KR102553638B1 - 무선 통신 시스템에서 위상 추적 참조 신호의 송수신 방법 및 이에 대한 장치 - Google Patents

무선 통신 시스템에서 위상 추적 참조 신호의 송수신 방법 및 이에 대한 장치 Download PDF

Info

Publication number
KR102553638B1
KR102553638B1 KR1020227005376A KR20227005376A KR102553638B1 KR 102553638 B1 KR102553638 B1 KR 102553638B1 KR 1020227005376 A KR1020227005376 A KR 1020227005376A KR 20227005376 A KR20227005376 A KR 20227005376A KR 102553638 B1 KR102553638 B1 KR 102553638B1
Authority
KR
South Korea
Prior art keywords
ptrs
frequency
dci
tci state
tci
Prior art date
Application number
KR1020227005376A
Other languages
English (en)
Other versions
KR20220039751A (ko
Inventor
김규석
김형태
강지원
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of KR20220039751A publication Critical patent/KR20220039751A/ko
Application granted granted Critical
Publication of KR102553638B1 publication Critical patent/KR102553638B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0016Time-frequency-code
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0035Synchronisation arrangements detecting errors in frequency or phase
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 발명에서는 무선 통신 시스템에서 위상 추적 참조 신호(Phase Tracking Reference Signal, PTRS)를 송수신하는 방법 및 이를 위한 장치가 개시된다.
구체적으로, 무선통신 시스템에서 단말(User equipment, UE)이 위상 추적 참조 신호(Phase Tracking Reference Signal, PTRS)를 수신하는 방법에 있어서, PTRS 설정 정보를 수신하는 단계, 상기 PTRS 설정 정보는 PTRS의 주파수 밀도(frequency density)에 대한 정보를 포함하고; 하향링크 제어 정보(Downlink Control Information, DCI)를 수신하는 단계, 상기 DCI에 기반하여 복수의 TCI state들이 지시되며; 및 상기 PTRS를 수신하는 단계를 포함하되, 상기 복수의 TCI state들의 각 TCI state와 연관된 주파수 영역의 자원이 중첩되지 않는 것에 기초하여, 상기 PTRS의 주파수 밀도는 각 TCI state와 연관된 자원 블록(resource block)들의 수에 의해 결정될 수 있다.

Description

무선 통신 시스템에서 위상 추적 참조 신호의 송수신 방법 및 이에 대한 장치
본 명세서는 무선 통신 시스템에 관한 것으로서, 보다 상세하게 다중(multiple) TRP(Transmission Reception Point)들의 협력 전송을 고려한 위상 추적 참조 신호(Phase Tracking Reference Signal, PTRS)의 송수신 방법 및 이를 지원하는 장치에 관한 것이다.
이동 통신 시스템은 사용자의 활동성을 보장하면서 음성 서비스를 제공하기 위해 개발되었다. 그러나 이동통신 시스템은 음성뿐 아니라 데이터 서비스까지 영역을 확장하였으며, 현재에는 폭발적인 트래픽의 증가로 인하여 자원의 부족 현상이 야기되고 사용자들이 보다 고속의 서비스를 요구하므로, 보다 발전된 이동 통신 시스템이 요구되고 있다.
차세대 이동 통신 시스템의 요구 조건은 크게 폭발적인 데이터 트래픽의 수용, 사용자 당 전송률의 획기적인 증가, 대폭 증가된 연결 디바이스 개수의 수용, 매우 낮은 단대단 지연(End-to-End Latency), 고에너지 효율을 지원할 수 있어야 한다. 이를 위하여 이중 연결성(Dual Connectivity), 대규모 다중 입출력(Massive MIMO: Massive Multiple Input Multiple Output), 전이중(In-band Full Duplex), 비직교 다중접속(NOMA: Non-Orthogonal Multiple Access), 초광대역(Super wideband) 지원, 단말 네트워킹(Device Networking) 등 다양한 기술들이 연구되고 있다.
본 명세서는, 무선 통신 시스템에서 다수의 TRP(Transmission Reception Point)들에 의해 지원되는 단말이 위상 추적 참조 신호(Phase Tracking Reference Signal, PTRS)를 송수신 하는 방법을 제안한다.
구체적으로, 본 명세서는 단일 DCI 기반의 M-TRP 전송을 고려하여, 각 TRP에 대한 시간/주파수 자원을 할당하는 방법을 제안한다.
또한, 본 명세서는 단일 DCI 기반의 M-TRP 전송을 고려하여, 각 TRP로부터 전송되는 전송 블록의 크기를 계산하기 위한 기준 자원 크기를 결정하는 방법을 제안한다.
또한, 본 명세서는 M-TRP 전송을 고려하여 PTRS의 주파수 밀도를 결정하는 방법을 제안한다.
또한, 본 명세서는 각 TRP 별로 할당된 시간/주파수 자원에서 PTRS를 전송하기 위한 자원 매핑 방법을 제안한다.
본 명세서에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 명세서의 일 실시 예에 따른 무선통신 시스템에서 단말(User equipment, UE)이 위상 추적 참조 신호(Phase Tracking Reference Signal, PTRS)를 수신하는 방법에 있어서, PTRS 설정 정보를 수신하는 단계, 상기 PTRS 설정 정보는 PTRS의 주파수 밀도(frequency density)에 대한 정보를 포함하고; 하향링크 제어 정보(Downlink Control Information, DCI)를 수신하는 단계, 상기 DCI에 기반하여 복수의 TCI state들이 지시되며; 및 상기 PTRS를 수신하는 단계를 포함하되, 상기 복수의 TCI state들의 각 TCI state와 연관된 주파수 영역의 자원이 중첩되지 않는 것에 기초하여, 상기 PTRS의 주파수 밀도는 각 TCI state와 연관된 자원 블록(resource block)들의 수에 의해 결정될 수 있다.
또한, 본 명세서의 일 실시 예에 따른 상기 방법에 있어서, 상기 PTRS의 주파수 밀도에 대한 정보는 제1 임계 값 및 제2 임계 값을 포함하고, 상기 PTRS의 주파수 밀도는 (i)각 TCI state와 연관된 자원 블록들의 수와 (ii) 상기 제1 임계 값 또는 상기 제2 임계 값 중 적어도 하나를 비교하여 결정될 수 있다.
또한, 본 명세서의 일 실시 예에 따른 상기 방법에 있어서, 상기 제1 임계 값 및 상기 제 2 임계 값은 각각 복수 개의 값으로 설정될 수 있다.
또한, 본 명세서의 일 실시 예에 따른 상기 방법에 있어서, 상기 DCI는 주파수 자원 할당(frequency resource assignment) 필드를 포함하고, 및 상기 주파수 자원 할당 필드에 기반하여 할당된 주파수 자원 영역에 대해 상기 복수의 TCI state들이 매핑 될 수 있다.
또한, 본 명세서의 일 실시 예에 따른 상기 방법에 있어서, 상기 할당된 주파수 자원 영역은 주파수 영역에서 중첩되지 않는 제1 영역 및 제2 영역을 포함하고, 상기 제1 영역은 제1 TCI state와 연관되고, 상기 제2 영역은 제2 TCI state에 연관될 수 있다.
또한, 본 명세서의 일 실시 예에 따른 상기 방법에 있어서, 상기 할당된 주파수 자원 영역은 짝수 PRG(precoding resource block group)으로 구성되는 상기 제1 영역 및 홀수 PRG로 구성되는 상기 제2 영역으로 나뉠 수 있다.
또한, 본 명세서의 일 실시 예에 따른 상기 방법에 있어서, 상기 할당된 주파수 자원 영역은 floor 함수에 기반하여 중첩되지 않는 상기 제1 영역 및 상기 제2 영역으로 나뉠 수 있다.
또한, 본 명세서의 일 실시 예에 따른 상기 방법에 있어서, 상기 제1 영역의 자원 블록들의 수에 의해 상기 PTRS의 제1 주파수 밀도가 결정되고, 상기 제2 영역의 자원 블록들의 수에 의해 상기 PTRS의 제2 주파수 밀도가 결정될 수 있다.
또한, 본 명세서의 일 실시 예에 따른 상기 방법에 있어서, 상기 제1 영역에서 상기 제1 주파수 밀도에 기반하여 상기 PTRS가 자원 요소에 매핑 되고, 상기 제2 영역에서, 상기 제2 주파수 밀도에 기반하여 상기 PTRS가 자원 요소에 매핑 될 수 있다.
또한, 본 명세서의 일 실시 예에 따른 상기 방법에 있어서, 상기 DCI는 안테나 포트 필드를 포함하고, 및 상기 안테나 포트 필드에 기반하여 동일한 CDM 그룹의 DM-RS 포트들이 지시될 수 있다.
본 명세서의 일 실시 예에 따른 무선 통신 시스템에서 위상 추적 참조 신호(Phase Tracking Reference Signal, PTRS)를 수신하는 단말(User equipment, UE)에 있어서, 상기 단말은, 하나 이상의 송수신기; 하나 이상의 프로세서들; 및 상기 하나 이상의 프로세서들에 의해 실행되는 동작들에 대한 지시(instruction)들을 저장하고, 상기 하나 이상의 프로세서들과 연결되는 하나 이상의 메모리들을 포함하며, 상기 동작들은, PTRS 설정 정보를 수신하는 단계, 상기 PTRS 설정 정보는 PTRS의 주파수 밀도(frequency density)에 대한 정보를 포함하고; 하향링크 제어 정보(Downlink Control Information, DCI)를 수신하는 단계, 상기 DCI에 기반하여 복수의 TCI state들이 지시되며; 및 상기 PTRS를 수신하는 단계를 포함하되, 상기 복수의 TCI state들의 각 TCI state와 연관된 주파수 영역의 자원이 중첩되지 않는 것에 기초하여, 상기 PTRS의 주파수 밀도는 각 TCI state와 연관된 자원 블록(resource block)들의 수에 의해 결정될 수 있다.
본 명세서의 일 실시 예에 따른 무선 통신 시스템에서 기지국(Base station, BS)이 위상 추적 참조 신호(Phase Tracking Reference Signal, PTRS)를 전송하는 방법에 있어서, 단말(UE)로, PTRS 설정 정보를 전송하는 단계, 상기 PTRS 설정 정보는 PTRS의 주파수 밀도(frequency density)에 대한 정보를 포함하고; 상기 단말로, 하향링크 제어 정보(Downlink Control Information, DCI)를 전송하는 단계, 상기 DCI에 기반하여 복수의 TCI state들이 지시되며; 및 상기 단말로, 상기 PTRS를 전송하는 단계를 포함하되, 상기 복수의 TCI state들의 각 TCI state와 연관된 주파수 영역의 자원이 중첩되지 않는 것에 기초하여, 상기 PTRS의 주파수 밀도는 각 TCI state와 연관된 자원 블록(resource block)들의 수에 의해 결정될 수 있다.
본 명세서의 일 실시 예에 따른 무선 통신 시스템에서 위상 추적 참조 신호(Phase Tracking Reference Signal, PTRS)를 전송하는 기지국(Base station, BS)에 있어서, 상기 기지국은, 하나 이상의 송수신기; 하나 이상의 프로세서들; 및 상기 하나 이상의 프로세서들에 의해 실행되는 동작들에 대한 지시(instruction)들을 저장하고, 상기 하나 이상의 프로세서들과 연결되는 하나 이상의 메모리들을 포함하며, 상기 동작들은, 단말(UE)로, PTRS 설정 정보를 전송하는 단계, 상기 PTRS 설정 정보는 PTRS의 주파수 밀도(frequency density)에 대한 정보를 포함하고; 상기 단말로, 하향링크 제어 정보(Downlink Control Information, DCI)를 전송하는 단계, 상기 DCI에 기반하여 복수의 TCI state들이 지시되며; 및 상기 단말로, 상기 PTRS를 전송하는 단계를 포함하되, 상기 복수의 TCI state들의 각 TCI state와 연관된 주파수 영역의 자원이 중첩되지 않는 것에 기초하여, 상기 PTRS의 주파수 밀도는 각 TCI state와 연관된 자원 블록(resource block)들의 수에 의해 결정될 수 있다.
본 명세서의 일 실시 예에 따른 하나 이상의 메모리들 및 상기 하나 이상의 메모리들과 기능적으로 연결되어 있는 하나 이상의 프로세서들을 포함하는 장치에 있어서, 상기 하나 이상의 프로세서들은 상기 장치가, PTRS 설정 정보를 수신하고, 하향링크 제어 정보(Downlink Control Information, DCI)를 수신하며, 및 상기 PTRS를 수신하도록 제어하되, 상기 PTRS 설정 정보는 PTRS의 주파수 밀도(frequency density)에 대한 정보를 포함하고, 상기 DCI에 기반하여 복수의 TCI state들이 지시되며, 및 상기 복수의 TCI state들의 각 TCI state와 연관된 주파수 영역의 자원이 중첩되지 않는 것에 기초하여, 상기 PTRS의 주파수 밀도는 각 TCI state와 연관된 자원 블록(resource block)들의 수에 의해 결정될 수 있다.
본 명세서의 일 실시 예에 따른 하나 이상의 명령어(instructions)을 저장하는 하나 이상의 비-일시적인(non-transitory) 컴퓨터 판독 가능 매체(computer-readable medium)에 있어서, 하나 이상의 프로세서에 의해 실행 가능한(executable) 상기 하나 이상의 명령어는, 단말(User equipment, UE)이 PTRS 설정 정보를 수신하고, 하향링크 제어 정보(Downlink Control Information, DCI)를 수신하며, 및 상기 PTRS를 수신하도록 지시하는 명령어를 포함하되, 상기 PTRS 설정 정보는 PTRS의 주파수 밀도(frequency density)에 대한 정보를 포함하고, 상기 DCI에 기반하여 복수의 TCI state들이 지시되며, 및 상기 복수의 TCI state들의 각 TCI state와 연관된 주파수 영역의 자원이 중첩되지 않는 것에 기초하여, 상기 PTRS의 주파수 밀도는 각 TCI state와 연관된 자원 블록(resource block)들의 수에 의해 결정될 수 있다.
본 명세서의 실시 예에 따르면, 다수의 TRP(Transmission Reception Point)들에 기반하여 PTRS를 송수신할 수 있다.
또한, 본 명세서의 실시 예에 따르면, 단일 DCI 기반의 M-TRP 전송에서 DCI를 통해 설정되는 시간/주파수 자원에 기반하여 각 TRP에 대한 시간/주파수 자원을 결정할 수 있다. 또한, 각 TRP로부터 전송되는 전송 블록의 크기를 계산하기 위한 기준 자원 크기를 결정할 수 있다.
또한, 본 명세서의 실시 예에 따르면, M-TRP 전송을 고려하여 PTRS의 주파수 밀도를 최적화하여 설정할 수 있다. 또한, 결정된 주파수 밀도에 기반하여 자원 요소에 매핑 되는 PTRS를 송수신 할 수 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시 예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 특징을 설명한다.
도 1은 본 명세서에서 제안하는 방법이 적용될 수 있는 NR의 전체적인 시스템 구조의 일례를 나타낸다.
도 2는 본 명세서에서 제안하는 방법이 적용될 수 있는 무선 통신 시스템에서 상향링크 프레임과 하향링크 프레임 간의 관계를 나타낸다.
도 3은 NR 시스템에서의 프레임 구조의 일례를 나타낸다.
도 4는 본 명세서에서 제안하는 방법이 적용될 수 있는 무선 통신 시스템에서 지원하는 자원 그리드(resource grid)의 일례를 나타낸다.
도 5는 본 명세서에서 제안하는 방법이 적용될 수 있는 안테나 포트 및 뉴머롤로지 별 자원 그리드의 예들을 나타낸다.
도 6은 3GPP 시스템에 이용되는 물리 채널들 및 일반적인 신호 전송을 예시한다.
도 7은 하향링크 송수신 동작의 일례를 나타낸 도이다.
도 8은 상향링크 송수신 동작의 일례를 나타낸 도이다.
도 9는 DL DMRS 절차의 일례를 나타낸 흐름도이다.
도 10은 다수의 TRP에서의 전송을 이용한 신뢰도 향상을 위한 송수신 방법의 일례를 나타낸다.
도 11은 서로 다른 TRP에서 서로 다른 주파수 자원을 이용하여 단말에게 데이터를 전송하는 경우의 예를 나타낸다.
도 12는 단일 DCI 기반의 M-TRP 동작에서, 단일 DCI를 통해 서로 다른 TRP에게 주파수 자원을 할당하는 방법의 예시이다.
도 13은 PRG 세트에 기반하여 TRP 별 주파수 자원을 할당하는 일 예를 나타낸다.
도 14는 본 명세서에서 제안하는 방법에 따라 PDSCH 가 전송될 수 있는 BWP를 기준으로 PRG 세트를 정의하고, PRG 세트와 TCI state 간 매핑 관계의 예를 나타낸다.
도 15는 PDSCH를 위한 주파수 영역의 자원 할당(resource allocation) 방식에 따라 각 TRP와 연관된 TCI state를 매핑하는 방법의 일례이다.
도 16은 DL PTRS 절차의 일례를 나타낸 흐름도이다.
도 17은 주파수 영역에서 precoding granularity가 2로 설정되고, PRG 세트가 하나의 PRG로 구성된 경우, 스케줄 된 RB들과 각 TRP에 대응하는 TCI state 간의 매핑 관계 및 PTRS가 전송되는 RB를 나타낸 예시이다.
도 18은 본 명세서에서 제안하는 방법에 따른 DCI를 통해 지시된 주파수 자원을 기준으로 하여 M-TRP의 주파수 자원을 결정하는 방법을 나타낸 예시이다.
도 19는 본 명세서에서 제안하는 방법 및/또는 실시예가 적용될 수 있는 단일 DCI 기반의 M-TRP 전송에서 단말과 Network side 간의 시그널링의 예시이다.
도 20은 본 명세서에서 제안하는 방법 및/또는 실시예가 적용될 수 있는 PTRS를 수신하는 단말의 동작 순서도의 일례를 나타낸다.
도 21은 본 명세서에서 제안하는 방법 및/또는 실시예가 적용될 수 있는 PTRS를 전송하는 기지국의 동작 순서도의 일례를 나타낸다.
도 22는 본 발명에 적용되는 통신 시스템(1)을 예시한다.
도 23은 본 발명에 적용될 수 있는 무선 기기를 예시한다.
도 24는 전송 신호를 위한 신호 처리 회로를 예시한다.
도 25는 본 발명에 적용되는 무선 기기의 다른 예를 나타낸다.
도 26은 본 발명에 적용되는 휴대 기기를 예시한다.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다. 이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 당업자는 본 발명이 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다.
이하에서, 하향링크(DL: downlink)는 기지국에서 단말로의 통신을 의미하며, 상향링크(UL: uplink)는 단말에서 기지국으로의 통신을 의미한다. 하향링크에서 송신기는 기지국의 일부이고, 수신기는 단말의 일부일 수 있다. 상향링크에서 송신기는 단말의 일부이고, 수신기는 기지국의 일부일 수 있다. 기지국은 제 1 통신 장치로, 단말은 제 2 통신 장치로 표현될 수도 있다. 기지국(BS: Base Station)은 고정국(fixed station), Node B, eNB(evolved-NodeB), gNB(Next Generation NodeB), BTS(base transceiver system), 액세스 포인트(AP: Access Point), 네트워크(5G 네트워크), AI 시스템, RSU(road side unit), 차량(vehicle), 로봇, 드론(Unmanned Aerial Vehicle, UAV), AR(Augmented Reality)장치, VR(Virtual Reality)장치 등의 용어에 의해 대체될 수 있다. 또한, 단말(Terminal)은 고정되거나 이동성을 가질 수 있으며, UE(User Equipment), MS(Mobile Station), UT(user terminal), MSS(Mobile Subscriber Station), SS(Subscriber Station), AMS(Advanced Mobile Station), WT(Wireless terminal), MTC(Machine-Type Communication) 장치, M2M(Machine-to-Machine) 장치, D2D(Device-to-Device) 장치, 차량(vehicle), 로봇(robot), AI 모듈, 드론(Unmanned Aerial Vehicle, UAV), AR(Augmented Reality)장치, VR(Virtual Reality)장치 등의 용어로 대체될 수 있다.
이하의 기술은 CDMA, FDMA, TDMA, OFDMA, SC-FDMA 등과 같은 다양한 무선 접속 시스템에 사용될 수 있다. CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP(3rd Generation Partnership Project) LTE(Long Term Evolution)은 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부이고 LTE-A(Advanced)/LTE-A pro는 3GPP LTE의 진화된 버전이다. 3GPP NR(New Radio or New Radio Access Technology)는 3GPP LTE/LTE-A/LTE-A pro의 진화된 버전이다.
설명을 명확하게 하기 위해, 3GPP 통신 시스템(예, LTE-A, NR)을 기반으로 설명하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다. LTE는 3GPP TS 36.xxx Release 8 이후의 기술을 의미한다. 세부적으로, 3GPP TS 36.xxx Release 10 이후의 LTE 기술은 LTE-A로 지칭되고, 3GPP TS 36.xxx Release 13 이후의 LTE 기술은 LTE-A pro로 지칭된다. 3GPP NR은 TS 38.xxx Release 15 이후의 기술을 의미한다. LTE/NR은 3GPP 시스템으로 지칭될 수 있다. "xxx"는 표준 문서 세부 번호를 의미한다. LTE/NR은 3GPP 시스템으로 통칭될 수 있다. 본 발명의 설명에 사용된 배경기술, 용어, 약어 등에 관해서는 본 발명 이전에 공개된 표준 문서에 기재된 사항을 참조할 수 있다. 예를 들어, 다음 문서를 참조할 수 있다.
3GPP LTE
- 36.211: Physical channels and modulation
- 36.212: Multiplexing and channel coding
- 36.213: Physical layer procedures
- 36.300: Overall description
- 36.331: Radio Resource Control (RRC)
3GPP NR
- 38.211: Physical channels and modulation
- 38.212: Multiplexing and channel coding
- 38.213: Physical layer procedures for control
- 38.214: Physical layer procedures for data
- 38.300: NR and NG-RAN Overall Description
- 38.331: Radio Resource Control (RRC) protocol specification
더욱 많은 통신 기기들이 더욱 큰 통신 용량을 요구하게 됨에 따라 기존의 radio access technology 에 비해 향상된 mobile broadband 통신에 대한 필요성이 대두되고 있다. 또한 다수의 기기 및 사물들을 연결하여 언제 어디서나 다양한 서비스를 제공하는 massive MTC (Machine Type Communications) 역시 차세대 통신에서 고려될 주요 이슈 중 하나이다. 뿐만 아니라 reliability 및 latency 에 민감한 서비스/단말을 고려한 통신 시스템 디자인이 논의되고 있다. 이와 같이 eMBB(enhanced mobile broadband communication), Mmtc(massive MTC), URLLC (Ultra-Reliable and Low Latency Communication) 등을 고려한 차세대 radio access technology 의 도입이 논의되고 있으며, 본 명세서에서는 편의상 해당 technology 를 NR 이라고 부른다. NR은 5G 무선 접속 기술(radio access technology, RAT)의 일례를 나타낸 표현이다.
5G의 세 가지 주요 요구 사항 영역은 (1) 개선된 모바일 광대역 (Enhanced Mobile Broadband, eMBB) 영역, (2) 다량의 머신 타입 통신 (massive Machine Type Communication, mMTC) 영역 및 (3) 초-신뢰 및 저 지연 통신 (Ultra-reliable and Low Latency Communications, URLLC) 영역을 포함한다.
일부 사용 예(Use Case)는 최적화를 위해 다수의 영역들이 요구될 수 있고, 다른 사용 예는 단지 하나의 핵심 성능 지표 (Key Performance Indicator, KPI)에만 포커싱될 수 있다. 5G는 이러한 다양한 사용 예들을 유연하고 신뢰할 수 있는 방법으로 지원하는 것이다.
eMBB는 기본적인 모바일 인터넷 액세스를 훨씬 능가하게 하며, 풍부한 양방향 작업, 클라우드 또는 증강 현실에서 미디어 및 엔터테인먼트 애플리케이션을 커버한다. 데이터는 5G의 핵심 동력 중 하나이며, 5G 시대에서 처음으로 전용 음성 서비스를 볼 수 없을 수 있다. 5G에서, 음성은 단순히 통신 시스템에 의해 제공되는 데이터 연결을 사용하여 응용 프로그램으로서 처리될 것이 기대된다. 증가된 트래픽 양(volume)을 위한 주요 원인들은 콘텐츠 크기의 증가 및 높은 데이터 전송률을 요구하는 애플리케이션 수의 증가이다. 스트리밍 서비스 (오디오 및 비디오), 대화형 비디오 및 모바일 인터넷 연결은 더 많은 장치가 인터넷에 연결될수록 더 널리 사용될 것이다. 이러한 많은 응용 프로그램들은 사용자에게 실시간 정보 및 알림을 푸쉬하기 위해 항상 켜져 있는 연결성이 필요하다. 클라우드 스토리지 및 애플리케이션은 모바일 통신 플랫폼에서 급속히 증가하고 있으며, 이것은 업무 및 엔터테인먼트 모두에 적용될 수 있다. 그리고, 클라우드 스토리지는 상향링크 데이터 전송률의 성장을 견인하는 특별한 사용 예이다. 5G는 또한 클라우드의 원격 업무에도 사용되며, 촉각 인터페이스가 사용될 때 우수한 사용자 경험을 유지하도록 훨씬 더 낮은 단-대-단(end-to-end) 지연을 요구한다. 엔터테인먼트 예를 들어, 클라우드 게임 및 비디오 스트리밍은 모바일 광대역 능력에 대한 요구를 증가시키는 또 다른 핵심 요소이다. 엔터테인먼트는 기차, 차 및 비행기와 같은 높은 이동성 환경을 포함하는 어떤 곳에서든지 스마트폰 및 태블릿에서 필수적이다. 또 다른 사용 예는 엔터테인먼트를 위한 증강 현실 및 정보 검색이다. 여기서, 증강 현실은 매우 낮은 지연과 순간적인 데이터 양을 필요로 한다.
