US9661337B2 (en) * 2010-10-01 2017-05-23 Samsung Electronics Co., Ltd. Image intra prediction method and apparatus
US20130215968A1 (en) 2010-10-28 2013-08-22 University-Industry Cooperation Group Of Kyung Hee University Video information encoding method and decoding method
KR20120070479A (ko) 2010-12-21 2012-06-29 한국전자통신연구원 화면 내 예측 방향 정보 부호화/복호화 방법 및 그 장치
KR20120140181A (ko) * 2011-06-20 2012-12-28 한국전자통신연구원 화면내 예측 블록 경계 필터링을 이용한 부호화/복호화 방법 및 그 장치
KR101654673B1 (ko) * 2011-06-28 2016-09-22 삼성전자주식회사 영상의 인트라 예측 부호화, 복호화 방법 및 장치
ES2884066T3 (es) * 2011-10-18 2021-12-10 Lg Electronics Inc Método de intra predicción y dispositivo para lo mismo
CN105338348B (zh) * 2011-10-24 2018-11-13 英孚布瑞智有限私人贸易公司 用于图像解码的方法和装置
JP5995448B2 (ja) * 2012-01-19 2016-09-21 シャープ株式会社 画像復号装置、および画像符号化装置
KR20140008503A (ko) * 2012-07-10 2014-01-21 한국전자통신연구원 영상 부호화/복호화 방법 및 장치
JP5841670B2 (ja) * 2012-09-28 2016-01-13 日本電信電話株式会社 イントラ予測符号化方法、イントラ予測復号方法、イントラ予測符号化装置、イントラ予測復号装置、それらのプログラム並びにプログラムを記録した記録媒体
CN104396248B (zh) 2012-10-12 2019-11-08 韩国电子通信研究院 图像编码/解码方法和使用其的装置
KR20140079661A (ko) * 2012-12-18 2014-06-27 주식회사 팬택 Mpm을 이용한 계층적 영상 복호화 방법 및 이러한 방법을 사용하는 장치
US9686561B2 (en) * 2013-06-17 2017-06-20 Qualcomm Incorporated Inter-component filtering
US10856009B2 (en) * 2014-09-04 2020-12-01 Mediatek Inc. Method of block vector clipping and coding for screen content coding and video coding
KR20170084055A (ko) * 2014-11-06 2017-07-19 삼성전자주식회사 비디오 부호화 방법 및 장치, 비디오 복호화 방법 및 장치
KR101703332B1 (ko) 2015-01-30 2017-02-06 삼성전자 주식회사 영상의 복호화 방법 및 장치
KR101875762B1 (ko) * 2015-06-05 2018-07-06 인텔렉추얼디스커버리 주식회사 화면 내 예측 모드에 대한 부호화/복호화 방법 및 장치
CN113810691A (zh) * 2015-07-08 2021-12-17 交互数字麦迪逊专利控股公司 用于使用交叉平面滤波的增强色度编码的方法和装置
KR102346713B1 (ko) 2016-04-12 2022-01-03 세종대학교산학협력단 인트라 예측 기반의 비디오 신호 처리 방법 및 장치
US10326989B2 (en) * 2016-05-25 2019-06-18 Arris Enterprises Llc General block partitioning method
US10284845B2 (en) * 2016-05-25 2019-05-07 Arris Enterprises Llc JVET quadtree plus binary tree (QTBT) structure with multiple asymmetrical partitioning
US10567808B2 (en) * 2016-05-25 2020-02-18 Arris Enterprises Llc Binary ternary quad tree partitioning for JVET
US10484712B2 (en) * 2016-06-08 2019-11-19 Qualcomm Incorporated Implicit coding of reference line index used in intra prediction
ES2737874B2 (es) * 2016-07-05 2020-10-16 Kt Corp Metodo y aparato para procesar senal de video
US11438582B2 (en) * 2016-08-03 2022-09-06 Kt Corporation Video signal processing method and device for performing intra-prediction for an encoding/decoding target block
US10326986B2 (en) * 2016-08-15 2019-06-18 Qualcomm Incorporated Intra video coding using a decoupled tree structure
KR101703339B1 (ko) * 2016-08-17 2017-02-06 육태송 영양 떡볶이 소스 및 그 제조방법, 이를 이용해 제조된 영양 떡볶이
US10506228B2 (en) * 2016-10-04 2019-12-10 Qualcomm Incorporated Variable number of intra modes for video coding
WO2018066849A1 (ko) * 2016-10-04 2018-04-12 한국전자통신연구원 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체
KR20180043149A (ko) * 2016-10-19 2018-04-27 에스케이텔레콤 주식회사 영상 부호화 또는 복호화하기 위한 장치 및 방법
WO2018111132A1 (en) * 2016-12-15 2018-06-21 Huawei Technologies Co., Ltd Intra sharpening and/or de-ringing filter for video coding
US11496747B2 (en) * 2017-03-22 2022-11-08 Qualcomm Incorporated Intra-prediction mode propagation
TWI678917B (zh) * 2017-06-07 2019-12-01 聯發科技股份有限公司 用於視訊編解碼的畫面內-畫面間預測的方法及裝置
CN115022632A (zh) * 2017-10-18 2022-09-06 韩国电子通信研究院 图像编码/解码方法和装置以及存储有比特流的记录介质
US11350107B2 (en) * 2017-11-16 2022-05-31 Electronics And Telecommunications Research Institute Image encoding/decoding method and device, and recording medium storing bitstream
CN116708837A (zh) * 2018-07-02 2023-09-05 Lg电子株式会社 编解码设备和数据发送设备
US10819977B2 (en) * 2018-07-05 2020-10-27 Tencent America LLC Methods and apparatus for multiple line intra prediction in video compression
WO2020211863A1 (en) * 2019-04-18 2020-10-22 Beijing Bytedance Network Technology Co., Ltd. Selective use of cross component mode in video coding