또한, 가장 많이 예상되는 5G 사용 예 중 하나는 모든 분야에서 임베디드 센서를 원활하게 연결할 수 있는 기능 즉, mMTC에 관한 것이다. 2020년까지 잠재적인 IoT 장치들은 204 억 개에 이를 것으로 예측된다. 산업 IoT는 5G가 스마트 도시, 자산 추적(asset tracking), 스마트 유틸리티, 농업 및 보안 인프라를 가능하게 하는 주요 역할을 수행하는 영역 중 하나이다.
URLLC는 주요 인프라의 원격 제어 및 자체-구동 차량(self-driving vehicle)과 같은 초 신뢰 / 이용 가능한 지연이 적은 링크를 통해 산업을 변화시킬 새로운 서비스를 포함한다. 신뢰성과 지연의 수준은 스마트 그리드 제어, 산업 자동화, 로봇 공학, 드론 제어 및 조정에 필수적이다.
다음으로, 다수의 사용 예들에 대해 보다 구체적으로 살펴본다.
5G는 초당 수백 메가 비트에서 초당 기가 비트로 평가되는 스트림을 제공하는 수단으로 FTTH (fiber-to-the-home) 및 케이블 기반 광대역 (또는 DOCSIS)을 보완할 수 있다. 이러한 빠른 속도는 가상 현실과 증강 현실뿐 아니라 4K 이상(6K, 8K 및 그 이상)의 해상도로 TV를 전달하는데 요구된다. VR(Virtual Reality) 및 AR(Augmented Reality) 애플리케이션들은 거의 몰입형(immersive) 스포츠 경기를 포함한다. 특정 응용 프로그램은 특별한 네트워크 설정이 요구될 수 있다. 예를 들어, VR 게임의 경우, 게임 회사들이 지연을 최소화하기 위해 코어 서버를 네트워크 오퍼레이터의 에지 네트워크 서버와 통합해야 할 수 있다.
자동차(Automotive)는 차량에 대한 이동 통신을 위한 많은 사용 예들과 함께 5G에 있어 중요한 새로운 동력이 될 것으로 예상된다. 예를 들어, 승객을 위한 엔터테인먼트는 동시의 높은 용량과 높은 이동성 모바일 광대역을 요구한다. 그 이유는 미래의 사용자는 그들의 위치 및 속도와 관계 없이 고품질의 연결을 계속해서 기대하기 때문이다. 자동차 분야의 다른 활용 예는 증강 현실 대시보드이다. 이는 운전자가 앞면 창을 통해 보고 있는 것 위에 어둠 속에서 물체를 식별하고, 물체의 거리와 움직임에 대해 운전자에게 말해주는 정보를 겹쳐서 디스플레이 한다. 미래에, 무선 모듈은 차량들 간의 통신, 차량과 지원하는 인프라구조 사이에서 정보 교환 및 자동차와 다른 연결된 디바이스들(예를 들어, 보행자에 의해 수반되는 디바이스들) 사이에서 정보 교환을 가능하게 한다. 안전 시스템은 운전자가 보다 안전한 운전을 할 수 있도록 행동의 대체 코스들을 안내하여 사고의 위험을 낮출 수 있게 한다. 다음 단계는 원격 조종되거나 자체 운전 차량(self-driven vehicle)이 될 것이다. 이는 서로 다른 자체 운전 차량들 사이 및 자동차와 인프라 사이에서 매우 신뢰성이 있고, 매우 빠른 통신을 요구한다. 미래에, 자체 운전 차량이 모든 운전 활동을 수행하고, 운전자는 차량 자체가 식별할 수 없는 교통 이상에만 집중하도록 할 것이다. 자체 운전 차량의 기술적 요구 사항은 트래픽 안전을 사람이 달성할 수 없을 정도의 수준까지 증가하도록 초 저 지연과 초고속 신뢰성을 요구한다.
스마트 사회(smart society)로서 언급되는 스마트 도시와 스마트 홈은 고밀도 무선 센서 네트워크로 임베디드될 것이다. 지능형 센서의 분산 네트워크는 도시 또는 집의 비용 및 에너지-효율적인 유지에 대한 조건을 식별할 것이다. 유사한 설정이 각 가정을 위해 수행될 수 있다. 온도 센서, 창 및 난방 컨트롤러, 도난 경보기 및 가전 제품들은 모두 무선으로 연결된다. 이러한 센서들 중 많은 것들이 전형적으로 낮은 데이터 전송 속도, 저전력 및 저비용이다. 하지만, 예를 들어, 실시간 HD 비디오는 감시를 위해 특정 타입의 장치에서 요구될 수 있다.
열 또는 가스를 포함한 에너지의 소비 및 분배는 고도로 분산화되고 있어, 분산 센서 네트워크의 자동화된 제어가 요구된다. 스마트 그리드는 정보를 수집하고 이에 따라 행동하도록 디지털 정보 및 통신 기술을 사용하여 이런 센서들을 상호 연결한다. 이 정보는 공급 업체와 소비자의 행동을 포함할 수 있으므로, 스마트 그리드가 효율성, 신뢰성, 경제성, 생산의 지속 가능성 및 자동화된 방식으로 전기와 같은 연료들의 분배를 개선하도록 할 수 있다. 스마트 그리드는 지연이 적은 다른 센서 네트워크로 볼 수도 있다.
건강 부문은 이동 통신의 혜택을 누릴 수 있는 많은 응용 프로그램을 보유하고 있다. 통신 시스템은 멀리 떨어진 곳에서 임상 진료를 제공하는 원격 진료를 지원할 수 있다. 이는 거리에 대한 장벽을 줄이는데 도움을 주고, 거리가 먼 농촌에서 지속적으로 이용하지 못하는 의료 서비스들로의 접근을 개선시킬 수 있다. 이는 또한 중요한 진료 및 응급 상황에서 생명을 구하기 위해 사용된다. 이동 통신 기반의 무선 센서 네트워크는 심박수 및 혈압과 같은 파라미터들에 대한 원격 모니터링 및 센서들을 제공할 수 있다.
무선 및 모바일 통신은 산업 응용 분야에서 점차 중요해지고 있다. 배선은 설치 및 유지 비용이 높다. 따라서, 케이블을 재구성할 수 있는 무선 링크들로의 교체 가능성은 많은 산업 분야에서 매력적인 기회이다. 그러나, 이를 달성하는 것은 무선 연결이 케이블과 비슷한 지연, 신뢰성 및 용량으로 동작하는 것과, 그 관리가 단순화될 것이 요구된다. 낮은 지연과 매우 낮은 오류 확률은 5G로 연결될 필요가 있는 새로운 요구 사항이다.
물류(logistics) 및 화물 추적(freight tracking)은 위치 기반 정보 시스템을 사용하여 어디에서든지 인벤토리(inventory) 및 패키지의 추적을 가능하게 하는 이동 통신에 대한 중요한 사용 예이다. 물류 및 화물 추적의 사용 예는 전형적으로 낮은 데이터 속도를 요구하지만 넓은 범위와 신뢰성 있는 위치 정보가 필요하다.
NR을 포함하는 새로운 RAT 시스템은 OFDM 전송 방식 또는 이와 유사한 전송 방식을 사용한다. 새로운 RAT 시스템은 LTE의 OFDM 파라미터들과는 다른 OFDM 파라미터들을 따를 수 있다. 또는 새로운 RAT 시스템은 기존의 LTE/LTE-A의 뉴머롤로지(numerology)를 그대로 따르나 더 큰 시스템 대역폭(예, 100MHz)를 지닐 수 있다. 또는 하나의 셀이 복수 개의 뉴머롤로지들을 지원할 수도 있다. 즉, 서로 다른 뉴머롤로지로 동작하는 하는 단말들이 하나의 셀 안에서 공존할 수 있다.
뉴머로러지(numerology)는 주파수 영역에서 하나의 subcarrier spacing에 대응한다. Reference subcarrier spacing을 정수 N으로 scaling함으로써, 상이한 numerology가 정의될 수 있다.
용어 정의
eLTE eNB: eLTE eNB는 EPC 및 NGC에 대한 연결을 지원하는 eNB의 진화(evolution)이다.
gNB: NGC와의 연결뿐만 아니라 NR을 지원하는 노드.
새로운 RAN: NR 또는 E-UTRA를 지원하거나 NGC와 상호 작용하는 무선 액세스 네트워크.
네트워크 슬라이스(network slice): 네트워크 슬라이스는 종단 간 범위와 함께 특정 요구 사항을 요구하는 특정 시장 시나리오에 대해 최적화된 솔루션을 제공하도록 operator에 의해 정의된 네트워크.
네트워크 기능(network function): 네트워크 기능은 잘 정의된 외부 인터페이스와 잘 정의된 기능적 동작을 가진 네트워크 인프라 내에서의 논리적 노드.
NG-C: 새로운 RAN과 NGC 사이의 NG2 레퍼런스 포인트(reference point)에 사용되는 제어 평면 인터페이스.
NG-U: 새로운 RAN과 NGC 사이의 NG3 레퍼런스 포인트(reference point)에 사용되는 사용자 평면 인터페이스.
비 독립형(Non-standalone) NR: gNB가 LTE eNB를 EPC로 제어 플레인 연결을 위한 앵커로 요구하거나 또는 eLTE eNB를 NGC로 제어 플레인 연결을 위한 앵커로 요구하는 배치 구성.
비 독립형 E-UTRA: eLTE eNB가 NGC로 제어 플레인 연결을 위한 앵커로 gNB를 요구하는 배치 구성.
사용자 평면 게이트웨이: NG-U 인터페이스의 종단점.
시스템 일반
도 1은 본 명세서에서 제안하는 방법이 적용될 수 있는 NR의 전체적인 시스템 구조의 일례를 나타낸다.
도 1을 참조하면, NG-RAN은 NG-RA 사용자 평면(새로운 AS sublayer/PDCP/RLC/MAC/PHY) 및 UE(User Equipment)에 대한 제어 평면(RRC) 프로토콜 종단을 제공하는 gNB들로 구성된다.
상기 gNB는 X n 인터페이스를 통해 상호 연결된다.
상기 gNB는 또한, NG 인터페이스를 통해 NGC로 연결된다.
보다 구체적으로는, 상기 gNB는 N2 인터페이스를 통해 AMF(Access and Mobility Management Function)로, N3 인터페이스를 통해 UPF(User Plane Function)로 연결된다.
NR(New Rat) 뉴머롤로지(Numerology) 및 프레임(frame) 구조
NR 시스템에서는 다수의 뉴머롤로지(numerology)들이 지원될 수 있다. 여기에서, 뉴머롤로지는 서브캐리어 간격(subcarrier spacing)과 CP(Cyclic Prefix) 오버헤드에 의해 정의될 수 있다. 이 때, 다수의 서브캐리어 간격은 기본 서브캐리어 간격을 정수 N(또는,
Figure 112022017822301-pct00001
)으로 스케일링(scaling) 함으로써 유도될 수 있다. 또한, 매우 높은 반송파 주파수에서 매우 낮은 서브캐리어 간격을 이용하지 않는다고 가정될지라도, 이용되는 뉴머롤로지는 주파수 대역과 독립적으로 선택될 수 있다.
또한, NR 시스템에서는 다수의 뉴머롤로지에 따른 다양한 프레임 구조들이 지원될 수 있다.
이하, NR 시스템에서 고려될 수 있는 OFDM(Orthogonal Frequency Division Multiplexing) 뉴머롤로지 및 프레임 구조를 살펴본다.
NR 시스템에서 지원되는 다수의 OFDM 뉴머롤로지들은 표 1과 같이 정의될 수 있다.
Figure 112022017822301-pct00002
NR은 다양한 5G 서비스들을 지원하기 위한 다수의 numerology(또는 subcarrier spacing(SCS))를 지원한다. 예를 들어, SCS가 15kHz인 경우, 전통적인 셀룰러 밴드들에서의 넓은 영역(wide area)를 지원하며, SCS가 30kHz/60kHz인 경우, 밀집한-도시(dense-urban), 더 낮은 지연(lower latency) 및 더 넓은 캐리어 대역폭(wider carrier bandwidth)를 지원하며, SCS가 60kHz 또는 그보다 높은 경우, 위상 잡음(phase noise)를 극복하기 위해 24.25GHz보다 큰 대역폭을 지원한다.
NR 주파수 밴드(frequency band)는 2가지 type(FR1, FR2)의 주파수 범위(frequency range)로 정의된다. FR1, FR2는 아래 표 2와 같이 구성될 수 있다. 또한, FR2는 밀리미터 웨이브(millimeter wave, mmW)를 의미할 수 있다.
Figure 112022017822301-pct00003
NR 시스템에서의 프레임 구조(frame structure)와 관련하여, 시간 영역의 다양한 필드의 크기는
Figure 112022017822301-pct00004
의 시간 단위의 배수로 표현된다. 여기에서,
Figure 112022017822301-pct00005
이고,
Figure 112022017822301-pct00006
이다. 하향링크(downlink) 및 상향크(uplink) 전송은
Figure 112022017822301-pct00007
의 구간을 가지는 무선 프레임(radio frame)으로 구성된다. 여기에서, 무선 프레임은 각각
Figure 112022017822301-pct00008
의 구간을 가지는 10 개의 서브프레임(subframe)들로 구성된다. 이 경우, 상향링크에 대한 한 세트의 프레임들 및 하향링크에 대한 한 세트의 프레임들이 존재할 수 있다.
도 2는 본 명세서에서 제안하는 방법이 적용될 수 있는 무선 통신 시스템에서 상향링크 프레임과 하향링크 프레임 간의 관계를 나타낸다.
도 2에 나타난 것과 같이, 단말(User Equipment, UE)로 부터의 상향링크 프레임 번호 i의 전송은 해당 단말에서의 해당 하향링크 프레임의 시작보다
Figure 112022017822301-pct00009
이전에 시작해야 한다.
뉴머롤로지
Figure 112022017822301-pct00010
에 대하여, 슬롯(slot)들은 서브프레임 내에서
Figure 112022017822301-pct00011
의 증가하는 순서로 번호가 매겨지고, 무선 프레임 내에서
Figure 112022017822301-pct00012
의 증가하는 순서로 번호가 매겨진다. 하나의 슬롯은
Figure 112022017822301-pct00013
의 연속하는 OFDM 심볼들로 구성되고,
Figure 112022017822301-pct00014
는, 이용되는 뉴머롤로지 및 슬롯 설정(slot configuration)에 따라 결정된다. 서브프레임에서 슬롯
Figure 112022017822301-pct00015
의 시작은 동일 서브프레임에서 OFDM 심볼
Figure 112022017822301-pct00016
의 시작과 시간적으로 정렬된다.
모든 단말이 동시에 송신 및 수신을 할 수 있는 것은 아니며, 이는 하향링크 슬롯(downlink slot) 또는 상향링크 슬롯(uplink slot)의 모든 OFDM 심볼들이 이용될 수는 없다는 것을 의미한다.
표 3은 일반(normal) CP에서 슬롯 별 OFDM 심볼의 개수(
Figure 112022017822301-pct00017
), 무선 프레임 별 슬롯의 개수(
Figure 112022017822301-pct00018
), 서브프레임 별 슬롯의 개수(
Figure 112022017822301-pct00019
)를 나타내며, 표 4는 확장(extended) CP에서 슬롯 별 OFDM 심볼의 개수, 무선 프레임 별 슬롯의 개수, 서브프레임 별 슬롯의 개수를 나타낸다.
Figure 112022017822301-pct00020
Figure 112022017822301-pct00021
도 3은 NR 시스템에서의 프레임 구조의 일례를 나타낸다. 도 3은 단지 설명의 편의를 위한 것일 뿐, 본 발명의 범위를 제한하는 것이 아니다.
표 4의 경우, μ=2인 경우, 즉 서브캐리어 간격(subcarrier spacing, SCS)이 60kHz인 경우의 일례로서, 표 3을 참고하면 1 서브프레임(또는 프레임)은 4개의 슬롯들을 포함할 수 있으며, 도 3에 도시된 1 서브프레임={1,2,4} 슬롯들은 일례로서, 1 서브프레임에 포함될 수 있는 스롯(들)의 개수는 표 3과 같이 정의될 수 있다.
또한, 미니-슬롯(mini-slot)은 2, 4 또는 7 심볼(symbol)들로 구성될 수도 있고, 더 많거나 또는 더 적은 심볼들로 구성될 수도 있다.
NR 시스템에서의 물리 자원(physical resource)과 관련하여, 안테나 포트(antenna port), 자원 그리드(resource grid), 자원 요소(resource element), 자원 블록(resource block), 캐리어 파트(carrier part) 등이 고려될 수 있다.
이하, NR 시스템에서 고려될 수 있는 상기 물리 자원들에 대해 구체적으로 살펴본다.
먼저, 안테나 포트와 관련하여, 안테나 포트는 안테나 포트 상의 심볼이 운반되는 채널이 동일한 안테나 포트 상의 다른 심볼이 운반되는 채널로부터 추론될 수 있도록 정의된다. 하나의 안테나 포트 상의 심볼이 운반되는 채널의 광범위 특성(large-scale property)이 다른 안테나 포트 상의 심볼이 운반되는 채널로부터 유추될 수 있는 경우, 2 개의 안테나 포트는 QC/QCL(quasi co-located 혹은 quasi co-location) 관계에 있다고 할 수 있다. 여기에서, 상기 광범위 특성은 지연 확산(Delay spread), 도플러 확산(Doppler spread), 주파수 쉬프트(Frequency shift), 평균 수신 파워(Average received power), 수신 타이밍(Received Timing) 중 하나 이상을 포함한다.
도 4는 본 명세서에서 제안하는 방법이 적용될 수 있는 무선 통신 시스템에서 지원하는 자원 그리드(resource grid)의 일례를 나타낸다.
도 4를 참고하면, 자원 그리드가 주파수 영역 상으로
Figure 112022017822301-pct00022
서브캐리어들로 구성되고, 하나의 서브프레임이
Figure 112022017822301-pct00023
OFDM 심볼들로 구성되는 것을 예시적으로 기술하나, 이에 한정되는 것은 아니다.
NR 시스템에서, 전송되는 신호(transmitted signal)는
Figure 112022017822301-pct00024
서브캐리어들로 구성되는 하나 또는 그 이상의 자원 그리드들 및
Figure 112022017822301-pct00025
의 OFDM 심볼들에 의해 설명된다. 여기에서,
Figure 112022017822301-pct00026
이다. 상기
Figure 112022017822301-pct00027
는 최대 전송 대역폭을 나타내고, 이는, 뉴머롤로지들뿐만 아니라 상향링크와 하향링크 간에도 달라질 수 있다.
이 경우, 도 5와 같이, 뉴머롤로지
Figure 112022017822301-pct00028
및 안테나 포트 p 별로 하나의 자원 그리드가 설정될 수 있다.
도 5는 본 명세서에서 제안하는 방법이 적용될 수 있는 안테나 포트 및 뉴머롤로지 별 자원 그리드의 예들을 나타낸다.
뉴머롤로지
Figure 112022017822301-pct00029
및 안테나 포트 p에 대한 자원 그리드의 각 요소는 자원 요소(resource element)로 지칭되며, 인덱스 쌍
Figure 112022017822301-pct00030
에 의해 고유적으로 식별된다. 여기에서,
Figure 112022017822301-pct00031
는 주파수 영역 상의 인덱스이고,
Figure 112022017822301-pct00032
는 서브프레임 내에서 심볼의 위치를 지칭한다. 슬롯에서 자원 요소를 지칭할 때에는, 인덱스 쌍
Figure 112022017822301-pct00033
이 이용된다. 여기에서,
Figure 112022017822301-pct00034
이다.
뉴머롤로지
Figure 112022017822301-pct00035
및 안테나 포트 p에 대한 자원 요소
Figure 112022017822301-pct00036
는 복소 값(complex value)
Figure 112022017822301-pct00037
에 해당한다. 혼동(confusion)될 위험이 없는 경우 혹은 특정 안테나 포트 또는 뉴머롤로지가 특정되지 않은 경우에는, 인덱스들 p 및
Figure 112022017822301-pct00038
는 드롭(drop)될 수 있으며, 그 결과 복소 값은
Figure 112022017822301-pct00039
또는
Figure 112022017822301-pct00040
이 될 수 있다.
또한, 물리 자원 블록(physical resource block)은 주파수 영역 상의
Figure 112022017822301-pct00041
연속적인 서브캐리어들로 정의된다.
Point A는 자원 블록 그리드의 공통 참조 지점(common reference point)으로서 역할을 하며 다음과 같이 획득될 수 있다.
- PCell 다운링크에 대한 offsetToPointA는 초기 셀 선택을 위해 UE에 의해 사용된 SS/PBCH 블록과 겹치는 가장 낮은 자원 블록의 가장 낮은 서브 캐리어와 point A 간의 주파수 오프셋을 나타내며, FR1에 대해 15kHz 서브캐리어 간격 및 FR2에 대해 60kHz 서브캐리어 간격을 가정한 리소스 블록 단위(unit)들로 표현되고;
- absoluteFrequencyPointA는 ARFCN(absolute radio-frequency channel number)에서와 같이 표현된 point A의 주파수-위치를 나타낸다.
공통 자원 블록(common resource block)들은 서브캐리어 간격 설정
Figure 112022017822301-pct00042
에 대한 주파수 영역에서 0부터 위쪽으로 넘버링(numbering)된다.
서브캐리어 간격 설정
Figure 112022017822301-pct00043
에 대한 공통 자원 블록 0의 subcarrier 0의 중심은 'point A'와 일치한다. 주파수 영역에서 공통 자원 블록 번호(number)
Figure 112022017822301-pct00044
와 서브캐리어 간격 설정
Figure 112022017822301-pct00045
에 대한 자원 요소(k,l)은 아래 수학식 1과 같이 주어질 수 있다.
Figure 112022017822301-pct00046
여기에서,
Figure 112022017822301-pct00047
Figure 112022017822301-pct00048
이 point A를 중심으로 하는 subcarrier에 해당하도록 point A에 상대적으로 정의될 수 있다. 물리 자원 블록들은 대역폭 파트(bandwidth part, BWP) 내에서 0부터
Figure 112022017822301-pct00049
까지 번호가 매겨지고,
Figure 112022017822301-pct00050
는 BWP의 번호이다. BWP i에서 물리 자원 블록
Figure 112022017822301-pct00051
와 공통 자원 블록
Figure 112022017822301-pct00052
간의 관계는 아래 수학식 2에 의해 주어질 수 있다.
Figure 112022017822301-pct00053
여기에서,
Figure 112022017822301-pct00054
는 BWP가 공통 자원 블록 0에 상대적으로 시작하는 공통 자원 블록일 수 있다.
대역폭 파트 (Bandwidth part, BWP)
NR 시스템은 하나의 component carrier (CC) 당 최대 400 MHz까지 지원될 수 있다. 이러한 wideband CC 에서 동작하는 단말이 항상 CC 전체에 대한 RF 를 켜둔 채로 동작한다면 단말 배터리 소모가 커질 수 있다. 혹은 하나의 wideband CC 내에 동작하는 여러 use case 들 (e.g., eMBB, URLLC, Mmtc, V2X 등)을 고려할 때 해당 CC 내에 주파수 대역 별로 서로 다른 numerology (e.g., sub-carrier spacing)가 지원될 수 있다. 혹은 단말 별로 최대 bandwidth 에 대한 capability 가 다를 수 있다. 이를 고려하여 기지국은 wideband CC 의 전체 bandwidth 가 아닌 일부 bandwidth 에서만 동작하도록 단말에게 지시할 수 있으며, 해당 일부 bandwidth를 편의상 bandwidth part (BWP)로 정의한다. BWP 는 주파수 축 상에서 연속한 resource block (RB) 들로 구성될 수 있으며, 하나의 numerology (e.g., sub-carrier spacing, CP length, slot/mini-slot duration) 에 대응될 수 있다.
한편, 기지국은 단말에게 configure 된 하나의 CC 내에서도 다수의 BWP 를 설정할 수 있다. 일 예로, PDCCH monitoring slot 에서는 상대적으로 작은 주파수 영역을 차지하는 BWP 를 설정하고, PDCCH 에서 지시하는 PDSCH 는 그보다 큰 BWP 상에 schedule 될 수 있다. 혹은, 특정 BWP 에 UE 들이 몰리는 경우 load balancing 을 위해 일부 UE 들을 다른 BWP 로 설정할 수 있다. 혹은, 이웃 셀 간의 frequency domain inter-cell interference cancellation 등을 고려하여 전체 bandwidth 중 가운데 일부 spectrum 을 배제하고 양쪽 BWP 들을 동일 slot 내에서도 설정할 수 있다. 즉, 기지국은 wideband CC 와 association 된 단말에게 적어도 하나의 DL/UL BWP 를 configure 해 줄 수 있으며, 특정 시점에 configured DL/UL BWP(s) 중 적어도 하나의 DL/UL BWP 를 (L1 signaling or MAC CE or RRC signalling 등에 의해) activation 시킬 수 있고 다른 configured DL/UL BWP 로 switching 이 (L1 signaling or MAC CE or RRC signalling 등에 의해) 지시될 수 있거나 timer 기반으로 timer 값이 expire 되면 정해진 DL/UL BWP 로 switching 될 수도 있다. 이 때, activation 된 DL/UL BWP 를 active DL/UL BWP 로 정의한다. 그런데 단말이 initial access 과정에 있거나, 혹은 RRC connection 이 set up 되기 전 등의 상황에서는 DL/UL BWP 에 대한 configuration 을 수신하지 못할 수 있는데, 이러한 상황에서 단말이 가정하는 DL/UL BWP 는 initial active DL/UL BWP 라고 정의한다.
예를 들어, BWP를 지시하는 특정 필드(예: BWP indicator field)가 PDSCH의 스케줄링을 위한 DCI(예: DCI 포맷 1_1)에 포함되는 경우, 해당 필드의 값은 단말에 대해 DL 수신을 위해 (미리) 설정된 DL BWP 집합 중 특정 DL BWP(예: active DL BWP)를 지시하도록 설정될 수 있다. 이 경우, 상기 DCI를 수신한 단말은 해당 필드에 의해 지시되는 특정 DL BWP에서 DL 데이터를 수신하도록 설정될 수 있다. 그리고/또는, BWP를 지시하는 특정 필드(예: BWP indicator field)가 PUSCH의 스케줄링을 위한 DCI(예: DCI 포맷 0_1)에 포함되는 경우, 해당 필드의 값은 단말에 대해 UL 전송을 위해 (미리) 설정된 UL BWP 집합 중 특정 UL BWP(예: active UL BWP)를 지시하도록 설정될 수 있다. 이 경우, 상기 DCI를 수신한 단말은 해당 필드에 의해 지시되는 특정 UL BWP에서 UL 데이터를 전송하도록 설정될 수 있다.
물리 채널 및 일반적인 신호 전송
도 6은 물리 채널들 및 일반적인 신호 전송을 예시한다. 무선 통신 시스템에서 단말은 기지국으로부터 하향링크(Downlink, DL)를 통해 정보를 수신하고, 단말은 기지국으로 상향링크(Uplink, UL)를 통해 정보를 전송한다. 기지국과 단말이 송수신하는 정보는 데이터 및 다양한 제어 정보를 포함하고, 이들이 송수신 하는 정보의 종류/용도에 따라 다양한 물리 채널이 존재한다.
단말은 전원이 켜지거나 새로이 셀에 진입한 경우 기지국과 동기를 맞추는 등의 초기 셀 탐색(Initial cell search) 작업을 수행한다(S601). 이를 위해, 단말은 기지국으로부터 주 동기 신호(Primary Synchronization Signal, PSS) 및 부 동기 신호(Secondary Synchronization Signal, SSS)을 수신하여 기지국과 동기를 맞추고, 셀 ID 등의 정보를 획득할 수 있다. 그 후, 단말은 기지국으로부터 물리 방송 채널(Physical Broadcast Channel, PBCH)를 수신하여 셀 내 방송 정보를 획득할 수 있다. 한편, 단말은 초기 셀 탐색 단계에서 하향링크 참조 신호(Downlink Reference Signal, DL RS)를 수신하여 하향링크 채널 상태를 확인할 수 있다.
초기 셀 탐색을 마친 단말은 물리 하향링크 제어 채널(Physical Downlink Control Channel, PDCCH) 및 상기 PDCCH에 실린 정보에 따라 물리 하향링크 공유 채널(Physical Downlink Control Channel; PDSCH)을 수신함으로써 좀더 구체적인 시스템 정보를 획득할 수 있다(S602).
한편, 기지국에 최초로 접속하거나 신호 송신을 위한 무선 자원이 없는 경우, 단말은 기지국에 대해 임의 접속 과정(Random Access Procedure, RACH)을 수행할 수 있다(S603 내지 S606). 이를 위해, 단말은 물리 임의 접속 채널(Physical Random Access Channel, PRACH)을 통해 특정 시퀀스를 프리앰블로 송신하고(S603 및 S605), PDCCH 및 대응하는 PDSCH를 통해 프리앰블에 대한 응답 메시지((RAR(Random Access Response) message)를 수신할 수 있다. 경쟁 기반 RACH의 경우, 추가적으로 충돌 해결 절차(Contention Resolution Procedure)를 수행할 수 있다(S606).
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상/하향링크 신호 송신 절차로서 PDCCH/PDSCH 수신(S607) 및 물리 상향링크 공유 채널(Physical Uplink Shared Channel, PUSCH)/물리 상향링크 제어 채널(Physical Uplink Control Channel; PUCCH) 송신(S608)을 수행할 수 있다. 특히 단말은 PDCCH를 통하여 하향링크 제어 정보(Downlink Control Information, DCI)를 수신할 수 있다. 여기서, DCI는 단말에 대한 자원 할당 정보와 같은 제어 정보를 포함하며, 사용 목적에 따라 포맷이 서로 다르게 적용될 수 있다.
예를 들어, NR 시스템에서 DCI format 0_0, DCI format 0_1은 하나의 셀에서 PUSCH의 스케줄링에 사용되고, DCI format 1_0, DCI format 1_1은 하나의 셀에서 PDSCH의 스케줄링에 사용된다. DCI format 0_0에 포함된 정보는 C-RNTI 또는 CS-RNTI 또는 MCS-C-RNTI에 의해 CRC 스크램블링되어 전송된다. 그리고, DCI format 0_1은 하나의 셀에서 PUSCH를 예약하는 데 사용된다. DCI format 0_1에 포함된 정보는 C-RNTI 또는 CS-RNTI 또는 SP-CSI-RNTI 또는 MCS-C-RNTI에 의해 CRC 스크램블링되어 전송된다. DCI format 1_0은 하나의 DL 셀에서 PDSCH의 스케줄링을 위해 사용된다. DCI format 1_0에 포함된 정보는 C-RNTI 또는 CS-RNTI 또는 MCS-C-RNTI에 의해 CRC 스크램블링되어 전송된다. DCI format 1_1은 하나의 셀에서 PDSCH의 스케줄링을 위해 사용된다. DCI format 1_1에 포함되는 정보는 C-RNTI 또는 CS-RNTI 또는 MCS-C-RNTI에 의해 CRC 스크램블링되어 전송된다. DCI 포맷 2_1은 단말이 전송을 의도하지 않은 것으로 가정할 수 있는 PRB(들) 및 OFDM 심볼(들)을 알리는데 사용된다. DCI 포맷 2_1에 포함되는 preemption indication 1, preemption indication 2,..., preemption indication N 등의 정보는 INT-RNTI에 의해 CRC 스크램블링되어 전송된다.
한편, 단말이 상향링크를 통해 기지국에 송신하는 또는 단말이 기지국으로부터 수신하는 제어 정보는 하향링크/상향링크 ACK/NACK 신호, CQI(Channel Quality Indicator), PMI(Precoding Matrix 인덱스), RI(Rank Indicator) 등을 포함할 수 있다. 단말은 상술한 CQI/PMI/RI 등의 제어 정보를 PUSCH 및/또는 PUCCH를 통해 송신할 수 있다.
DL 및 UL 송/수신 동작
하향링크 송수신 동작
도 7은 하향링크 송수신 동작의 일례를 나타낸 도이다.
도 7을 참고하면, 기지국은 주파수/시간 자원, 전송 레이어, 하향링크 프리코더, MCS 등과 같은 하향링크 전송을 스케줄링한다(S701). 특히, 기지국은 앞서 설명한 빔 관리 동작들을 통해 단말에게 PDSCH 전송을 위한 빔을 결정할 수 있다. 그리고, 단말은 기지국으로부터 하향링크 스케줄링을 위한(즉, PDSCH의 스케줄링 정보를 포함하는) 하향링크 제어 정보(DCI: Downlink Control Information)를 PDCCH 상에서 수신한다(S702). 하향링크 스케줄링을 위해 DCI 포맷 1_0 또는 1_1이 이용될 수 있으며, 특히 DCI 포맷 1_1에서는 다음과 같은 정보를 포함한다: DCI 포맷 식별자(Identifier for DCI formats), 대역폭 부분 지시자(Bandwidth part indicator), 주파수 도메인 자원 할당(Frequency domain resource assignment), 시간 도메인 자원 할당(Time domain resource assignment), PRB 번들링 크기 지시자(PRB bundling size indicator), 레이트 매칭 지시자(Rate matching indicator), ZP CSI-RS 트리거(ZP CSI-RS trigger), 안테나 포트(들)(Antenna port(s)), 전송 설정 지시(TCI: Transmission configuration indication), SRS 요청(SRS request), DMRS(Demodulation Reference Signal) 시퀀스 초기화(DMRS sequence initialization)
특히, 안테나 포트(들)(Antenna port(s)) 필드에서 지시되는 각 상태(state)/인덱스에 따라, DMRS 포트의 수가 스케줄링될 수 있으며, 또한 SU(Single-user)/MU(Multi-user) 전송 스케줄링이 가능하다. 구체적으로, dmrs-type 및 maxLength에 따라 CW 수에 대응되는 DMRS port들의 순서가 미리 정의될 수 있으며, DCI의 안테나 포트 필드를 통해 DMRS 포트의 수 및/또는 순서가 지시될 수 있다. 또한, 결정된 DMRS 포트들은 DM-RS configuration type 별로 정의된 DMRS 관련 파라미터들에 기반하여 동일한 CDM group에 포함되는지 또는 상이한 CDM group에 포함되는지 결정될 수 있다.
예를 들어, DMRS configuration type 1에 대해, 안테나 포트 p가 {1000, 1001, 1004, 1005}는 CDM group 0에 포함되고, 안테나 포트 p가 {1002, 1003, 1006, 1007}는 CDM group 1에 포함될 수 있다. DMRS configuration type 2에 대해, 안테나 포트 p가 {1000, 1001, 1006, 1007}는 CDM group 0에 포함되고, 안테나 포트 p가 {1002, 1003, 1008, 1009}는 CDM group 1에 포함되며, 안테나 포트 p가 {1004, 1005, 1010, 1011}는 CDM group 2에 포함될 수 있다.
예를 들어, dmrs-Type=2, maxLength=1, 1 CW 인 경우, DMRS의 안테나 포트 필드를 통해 '2' 가 지시되면, DMRS port 는 0, 1(즉, 1000, 1001)이 지시되고 동일한 CDM 그룹 내 DMRS port 들이 지시되는 것을 알 수 있다. 일례로, DMRS 의 안테나 포트 필드를 통해 '9' 가 지시되면, DMRS port 는 0, 1, 2(즉, 1000, 1001, 1002)가 지시되고 서로 다른 CDM 그룹 내 DMRS port 들이 지시되는 것을 알 수 있다.
또한, TCI 필드는 3 비트로 구성되고, TCI 필드 값에 따라 최대 8 TCI 상태를 지시함으로써 동적으로 DMRS에 대한 QCL이 지시된다. 그리고, 단말은 기지국으로부터 하향링크 데이터를 PDSCH 상에서 수신한다(S703). 단말이 DCI 포맷 1_0 또는 1_1을 포함하는 PDCCH를 검출(detect)하면, 해당 DCI에 의한 지시에 따라 PDSCH를 디코딩한다.
여기서, 단말이 DCI 포맷 1_1에 의해 스케줄링된 PDSCH를 수신할 때, 단말은 상위 계층 파라미터 'dmrs-Type'에 의해 DMRS 설정 타입이 설정될 수 있으며, DMRS 설정 타입은 PDSCH를 수신하기 위해 사용된다. 또한, 단말은 상위 계층 파라미터 'maxLength'에 의해 PDSCH을 위한 front-loaded DMRS 심볼의 최대 개수가 설정될 수 있다.
DMRS 설정(configuration) 타입 1의 경우, 단말이 단일의 코드워드가 스케줄링되고 {2, 9, 10, 11 또는 30}의 인덱스와 매핑된 안테나 포트가 지정되면, 또는 단말이 2개의 코드워드가 스케줄링되면, 단말은 모든 남은 직교한 안테나 포트가 또 다른 단말으로의 PDSCH 전송과 연관되지 않는다고 가정한다. 또는, DMRS 설정 타입 2의 경우, 단말이 단일의 코드워드가 스케줄링되고 {2, 10 또는 23}의 인덱스와 매핑된 안테나 포트가 지정되면, 또는 단말이 2개의 코드워드가 스케줄링되면, 단말은 모든 남은 직교한 안테나 포트가 또 다른 단말으로의 PDSCH 전송과 연관되지 않는다고 가정한다.
PDSCH를 위한 주파수 영역의 자원 할당(resource allocation)은 type 0과 type 1 두 가지 방식이 지원된다.
Type 0에서, 자원 블록 할당(assignment) 정보는 UE에게 할당된 자원 블록 그룹(resource block group, RBG (이하, RBG))을 지시하는 비트맵을 포함한다. 여기서, RBG는 연속하는(consecutive) 가상 자원 블록들의 집합일 수 있으며, PDSCH-Config에 의해 설정되는 상위 계층 파라미터 rbg-Size 및 BWP 크기에 의해 정의될 수 있다. RBG들은 BWP의 가장 낮은 주파수부터 시작하여 주파수가 증가하는 순서로 인덱스될 수 있으며, 비트맵에서 1의 값에 해당하는 RBG가 단말에게 할당되고, 0의 값에 해당하는 RBG는 UE에게 할당되지 않는다.
Type 1에서, 자원 블록 할당(assignment) 정보는 스케줄 된 UE에게 활성화 BWP 내 연속하여(contiguously) 할당된 non-interleaved 또는 interleaved 가상 자원 블록들의 집합을 지시한다(CORESET 0의 크기를 사용하거나 initial DL BWP의 크기를 사용하여 CSS에서 DCI format 1_0을 디코딩하는 경우 제외). 하향링크 type 1 자원 할당 필드는 시작(starting) 가상 자원 블록(RB_start)에 대응하는 자원 지시 값(RIV)과 연속적으로 할당된 자원 블록들의 길이, L_RBs, 로 구성될 수 있다.
또한, 물리 자원 블록(physical resource block, PRB (이하, PRB))은 번들링(bundling) 될 수 있으며, 단말이 PDSCH를 수신할 때, 프리코딩 단위(precoding granularity) P'를 주파수 도메인에서 연속된(consecutive) 자원 블록으로 가정할 수 있다. 여기서, P'는 {2, 4, 광대역} 중 하나의 값에 해당할 수 있다. P'가 광대역으로 결정되면, 단말은 불연속적인(non-contiguous) PRB들로 스케줄링되는 것을 예상하지 않고, 단말은 할당된 자원에 동일한 프리코딩이 적용된다고 가정할 수 있다. 반면, P'가 {2, 4} 중 어느 하나로 결정되면, 프리코딩 자원 블록 그룹(PRG: Precoding Resource Block Group)은 P' 개의 연속된 PRB로 분할된다. 각 PRG 내 실제 연속된 PRB의 개수는 하나 또는 그 이상일 수 있다. 단말은 PRG 내 연속된 하향링크 PRB에는 동일한 프리코딩이 적용된다고 가정할 수 있다.
단말이 PDSCH 내 변조 차수(modulation order), 목표 코드 레이트(target code rate), 전송 블록 크기(transport block size)를 결정하기 위해, 단말은 우선 DCI 내 5 비트 MCS 필드를 읽고, modulation order 및 target code rate를 결정한다. 그리고, DCI 내 리던던시 버전 필드를 읽고, 리던던시 버전을 결정한다. 그리고, 단말은 레이트 매칭 전에 레이어의 수, 할당된 PRB의 총 개수를 이용하여, transport block size를 결정한다.
Transport block는 하나 이상의 CBG(code block group)으로 구성될 수 있으며, 하나의 CBG는 하나 이상의 CB(code block)로 구성될 수 있다. 또한, NR 시스템에서 transport block 단위의 데이터 송수신뿐만 아니라, CB/CBG 단위의 데이터 송수신이 가능할 수 있다. 따라서, CB/CBG 단위의 ACK/NACK 전송 및 재전송(retransmission) 또한 가능할 수 있다. UE는 CB/ CBG에 대한 정보를 DCI(e.g. DCI 포맷 0_1, DCI 포맷 1_1 등)를 통해 기지국으로부터 수신할 수 있다. 또한, UE는 기지국으로부터 데이터 전송 단위(e.g. TB / CB/ CBG)에 대한 정보를 수신할 수 있다.
상향링크 송수신 동작
도 8은 상향링크 송수신 동작의 일 예를 나타낸다.
도 8을 참고하면, 기지국은 주파수/시간 자원, 전송 레이어, 상향링크 프리코더, MCS 등과 같은 상향링크 전송을 스케줄링한다(S801). 특히, 기지국은 앞서 설명한 빔 관리 동작들을 통해 단말이 PUSCH 전송을 위한 빔을 결정할 수 있다. 그리고, 단말은 기지국으로부터 상향링크 스케줄링을 위한(즉, PUSCH의 스케줄링 정보를 포함하는) DCI를 PDCCH 상에서 수신한다(S802). 상향링크 스케줄링을 위해DCI 포맷 0_0 또는 0_1이 이용될 수 있으며, 특히 DCI 포맷 0_1에서는 다음과 같은 정보를 포함한다: DCI 포맷 식별자(Identifier for DCI formats), UL/SUL(Supplementary uplink) 지시자(UL/SUL indicator), 대역폭 부분 지시자(Bandwidth part indicator), 주파수 도메인 자원 할당(Frequency domain resource assignment), 시간 도메인 자원 할당(Time domain resource assignment), 주파수 호핑 플래그(Frequency hopping flag), 변조 및 코딩 방식(MCS: Modulation and coding scheme), SRS 자원 지시자(SRI: SRS resource indicator), 프리코딩 정보 및 레이어 수(Precoding information and number of layers), 안테나 포트(들)(Antenna port(s)), SRS 요청(SRS request), DMRS 시퀀스 초기화(DMRS sequence initialization), UL-SCH(Uplink Shared Channel) 지시자(UL-SCH indicator)
특히, SRS resource indicator 필드에 의해 상위 계층 파라미터 'usage'와 연관된 SRS 자원 세트 내 설정된 SRS 자원들이 지시될 수 있다. 또한, 각 SRS resource별로 'spatialRelationInfo'를 설정받을 수 있고 그 값은 {CRI, SSB, SRI}중에 하나일 수 있다.
그리고, 단말은 기지국에게 상향링크 데이터를 PUSCH 상에서 전송한다(S803). 단말이 DCI 포맷 0_0 또는 0_1을 포함하는 PDCCH를 검출(detect)하면, 해당 DCI에 의한 지시에 따라 해당 PUSCH를 전송한다. PUSCH 전송을 위해 코드북(codebook) 기반 전송 및 비-코드북(non-codebook) 기반 전송2가지의 전송 방식이 지원된다.
코드북 기반 전송의 경우, 상위 계층 파라미터 'txConfig'가 'codebook'으로 셋팅될 때, 단말은 codebook 기반 전송으로 설정된다. 반면, 상위 계층 파라미터 'txConfig'가 'nonCodebook'으로 셋팅될 때, 단말은 non-codebook 기반 전송으로 설정된다. 상위 계층 파라미터 'txConfig'가 설정되지 않으면, 단말은 DCI 포맷 0_1에 의해 스케줄링되는 것을 예상하지 않는다. DCI 포맷 0_0에 의해 PUSCH가 스케줄링되면, PUSCH 전송은 단일 안테나 포트에 기반한다. codebook 기반 전송의 경우, PUSCH는 DCI 포맷 0_0, DCI 포맷 0_1 또는 반정적으로(semi-statically) 스케줄링될 수 있다. 이 PUSCH가 DCI 포맷 0_1에 의해 스케줄링되면, 단말은 SRS resource indicator 필드 및 Precoding information and number of layers 필드에 의해 주어진 바와 같이, DCI로부터 SRI, TPMI(Transmit Precoding Matrix Indicator) 및 전송 랭크를 기반으로 PUSCH 전송 프리코더를 결정한다. TPMI는 안테나 포트에 걸쳐서 적용될 프리코더를 지시하기 위해 이용되고, 다중의 SRS 자원이 설정될 때 SRI에 의해 선택된 SRS 자원에 상응한다. 또는, 단일의 SRS 자원이 설정되면, TPMI는 안테나 포트에 걸쳐 적용될 프리코더를 지시하기 위해 이용되고, 해당 단일의 SRS 자원에 상응한다. 상위 계층 파라미터 'nrofSRS-Ports'와 동일한 안테나 포트의 수를 가지는 상향링크 코드북으로부터 전송 프리코더가 선택된다. 단말이 'codebook'으로 셋팅된 상위 계층이 파라미터 'txConfig'로 설정될 때, 단말은 적어도 하나의 SRS 자원이 설정된다. 슬롯 n에서 지시된 SRI는 SRI에 의해 식별된 SRS 자원의 가장 최근의 전송과 연관되고, 여기서 SRS 자원은 SRI를 나르는 PDCCH (즉, 슬롯 n)에 앞선다.
non-codebook 기반 전송의 경우, PUSCH는 DCI 포맷 0_0, DCI 포맷 0_1 또는 반정적으로(semi-statically) 스케줄링될 수 있다. 다중의 SRS 자원이 설정될 때, 단말은 광대역 SRI를 기반으로 PUSCH 프리코더 및 전송 랭크를 결정할 수 있으며, 여기서 SRI는 DCI 내 SRS resource indicator에 의해 주어지거나 또는 상위 계층 파라미터 'srs-ResourceIndicator'에 의해 주어진다. 단말은 SRS 전송을 위해 하나 또는 다중의 SRS 자원을 이용하고, 여기서 SRS 자원의 수는, UE 능력에 기반하여 동일한 RB 내에서 동시 전송을 위해 설정될 수 있다. 각 SRS 자원 별로 단 하나의 SRS 포트만이 설정된다. 단 하나의 SRS 자원만이 'nonCodebook'으로 셋팅된 상위 계층 파라미터 'usage'로 설정될 수 있다. non-codebook 기반 상향링크 전송을 위해 설정될 수 있는 SRS 자원의 최대의 수는 4이다. 슬롯 n에서 지시된 SRI는 SRI에 의해 식별된 SRS 자원의 가장 최근의 전송과 연관되고, 여기서 SRS 전송은 SRI를 나르는 PDCCH (즉, 슬롯 n)에 앞선다.
DMRS (demodulation reference signal)
PDSCH 수신을 위한 DMRS 관련 동작에 대해 살펴본다.
DCI format 1_0에 의해 스케쥴된 PDSCH를 수신할 때 또는 dmrs-AdditionalPosition, maxLength 및 dmrs-Type 파라미터들 중 임의의 전용 상위 계층 설정 전에 PDSCH를 수신할 때, 단말은 PDSCH 매핑 타입(mapping type) B를 가진 2 심볼들의 할당 지속 구간(duration)을 가진 PDSCH를 제외한 DM-RS를 운반하는 임의의 심볼에서 PDSCH가 존재하지 않고, DM-RS 포트 1000 상에서 설정 타입(configuration type) 1의 단일 심볼 front-loaded DM-RS가 전송되고, 남아있는 직교 안테나 포트들 모두가 다른 단말로의 PDSCH의 전송과 관련되지 않는다고 가정한다.