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101403341B1 (ko) 2007-03-28 2014-06-09 삼성전자주식회사 영상의 부호화, 복호화 방법 및 장치
WO2017176030A1 (ko) 2016-04-06 2017-10-12 주식회사 케이티 비디오 신호 처리 방법 및 장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
S. Keating et al, "CE3 Related: Additional results of JVET-J1023 Core Experiments 5.2.3, 5.2.4 and 5.2.5", JVET-K0221, ver 2, 2018.7.4.

Also Published As

Publication number Publication date
CN116684620A (zh) 2023-09-01
KR20230107197A (ko) 2023-07-14
US20200413069A1 (en) 2020-12-31
US20230370616A1 (en) 2023-11-16
KR20230074681A (ko) 2023-05-31
EP3737093A1 (en) 2020-11-11
WO2019107911A1 (ko) 2019-06-06
KR20230132419A (ko) 2023-09-15
KR20230107198A (ko) 2023-07-14
CN116684618A (zh) 2023-09-01
US20230353755A1 (en) 2023-11-02
KR20190062302A (ko) 2019-06-05
EP3737093A4 (en) 2022-02-09
KR20230074102A (ko) 2023-05-26
US20240080455A1 (en) 2024-03-07
CN117201794A (zh) 2023-12-08
CN116684615A (zh) 2023-09-01
CN117176958A (zh) 2023-12-05
US20230370613A1 (en) 2023-11-16
CN116684617A (zh) 2023-09-01
CN111434109A (zh) 2020-07-17
KR20230107199A (ko) 2023-07-14
US20230370614A1 (en) 2023-11-16
US11218704B2 (en) 2022-01-04
US20220070474A1 (en) 2022-03-03
CN116684619A (zh) 2023-09-01
KR20230107531A (ko) 2023-07-17
US20240080454A1 (en) 2024-03-07
US20230362389A1 (en) 2023-11-09
CN116684616A (zh) 2023-09-01
KR20230132420A (ko) 2023-09-15
US20230370615A1 (en) 2023-11-16
KR20230107196A (ko) 2023-07-14

Similar Documents

Publication Publication Date Title
KR102557090B1 (ko) 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체
KR102613966B1 (ko) 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체
KR102595070B1 (ko) 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체
JP7150810B2 (ja) 画像復号方法及び画像符号化方法
KR102487618B1 (ko) 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체
KR20230038168A (ko) 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체
KR20230150921A (ko) 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체
KR20230150937A (ko) 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체
KR20230156294A (ko) 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체
KR20200033195A (ko) 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체
KR102540171B1 (ko) 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체
KR102654647B1 (ko) 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체
KR20240066135A (ko) 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체
KR20240066134A (ko) 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체
KR20240063819A (ko) 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체

Legal Events

Date Code Title Description
AMND Amendment
E902 Notification of reason for refusal
N231 Notification of change of applicant
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
A107 Divisional application of patent