추가적으로, 매핑 타입 A를 가진 PDSCH에 대해, 단말은 DCI에서 지시된 PDSCH 지속 구간에 따라 슬롯에서 dmrs-AdditionalPosition='pos2'와 최대 2개까지의 additional 단일-심볼 DM-RS가 존재한다고 가정한다. 매핑 타입 B를 갖는 일반(normal) CP에 대한 7 심볼들 또는 확장(extended) CP에 대한 6 심볼들의 할당 지속 구간을 가진 PDSCH에 대해, front-loaded DM-RS 심볼이 PDSCH 할당 지속 구간의 1st 또는 2nd 심볼 각각에 있을 때, 단말은 5th 또는 6th 심볼에서 하나의 additional 단일 심볼 DM-RS가 존재한다고 가정한다. 그렇지 않으면, 단말은 additional DM-RS 심볼이 존재하지 않는다고 가정한다. 그리고, 매핑 타입 B를 갖는 4 심볼들의 할당 지속 구간을 갖는 PDSCH에 대해, 단말은 더 이상 additional DM-RS가 존재하지 않는다고 가정하고, 매핑 타입 B를 갖는 2 심볼들의 할당 지속 구간을 갖는 PDSCH에 대해, 단말은 additional DM-RS가 존재하지 않는다고 가정하고, 단말은 PDSCH가 DM-RS를 운반하는 심볼 내에 존재한다고 가정한다.
도 9는 DL DMRS 절차의 일례를 나타낸 흐름도이다.
기지국은 단말로 DMRS 설정(configuration) 정보를 전송한다(S910).
상기 DMRS 설정 정보는 DMRS-DownlinkConfig IE를 지칭할 수 있다. 상기 DMRS-DownlinkConfig IE는 dmrs-Type 파라미터, dmrs-AdditionalPosition 파라미터, maxLength 파라미터, phaseTrackingRS 파라미터 등을 포함할 수 있다.
상기 dmrs-Type 파라미터는 DL를 위해 사용될 DMRS configuration type의 선택을 위한 파라미터이다. NR에서, DMRS는 (1) DMRS configuration type 1과 (2) DMRS configuration type 2의 2가지 configuration type으로 구분될 수 있다. DMRS configuration type 1은 주파수 영역에서 보다 높은 RS density를 가지는 type이며, DMRS configuration type 2는 더 많은 DMRS antenna port들을 가지는 type이다.
상기 dmrs-AdditionalPosition 파라미터는 DL에서 추가적인(additional) DMRS의 위치를 나타내는 파라미터이다. 해당 파라미터가 존재하지 않는 경우, 단말은 pos2 값을 적용한다. DMRS는 PDSCH mapping type(type A 또는 type B)에 따라 front-loaded DMRS의 첫 번째 위치가 결정되며, 높은 속도(high speed)의 단말을 지원하기 위해 추가적인(additional) DMRS가 설정될 수 있다. 상기 front-loaded DMRS는 1 또는 2의 연속하는 OFDM symbol들을 점유하며, RRC signaling 및 DCI(downlink control information)에 의해 지시된다.
상기 maxLength 파라미터는 DL front-loaded DMRS에 대한 OFDM symbol의 최대 개수를 나타내는 파라미터이다. 상기 phaseTrackingRS 파라미터는 DL PTRS를 설정하는 파라미터이다. 해당 파라미터가 존재하지 않거나 또는 해지된 경우, 단말은 DL PTRS가 없다고 가정한다.
상기 기지국은 DMRS에 사용되는 시퀀스를 생성한다(S920).
상기 DMRS에 대한 시퀀스는 아래 수학식 3에 따라 생성된다.
Figure 112022017822301-pct00055
상기 슈도-랜덤 시퀀스(pseudo-random sequence)
Figure 112022017822301-pct00056
는 3gpp TS 38.211 5.2.1에 정의되어 있다. 즉,
Figure 112022017822301-pct00057
는 2개의 m-sequence들을 이용하는 길이-31의 골드 시퀀스일 수 있다. 슈도-랜덤 시퀀스 생성기(pseudo-random sequence generator)는 아래 수학식 4에 의해 초기화된다.
Figure 112022017822301-pct00058
여기서,
Figure 112022017822301-pct00059
은 슬롯 내 OFDM 심볼의 넘버(number)이며,
Figure 112022017822301-pct00060
는 프레임 내 슬롯 넘버이다.
그리고,
Figure 112022017822301-pct00061
는, 만약 제공되고, PDSCH가 C-RNTI, MCS-C-RNTI 또는 CS-RNTI에 의해 스크램블된 CRC를 가진 DCI format 1_1을 사용하는 PDCCH에 의해 스케쥴된 경우, DMRS-DownlinkConfig IE 내 higher-layer parameter scramblingID0 및 scramblingID1에 의해 각각 주어진다.
-
Figure 112022017822301-pct00062
는 만약 제공되고, PDSCH가 C-RNTI, MCS-C-RNTI, 또는 CS-RNTI에 의해 스크램블된 CRC를 가진 DCI format 1_0을 사용하는 PDCCH에 의해 스케쥴된 경우 DMRS-DownlinkConfig IE 내 higher-layer parameter scramblingID0에 의해 주어진다.
-
Figure 112022017822301-pct00063
, 그렇지 않으면, quantity
Figure 112022017822301-pct00064
는 DCI format 1_1이 사용되는 경우, PDSCH 전송과 연관된 DCI 내 DMRS 시퀀스 초기화 필드에 의해 주어진다.
상기 기지국은 상기 생성된 시퀀스를 자원 요소(resource element)에 매핑한다(S930). 여기서, 자원 요소는 시간, 주파수, 안테나 포트 또는 코드 중 적어도 하나를 포함하는 의미일 수 있다.
상기 기지국은 상기 자원 요소 상에서 상기 DMRS를 단말로 전송한다(S940). 상기 단말은 상기 수신된 DMRS를 이용하여 PDSCH를 수신하게 된다.
QCL(Quasi-Co Location)
안테나 포트는 안테나 포트 상의 심볼이 운반되는 채널이 동일한 안테나 포트 상의 다른 심볼이 운반되는 채널로부터 추론될 수 있도록 정의된다. 하나의 안테나 포트 상의 심볼이 운반되는 채널의 특성(property)이 다른 안테나 포트 상의 심볼이 운반되는 채널로부터 유추될 수 있는 경우, 2 개의 안테나 포트는 QC/QCL(quasi co-located 혹은 quasi co-location) 관계에 있다고 할 수 있다.
여기서, 상기 채널 특성은 지연 확산(Delay spread), 도플러 확산(Doppler spread), 주파수/도플러 쉬프트(Frequency/Doppler shift), 평균 수신 파워(Average received power), 수신 타이밍/평균지연(Received Timing / average delay), Spatial RX parameter 중 하나 이상을 포함한다. 여기서 Spatial Rx parameter는 angle of arrival과 같은 공간적인 (수신) 채널 특성 파라미터를 의미한다.
단말은 해당 단말 및 주어진 serving cell에 대해 의도된 DCI를 가지는 검출된 PDCCH에 따라 PDSCH를 디코딩하기 위해, higher layer parameter PDSCH-Config 내 M 개까지의 TCI-State configuration의 리스트로 설정될 수 있다. 상기 M은 UE capability에 의존한다.
각각의 TCI-State는 하나 또는 두 개의 DL reference signal과 PDSCH의 DM-RS port 사이의 quasi co-location 관계를 설정하기 위한 파라미터를 포함한다.
Quasi co-location 관계는 첫 번째 DL RS에 대한 higher layer parameter qcl-Type1과 두 번째 DL RS에 대한 qcl-Type2 (설정된 경우)로 설정된다. 두 개의 DL RS의 경우, reference가 동일한 DL RS 또는 서로 다른 DL RS인지에 관계없이 QCL type은 동일하지 않다.
각 DL RS에 대응하는 quasi co-location type은 QCL-Info의 higher layer parameter qcl-Type에 의해 주어지며, 다음 값 중 하나를 취할 수 있다:
- 'QCL-TypeA': {Doppler shift, Doppler spread, average delay, delay spread}
- 'QCL-TypeB': {Doppler shift, Doppler spread}
- 'QCL-TypeC': {Doppler shift, average delay}
- 'QCL-TypeD': {Spatial Rx parameter}
예를 들어, target antenna port가 특정 NZP CSI-RS 인 경우, 해당 NZP CSI-RS antenna ports는 QCL-Type A관점에서는 특정 TRS와, QCL-Type D관점에서는 특정 SSB과 QCL되었다고 지시/설정될 수 있다. 이러한 지시/설정을 받은 단말은 QCL-TypeA TRS에서 측정된 Doppler, delay값을 이용해서 해당 NZP CSI-RS를 수신하고, QCL-TypeD SSB 수신에 사용된 수신 빔을 해당 NZP CSI-RS 수신에 적용할 수 있다.
UE는 8개까지의 TCI state들을 DCI 필드 'Transmission Configuration Indication'의 codepoint에 매핑하기 위해 사용되는 MAC CE signaling에 의한 activation command를 수신할 수 있다.
빔 지시 (beam indication)와 관련하여, 단말은 적어도 QCL(Quasi Co-location) indication의 목적을 위해 최대 M 개의 후보(candidate) 전송 설정 지시 (Transmission Configuration Indication, TCI) 상태(state)들에 대한 리스트를 RRC 설정 받을 수 있다. 여기서, M은 64일 수 있다.
각 TCI state는 하나의 RS set으로 설정될 수 있다. 적어도 RS set 내의 spatial QCL 목적(QCL Type D)을 위한 DL RS의 각각의 ID는 SSB, P-CSI RS, SP-CSI RS, A-CSI RS 등의 DL RS type들 중 하나를 참조할 수 있다. 최소한 spatial QCL 목적을 위해 사용되는 RS set 내의 DL RS(들)의 ID의 초기화(initialization)/업데이트(update)는 적어도 명시적 시그널링(explicit signaling)을 통해 수행될 수 있다.
TCI-State IE는 하나 또는 두 개의 DL reference signal(RS) 대응하는 quasi co-location (QCL) type과 연관시킨다. TCI-State IE는 bwp-Id/ referencesignal/ QCL type 등의 파라미터를 포함할 수 있다.
bwp-Id parameter는 RS가 위치되는 DL BWP를 나타내며, cell parameter는 RS가 위치되는 carrier를 나타내며, referencesignal parameter는 해당 target antenna port(s)에 대해 quasi co-location 의 source가 되는 reference antenna port(s) 혹은 이를 포함하는reference signal을 나타낸다. 상기 target antenna port(s)는 CSI-RS, PDCCH DMRS, 또는 PDSCH DMRS 일 수 있다. 일례로 NZP CSI-RS에 대한 QCL reference RS정보를 지시하기 위해 NZP CSI-RS 자원 설정 정보에 해당 TCI state ID를 지시할 수 있다. 또 다른 일례로 PDCCH DMRS antenna port(s)에 대한 QCL reference 정보를 지시하기 위해 각 CORESET설정에 TCI state ID를 지시할 수 있다. 또 다른 일례로 PDSCH DMRS antenna port(s)에 대한 QCL reference 정보를 지시하기 위해 DCI를 통해 TCI state ID를 지시할 수 있다.
앞서 살핀 내용들(3GPP system, frame structure, DL 송수신 동작 등)은 후술할 본 발명에서 제안하는 방법들과 결합되어 적용될 수 있으며, 또는 본 발명에서 제안하는 방법들의 기술적 특징을 명확하게 하는데 보충될 수 있다. 또한, 본 명세서에서 '/'는 /로 구분된 내용을 모두 포함(and)하거나 구분된 내용 중 일부만 포함(or)하는 것을 의미할 수 있다.
Multi-TRP (Transmission/Reception Point) 관련 동작
CoMP (Coordinated Multi Point)의 기법은 다수의 기지국이 단말로부터 피드백 받은 채널 정보 (예: RI/CQI/PMI/LI 등)를 서로 교환 (e.g. X2 interface 이용) 혹은 활용하여, 단말을 협력 전송하여, 간섭을 효과적으로 제어하는 방식을 말한다. 이용하는 방식에 따라서, Joint transmission (JT), Coordinated scheduling (CS), Coordinated beamforming (CB), DPS (dynamic point selection), DPB (dynamic point blacking) 등으로 구분될 수 있다.
NCJT(Non-coherent joint transmission)는 간섭을 고려하지 않는(즉, 간섭성이 없는) 협력 전송을 의미할 수 있다. 일례로, 상기 NCJT는 기지국(들)이 다중 TRP들을 통해 하나의 단말에게 동일한 시간 자원 및 주파수 자원을 이용하여 데이터를 전송하는 방식일 수 있다. 해당 방식의 경우, 기지국(들)의 다중 TRP들은 상호 간에 서로 다른 DMRS(demodulation reference signal) 포트(port)를 이용하여 다른 레이어(layer)를 통해 단말로 데이터를 전송하도록 설정될 수 있다. 다시 말해, NCJT는 TRP들 간의 적응적(adaptive) 프리코딩 없이 2개 이상의 TRP들로부터 MIMO layer(s)의 전송이 수행되는 전송 방식과 대응될 수 있다.
NCJT는 각 기지국(또는 TRP)이 전송에 이용하는 시간 자원 및 주파수 자원이 완전하게 중첩(overlap)되는 전체 중첩 NCJT(fully overlapped NCJT) 방식과 각 기지국(또는 TRP)이 전송에 이용하는 시간 자원 및/또는 주파수 자원이 일부 중첩되는 부분 중첩 NCJT(partially overlapped NCJT) 방식으로 구분될 수 있다. 일례로, 부분 중첩 NCJT의 경우, 일부 시간 자원 및/또는 주파수 자원에서 제1 기지국(예: TRP 1)의 데이터 및 제2 기지국(예: TRP 2)의 데이터가 모두 전송되며, 나머지 시간 자원 및/또는 주파수 자원에서 제1 기지국 또는 제2 기지국 중 어느 하나의 기지국의 데이터만이 전송될 수 있다.
TRP는 NCJT 수신하는 단말에게 데이터 스케줄링 정보를 DCI(Downlink Control Information)로 전달하게 되는 데 DCI(downlink control information) 전송 관점에서, M-TRP (multiple TRP) 전송 방식은 i) 각 TRP가 서로 다른 DCI를 전송하는 M-DCI (multiple DCI) based M-TRP 전송과 ii) 하나의 TRP가 DCI를 전송하는 S-DCI (single DCI) based M-TRP 전송 방식으로 나눌 수 있다.
첫 번째로 single DCI based MTRP 방식에 대해 살펴본다. 대표 TRP 하나가 자신이 송신하는 데이터와 다른 TRP가 송신하는 데이터에 대한 스케줄링 정보를 하나의 DCI로 전달하는 single DCI based M-TRP 방식에서는 MTRP는 공통된 하나의 PDSCH를 함께 협력 전송하며 협력 전송에 참여하는 각 TRP는 해당 PDSCH를 서로 다른 layer (즉 서로 다른 DMRS ports)로 공간 분할 하여 전송한다. 다시 말해, MTRP가 하나의 PDSCH를 전송하게 되지만 각 TRP는 하나의 PDSCH를 구성하는 multiple layer들의 일부 layer 만을 전송하게 된다. 예를 들어, 4 layer 데이터가 전송되는 경우 TRP 1이 2 layer를 전송하고 TRP 2가 나머지 2 layer를 UE에게 전송한다.
이 때, 상기 PDSCH에 대한 scheduling 정보는 UE에게 하나의 DCI를 통해 지시되며 해당 DCI에는 어떤 DMRS port가 어떤 QCL RS 및 QCL type의 정보를 이용하는지가 지시된다(이는 기존에 DCI에서 지시된 모든 DMRS ports에 공통으로 적용될 QCL RS 및 TYPE 을 지시하는 것과는 다르다.) 즉, DCI 내의 TCI 필드를 통해 M개 TCI state가 지시되고(2 TRP 협력전송인 경우 M=2) M개의 DMRS port group별로 서로 다른 M개의 TCI state를 이용하여 QCL RS 및 type를 파악한다. 또한 새로운 DMRS table을 이용하여 DMRS port 정보가 지시될 수 있다.
일례로, S-DCI의 경우에는 M TRP 가 전송하는 데이터에 대한 모든 scheduling 정보가 하나의 DCI를 통해 전달되어야 하므로 두 TRP간의 dynamic한 협력이 가능한 ideal BH (ideal BackHaul) 환경에서 사용될 수 있다.
두 번째로 multiple DCI based MTRP 방식에 대해 살펴본다. MTRP는 각각 서로 다른 DCI와 PDSCH를 전송하며(UE는 N개의 DCI와 N개의 PDSCH를 N TRP로부터 수신), 해당 PDSCH들은 서로 주파수 시간 자원 상에서 (일부 또는 전체가)오버랩되어 전송된다. 해당 PDSCH들은 서로 다른 scrambling ID를 통해 scrambling 되며 해당 DCI들은 서로 다른 Coreset group에 속한 Coreset을 통해 전송될 수 있다. (Coreset group이란 각 Coreset의 Coreset configuration 내에 정의된 index로 파악할 수 있으며 예를 들어, Coreset 1과 2는 index = 0 이 설정되었고, Coreset 3과 4은 index =1이 설정되었다면 Coreset 1,2는 Coreset group 0이고, Coreset 3,4는 Coreset group에 속한다. 또한 Coreset 내 index가 정의되지 않은 경우 index=0으로 해석할 수 있다) 하나의 serving cell에서 scrambling ID가 복수 개 설정되었거나 Coreset group이 두 개 이상 설정된 경우 UE는 multiple DCI based MTRP 동작으로 데이터를 수신하는 것을 알 수 있다.
일례로, single DCI based MTRP 방식인지 multiple DCI based MTRP 방식인지는 별도의 signaling을 통해 UE에게 지시될 수 있다. 일례로, 하나의 serving cell에 대해 MTRP 동작을 위해 다수개의 CRS pattern이 UE에게 지시되는 경우, single DCI based MTRP 방식인지 multiple DCI based MTRP 방식인지에 따라 CRS에 대한 PDSCH rate matching이 달라 질 수 있다.
본 명세서에서 설명되는 기지국은 단말과 데이터의 송수신을 수행하는 객체(object)를 총칭하는 의미일 수 있다. 예를 들어, 본 명세서에서 설명되는 기지국은 하나 이상의 TP(Transmission Point)들, 하나 이상의 TRP(Transmission and Reception Point)들 등을 포함하는 개념일 수 있다. 예를 들어, 본 명세서에서 설명되는 다중 TP 및/또는 다중 TRP는 하나의 기지국에 포함되는 것이거나, 다수의 기지국들에 포함되는 것일 수도 있다. 또한, TP 및/또는 TRP는 기지국의 패널, 송수신 유닛(transmission and reception unit) 등을 포함하는 것일 수 있다.
또한, 본 명세서에서 설명되는 TRP는 특정 지역(area)의 특정 지리적 위치(geographical location)에 위치하는 네트워크에서 사용 가능한(avaliable) 하나 이상의 안테나 요소(element)가 있는 안테나 배열(antenna array)을 의미할 수 있다. 본 명세서에서는 설명의 편의를 위하여 "TRP"를 기준으로 설명되지만, TRP는 기지국, TP(transmission point), 셀(예: macro cell / small cell / pico cell 등), 안테나 어레이(antenna array) 또는 패널(panel) 등으로 대체되어 이해/적용될 수 있다.
또한, 본 명세서에서 설명되는 CORESET group ID는 각 TRP/panel에 설정된/연관된(또는, 각 TRP/panel를 위한) CORESET 를 구분하기 위한 인덱스(index) / 식별 정보(e.g. ID)/ 지시자 등을 의미할 수 있다. 그리고 CORESET group은 CORESET을 구분하기 위한 인덱스 / 식별정보(e.g. ID) / 상기 CORESET group ID등에 의해 구분되는 CORESET의 그룹 / 합집합일 수 있다. 일례로, CORESET group ID는 CORSET configuration 내에 정의 되는 특정 index 정보일 수 있다. 일례로, CORESET group은 각 CORESET에 대한 CORESET configuration 내에 정의된 인덱스에 의해 설정/지시/정의 될 수 있다. 상기 CORESET group ID는 상위 계층 시그널링(higher layer signaling, e.g. RRC siganling) / L2 시그널링(e.g. MAC-CE) / L1 시그널링(e.g. DCI) 등을 통해 설정/지시될 수 있다.
예를 들어, 상위 계층 파라미터인 ControlResourceSet IE(information element)는 시간/주파수 제어 자원 집합(control resource set, CORESET)을 설정하기 위해 사용된다. 일례로, 상기 제어 자원 집합은 하향링크 제어 정보의 검출, 수신과 관련될 수 있다. 상기 ControlResourceSet IE는 CORESET 관련 ID(예: controlResourceSetID), CORESET에 대한 CORESET pool의 인덱스 (예: CORESETPoolIndex), CORESET의 시간/주파수 자원 설정, CORESET과 관련된 TCI 정보 등을 포함할 수 있다. 일례로, CORESET pool의 인덱스 (예: CORESETPoolIndex)는 0 또는 1로 설정될 수 있다. CORESET Pool의 인덱스는 CORESET group ID를 의미할 수 있다. 예를 들어, CORESET pool의 인덱스 (예: CORESETPoolIndex)는 상술한 CORESET group ID와 대응될 수 있다.
M-TRP 전송 방식
복수 개(예: M개)의 TRP가 하나의 단말(User equipment, UE)에게 데이터를 전송하는 M-TRP 전송 방식은 크게 전송률을 높이기 위한 방식인 eMBB M-TRP(또는 M-TRP eMMB) 전송과 수신 성공률 증가 및 지연(latency) 감소를 위한 방식인 URLLC M-TRP(또는 M-TRP URLLC) 전송 두 가지로 나눌 수 있다.
URLLC M-TRP란 동일 TB(Transport Block)를 M-TRP가 다른 자원(예: 레이어/시간 자원/주파수 자원 등)를 이용하여 전송하는 것을 의미할 수 있다. URLLC M-TRP 전송 방식을 설정 받은 UE는 DCI로 여러 TCI state(s)를 지시 받고, 각 TCI state의 QCL RS(reference signal)를 이용하여 수신한 데이터는 서로 동일 TB임을 가정할 수 있다. 반면, eMBB M-TRP는 다른 TB를 M-TRP가 다른 자원(예: 레이어/시간 자원/주파수 자원 등)을 이용하여 전송하는 것을 의미할 수 있다. eMBB M-TRP 전송 방식을 설정 받은 UE는 DCI로 여러 TCI state(s)를 지시 받고, 각 TCI state의 QCL RS를 이용하여 수신한 데이터는 서로 다른 TB임을 가정할 수 있다.
예를 들어, UE는 MTRP-URLLC 용도로 설정된 RNTI와 MTRP-eMBB 용도로 설정된 RNTI를 별도로 구분하여 이용함에 따라, 해당 M-TRP 전송이 URLLC 전송인지 또는 eMBB 전송인지 여부를 판단/결정할 수 있다. 즉, UE가 수신한 DCI의 CRC masking이 MTRP-URLLC 용도로 설정된 RNTI를 이용하여 수행된 경우 이는 URLLC 전송에 해당하며, DCI의 CRC masking이 MTRP-URLLC 용도로 설정된 RNTI를 이용하여 수행된 경우 이는 eMBB 전송에 해당할 수 있다.
또한, URLLC M-TRP 전송 방식은 후술하는 SDM 기반 방식(scheme), TDM 기반 방식, FDM 기반 방식 등이 존재할 수 있다. UE는 URLLC M-TRP 전송 방식의 세부적인 방식들(예: SDM/ FDM/ TDM) 에 대해서도 설정 받을 수 있다. 예를 들어, 이를 위한 상위 계층 파라미터(예: repetitionScheme)가 정의될 수 있고, 해당 파라미터를 통해 SDM, FDM 또는 TDM 방식 중 하나가 설정될 수 있다. 단말은 설정 받은 방식에 기반하여 동일 TB가 M-TRP로부터 다른 layer/time/frequency를 이용하여 전송되는 것을 인식할 수 있다.
Multi-TRP에서의 신뢰도 향상 방식
도 10은 다수의 TRP들에 의해 지원되는 신뢰도(reliability) 향상을 위한 송수신 방법의 예시로써, 아래의 두 가지 방법을 고려해볼 수 있다.
도 10의(a)의 예는 동일한 CW(codeword)/TB(transport block)를 전송하는 레이어 그룹(layer group)이 서로 다른 TRP에 대응하는 경우를 나타낸다. 즉, 동일한 CW가 다른 레이어/레이어 그룹을 통해 전송될 수 있다. 이때, 레이어 그룹은 하나 또는 하나 이상의 레이어로 이루어진 모종의 레이어 집합을 의미할 수 있다. 이와 같이, 레이어 수가 증가함에 따라 전송자원의 양이 증가하고 이를 통해 TB에 대해 낮은 부호율의 강건한 채널 코딩을 사용할 수 있다는 장점이 있다. 또한, 다수의 TRP로부터 채널이 다르기 때문에 다이버시티(diversity) 이득을 바탕으로 수신 신호의 신뢰도 향상을 기대할 수 있다.
한편, 도 10의(b)의 예는 서로 다른 CW를 서로 다른 TRP에 대응하는 레이어 그룹을 통해 전송하는 예를 보여준다. 즉, 서로 다른 CW가 다른 레이어/레이어 그룹을 통해 전송될 수 있다. 이때, 제1 CW(CW #1)와 제2 CW(CW #2)에 대응하는 TB는 서로 동일함을 가정할 수 있다. 따라서, 동일 TB의 반복 전송의 예로 볼 수 있다. 도 10의(b)의 경우 도 10의(a) 대비 TB에 대응하는 부호율이 높다는 단점을 가질 수 있다. 하지만, 채널 환경에 따라 동일 TB로부터 생성된 encoding bits에 대해서 서로 다른 RV(redundancy version) 값을 지시하여 부호율을 조정하거나, 각 CW의 변조 차수(modulation order)를 조절할 수 있다는 장점을 갖는다.
상기 도 10의(a) 또는 도 10의(b)에서는 동일 TB가 서로 다른 레이어 그룹을 통해 반복 전송되고 각 레이어 그룹을 서로 다른 TRP/panel이 전송함에 따라 데이터 수신확률을 높일 수 있는데, 이를 SDM(spatial division multiplexing) 기반의 URLLC M-TRP 전송 방식으로 명명한다. 서로 다른 레이어 그룹에 속한 레이어(들)은 서로 다른 DMRS CDM group에 속한 DMRS port들을 통해 각각 전송된다.
또한, 상술한 다수 TRP 관련된 내용은 서로 다른 레이어를 이용하는 SDM(spatial division multiplexing) 방식 뿐만 아니라, 서로 다른 주파수 영역 자원(예: RB/PRB (set))에 기반하는 FDM(frequency division multiplexing) 방식 및/또는 서로 다른 시간 영역 자원(예: slot, symbol, sub-symbol)에 기반하는 TDM(time division multiplexing) 방식에도 확장하여 적용될 수 있음은 물론이다.
예를 들어, TDM based URLLC M-TRP 동작은 i) 하나의 slot에서 하나의 TRP가 TB를 전송하는 방식(예: scheme 4)과 ii) 하나의 TRP가 연속된 몇 개의 OFDM symbol (즉 symbol group)을 통해 TB를 전송하는 방식(예: scheme 3)이 있을 수 있다. 상기 i) 방식의 경우는 여러 slot에서 여러 TRP로부터 수신한 동일 TB를 통해 데이터 수신 확률을 높일 수 있는 효과가 있다. 상기 ii) 방식의 경우는 하나의 slot 내에서 여러 TRP들이 서로 다른 symbol group을 통해 동일 TB를 전송할 수 있다.
예를 들어, 상술한 설명을 서로 다른 주파수 영역 자원(예: RB/PRB (set))에 기반하는 FDM(frequency division multiplexing) 방식에 확장하여 적용하면 아래의 예와 같이 동작할 수 있다. 이는, 상위 계층 파라미터(예: repetitionScheme)를 통해 FDM 방식이 설정된 경우의 동작일 수 있다. 서로 다른 주파수 영역 자원은 서로 다른 TRP에 대응될 수 있다. 또한, 서로 다른 주파수 영역 자원은 주파수 영역에서 각 TRP에 대응하는 자원 영역이 중첩되지 않는 것을 의미할 수 있다.
일례로, 동일한 CW/TB가 서로 다른 주파수 영역 자원(예: RB/PRB (세트))을 통해 전송될 수 있다. 또는, 일례로, 동일한 TB에 대응하는 복수의 CW들(예: CW #1/ CW #2)이 서로 다른 주파수 영역 자원(예: RB/PRB (세트))을 통해 전송될 수도 있다. 이는, 동일 TB의 반복 전송의 예로 볼 수 있다. DCI를 통해 복수의 TCI state들을 설정 받은 UE는 각 TCI state의 QCL RS를 이용하여 데이터(예: CW/TB)를 수신할 수 있고, 수신한 데이터는 서로 동일 TB임을 가정할 수 있다.
도 11은 서로 다른 TRP(예: TRP1 및 TRP 2)에서 서로 다른 주파수 자원을 이용하여 단말(예: UE1)에게 데이터를 전송하는 경우의 예를 나타낸다. 도 11은 FDM 기반의 URLLC M-TRP 동작의 일 예이다. 도 11의 (a)를 참고하면, TRP1은 제1 주파수 자원 그룹(즉, FRG #1)을 통해 데이터를 전송하고, TRP2는 제2 주파수 자원 그룹(즉, FRG #2)을 통해 데이터를 전송할 수 있다. 도 11의 (b)를 참고하면, 상기 제1 주파수 자원 그룹과 상기 제2 주파수 자원 그룹은 시간 영역(time domain)에서 중첩되고, 주파수 영역에서는 중첩되지 않을 수 있다. 단말 입장에서, 주파수 영역에서 중첩되지 않는 제1 주파수 자원 그룹과 제2 주파수 자원 그룹에서 단말은 서로 다른 TRP로부터 데이터를 수신할 수 있다.
도 11의 (b)에서 서로 다른 FRG가 시간 영역에서 중첩(overlap)되어 있는 상황을 예로 하였으나, 이는 설명의 편의를 위한 일례일 뿐, 본 발명의 기술적 범위를 제한하는 것은 아니다. 따라서, 시간 영역에서 서로 다른 FRG가 일부 중첩되거나, 중첩되지 않은 상황 역시 고려될 수 있다.
즉, FDM 방식으로 서로 다른 주파수 영역 자원에서 다수의 TRP들이 데이터를 전송할 수 있다. 이때, 주파수 자원 그룹(Frequency resource group(FRG), 이하, FRG로 표현)은 주파수 자원의 집합을 의미할 수 있으며, 하나의 주파수 자원 그룹은 하나 이상의 주파수 자원들을 포함할 수 있다. 예를 들어, FRG는 PRG, PRG 세트, RBG(resource block group), RBG 세트 등의 용어로 대체되어 사용될 수 있다.
이와 같이, 서로 다른 TRP에서 단말에게 신호(또는, 데이터)를 전송하는 경우, 다수의 TRP로부터의 채널이 다르기 때문에 다이버시티(diversity) 이득을 바탕으로 수신 신호의 신뢰도 향상을 기대할 수 있다.
상술한 FDM 기반의 M-TRP 동작에 있어서, 다수의 TRP 들 중 대표 TRP가 DCI를 전송하는, 즉, 단일 DCI 기반의 M-TRP 전송이 수행될 수 있다. 하나의 DCI를 이용하여 서로 다른 TRP에게 서로 다른 주파수 자원을 할당하는 방법으로 아래의 두 가지 방식을 고려할 수 있다.
도 12는 단일 DCI 기반의 M-TRP 동작에서, 단일 DCI를 통해 서로 다른 TRP에게 주파수 자원을 할당하는 방법(예: FRA 방법 1과 FRA 방법 2)의 일례를 나타낸다.
도 12의 (a)를 참고하면, DCI 내 FRA(Frequency resource allocation) 필드는 모든 TRP에 대한 스케줄링 주파수 자원을 지시하며, 시그널링(예: 상위 계층 시그널링/ DCI) 및/또는 규칙을 바탕으로 서로 다른 TRP가 DCI로 스케줄 된 주파수 자원을 나누어 갖을 수 있다. 상기 DCI 내 FRA 필드는 DCI의 'Frequency domain resource assignment' 필드를 의미할 수 있다. 이하에서, 설명의 편의를 위해 이와 같은 방식을 'FRA 방법 1'로 지칭하기로 한다.
도 12의 (b)를 참고하면, DCI 내 FRA 필드는 특정 TRP에 대한 스케줄링 주파수 자원을 지시하며, 시그널링(예: 상위 계층 시그널링/ DCI) 및/또는 규칙을 바탕으로 다른 TRP에 매핑 되는 주파수 자원을 할당할 수 있다. 이하에서, 설명의 편의를 위해 이와 같은 방식을 'FRA 방법 2'로 지칭하기로 한다.
한편, 전송 블록(transport block, TB) 크기(size) 계산을 위해 기준이 되는 주파수 자원을 정의하는 방법으로, (i) 다수의 TRP들에 할당된 모든 주파수 자원을 고려하는 방안(이하, '기준 FR(frequency resource) 정의 방법 1' 로 표현)과 (ii) 특정 TRP에 할당된 주파수 자원만을 고려하는 방안(이하, '기준 FR 정의 방법 2' 로 표현)을 고려할 수 있다.
상기 기준 RF 정의 방법 1과 비교하여 상기 기준 FR 정의 방법 2의 경우는 단일 TB의 반복 전송 형태로 해석될 수 있다. 이 경우, 각 TB에 대하여 서로 다른 변조 차수(modulation order)/ RV 등을 적용할 수 있다는 장점을 가질 수 있다.
상술한 단일 DCI를 통해 서로 다른 TRP에게 주파수 자원을 할당하는 방법(예: FRA 방법 1과 FRA 방법 2)과 TB 크기 계산을 위한 기준 주파수 자원 결정 방법(예: 기준 FR 정의 방법 1과 기준 FR 정의 방법 2)의 조합을 고려하여 현재 표준에 영향을 미칠 수 있는 부분을 살펴보면 아래와 같다.
- FRA 방법 1과 기준 FR 정의 방법 1의 조합의 경우: DCI에 기반하여 할당된 주파수 자원을 각 TRP 별로 나누기 위한 시그널링 및/또는 규칙이 필요하다. TB 크기 계산에는 영향이 없을 수 있다.
- FRA 방법 1과 기준 FR 정의 방법 2의 조합의 경우: DCI에 기반하여 할당된 주파수 자원을 각 TRP 별로 나누기 위한 시그널링 및/또는 규칙이 필요하다. 또한, TB 크기 계산을 위한 기준 자원을 결정하기 위해 시그널링 및/또는 규칙이 필요하다. TB 별 별도의 MCS/RV 지시가 가능할 수 있다.
- FRA 방법 2과 기준 FR 정의 방법 1의 조합의 경우: DCI를 통해 할당된 주파수 자원에 기반하여 다른 TRP의 주파수 자원 결정을 위한 시그널링 및/또는 규칙이 필요하다. 또한, TB 크기 계산을 위한 기준 자원을 결정하기 위해 시그널링 및/또는 규칙이 필요하다.
- FRA 방법 2와 기준 FR 정의 방법 2의 조합의 경우: DCI를 통해 할당된 주파수 자원에 기반하여 다른 TRP의 주파수 자원 결정을 위한 시그널링 및/또는 규칙이 필요하다. TB 크기 계산에는 영향이 없을 수 있다. TB 별 별도의 MCS/RV 지시가 가능할 수 있다.
본 명세서에서는 무선 통신 시스템에서 다수의 기지국들(예: 하나 또는 그 이상의 기지국들의 다수 TP/TRP들 등)과 단말 간의 협력 전송(예: NCJT)을 고려할 때, 특히, FDM 기반의 M-TRP 동작에 대해, 상술한 FRA 방법 및 기준 FR 정의 방법의 조합에 따라 추가적인 단말/기지국 동작 및/또는 시그널링/규칙이 필요한 경우에 대해 제안될 수 있는 방법들에 대해 살펴본다.
구체적으로, 제안 1은 단일 DCI 기반의 M-TRP 전송에서, 협력 전송하는 복수의 TRP들에 대한 전체 주파수 자원을 DCI를 통해 설정하고, 각 TRP 별로 설정된 주파수 자원을 분배하여 사용하는 방법을 제안한다. 제안 1-1은 제안 1에 기반하는 자원 할당을 가정하고 M-TRP로부터 PTRS를 수신하는 방법을 제안한다. 제안 2는 단일 DCI 기반의 M-TRP 전송에서, 협력 전송하는 복수의 TRP들 중 특정 TRP에 대한 주파수 자원을 DCI를 통해 설정하고, 설정된 주파수 자원에 기반하여 다른 TRP의 주파수 자원을 결정하는 방법을 제안한다. 또한, 제안 1 및 제안 2에서 각 자원 할당 방법에 따른 TB 크기 계산을 위한 기준 자원 결정 방법을 제안한다.
본 명세서에서 설명되는 방법들은 기지국(들)의 하나 이상의 TP/TRP들을 기준으로 설명되지만, 해당 방법들 기지국(들)의 하나 이상의 패널(panel)들에 기반한 전송에도 동일 또는 유사한 방식으로 적용될 수 있음은 물론이다. 또한, 본 명세서에서 설명하는 제안 1, 제안 1-1 및 제안 2에서 단일 DCI 기반의 M-TRP 동작을 가정하며, 설명의 편의를 위해 2개의 TRP가 NCJT로 동작하는 상황을 중심으로 설명한다. 그러나, 2 이상의 TRP들이 동작하는 경우에도 제안 1, 제안 1-2 및 제안 2가 적용될 수 있음은 물론이다.
[제안 1]
상술한 FRA 방법 1과 같이 현재 DCI는 주파수 자원 할당을 위해 단일 필드(예: 'Frequency domain resource assignment' 필드)만을 제공하고 있고, 해당 필드를 통해 NCJT로 동작하는 M-TRP 전체에 대한 주파수 자원이 설정/지시될 수 있다. 할당된 주파수 자원에서 각 TRP에 대응하는 주파수 자원을 결정하기 위해서는 기지국과 단말 사이에 모종의 규칙 및/또는 시그널링 방법이 정의되어야 한다. 본 명세서의 제안 1에서는 단일 DCI를 통해 할당된 전체 TRP들에 대한 자원을 특정 자원 단위(예: PRG/ PRG 세트/ RBG/ RBG 세트 등)으로 그룹핑하고, 각 그룹(/서브 그룹)과 각 TRP와 연관된 TCI state와의 매핑에 기반하여 각 TRP에 대한 주파수 자원을 결정하는 방법을 제안한다.
구체적으로, 단말에게 다수의 TCI state들이 지시되는 경우(즉, DCI를 통해 둘 이상의 TCI state들과 연관된 특정 코드포인트가 설정되는 경우), 서로 다른 TRP와 관련된 TCI state를 주파수 자원과 대응시켜 각 TRP에 대한 주파수 자원을 구분할 수 있다. 다시 말해, 단일 DCI를 통해 지시된 주파수 자원 영역 내에서 각 TCI state가 대응되는 주파수 자원이 다를 수 있다. 이하에서, multi-TRP 전송을 지원하기 위해 특정한 주파수 자원에 서로 다른 TRP와 관련된 TCI state를 대응시킬 수 있는 방법과 그에 따른 자원 할당 방법을 설명한다.
방법 1) 단일 DCI를 통해 서로 다른 TRP에 서로 다른 주파수 자원을 할당하는 방법의 일 예로 하나 이상의 PRG(precoding resource block group, 이하, PRG) 로 이루어진 PRG 세트를 이용할 수 있다. 이때, 하나의 PRG 세트는 하나 이상의 PRG들을 포함할 수 있으며, 하나의 PRG 세트를 구성하는 PRG의 수는 상위 계층 시그널링 및/또는 DCI 시그널링을 통해 단말에게 설정될 수 있다. 또는, 고정된 규칙으로 기지국과 단말 사이에 정의될 수 있다.
단말에게 프리코딩 granularity 가 2 또는 4로 설정/지시되는 경우, 프리코딩 자원 블록 그룹(PRG: Precoding Resource Block Group)은 2 또는 4개의 연속된 PRB로 분할된다. 다시 말해, 하나의 PRG는 2 또는 4 개의 연속된 PRB들로 구성될 수 있다. 단말은 PRG 내 연속된 하향링크 PRB에는 동일한 프리코딩이 적용된다고 가정할 수 있다.
단말에게 프리코딩 granularity가 2 또는 4로 설정/지시되는 경우, 각 TCI state가 대응하는 주파수 자원은 다수의 PRG(s)로 이루어진 모종의 PRG 세트(set) 단위로 단말에게 할당될 수 있다. 보다 특징적으로, 연속하는 PRG 세트가 서로 다른 TCI state 번갈아 가며 대응하는 특징을 가질 수 있다.
도 13은 PRG 세트에 기반하여 TRP 별 주파수 자원을 할당하는 일 예를 나타낸다. 도 13은 설명의 편의를 위한 일례일 뿐, 본 발명의 기술적 범위를 제한하는 것은 아니다. 도 13에서 CRB, PRG, BWP는 각각 common resource block, precoding resource block group, bandwidth part를 의미하며, 이하의 설명에서도 동일한 용어가 사용될 수 있다.
도 13에서, 상술한 주파수 영역의 하향링크 자원 할당 방식인 Type 0(예: RBG 크기 4)과 Type 1 각각에 대해, PRG 크기가 2로 설정/지시되고, PRG 세트 크기가 1로 설정된 경우를 도시하였다. PRG 세트 크기가 1인 경우, 하나의 PRG 세트는 단말에게 설정/지시된 하나의 PRG 와 관련된 주파수 자원으로 정의될 수 있다. 단말에게 DCI에 기반하여 스케줄링 된 전체 주파수 자원에 대하여 PRG 세트 단위로 번갈아 가며 서로 다른 TRP와 관련된 TCI state가 매핑 될 수 있다. 다시 말해, PRG 세트 단위로 서로 다른 TCI state가 매핑 될 수 있고, 각 TCI state와 연관된 TRP에게 해당 PRG 세트가 할당될 수 있다. 일례로, TCI state 1이 매핑 된 PRG 세트는 TRP 1에게 할당된 자원이고, TCI state 2가 매핑 된 PRG 세트는 TRP 2에게 할당된 자원일 수 있다.
예를 들어, PRG 세트 크기가 2인 경우, 하나의 PRG 세트는 두 개의 PRG로 구성될 수 있고, 역시 해당 PRG 세트 단위로 번갈아 가며 서로 다른 TRP와 관련된 TCI state에 매핑 될 수 있다.
도 13의 예는 단말에게 스케줄링 된 주파수 자원을 기준으로 서로 다른 TRP와 관련된 TCI state가 모종의 PRG 세트 단위로 번갈아 가며 매핑 되는 방법으로 볼 수 있다. 보다 특징적으로, 단말에게 지시된 두 TCI state 중 첫 번째 TCI state는 (단말에게 스케줄링 된 주파수 자원에서 낮은 주파수 인덱스를 기준으로) 홀수 번째 PRG 세트에 대응하고, 두 번째 TCI state는 짝수 번째 PRG 세트에 대응할 수 있다. 또는, 반대의 순서도 가능하며, 따라서, 첫 번째 TCI state는 (단말에게 스케줄링 된 주파수 자원에서 낮은 주파수 인덱스를 기준으로) 짝수 번째 PRG 세트에 대응하고, 두 번째 TCI state는 홀수 번째 PRG 세트에 대응할 수 있다. 또는, 매핑 순서에 대해서는 고정된 규칙으로 정의되거나, 상위 계층 시그널링 및/또는 DCI 시그널링을 통해 설정/지시될 수 있다.
상술한 방법은 서로 다른 TRP와 관련된 주파수 자원이 단말에게 DCI를 통해 할당되는 스케줄링 대역에 골고루 퍼져 있기 때문에 주파수 다중화 이득 (diversity gain)을 기대할 수 있으며, PRG 세트 크기를 조절함으로써 서로 다른 TRP에 할당되는 주파수 자원의 크기를 조절할 수 있는 장점이 있다.
방법 2) 상기 도 13의 예에서는 단말에게 스케줄링 된 주파수 자원을 기준으로 PRG 세트를 정의하고, 홀수 번째 PRG 세트와 짝수 번째 PRG 세트에 서로 다른 TCI state를 매핑하는 방식을 제안하였다. 한편, PDSCH가 전송되는 BWP (bandwidth part)를 기준으로 PRG 세트를 정의하고, 해당 PRG 세트를 기준으로 특정 TCI state와의 매핑 관계를 정의하는 방법도 가능하다.
도 14는 본 명세서에서 제안하는 방법에 따라 PDSCH 가 전송될 수 있는 BWP를 기준으로 PRG 세트를 정의하고, PRG 세트와 TCI state 간 매핑 관계의 예를 나타낸다. 도 14는 발명의 이해를 돕기 위한 일례일 뿐, 본 발명의 기술적 범위를 제한하는 것은 아니다.
도 14에서, 상술한 주파수 영역의 하향링크 자원 할당 방식인 Type 0(RBG 크기 4)과 Type 1 각각에 대해, PRG 크기가 4로 설정/지시되고, PRG 세트 크기가 1로 설정된 경우를 도시하였다. 도 14의 Type 0의 경우에서 확인할 수 있듯이, PRG 세트를 PDSCH가 전송될 수 있는 BWP를 기준으로 정의하였기 때문에 실제 단말에게 스케줄링 된 주파수 자원 내에서는 (상기 도 13의 예와는 다르게) 서로 동일한 TRP와 관련된 TCI state가 연속하는 PRG 세트와 관련될 수 있다. 일례로, TCI state 1이 매핑 된 PRG 세트에 연속하는 PRG 세트에 TCI state 1이 동일하게 매핑 될 수 있다.
상기 도 13의 방법과 비교하였을 때, 상기 도 14의 방법을 적용하는 경우, 서로 다른 TRP 간에 반-정적으로(semi-static) 주파수 자원 영역을 구분할 수 있고, TRP 간의 스케줄링이 서로 영향을 주지 않기 때문에 각 TRP에서 스케줄링 복잡도가 감소할 수 있고 스케줄링 자유도가 증가할 수 있다는 장점이 있다.
한편, 상술한 방법 1/ 방법 2/ 도 13/ 도 14의 예에서 서로 다른 TRP와 관련된 주파수 자원은 시간 영역에서 중첩(overlap), 부분 중첩(partial overlap) 또는 비중첩(non-overlap) 될 수 있다.
방법 3) 단말에게 설정/지시된 precoding granularity, 즉, PRG의 크기, 가 wideband(광대역)에 해당하는 경우, 단말은 불연속적인(non-contiguous) PRB들로 스케줄링되는 것을 예상하지 않고, 단말은 할당된 자원에 동일한 프리코딩이 적용된다고 가정할 수 있다. 이 경우, DCI를 통해 단말에게 할당된 주파수 자원 영역을 서로 같거나, 최대한 균등하게 나누어 서로 다른 TCI state에 매핑 시키는 방법을 고려할 수 있다.
구체적으로, 단말에게 precoding granularity가 와이드밴드로 설정/지시되는 경우, 각 TCI state가 대응하는 주파수 자원은 연접하는 다수의 RB(s)(Resource block(s))/RBG(s)(Resource block group(s))로 이루어진 모종의 RB 세트/ RBG 세트로 단말에게 할당될 수 있다. 이때, 서로 다른 TCI state와 관련된 RB 세트/ RBG 세트의 크기는 서로 같거나 최대한 균등한 것을 특징으로 할 수 있다.
단말에게 상기 방식에 따라 동작하도록 특정 모드가 시그널링(예: 상위 계층 시그널링/ DCI 시그널링) 및/또는 규칙 및/또는 RNTI 를 바탕으로 설정/지시될 수 있다. 일 예로, 특정한 RNTI를 통해 CRC 체크에 성공하는 경우, 상기 제안 방식에 따라 주파수 자원 할당을 위한 DCI를 해석할 수 있다.
도 15는 PDSCH를 위한 주파수 영역의 자원 할당(resource allocation) 방식에 따라 각 TRP와 연관된 TCI state를 매핑하는 방법의 일례이다. 구체적으로, 단말에게 Type 0 (예: RBG 크기 4)의 경우에 (a) 4 RBGs, (b) 3 RBGs, (c) 3 RBGs가 할당된 경우와, Type 1의 경우에 (d) 연속하는 16 RBs가 할당된 경우의 예를 나타낸다. 도 15의 예에서 서로 다른 TRP와 관련된 주파수 자원은 시간 영역에서 중첩(overlap), 부분 중첩(partial overlap) 또는 비중첩(non-overlap) 될 수 있다. 도 15는 본 발명의 이해를 돕기 위한 일례일 뿐, 본 발명의 기술적 범위를 제한하는 것은 아니다.
상기 도 15의 예에서 Type 0 에서 (a) 4 RBGs를 할당 받은 경우는 RGB/ RB 단위로 서로 다른 TRP에게 동일한 주파수 자원을 매핑 시킬 수 있다. 한편, 3 RBG를 할당 받는 경우(예: (b), (c))에 대해서는 RBG 단위로 구분할 것인지(b), RB 단위로 구분할 것인지(c)에 따라 각 TRP와 관련된 자원의 크기가 달라질 수 있다. 한편, Type 1 에서는 (d) RB 단위로 구분하여 서로 다른 TRP 에게 주파수 자원을 매핑 시킬 수 있다.
Type 0, Type 1 모두의 경우에서 자원 할당의 단위에 따라 서로 다른 TRP 에게 매핑 되는 자원의 크기가 서로 다를 수 있다. 이러한 경우, 특정 TRP와 관련된 자원의 크기가 더 클 수 있다. 이러한 경우를 회피하기 위해서 단말이 서로 다른 TRP와 관련된 주파수 자원의 크기가 동일함을 가정할 수 있도록 기지국이 자원을 스케줄링 하는 것도 가능하다.
도 15의 예와 같이 단일 DCI를 통해 단말에게 할당된 주파수 자원 영역을 서로 같거나 또는 최대한 균등하게 나누어 서로 다른 TCI state에 매핑 하는 경우, 두 TRP 각각에 대하여 가장 넓은 영역의 연속되는 주파수 자원을 할당할 수 있고, 최대의 PRG 크기를 제공하여 각 TRP와 관련된 채널에 대한 채널 추정 성능을 향상시킬 수 있는 장점이 있다. 기존의 동작에서, 단말에게 precoding granularity가 와이드밴드로 설정/지시되는 경우는 단말에게 동일한 프리코딩이 적용된 연속되는 주파수 자원이 할당되었다는 것을 알려주어 채널 추정 방식에 도움을 주기 위한 목적으로 사용될 수 있으므로, 이를 활용하면, 상기의 제안 동작에서와 같이 서로 다른 TRP 각각에 대해서 동일한 프리코딩이 적용된 연속되는 주파수 자원이 할당되었음을 지시하는 용도로 활용될 수 있다.
또한, 예를 들어, 방법 3에 대해서도 단말에게 지시된 두 TCI state 중 첫 번째 TCI state는 (단말에게 스케줄링 된 주파수 자원에서 낮은 주파수 인덱스를 기준으로) 첫 번째의 RB 세트/ RBG 세트에 대응하고, 두 번째 TCI state는 두 번째 RB 세트/ RBG 세트에 대응할 수 있다. (반대의 순서도 역시 가능하며, 매핑 순서에 대해서는 고정된 규칙으로 정의되거나, 상위 계층 시그널링 및/또는 DCI 시그널링을 통해 설정/지시 될 수 있다.)
한편, 상술한 방법 3에서와 같이, 단말에게 지시된 서로 다른 TCI state에 서로 다른 주파수 자원, 보다 특징적으로, 서로 다른 RB 세트/ RBG 세트가 매핑 되는 경우, 단말 관점에서 PRG는, 즉 precoding granularity는 해당 RB 세트/ RBG 세트로 정의될 수 있다.
예를 들어, PRG= 'Wideband'로 설정되고 TCI state들의 수가 1 보다 클 때(>1), 단말은 '스케줄 된 BW/TCI state들의 수'에 해당하는 대역에 포함된 안테나 포트만 동일(same) 안테나 포트로 가정할 수 있다. 및/또는, 단말은 PRG= '스케줄 된 BW/TCI state들의 수'로 가정한다. 혹은, 상기 동작을 지원하기 위해 별도의 precoding granularity를 정의할 수 있다. 예를 들어, PRG= 'sub_wideband' = '스케줄 된 BW/TCI state들의 수'라는 별도의 precoding granularity를 정의할 수 있으며, 해당 granularity를 설정/지시 받은 단말은 상기 제안 동작을 수행할 수 있다.
한편, 상기 예에서 각 TCI state가 대응하는 자원 영역을 RB 세트/ RBG 세트로 표현할 수 있는 이유는 다음과 같다. 단말에게 주파수 자원을 할당하는 방법으로 Type 0과 Type 1 이 있다. Type 0의 경우 다수의 RB들로 구성된 RBG 라는 자원 단위를 정의하여 RBG 단위로 정의된 비트맵 방식을 바탕으로 주파수 자원을 할당할 수 있고, Type 1 의 경우 RB 단위로 연속하는 RB로 구성된 주파수 자원을 할당할 수 있다. 이처럼 주파수 자원 할당 방식에 따라 주파수 할당의 최소 단위가 다를 수 있기 때문에, 상술한 제안 방법과 같이 서로 다른 TCI state와 관련된 주파수 자원을 정의하기 위한 주파수 할당의 최소 단위가 주파수 할당 방식에 따라 달라 질 수 있다.
상술한 서로 다른 TCI state와 관련된 RB 세트/ RBG 세트의 크기를 서로 같거나 최대한 균등하게 정의하기 위한 방법을 아래와 같이 설명할 수 있다.
Type 0의 주파수 영역의 자원 할당 방식에 대해, 단말에게 DCI를 통해 스케줄링 된 전체 RBG 의 수를
Figure 112022017822301-pct00065
로 표현할 수 있다.
Figure 112022017822301-pct00066
인 경우, 각 TCI state 와 관련된 RB 세트의 RBG 수는 (
Figure 112022017822301-pct00067
/2) 일 수 있으며, 각 TCI state와 관련된 주파수 자원의 크기가 동일하게 할당될 수 있다.
Figure 112022017822301-pct00068
인 경우, TCI state #1와 관련된 RB set의 RBG 수는
Figure 112022017822301-pct00069
, TCI state #2와 관련된 RB set의 RBG 수는 (
Figure 112022017822301-pct00070
-1) 일 수 있다. 여기서,
Figure 112022017822301-pct00071
는 ceil 연산을 의미하며, 해당 연산은 floor/ round 등으로 대체될 수 있다.
Type 1의 주파수 영역의 자원 할당 방식에 대해, 단말에게 DCI를 통해 스케줄링 된 연속하는 RB 의 수를
Figure 112022017822301-pct00072
로 표현할 수 있다.
Figure 112022017822301-pct00073
인 경우, 각 TCI state 와 관련된 RB 세트의 RBG 수는 (
Figure 112022017822301-pct00074
/2) 일 수 있으며, 각 TCI state와 관련된 주파수 자원의 크기가 동일하게 할당될 수 있다.
Figure 112022017822301-pct00075
인 경우, TCI state #1와 관련된 RB set의 RBG 수는
Figure 112022017822301-pct00076
, TCI state #2와 관련된 RB set의 RBG 수는 (
Figure 112022017822301-pct00077
-1) 일 수 있다.
상기 기술에서
Figure 112022017822301-pct00078
는 ceil 연산을 의미하며, 해당 연산은 floor/ round 등으로 대체될 수 있다.
상술한 제안 1의 방법(예: 방법 1/ 2/ 3 등)에 기반하여 TB 계산을 위한 기준 FR을 정의하는 방법을 설명한다.
상기 제안 1에서 설명한 FRA 방법 1에 대해서 '기준 FR 정의 방법 1', 즉, 다수의 TRP들에 할당된 모든 주파수 자원을 고려하는 경우, DCI를 통해 지시되는 주파수 자원이 서로 다른 TRP를 통해 PDSCH 전송에 사용되는 주파수 자원의 합과 일치하기 때문에 현재 TB 크기를 계산하는 방식을 그대로 이용할 수 있다.
반면, 상기 제안 1에서 설명한 FRA 방법 1에 대해서 '기준 FR 정의 방법 2', 즉, 특정 TRP에 할당된 주파수 자원만을 고려하는 경우, 단말이 TB(Transport Block) 사이즈를 계산함에 있어, 어떤 TRP와 관련된 TCI state가 매핑 된 주파수 자원을 기준으로 TB 사이즈를 계산할지 결정하는 방법이 필요하다.
단말은 상기 제안 1의 방법 및/또는 실시 예에 따라 단일 DCI를 통해 스케줄링 된 주파수 자원에 각 TRP와 연관된 TCI state가 어떻게 매핑 되는지 알 수 있다. 따라서, 단말이 TB 사이즈를 계산할 때 기지국과 단말 사이의 시그널링(예: 상위 계층 시그널링/ DCI) 및/또는 규칙을 바탕으로 특정 TRP와 관련된 TCI state가 매핑 된 주파수 자원을 기준으로 TB 사이즈를 계산할 수 있다.
예를 들어, 기지국과 단말 사이에 특정 TCI state에 매핑 된 주파수 자원을 TB 크기 계산을 위한 기준 자원으로 하는 규칙이 정의될 수 있다. 일례로, 첫 번째 TCI state에 매핑 된 주파수 자원을 기준으로 TB 사이즈를 계산하도록 정의할 수 있다. 현재 표준에 따르면 DCI를 통해 스케줄링 된 주파수 자원을 TB 사이즈 계산에 적용하도록 되어 있지만, 상기 방식을 적용하는 경우, DCI를 통해 스케줄링 된 주파수 자원의 일부만을 TB 사이즈 계산에 적용하는 특징을 갖는다.
상기 예에서 '첫 번째 TCI state'에 매핑 된 주파수 자원을 기준으로 TB 크기를 계산하는 예를 설명하였으나, 두 번째 TCI state에 매핑 된 주파수 자원을 기준으로 TB 크기를 계산하도록 정의될 수도 있다. 즉, 두 TCI state (e.g. 첫 번째 TCI state 및 두 번째 TCI state) 중 하나의 TCI state가 고정적인 규칙으로 선택될 수 있고, 선택된 TCI state에 대응하는 주파수 자원을 기준으로 TB 크기를 계산하도록 정의될 수 있다.
또 다른 예를 들어, TB 크기 계산에 기준이 되는 특정 TRP(또는 특정 TCI state)에 대한 정보를 기지국이 단말에게 전송하는 방법을 고려할 수도 있다. 일례로, 기존에 정의된 DCI 필드를 이용하여 해당 정보가 전달될 수 있다. 제안 1의 방법을 적용하는 경우, DMRS 표를 최적화하여 DMRS port 지시를 위한 필드(예: 'Antenna port(s)' 필드)를 줄일 수 있다. 따라서, 기존에 DMRS port 지시를 위한 필드를 정의하기 위한 비트들 중 일부(예: MSB(s)/ LSB(s))를 상기 목적을 위해 사용할 수 있다.
상기 예에서 설명한 DMRS port 지시를 위한 필드는 일례일 뿐, 본 발명의 기술적 범위를 제한하는 것은 아니다. 따라서, DMRS port 지시를 위한 필드 뿐만 아니라, DCI 내 또 다른 특정 필드가 활용될 수도 있다. 현재 표준에 정의된 기존의 필드를 활용할 수도 있고, 또는 상기 제안을 위해 새로운 필드가 정의될 수도 있다.
예를 들어, 동일한 TCI state에 매핑 되는 주파수 자원의 크기(e.g. PRB 수 등)를 기준으로 TB 크기 계산을 위한 기준 주파수 자원을 선택할 수도 있다. 일례로, 각 TCI state에 매핑 된 PRB의 수를 기준으로 주파수 자원을 선택하여 TB 크기를 계산할 수 있다. 더 많은 또는 더 적은 PRB가 매핑(/할당)되는 TCI state에 대응하는 주파수 자원을 TB 계산을 위한 기준 자원으로 결정할 수 있고, 결정된 기준 자원에 기반하여 TB 크기를 계산할 수 있다.
또 다른 예로, TB 크기를 계산하는 주파수 자원을 선택하기 위해 동일한 TCI state에 매핑 되는 주파수 자원의 인덱스를 기준으로 할 수 있다. 일례로, 가장 낮은 또는 가장 높은 인덱스에 매핑(/할당)되는 TCI state에 대응하는 주파수 자원을 기준으로 TB 크기를 계산할 수 있다.
상술한 바와 같이, 'FRA 방법 1'에 대해서 '기준 FR 정의 방법 2', 즉, 특정 TCI state가 매핑 된(특정 TRP에 할당된) 주파수 자원만을 TB 크기 계산에 이용하는 경우, (i) TB 크기 계산에 적용된 주파수 자원을 통해 전송되는 PDSCH(예: PDSCH 1)와 (ii) 또 다른 자원을 통해 전송되는 PDSCH(예: PDSCH 2)를 구분할 수 있다. 또 다른 자원을 통해 전송되는 PDSCH(예: PDSCH 2)는 반복 전송되는 PDSCH로 해석될 수 있다. 이때, PDSCH 1과 PDSCH 2의 RV 및/또는 변조 차수는 서로 다를 수 있다. 이를 위해, DMRS 표의 최적화를 통해 DMRS 포트 지시를 위한 필드에 사용되던 기존 비트들 중 일부(예: MSB(s)/LSB(s)) 및/또는 두 번째 TB의 MCS/RV/NDI를 지시하기 위한 TB 정보 필드에 대한 해석을 다르게 할 수 있다.
또한, 상술한'FRA 방법 1'및'기준 FR 정의 방법 2'에 따른 방법 및/또는 실시 예와 더불어 TB 크기를 계산하기 위해서 어떤 MCS(modulation and coding scheme) 값을 이용할 것인지에 대한 규칙이 기지국과 단말 사이에 정의될 필요가 있다. 기지국은 DCI 내 필드를 통해 단말에게 TB 1/ TB 2에 대한 MCS 값을 각각 지시할 수 있다. DCI를 통해 단말에게 지시되는 다수의 MCS 값 중 TB 크기 계산에 이용될 수 있는 특정 값을 결정하는 방법이 필요할 수 있다. TB 크기 계산에 이용될 수 있는 특정 MCS 값을 결정하기 위한 규칙이 단말과 기지국 간에 정의될 수 있다.
일례로, DCI로 스케줄링 가능한 최대 CW수를 의미하는 상위 계층 파라미터인 'maxNrofCodeWordsScheduledByDCI' 값이 1로 설정되는 경우, TB 1에 대응하는 MCS 필드를 통해 지시되는 MCS 값을 기준으로 TB 크기를 계산할 수 있다.
또 다른 일례로, 'maxNrofCodeWordsScheduledByDCI' 값이 2로 설정되고, TB 1 또는 TB 2에 대응하는 MCS, RV 필드의 값이 특정 값(i.e. MCS=26 and RV=1) 으로 지시되어 해당 TB(e.g. TB1 / TB2)가 'disabled'로 지시되는 경우, 'enabled'로 지시된 TB(e.g. TB1 / TB2)에 대응하는 MCS 필드를 통해 지시되는 MCS 값을 기준으로 TB 크기를 계산할 수 있다.
또 다른 예로, 'maxNrofCodeWordsScheduledByDCI' 값이 2로 설정되고, 두 TB(e.g. TB1 및 TB2)가 모두 'enabled'로 지시되는 경우, 상기에서 TB 크기를 계산하기 위해 선택된 주파수 자원에 대응되는 TCI state를 기준으로 TB 크기 계산에 적용될 MCS 값이 결정될 수 있다. 예를 들어, 첫 번째 TCI state가 TB 1, 두 번째 TCI state가 TB 2에 각각 대응된다고 가정할 수 있다. TB 크기를 계산하기 위해 선택된 주파수 자원이 첫 번째 TCI state에 대응되는 경우 TB 1에 대응되는 MCS 필드를 통해 지시되는 MCS 값을 기준으로 TB 크기를 계산하고, TB 크기를 계산하기 위해 선택된 주파수 자원이 두 번째 TCI state에 대응되는 경우 TB 2에 대응되는 MCS 필드를 통해 지시되는 MCS 값을 기준으로 TB 크기를 계산할 수 있다.
상기의 예에서는 첫 번째 TCI state가 TB 1, 두 번째 TCI state가 TB 2에 각각 대응됨을 가정하였으나 TCI state와 TB의 대응 관계는 상기의 예로 제한되지 않음은 자명하다. 예를 들어, TCI state와 TB의 대응 관계는 기지국과 단말 사이에 고정된 규칙으로 특정 관계로 정의될 수 있고, 또는 기지국의 시그널링을 통해 단말에게 설정/지시될 수 있다.
또 다른 예로, 'maxNrofCodeWordsScheduledByDCI' 값이 2로 설정되고, 두 TB(e.g. TB1 및 TB2)가 모두 'enabled'로 지시되는 경우, 각 TB에 대응되는 MCS 필드를 통해 지시되는 MCS 값을 기준으로 TB 크기 계산에 적용될 MCS 값이 결정될 수 있다. 예를 들어, 더 낮은 또는 더 높은 MCS 값을 기준으로 TB 크기를 계산할 수 있다. 이와 더불어 TB 크기 계산에 적용되는 MCS 필드에 대응되는 TB에 따라 TB 크기 계산에 적용될 주파수 자원이 결정될 수 있다. 예를 들어, 첫 번째 TB 1은 첫 번째 TCI state, TB 2는 두 번째 TCI state에 각각 대응된다고 가정한다. TB 크기를 계산하기 위해 선택된 MCS 필드가 TB 1에 대응되는 경우 첫 번째 TCI state에 대응되는 주파수 자원을 기준으로 TB 크기를 계산하고, TB 크기를 계산하기 위해 선택된 MCS 필드가 TB 2에 대응되는 경우 두 번째 TCI state에 대응되는 주파수 자원을 기준으로 TB 크기를 계산할 수 있다.
상기의 예에서는 TB 1이 첫 번째 TCI state, TB 2가 두 번째 TCI state에 각각 대응됨을 가정하였으나 TB와 TCI state의 대응 관계는 상기의 예로 제한되지 않음은 자명하다. 예를 들어, TB와 TCI state 의 대응 관계는 기지국과 단말 사이에 고정된 규칙으로 특정 관계로 정의될 수 있고, 또는 기지국의 시그널링을 통해 단말에게 설정/지시될 수 있다.
또 다른 예를 들어, 'maxNrofCodeWordsScheduledByDCI' 값이 2로 설정되고, 두 TB(e.g. TB1 및 TB2)가 모두 'enabled'로 지시되는 경우, 특정 TB에 대응되는 MCS 필드를 통해 지시되는 MCS 값을 기준으로 TB 크기를 계산할 수 있다. 이때, 특정 TB는 기지국과 단말 사이에 고정된 규칙으로 정의될 수 있고, 또는 기지국의 시그널링을 통해 단말에게 설정/지시될 수 있다. 예를 들어, TB 1에 대응하는 MCS 필드에서 지시하는 MCS 값을 기준으로 TB 크기를 계산하도록 고정된 규칙으로 정의될 수 있다.
상술한 제안 1의 방법 및/또는 실시 예들을 통해 단일 DCI 기반의 M-TRP 동작에서 하나의 DCI로 할당된 주파수 자원을 TCI state 와 주파수 자원과의 매핑을 통해 TRP 별로 자원을 분배할 수 있다. 또한, 상술한 제안 1의 방법 및/또는 실시 예들을 통해 TB 크기 계산을 위한 기준 주파수 자원을 결정할 수 있다.
[제안 1-1]
제안 1-1에서는 상술한 제안 1의 주파수 자원 설정 방법 및 TB 계산을 위한 기준 자원 설정 방법을 바탕으로 서로 다른 TRP에서 PTRS를 전송하기 위한 방법을 설명한다.
5G NR 표준에서 PTRS (Phase-tracking reference signal)는 고주파 대역에서 위상 노이즈로 인해 발생하는 손상(impairment)을 보상하기 위해 도입되었다. 위상 노이즈는 주파수 영역에서 common phase error (CPE) 및 inter-carrier interference (ICI)를 야기시키기 때문이다.
이하, DL PTRS와 UL PTRS 관련 동작을 구체적으로 설명한다. PTRS와 관련된 상세한 내용은 TS38.211의 7.4.1.2장과 TS38.214의 5.1.6.3에서 확인할 수 있다.
도 16은 DL PTRS 절차의 일례를 나타낸 흐름도이다.
기지국은 단말로 PTRS 설정(configuration) 정보를 전송한다(S1610). 상기 PTRS 설정 정보는 PTRS-DownlinkConfig IE를 지칭할 수 있다. 상기 PTRS-DownlinkConfig IE는 frequencyDensity 파라미터, timeDensity 파라미터, epre-Ratio 파라미터, resourceElementOffset 파라미터 등을 포함할 수 있다.
상기 frequencyDensity 파라미터는 스케쥴된 BW의 함수(function)로서 DL PTRS의 존재(presence) 및 주파수 밀도를 나타내는 파라미터이다. 상기 timeDensity 파라미터는 MCS(modulation and coding scheme)의 함수로서 DL PTRS의 존재 및 시간 밀도를 나타내는 파라미터이다. 상기 epre-Ratio 파라미터는 PTRS와 PDSCH 간의 EPRE(Energy Per Resource Element)를 나타내는 파라미터이다.
상기 frequencyDensity 파라미터와 상기 timeDensity 파라미터는 표 6 및 표 7의 임계값들, ptrs-MCSi, i=1,2,3,4 과 N_RB,i , i=0,1,을 지시한다. 표 6은 스케줄 된 MCS의 함수(function)로써, PTRS의 시간 밀도를 나타낸다. 표 7은 스케줄 된 대역폭의 함수(function)로써, PTRS의 주파수 밀도를 나타낸다.
Figure 112022017822301-pct00079
Figure 112022017822301-pct00080
PTRS의 패턴은 주파수 영역의 밀도와 시간 영역의 밀도에 따라 결정될 수 있다. 주파수 영역의 밀도(즉, PTRS의 주파수 밀도)는 주파수 영역에서 PTRS 사이의 간격(e.g. RB의 개수)를 의미할 수 있다. 시간 영역의 밀도(즉, PTRS의 시간 밀도)는 시간 영역에서 PTRS 사이의 간격(e.g. 심볼 개수)을 의미할 수 있다.
표 6 및 표 7을 참고하면, PTRS의 시간 밀도는 단말에게 스케줄 된 MCS에 따라 달라질 수 있고, PTRS의 주파수 밀도는 단말에게 스케줄 된 대역폭에 따라 달라질 수 있다. PTRS 설정 정보(e.g. PTRS-DownlinkConfig)를 통해 설정되는 MCS의 임계값들(e.g. ptrs-MCS1/2/3/4)과 대역폭의 임계값들 (e.g. N_RB0/1)을 기준으로 하여 PTRS의 시간 밀도/주파수 밀도가 달라질 수 있다.
상기 기지국은 PTRS에 사용되는 시퀀스를 생성한다(S1620). 상기 PTRS에 대한 시퀀스는 아래 수학식 5와 같이 동일한 subcarrier의 DMRS 시퀀스를 이용하여 생성된다. PTRS에 대한 시퀀스 생성은 transform precoding이 enable되었는지에 따라 다르게 정의될 수 있으며, 아래 수학식 5는 transform precoding이 disable된 경우의 일례를 나타낸다.
Figure 112022017822301-pct00081
여기서,
Figure 112022017822301-pct00082
는 위치
Figure 112022017822301-pct00083
및 서브캐리어 k에서 주어진 DMRS이다.
즉, PTRS의 시퀀스는 DMRS의 시퀀스를 이용하되 보다 구체적으로, subcarrier k에서 PTRS의 시퀀스는 subcarrier k에서의 DMRS의 시퀀스와 동일하다.
기지국은 상기 생성된 시퀀스를 자원 요소(resource element)에 매핑한다(S1630). 여기서, 자원 요소는 시간, 주파수, 안테나 포트 또는 코드 중 적어도 하나를 포함하는 의미일 수 있다.
PTRS의 시간 영역에서의 위치는 PDSCH 할당의 시작 심볼부터 시작하여 특정 심볼 간격으로 매핑되되, DMRS 심볼이 존재하는 경우, 해당 DMRS 심볼 다음 심볼부터 매핑이 수행된다. 상기 특정 심볼 간격은 1, 2 또는 4 symbol일 수 있다.
그리고, PTRS의 resource element 매핑과 관련하여 PTRS의 주파수 위치는 연관된 DMRS 포트의 주파수 위치와 상위 계층 파라미터 UL-PTRS-RE-offset에 의해 결정된다. 여기서, UL-PTRS-RE-offset는 PTRS configuration에 포함되며, CP-OFDM에 대한 UL PTRS에 대한 subcarrier offset을 지시한다.
DL에 대해, PTRS port는 스케쥴된 DMRS port들 사이에서 가장 낮은 인덱스의 DMRS port와 연관된다. 그리고, UL에 대해, 기지국은 UL DCI를 통해 어떤 DMRS port가 PTRS port와 연관되어 있는지를 설정한다.
기지국은 상기 자원 요소 상에서 상기 PTRS를 단말로 전송한다(S1640). 상기 단말은 상기 수신된 PTRS를 이용하여 위상 잡음에 대한 보상을 수행한다.
한편, UL PTRS 관련 동작은 앞서 살핀 DL PTRS 관련 동작과 유사하며, DL PTRS와 관련된 파라미터들의 명칭이 UL PTRS와 관련된 파라미터들의 명칭으로 대체될 수 있다. 즉, PTRS-DownlinkConfig IE는 PTRS-UplinkConfig IE로, DL PTRS 관련 동작에서 기지국은 단말로, 단말은 기지국으로 대체될 수 있다. 마찬가지로, PTRS에 대한 시퀀스 생성은 transform precoding이 enable되었는지에 따라 다르게 정의될 수 있다.
한편, 상술한 제안 1의 방법 및/또는 실시 예에 따라 단말에게 precoding granularity가 2 또는 4로 설정/지시되고, 각 TCI state가 대응하는 주파수 자원이 다수의 PRG(s)로 구성된 PRG 세트 단위로 단말에게 할당되며, 연속하는 PRG 세트에 서로 다른 TCI state가 번갈아 가며(교차되어) 대응하는 경우, 특정 TCI state에 대응하는 주파수 자원에서 PTRS가 전송되지 못하는 문제가 발생할 수 있다. 예를 들어, PTRS의 주파수 밀도에 따라 주파수 영역에서 PTRS 가 전송되는 간격이 동일 TCI state가 대응될 하나의 PRG 세트보다 큰 경우 특정 순서의 PRG 세트들에는 PTRS가 매핑되지 않을 수 있다.
도 17은 주파수 영역에서 precoding granularity가 2로 설정되고, PRG 세트가 하나의 PRG로 구성된 경우, 스케줄 된 RB들과 각 TRP에 대응하는 TCI state 간의 매핑 관계 및 PTRS가 전송되는 RB를 나타낸 예시이다. 도 17에서 PTRS 가 전송되는 간격은 4 RBs이다. 도 17은 설명의 편의를 위한 일례일 뿐, 본 발명의 기술적 범위를 제한하는 것은 아니다.
도 17을 참고하면, 특정 TRP(예: TRP #1)에 대응하는 주파수 자원에서만 PTRS가 전송된다. 이는, 현재 표준에 따르면 DCI를 통해 단말에게 스케줄링 된 전체 대역폭을 바탕으로 주파수 영역의 PTRS 밀도와 PTRS가 전송되는 RB가 결정되도록 정의되어 있기 때문이다. 하지만, 상기 예와 같이 특정 TRP에 대응하는 주파수 자원에서만 PTRS가 전송되는 경우, 서로 다른 TCI state에 대응하는 서로 다른 TRP의 위상 소스가 같지 않다면 특정 TRP로부터 전송되는 데이터에 대해서 위상 노이즈의 영향을 보상해줄 수 없기 때문에 큰 성능 열화가 발생할 수 있다.
따라서, 본 명세서의 제안 1-1에서는 이러한 문제를 해결하기 위하여 서로 다른 TRP에 대응하는, 즉 서로 다른 TCI state에 대응하는 각각의 주파수 자원에서 PTRS를 전송/수신하기 위한 방법(예: 실시 예 1/ 2/ 3/ 4/ 5)을 제안한다. 이하, 후술할 각 방법들은 독립적으로 수행될 수도 있고, 또는 어느 하나의 방법이 다른 하나의 방법과 결합되어 적용될 수도 있으며, 또는, 어느 하나의 방법의 일부 구성이 다른 하나의 방법의 일부/전부 구성과 치환되어 적용될 수도 있다. 또한, 제안 1-1의 방법 및/또는 실시 예들(예: 실시 예 1/ 2/ 3/ 4/ 5)은 precoding granularity가 2, 4 또는 wideband 인 경우에 대해서 적용될 수 있다.
먼저, FDM 기반의 M-TRP 협력 전송에 있어서, PTRS의 주파수 밀도를 결정하는 방법을 설명한다.
상술한 바와 같이, PTRS의 주파수 밀도는 단말에게 스케줄 된 대역폭(즉, 스케줄 된 RB들의 수)에 따라 달라질 수 있다. PTRS 설정 정보(e.g. PTRS-DownlinkConfig)를 통해 설정되는 대역폭의 임계값들 (e.g. N_RB0/1)을 기준으로 하여 PTRS의 주파수 밀도가 달라질 수 있다. 상술한 표 7에 기반하여 PTRS의 주파수 밀도가 결정될 수 있다. 스케줄 된 대역폭 N_RB와 상위 계층 파라미터를 통해 설정된 임계값들(e.g. N_RB0/1)을 비교하여 PTRS의 주파수 밀도가 결정될 수 있다. 이하 설명에서 PTRS 주파수 영역 밀도는 상기 표 7의 K_PT-RS를 의미할 수 있다. 또한, PTRS 주파수 영역 밀도를 결정하기 위해 고려되는 대역폭은 상기 표 7의 N_RB(예: 자원 블록들의 수)를 의미할 수 있다.
실시 예 1) PTRS의 주파수 영역 밀도(즉, PTRS의 주파수 밀도)를 결정하기 위해 DCI로 스케줄링 된 전체 대역폭이 아닌 DCI로 스케줄링 된 전체 대역폭 중에서 특정 TCI state에 대응하는 대역폭만을 기준으로 PTRS 주파수 영역 밀도를 결정할 수 있다.
예를 들어, DCI로 스케줄링 된 전체 대역폭 중에서 특정 TCI state에 대응하는 대역폭은 첫 번째 TCI state 혹은 두 번째 TCI state에 대응하는 대역폭이 될 수 있다. 특정 TCI state는 기지국과 단말 사이에 고정적인 규칙으로 정의되거나, 상위 계층 시그널링 및/또는 DCI 시그널링을 통해 단말에게 설정/지시될 수 있다.
예를 들어, 특정 TCI state에 대응하는 대역폭(i.e. N_RB)과 frequencyDensity 파라미터로 설정된 임계값들(e.g. N_RB0/1)을 비교하여 상기 표 7에 따라 PTRS의 주파수 밀도(i.e. K_PT-RS)가 결정될 수 있다. 상기 특정 TCI state에 대응하는 대역폭(i.e. N_RB)은 특정 TCI state가 매핑 된 자원 블록(예:PRB)들을 의미할 수 있다. 구체적으로, 특정 TCI state에 대응하는 대역폭(i.e. N_RB)이 N_RB0 보다 작으면 PTRS는 존재하지 않을 수 있고, 특정 TCI state에 대응하는 대역폭(i.e. N_RB)이 N_RB0보다 크거나 같고, N_RB1보다 작으면 PTRS의 주파수 밀도는 2 일 수 있으며, 특정 TCI state에 대응하는 대역폭(i.e. N_RB)이 N_RB1보다 크거나 같으면 PTRS의 주파수 밀도는 4일 수 있다.
기지국/단말은 특정 TCI state에 대응하는 RB들로 이루어진 대역폭(예: 표 7의 N_RB)을 기준으로 결정한 PTRS 주파수 영역 밀도 단위(예: 표 7의 K_PT-RS)에 기반하여 PTRS를 전송/수신할 수 있다. 더불어, PTRS 주파수 영역 밀도를 정의/결정한 기지국/단말은 해당 PTRS 주파수 영역 밀도에 기반하여 PTRS를 전송/수신할 수 있다.
상기 제안을 적용하는 경우, 기지국은, 각 TRP에 대응하는, 즉 각 TCI state에 대응하는 주파수 영역의 크기에 최적화된 PTRS 주파수 영역 밀도를 정의할 수 있다.
실시 예 2) PTRS의 주파수 영역 밀도(즉, PTRS의 주파수 밀도)를 결정하기 위해 스케줄링 된 전체 대역폭 중에서 각 TRP와 연관된 TCI state 별로 대응하는 대역폭을 기준으로 PTRS 주파수 영역 밀도를 결정할 수 있다. 다시 말해, PTRS의 주파수 영역 밀도는 특정 TCI state에 대응하는 대역폭에 대해서 각각 정의될 수 있다. 상기 특정 TCI state에 대응하는 대역폭은 특정 TCI state가 매핑 된 자원 블록(예:PRB)들을 의미할 수 있다.
예를 들어, TCI state 1에 대응하는 대역폭에 대해서 제 1 PTRS 주파수 영역 밀도가 결정될 수 있고, TCI state 2에 대응하는 대역폭에 대해서 제 2 PTRS 주파수 영역 밀도가 결정될 수 있다. 상기 제 1 PTRS 주파수 영역 밀도와 제 2 PTRS 주파수 영역 밀도는 서로 동일하거나 다른 값을 가질 수 있다.
예를 들어, TCI state 1에 대응하는 대역폭을 제1 N_RB로 나타내고, TCI state 2에 대응하는 대역폭을 제2 N_RB로 나타내기로 한다. frequencyDensity 파라미터로 설정된 임계값들(e.g. N_RB0/1)과 상기 제1 N_RB와 상기 제2 N_RB를 각각 비교하여 상기 표 7에 따라 PTRS의 주파수 밀도(i.e. K_PT-RS)가 결정될 수 있다. 구체적으로, 제1 N_RB/ 제2 N_RB이 N_RB0 보다 작으면 PTRS는 존재하지 않을 수 있고, 제1 N_RB/ 제2 N_RB이 N_RB0보다 크거나 같고, N_RB1보다 작으면 PTRS의 주파수 밀도는 2 일 수 있으며, 제1 N_RB/ 제2 N_RB이 N_RB1보다 크거나 같으면 PTRS의 주파수 밀도는 4일 수 있다.
상술한 제안 1에서 설명한 'FRA 방법 1'에 기반하여 DCI 를 통해 스케줄 된 전체 주파수 자원에 대해 각 TRP와 연관된 TCI state를 매핑하여 각 TRP의 주파수 자원이 결정될 수 있다. 예를 들어, TRP 1의 주파수 자원 영역을 FRG #1이라고 하고 TCI state 1이 매핑 되며, TRP 2의 주파수 자원 영역을 FRG #2이라고 하고 TCI state 2이 매핑 되는 것을 가정할 수 있다. 이 경우, TCI state 1에 대응하는 대역폭(제1 N_RB)에 기반하여 결정된 PTRS 주파수 밀도(예: 제1 PTRS 주파수 영역 밀도)는 FRG #1 에서 적용될 수 있고, TCI state 2에 대응하는 대역폭(제2 N_RB)에 기반하여 결정된 PTRS 주파수 밀도(예: 제2 PTRS 주파수 영역 밀도)는 FRG #2 에서 적용될 수 있다.
상기 실시 예 2의 방식을 따라 서로 다른 TCI state에 대응하는 서로 다른 주파수 영역에 대해서 서로 다른 PTRS 주파수 영역 밀도를 결정할 수 있는 경우, 각각의 주파수 영역 자원에 최적화된 PTRS 주파수 영역 밀도를 적용할 수 있는 장점이 있다.
한편, 상기 실시 예 2에서는 PTRS의 주파수 밀도 결정을 위한 파라미터(예: frequencyDensity)가 공통으로 설정되어, TCI state 1에 대응하는 대역폭(예: 제1 N_RB)와 TCI state 2에 대응하는 대역폭(예: 제2 N_RB)의 주파수 밀도 계산 시 동일한 임계 값 기준이 적용되었다. 추가적으로, 특정 TCI state에 대응하는 대역폭에 대해서 각각 PTRS 주파수 영역 밀도를 정의하기 위하여, 주파수 영역 밀도를 결정하기 위한 파라미터가 다수 개 정의될 수도 있다. 각 파라미터는 서로 다른 TCI state가 대응하는 각각의 대역폭에 대한 PTRS 주파수 밀도 계산 시 적용될 수 있다.
예를 들어, 상위 계층 시그널링을 통해 설정되는 PTRS-DownlinkConfig 내 frequencyDensity 파라미터가 frequencyDensity-1/2로 확장될 수 있으며, frequencyDensity-1은 첫 번째 TCI state에 대응하는 대역폭 내에서 PTRS 주파수 영역 밀도 정의에 적용될 수 있고, frequencyDensity-2는 두 번째 TCI state에 대응하는 대역폭 내에서 PTRS 주파수 영역 밀도 정의에 적용될 수 있다. 기지국은 단말에게 주파수 밀도 결정을 위한 파라미터(예: frequencyDensity)를 복수 개 설정할 수 있다. 각 파라미터는 순차적으로 TCI state에 대응하는 대역폭 내 PTRS의 주파수 밀도를 결정하는데 이용될 수 있다.
실시 예 3) PTRS의 주파수 영역 밀도(즉, PTRS의 주파수 밀도)를 결정하기 위해 DCI로 스케줄링 된 전체 대역폭이 아닌 DCI로 스케줄링 된 전체 대역폭 중에서 DCI로 스케줄링 된 전체 대역폭의 절반에 해당하는 대역폭을 기준으로 PTRS의 주파수 영역 밀도를 결정할 수 있다.
예를 들어, DCI로 스케줄링 된 전체 대역폭이 홀수인 경우, 반올림 연산, 내림 연산 또는 올림 연산을 통해 특정 값을 계산할 수 있고, 계산된 대역폭을 기준으로 PTRS의 주파수 영역 밀도를 결정할 수 있다.
실시 예 3의 방식을 적용하는 경우, 단순한 고정된 규칙으로 PTRS의 주파수 영역의 밀도를 결정할 수 있는 장점이 있다.
실시 예 4) 상술한 제안 1의 방법에 따라 단말에게 DCI를 통해 전체 TRP들에 대한 주파수 자원이 할당되고, 스케줄링 된 주파수 자원을 서로 다른 TCI state에 매핑 되는 서브 자원 그룹으로 나눌 수 있는 경우, PTRS의 주파수 영역 밀도는 특정 값으로 정의될 수 있다. 상기 특정 값이라 함은 (i) 기지국과 단말 사이에 고정적인 규칙으로 정의된 값 또는 (ii) 기지국과 단말 사이에 시그널링(예: RRC/ MAC-CE / DCI, etc)을 통해 설정된 값일 수 있다.
예를 들어, 특정 값은 가장 작은 간격을 갖는 주파수 영역 밀도로 설정/정의될 수 있다. 표 7을 참고할 때, 상기 가장 작은 간격을 갖는 주파수 영역 밀도는 2가 될 수 있다. 이처럼 가장 작은 간격을 갖는 주파수 영역 밀도를 적용하는 경우, 가장 작은 PRG 세트의 크기가 2 PRB 가 될 수 있음을 가정하였을 때 주파수 영역에서 PTRS 가 전송되는 간격이 동일 TCI state가 대응될 하나의 PRG 세트보다 큰 경우가 존재하지 않을 수 있으므로 서로 다른 TRP에서 각각 PTRS 전송이 가능하다.
상기 예와 같이, PTRS의 주파수 영역 밀도가 스케줄링 되는 RB 수와 무관하게 특정 값으로 정의되는 경우, 단말에게 스케줄링 되는 RB 수가 특정 값보다 작다면 PTRS는 전송되지 않을 수 있다. 이처럼 단말에게 스케줄링 되는 RB 수에 따라 PTRS의 주파수 영역 밀도가 결정되는 점을 고려하였을 때, PTRS의 주파수 영역 밀도가 스케줄링 되는 RB 수와 무관하게 특정 값으로 정의되는 것은 불필요한 RS 오버헤드를 증가시키는 단점을 가질 수 있다.
따라서, PTRS의 주파수 영역 밀도가 스케줄링 되는 RB 수에 따라 결정되는 기존 동작은 유지하되, 주파수 영역 밀도의 최대 값을 제한하여 특정 TRP에 대응하는 주파수 자원에서만 PTRS가 전송되는 상황을 방지할 수 있다.
이를 위해, PTRS의 주파수 영역 밀도의 최대 값이 특정 값으로 정의될 수 있다. 상기 특정 값이라 함은 (i) 기지국과 단말 사이에 고정적인 규칙으로 정의된 값 또는 (ii) 기지국과 단말 사이에 시그널링(예: RRC/ MAC-CE / DCI, etc)을 통해 설정된 값일 수 있다.
예를 들어, PTRS의 주파수 영역 밀도의 최대 값(i.e. 상기 특정 값)은 2가 될 수 있다. 이러한 경우, 최대 간격인 4가 설정되는 것을 방지할 수 있고, 서로 다른 TRP에서 각각 PTRS 전송이 가능하다.
상술한 실시 예 4의 방법들은 단말에게 설정/지시되는 precoding granularity에 따라 적용 여부가 결정될 수 있다. 예를 들어, 단말에게 precoding granularity가 4로 설정/지시되는 경우, PTRS의 주파수 영역 밀도가 4로 결정되는 경우에도 서로 다른 TRP에서 각각 PTRS 전송이 가능하다. 반면, 단말에게 precoding granularity가 2로 설정/지시되는 경우, PTRS의 주파수 영역 밀도가 4로 결정되는 경우 특정 TRP에서 PTRS가 전송될 수 없는 경우가 있을 수 있다. 따라서, 단말에게 precoding granularity가 2로 설정/지시되는 경우에만 PTRS의 주파수 영역 밀도를 특정 값으로 적용하여 PTRS의 주파수 영역 밀도를 2로 고정하거나, PTRS의 주파수 영역 밀도의 최대 값을 특정 값(예: 2)으로 적용하여/제한하여 서로 다른 TRP에서 각각 PTRS 전송이 가능하도록 보장할 수 있다.
한편, 도 16에서 설명한 바와 같이, PTRS는 자원 요소에 매핑 되어 수신될 수 있다. 여기서, 자원 요소는 시간, 주파수, 안테나 포트 또는 코드 중 적어도 하나를 포함하는 의미일 수 있다. PTRS의 주파수 위치(즉, 주파수 영역의 자원 매핑)는 연관된 DMRS 포트의 주파수 위치와 상위 계층 파라미터 UL-PTRS-RE-offset에 의해 결정될 수 있다. 여기서, UL-PTRS-RE-offset는 PTRS configuration에 포함되며, CP-OFDM에 대한 UL PTRS에 대한 subcarrier offset을 지시한다.
현재 표준에서는 S-TRP 전송에 기초하여, DCI로 스케줄링 된 전체 대역폭을 기준으로 PTRS의 전송 위치가 결정된다. 그러나, FDM 기반의 M-TRP 협력 전송에 있어서, PTRS의 주파수 영역의 자원 위치는 DCI로 스케줄링 된 전체 대역폭이 아닌 DCI로 스케줄링 된 전체 대역폭 중 각각의 TCI state에 대응하는 대역폭 내에서 독립적으로 결정될 수 있다. 즉, DCI로 스케줄링 된 전체 주파수 자원(예: 대역폭)은 둘 이상의 서브 그룹으로 나뉠 수 있고, 각 서브 그룹에는 서로 다른 TCI state에 대응될 수 있으며, PTRS의 주파수 영역의 자원 위치는 각각의 TCI state에 대응하는 서브 그룹의 대역폭을 기준으로 결정될 수 있다.
다시 말해, FDM 기반의 M-TRP 전송에서, DCI의 TCI 필드를 통해 복수 개(e.g. 2)의 TCI state들이 지시될 수 있으며, PTRS의 주파수 영역에서의 자원 요소 매핑은 각 TCI state에 대해 할당된 대역폭(예: PRBs)과 연관될 수 있다.
예를 들어, 제안 1에서 설명한 바와 같이, 프리코딩 granularity가 'wideband'의 경우, DCI를 통해 스케줄 된 전체 RBG들/연속하는 RB들을 각 TRP 별로(즉, 매핑 된 TCI state 별로) 균등하게 할당할 수 있다. 일례로, TCI state #1과 관련된 대역폭(또는 주파수 자원)은
Figure 112022017822301-pct00084
이고, 나머지 자원들 (
Figure 112022017822301-pct00085
-1) 은 TCI state #2와 관련된 대역폭(또는 주파수 자원)일 수 있다. 여기서, X는 DCI를 통해 스케줄링 된 전체 RBG 의 수,
Figure 112022017822301-pct00086
, 또는 DCI를 통해 스케줄링 된 연속하는 RB 의 수,
Figure 112022017822301-pct00087
, 를 의미할 수 있다. 각 TCI state에 대해 할당된 대역폭(예: PRBs)에 기반하여 PTRS가 매핑될 수 있다.
예를 들어, 제안 1에서 설명한 바와 같이, 프리코딩 granularity가 '2 또는 4'의 경우, 첫 번째 TCI state는 (단말에게 스케줄링 된 주파수 자원에서 낮은 주파수 인덱스를 기준으로) 짝수 번째 PRG 세트에 대응하고, 두 번째 TCI state는 홀수 번째 PRG 세트에 대응할 수 있다. 각 TCI state에 대해 할당된 대역폭(예: PRBs)에 기반하여 PTRS가 매핑될 수 있다.
DCI로 스케줄링 된 전체 대역폭 중 각각의 TCI state에 대응하는 대역폭 내에서 독립적으로 전송 위치를 결정하는 방법은 상술한 PTRS의 주파수 영역 밀도를 결정하는 방법(예: 실시 예 1/ 2/ 3/ 4)과 함께 적용될 수도 있다.
예를 들어, 상술한 실시 예 2에 기반하여 각각의 TCI state에 대응하는 대역폭 내에서 서로 다른 주파수 영역 밀도가 결정될 수 있고, 각 주파수 밀도에 기반하여 PTRS의 전송 위치가 결정될 수 있다. 기지국/단말은 특정 TCI state에 대응하는 RB들로 이루어진 대역폭(예: 표 7의 N_RB)을 기준으로 결정한 PTRS 주파수 영역 밀도 단위(예: 표 7의 K_PT-RS)에 기반하여 PTRS를 전송/수신할 수 있다. 더불어, PTRS 주파수 영역 밀도를 정의/결정한 기지국/단말은 해당 PTRS 주파수 영역 밀도에 기반하여 PTRS를 전송/수신할 수 있다. 다시 말해, 각 TCI state에 대해 할당된 자원 블록들(대역폭)에서 각 TCI state와 연관된 자원 블록들(대역폭)의 수에 의해 결정된 주파수 밀도에 따라 PTRS가 매핑되어 수신될 수 있다.
실시 예 5) 또 다른 예로, 기지국은 상술한 문제가 발생할 수 있는 PTRS의 주파수 영역 밀도와 PRG 및 PRG 세트의 크기의 조합을 단말에게 설정하지 않을 수 있다. 즉, 기지국은 현재 표준에 정의된 PTRS의 주파수 영역 밀도 및 위치 결정 방식에 따라 PTRS를 전송하며, 단말은 서로 다른 TCI state에 대응하는 자원 영역 각각에서 PTRS가 전송되는 것을 가정할 수 있다.
실시 예 5에 따르면, 서로 다른 TRP에 대응하는, 즉 서로 다른 TCI state에 대응하는 주파수 영역의 크기에 적합하지 않은 PTRS 주파수 영역 밀도가 적용될 수 있다. 예를 들어, 주파수 영역 밀도가 낮을 수 있는 환경, 즉 주파수 영역에서 PTRS의 간격이 클 수 있는 환경에서도, 각 TRP에 대응하는 PTRS 주파수 영역 밀도는 커질 수 있다. 즉, 특정 TRP (또는, TCI state)에 대응하는 주파수 영역에서 작은 간격으로 PTRS 가 전송되어 불필요하게 RS 오버헤드를 증가시킬 수 있고, 스펙트럼 효율(spectral efficiency)을 감소시킬 수 있다. 또는, 반대로 주파수 영역 밀도가 높아야 하는 환경, 즉 주파수 영역에서 PTRS의 간격이 작아야 하는 환경에서도, 각 TRP에 대응하는 PTRS 주파수 영역 밀도는 낮을 수 있다. DCI를 통해 스케줄링 된 전체 대역을 기준으로 PTRS의 주파수 영역 밀도를 계산하기 때문에 결과적으로 낮은 밀도로 결정되었지만, 실제 특정 TRP (또는, TCI state)와 대응하는 주파수 영역은 이보다 작을 수 있고, 따라서 높은 주파수 영역 밀도를 필요로 할 수 있다. 이와 같이 적절한 PTRS 주파수 영역 밀도가 지원되지 못하는 경우 위상 노이즈로 인한 손상(impairment)을 적절하게 보상할 수 없고 BLER 성능을 열화 시키고 결과적으로 throughput을 감소시킬 수 있다.
상기의 제안 방식은 precoding granularity가 2, 4, wideband 인 경우 모두에 대해서 적용될 수 있다.
[제안 2]
제안 2에서는 상술한 'FRA 방법 2'와 같이 단일 DCI를 통해 CoMP로 동작하는 M-TRP 중 특정 TRP에 대한 주파수 자원이 설정/지시되며, 설정된 주파수 자원에 기반하여 다른 TRP에 대한 주파수 자원을 결정하는 방법을 설명한다.
제안 2에서도 단일 DCI 기반의 M-TRP 동작을 가정하며, 설명의 편의를 위해 2개의 TRP가 NCJT로 동작하는 상황을 중심으로 설명한다. 제안 2는 2 이상의 TRP들이 동작하는 경우에도 적용될 수 있음은 물론이다.
DCI의 주파수 자원 할당 필드를 통해 단말에게 특정 TRP에 대한 주파수 자원이 할당될 수 있으며, 할당된 주파수 자원은 특정 TRP와 관련된 TCI state에 매핑될 수 있다. 예를 들어, DCI를 통해 할당되는 자원은 DCI를 전송하는 TRP에 대한 주파수 자원일 수 있다. 상기 주파수 자원을 기준으로 다른 TRP와 관련된 TCI state가 매핑 되는 주파수 자원이 정의될 수 있다.
예를 들어, 기준이 되는 주파수 자원(즉, DCI를 통해 할당된 자원)과의 차이 값이 단말에게 시그널링(예: 상위 계층 시그널링/ DCI) 될 수 있고, 상기 차이 값에 기반하여 다른 TRP의 주파수 자원이 결정될 수 있다. 또는, 기지국과 단말 사이에 고정된 규칙으로 다른 TRP와 관련된 TCI state가 매핑 되는 주파수 자원이 정의될 수 있다.
단말에게 제안 2의 따라 동작하도록 특정 모드가 시그널링(예: 상위 계층 시그널링/DCI) 및/또는 규칙 및/또는 RNTI 를 바탕으로 설정/지시될 수 있다. 일 예로, 특정한 RNTI를 통해 CRC check에 성공하는 경우, 상기 제안 방식에 따라 주파수 자원 할당을 위한 DCI를 해석할 수 있다.
예를 들어, DCI를 통해 단말에 지시된 주파수 영역의 자원을 기준으로 동일한 크기의 자원이 바로 연접하여 전송됨을 가정하도록 규칙이 정의될 수 있다. 단말은 DCI를 통해 지시된 주파수 영역의 자원에 제1 TCI state를 매핑하고, 연접하는 동일한 크기의 자원에 제2 TCI state를 매핑할 수 있다.
도 18은 본 명세서에서 제안하는 방법에 따른 DCI를 통해 지시된 주파수 자원을 기준으로 하여 M-TRP의 주파수 자원을 결정하는 방법을 나타낸 예시이다. 도 18은 설명의 편의를 위한 일례일 뿐, 본 발명의 기술적 범위를 제한하는 것은 아니다. 도 18을 참고하면, DCI를 통해 TRP #1을 위한 주파수 자원이 지시될 수 있으며, 해당 자원에 TRP #1과 연관된 TCI state #1이 매핑될 수 있다. 또한, TRP #2를 위한 주파수 자원은 TRP #1을 위한 주파수 자원에 연접하여 동일한 크기로 구성될 수 있으며, TRP #2와 연관된 TCI state #2가 매핑될 수 있다.
또 다른 예로, 기존의 DCI 내에서 일부 필드의 용도를 상기 차이 값을 지시하기 위한 용도로 바꾸어 적용할 수 있다. 기지국은 DCI의 일부 필드를 통해 주파수 자원 할당 필드를 통해 지시되는 자원과의 차이 값을 시그널링 해줄 수 있다. 일부 필드의 예로는 DMRS 포트 지시을 위한 필드의 일부 비트(들) 및/또는 두 번째 TB 정보를 지시하기 위한 필드(for MCS/NDI/RV) 의 일부 비트(들)를 들 수 있다.
상술한 제안 2에 기반하여 TB 계산을 위한 기준 FR을 정의하는 방법을 설명한다.
상기 제안 2에서 설명한 FRA 방법 2에 대해서 '기준 FR 정의 방법 2', 즉, 특정 TRP에 할당된 주파수 자원만을 고려하는 경우, DCI 를 통해 지시되는 주파수 자원이 특정 TRP를 통해 PDSCH 전송에 사용되는 주파수 자원과 일치하기 때문에 현재 TB 크기 계산 방식을 단말 동작을 위한 일부 규칙을 정의하여 그대로 이용할 수 있다. 예를 들어, DCI 내에서 첫 번째 TB 에 대한 TB 정보 필드(for MCS1/RV1/NDI1) 와 두 번째 TB에 대한 TB 정보 필드 (for MCS2/RV2/NDI2)가 모두 이용되는 경우, 특정 필드 값을 기준으로, 예를 들어, 첫 번째 TB 정보 필드를 기준으로 하고 DCI를 통해 스케줄링 되는 주파수 자원을 기준으로 하여 TB 크기를 계산할 수 있다.
한편, 상기와 같이 특정 TCI state가 매핑 된 주파수 자원 만을 TB 크기 계산에 이용하는 경우, TB 크기 계산에 적용된 주파수 자원을 통해 전송되는 PDSCH를 PDSCH 1로 명명할 수 있고, 또 다른 자원을 통해 전송되는 PDSCH는 반복 전송되는 PDSCH로 해석될 수 있으며 PDSCH 2로 명명할 수 있다. 이때, PDSCH 1과 PDSCH 2의 RV 및/또는 변조 차수는 서로 다를 수 있다. 이를 위해, DMRS 표의 최적화를 통해 DMRS port 지시를 위한 필드에 사용되던 기존 비트들 중 일부(예: MSB(s)/ LSB(s)) 및/또는 두 번째 TB의 MCS/RV/NDI를 지시하기 위한 TB 정보 필드에 대한 해석을 다르게 할 수 있다.
한편, 상기 제안 2에서 설명한 FRA 방법 2에 대해서 '기준 FR 정의 방안 1', 즉, 다수의 TRP들에 할당된 모든 주파수 자원을 고려하는 경우, 추가적인 단말 동작이 필요하다.
따라서, 단말이 TB 크기를 계산함에 있어, DCI를 통해 스케줄링 된 주파수 자원의 N 배의 주파수 자원을 기준으로 TB 크기를 계산하도록 정의/설정하는 방법을 제안한다. 이때, N 의 값은 단말에 지시된 TCI state의 수와 같을 수 있다.
단말은 상술한 제안 2의 방법에 따라 PDSCH를 전송하는 TRP의 수를 알 수 있으며, TRP의 수는 단말에게 지시된 TCI state의 수와 같을 수 있다. 따라서, 단말은 PDSCH 전송을 위해 사용되는 전체 주파수 자원의 크기를 알 수 있다. 이 전체 주파수 자원의 크기는 DCI를 통해 스케줄링 된 주파수 자원의 크기를 B라고 하였을 때 B와 TCI state의 수의 곱(B*number of TCIs)과 같다. 따라서, 단말은 PDSCH 전송을 위해 사용되는 전체 주파수 자원의 크기인 B와 TCI state의 수를 곱한 주파수 자원 크기를 기준으로 TB 크기를 계산하도록 정의할 수 있다. 현재 표준에 따르면 DCI를 통해 스케줄링 된 주파수 자원을 TB 크기 계산에 적용하도록 되어 있지만, 상기 방식을 적용하는 경우, DCI를 통해 스케줄링 된 주파수 자원의 배수를 TB 크기 계산에 적용하는 특징을 갖는다.
상술한 제안 2의 방법 및/또는 실시 예들을 통해 단일 DCI 기반의 M-TRP 동작에서 하나의 DCI로 할당된 특정 TRP에 대한 주파수 자원에 기반하여 다른 TRP에 대한 주파수 자원을 결정할 수 있다. 또한, 상술한 제안 2의 방법 및/또는 실시 예들을 통해 TB 크기 계산을 위한 기준 주파수 자원을 결정할 수 있다.
한편, TS 38.211 문서를 참고하면, antenna port 및 QCL (quasi co-located)는 표 8과 같이 정의되어 있다.
Figure 112022017822301-pct00088
상술한 방법 및/또는 실시 예(예: 제안 1/ 제안 1-1/ 제안 2 등)를 적용하기 위해 표 8의 QCL 정의가 표 9와 같이 일부 수정될 수 있다. 수정된 부분은 밑줄로 표시된 부분이다.
Figure 112022017822301-pct00089
표 9를 참고하면, "QCL-f-RB set"은 타겟(target) 안테나 포트에 대해 동일 QCL reference RS (및/또는 antenna port) 를 가정/적용할 수 있는 RB 세트(주파수 자원의 집합)을 의미할 수 있다. 상기 RB 세트 내의 연속하는(contiguous) RB의 수는 PRG 크기보다 같거나 클 수 있다. 한편, 상술한 제안 방법 및/또는 실시 예(예: 제안 1/ 제안 1-1/ 제안 2 등)는 QCL-f-RB set을 구성하는 방법의 일 예로 볼 수 있다. 즉, 상술한 제안 방법 및/또는 실시 예(예: 제안 1/ 제안 1-1/ 제안 2 등)에 따라 특정 TCI state가 매핑 되는 주파수 자원이 결정될 수 있으며, 특정 TCI state가 매핑 되는 주파수 자원은 QCL-f-RB set과 대응될 수 있다.
상술한 제안 방법 및/또는 실시 예(예: 제안 1/ 제안 1-1/ 제안 2 등)에서 서로 다른 TRP와 관련된 TCI state가 매핑 될 주파수 자원은 VRB (virtual resource block) 또는 PRB (physical resource block) 중 특정 단위 (VRB 또는 PRB) 에서 상기 제안의 방식이 적용되도록 정의될 수 있다. 또는, 시그널링(예: 상위 계층 시그널링/ DCI) 및/또는 규칙을 통해 상기 제안이 적용될 단위 (VRB 또는 PRB) 를 선택하도록 정의될 수 있다.
본 명세서에서 상술한 방법 및/또는 실시 예(예: 제안 1/ 제안 1-1/ 제안 2 등)에서 서로 다른 두 TRP가 협력 전송하는 동작을 가정하였으나, 세 개 이상의 다수의 TRP들에 대해서도 본 명세서에서 설명하는 방법 및/또는 실시 예를 적용할 수 있다. 또한, 상술한 제안 방법 및/또는 실시 예(예: 제안 1/ 제안 1-1/ 제안 2 등)는 복수개의 TRP를 기준으로 설명하였으나, 이는 복수개의 panel을 통한 전송에도 동일하게 적용될 수 있다. 또한, 본 명세서에서 설명하는 방법 및/또는 실시 예(예: 제안 1/ 제안 1-1/ 제안 2 등)에서 단일 DCI 기반의 M-TRP 전송을 중심으로 설명하였으나, 다수의 TRP들 중 일부 TRP를 제외한 나머지 TRP들에서 DCI를 전송하는 multiple DCI 기반의 M-TRP 송수신의 경우에 대해서도 제안 방식이 적용될 수도 있다.
도 19는 M-TRP(혹은 M-셀, 이하 모든 TRP는 셀로 대체될 수 있음, 혹은 하나의 TRP로부터 복수의 CORESET(/CORESET group)을 설정 받은 경우도 M-TRP로 가정할 수 있음) 상황에서 단말이 단일(single) DCI를 수신하는 경우(i.e. 대표 TRP가 UE로 DCI를 전송하는 경우)의 시그널링을 나타낸다. 도 19는 설명의 편의를 위한 일례일 뿐, 본 발명의 기술적 범위를 제한하는 것은 아니다.
이하 설명에서는 "TRP"를 기준으로 설명되지만, 상술한 바와 같이, "TRP"는 패널(panel), 안테나 어레이(antenna array), 셀(cell)(예: macro cell / small cell / pico cell 등), TP(transmission point), 기지국(base station, gNB 등) 등의 표현으로 대체되어 적용될 수 있다. 또한, 상술한 바와 같이, TRP는 CORESET 그룹(또는 CORESET 풀)에 대한 정보(예: 인덱스, ID)에 따라 구분될 수 있다. 일례로, 하나의 단말이 다수의 TRP(또는 셀)들과 송수신을 수행하도록 설정된 경우, 이는 하나의 단말에 대해 다수의 CORESET 그룹(또는 CORESET 풀)들이 설정된 것을 의미할 수 있다. 이와 같은 CORESET 그룹(또는 CORESET 풀)에 대한 설정은 상위 계층 시그널링(예: RRC 시그널링 등)을 통해 수행될 수 있다.
도 19를 참고하면 설명의 편의상 2개의 TRP들과 UE 간의 시그널링이 고려되지만, 해당 시그널링 방식이 다수의 TRP들 및 다수의 UE들 간의 시그널링에도 확장되어 적용될 수 있음은 물론이다. 이하 설명에서 Network side는 복수의 TRP를 포함하는 하나의 기지국일 수 있으며, 복수의 TRP를 포함하는 하나의 Cell일 수 있다. 일례로, Network side를 구성하는 TRP 1과 TRP 2 간에는 ideal/non-ideal backhaul이 설정될 수도 있다. 또한, 이하 설명은 다수의 TRP들을 기준으로 설명되나, 이는 다수의 panel들을 통한 전송에도 동일하게 확장하여 적용될 수 있다. 더하여, 본 문서에서 단말이 TRP1/TRP2로부터 신호를 수신하는 동작은 단말이 Network side로부터 (TRP1/2를 통해/이용해) 신호를 수신하는 동작으로도 해석/설명될 수 있으며(혹은 동작일 수 있으며), 단말이 TRP1/TRP2로 신호를 전송하는 동작은 단말이 Network side로 (TRP1/TRP2를 통해/이용해) 신호를 전송하는 동작으로 해석/설명될 수 있고(혹은 동작일 수 있고), 역으로도 해석/설명될 수 있다.
UE는 Network side로부터 TRP 1(및/또는 TRP 2)을 통해/이용해 Multiple TRP 기반의 송수신과 관련된 설정 정보(configuration information)를 수신할 수 있다(S1905). 즉, Network side는 UE로 TRP 1(및/또는 TRP 2)을 통해/이용해 Multiple TRP 기반의 송수신과 관련된 설정 정보(configuration information)를 전송할 수 있다(S1905). 상기 설정 정보는, network side의 구성(i.e. TRP 구성)과 관련된 정보/ Multiple TRP 기반의 송수신과 관련된 자원 정보(resource allocation) 등을 포함할 수 있다. 상기 설정 정보는 상위 계층 시그널링(예: RRC 시그널링, MAC-CE 등)을 통해 전달될 수 있다. 또한, 상기 설정 정보가 미리 정의 또는 설정되어 있는 경우, 해당 단계는 생략될 수도 있다.
예를 들어, 상기 설정 정보는 상술한 방법(예: 제안 1/ 제안 1-1/ 제안 2 등)들에서 설명한 바와 같이, CORESET 관련 설정 정보(예: ControlResourceSet IE)를 포함할 수 있다. 상기 CORESET 관련 설정 정보는 CORESET 관련 ID(예: controlResourceSetID), CORESET에 대한 CORESET pool의 인덱스 (예: CORESETPoolIndex), CORESET의 시간/주파수 자원 설정, CORESET과 관련된 TCI 정보 등을 포함할 수 있다. 상기 CORESET pool의 인덱스 (예: CORESETPoolIndex)는 각 CORESET에 매핑되는/설정되는 특정 index(e.g. CORESET group Index, HARQ Codebook index)를 의미할 수 있다.
예를 들어, 상술한 방법 및/또는 실시 예(예: 제안 1/ 제안 1-1/ 제안 2 등)에 따라 상기 설정 정보는 다수의 URLLC 동작 중 어떤 동작을 수행할 것인지에 대한 정보를 포함할 수 있다. 일례로, 상기 설정 정보는 M-TRP URLLC scheme들(예: scheme 2a/2b/3/4) 중 하나를 설정하는 정보를 포함할 수 있다.
예를 들어, 상기 설정 정보는 PTRS 관련 설정 정보를 포함할 수 있다. 상기 PTRS 관련 설정 정보(예: PTRS-DownlinkConfig)는 PTRS의 주파수 밀도(frequency density)에 대한 정보(예: frequencyDensity 파라미터), 시간 밀도에 대한 정보(예: timeDensity 파라미터), epre-Ratio 파라미터, 자원 요소 오프셋 파라미터(예: (resourceElementOffset) 등을 포함할 수 있다.
예를 들어, 상술한 S1905 단계의 UE(도 22 내지 도 26의 100/200)가 Network side (도 22 내지 도 26의 100/200)로부터 상기 Multiple TRP 기반의 송수신과 관련된 설정 정보를 수신하는 동작은 이하 설명될 도 22 내지 도 26의 장치에 의해 구현될 수 있다. 예를 들어, 도 23을 참고하면, 하나 이상의 프로세서 102는 상기 Multiple TRP 기반의 송수신과 관련된 설정 정보를 수신하도록 하나 이상의 트랜시버 106 및/또는 하나 이상의 메모리 104 등을 제어할 수 있으며, 하나 이상의 트랜시버 106은 Network side로부터 상기 Multiple TRP 기반의 송수신과 관련된 설정 정보를 수신할 수 있다.
이와 유사하게, 상술한 S1905 단계의 Network side(도 22 내지 도 26의 100/200)가 UE(도 22 내지 도 26의 100/200)로 상기 Multiple TRP 기반의 송수신과 관련된 설정 정보(configuration information)를 전송하는 동작은 이하 설명될 도 22 내지 도 26의 장치에 의해 구현될 수 있다. 예를 들어, 도 23을 참고하면, 하나 이상의 프로세서 102는 상기 Multiple TRP 기반의 송수신과 관련된 설정 정보를 전송하도록 하나 이상의 트랜시버 106 및/또는 하나 이상의 메모리 104 등을 제어할 수 있으며, 하나 이상의 트랜시버 106은 Network side로부터 상기 Multiple TRP 기반의 송수신과 관련된 설정 정보를 전송할 수 있다.
UE는 Network side로부터 TRP 1을 통해/이용해 DCI 및 해당 DCI 에 의해 스케줄링되는 Data 1을 수신할 수 있다(S1910-1). 또한, UE는 Network side로부터 TRP 2를 통해/이용해 Data 2를 수신할 수 있다(S1910-2). 즉, Network side는 UE로 TRP 1을 통해/이용해 DCI 및 해당 DCI 에 의해 스케줄링되는 Data 1을 전송할 수 있다(S1910-1). 또한, Network side는 UE로 TRP 2을 통해/이용해 Data 2를 전송할 수 있다(S1910-2). 예를 들어, DCI 및 Data(e.g. Data 1, Data 2)는 각각 제어 채널(e.g. PDCCH 등) 및 데이터 채널(e.g. PDSCH 등)을 통해 전달될 수 있다. 또한, S1910-1 단계 및 S1910-2 단계는 동시에 수행되거나, 어느 하나가 다른 하나보다 일찍 수행될 수도 있다.
예를 들어, 상기 DCI는 TCI 필드, Antenna port(s) 필드, time domain resource assignment 필드, frequency domain resource assignment 필드, MCS 필드 또는 RV 필드 등을 포함할 수 있다.
예를 들어, 상술한 방법 및/또는 실시 예(예: 제안 1/ 제안 1-1/ 제안 2 등)에서 설명한 바와 같이, 상기 DCI는 Data 1 및 Data 2 모두에 대한 스케줄링을 위해 이용되도록 설정될 수 있으며, Data 1 및 Data 2는 동일한 TB에 대응할 수 있다.
예를 들어, 비중첩 주파수 자원을 이용하는 것을 전제로, 상기 DCI는 주파수 자원과 서로 다른 TRP(예:TRP 1, TRP 2)와 관련된 TCI state 간의 매핑 관계에 대한 정보를 포함할 수 있다. 이를 통해, UE는 주파수 자원과 TCI state/TRP 간의 매핑 관계를 파악할 수 있다. 또한, 상기 DCI에 대하여, UE는 일정 기준에 따른 주파수 자원을 기준으로 TB size를 계산(즉, TB 관련 정보 필드를 해석)하도록 설정될 수도 있다.
예를 들어, 상술한 제안 1-1에서와 같이, 상기 DCI에 기반하여 PTRS의 주파수 밀도/ 주파수 자원 매핑이 결정될 수 있다. DCI를 통해 스케줄링 된 주파수 자원이 서로 다른 TCI state에 매핑되는 경우, PTRS의 주파수 밀도/ 주파수 자원 매핑은 각 TCI state와 연관된 주파수 자원(예: 대역폭/ PRBs)에 따라 결정될 수 있다. 또한, 이 경우, Data 1 및 Data 2는 상술한 제안 1-1에서 설명된 PTRS (port) 등에 기반하여 송수신될 수 있다.
예를 들어, 상술한 S1910-1 / S1910-2 단계의 UE(도 22 내지 도 26의 100/200)가 Network side (도 22 내지 도 26의 100/200)로부터 상기 DCI 및/또는 상기 Data 1 및/또는 상기 Data2를 수신하는 동작은 이하 설명될 도 22 내지 도 26의 장치에 의해 구현될 수 있다. 예를 들어, 도 23을 참고하면, 하나 이상의 프로세서 102는 상기 DCI 및/또는 상기 Data 1 및/또는 상기 Data2를 수신하도록 하나 이상의 트랜시버 106 및/또는 하나 이상의 메모리 104 등을 제어할 수 있으며, 하나 이상의 트랜시버 106은 Network side로부터 상기 DCI 및/또는 상기 Data 1 및/또는 상기 Data2를 수신할 수 있다.
이와 유사하게, 상술한 S1910-1 / S1910-2 단계의 Network side (도 22 내지 도 26의 100/200)가 UE (도 22 내지 도 26의 100/200)로 상기 DCI 및/또는 상기 Data 1 및/또는 상기 Data2를 전송하는 동작은 이하 설명될 도 22 내지 도 26의 장치에 의해 구현될 수 있다. 예를 들어, 도 23을 참고하면, 하나 이상의 프로세서 102는 상기 DCI 및/또는 상기 Data 1 및/또는 상기 Data2를 전송하도록 하나 이상의 트랜시버 106 및/또는 하나 이상의 메모리 104 등을 제어할 수 있으며, 하나 이상의 트랜시버 106은 UE로 상기 DCI 및/또는 상기 Data 1 및/또는 상기 Data2를 전송할 수 있다.
UE는 TRP 1 및 TRP 2로부터 수신한 Data 1 및 Data 2를 디코딩(decoding)할 수 있다(S1915). 예를 들어, UE는 상술한 방법(예: 제안 1/ 제안 1-1/ 제안 2 등) 등에 기반하여 채널 추정 및/또는 데이터에 대한 디코딩을 수행할 수 있다.
예를 들어, 상술한 제안 방법 및/또는 실시 예(예: 제안 1/ 제안 2/ 제안 3/ 제안 4 등)에 기반하여, UE는 기지국이 특정 URLLC 동작에 따라 동일한 데이터를 송신하였음을 알 수 있고, Data 1과 Data 2가 동일한 데이터임을 가정하여 Data 1 및 Data 2를 디코딩할 수 있다. 일례로, UE는 기지국이 DCI를 통해 지시된 TCI states의 수만큼 동일한 데이터를 반복 전송했음을 가정하여 Data 1 및 Data 2를 디코딩할 수 있다. 예를 들어, UE는 기지국이 DCI를 통해 지시한 주파수 영역에서 동일한 데이터를 반복 전송했음을 가정하여 Data 1 및 Data 2를 디코딩할 수 있다.
예를 들어, 상술한 S1915 단계의 UE(도 22 내지 도 26의 100/200)가 상기 Data 1 및 Data 2를 디코딩하는 동작은 이하 설명될 도 22 내지 도 26의 장치에 의해 구현될 수 있다. 예를 들어, 도 23을 참고하면, 하나 이상의 프로세서 102는 상기 Data 1 및 Data 2를 디코딩하는 동작을 수행하도록 하나 이상의 메모리 104 등을 제어할 수 있다.
UE는 상술한 제안 방법(예: 제안 1/ 제안 1-1/ 제안 2 등)에 기반하여, 하나 이상의 PUCCH(s)를 통해 상기 DCI 및/또는 상기 Data 1 및/또는 Data 2에 대한 HARQ-ACK 정보(e.g. ACK 정보, NACK 정보 등)를 TRP 1 및/또는 TRP 2를 통해/이용해 network side로 전송할 수 있다(S1920-1, S1920-2). 즉, Network side는 상술한 제안 방법(예: 제안 1/ 제안 1-1/ 제안 2 등)에 기반하여, 상기 DCI 및/또는 상기 Data 1 및/또는 Data 2에 대한 HARQ-ACK 정보(e.g. ACK 정보, NACK 정보 등) 를 TRP 1 및/또는 TRP 2를 통해/이용해 UE로부터 수신할 수 있다(S1920-1, S1920-2).
예를 들어, Data 1 및/또는 Data 2에 대한 HARQ-ACK 정보가 하나로 결합되거나 분리될 수도 있다. 또한, UE는 대표 TRP(e.g. TRP 1)로의 HARQ-ACK 정보만을 전송하도록 설정되고, 다른 TRP(e.g. TRP 2)로의 HARQ-ACK 정보 전송은 생략될 수도 있다. 예를 들어, 상기 HARQ-ACK 정보는 PUCCH 및/또는 PUSCH를 통해 전송될 수 있다.
예를 들어, 상술한 S1920-1 / S1920-2 단계의 UE(도 22 내지 도 26의 100/200)가 Network side (도 22 내지 도 26의 100/200)로 하나 이상의 PUCCH를 통해 상기 Data 1 및/또는 Data 2에 대한 HARQ-ACK 정보를 전송하는 동작은 이하 설명될 도 22 내지 도 26의 장치에 의해 구현될 수 있다. 예를 들어, 도 23을 참고하면, 하나 이상의 프로세서 102는 하나 이상의 PUCCH를 통해 상기 Data 1 및/또는 Data 2에 대한 HARQ-ACK 정보를 전송하도록 하나 이상의 트랜시버 106 및/또는 하나 이상의 메모리 104 등을 제어할 수 있으며, 하나 이상의 트랜시버 106은 Network side로 상기 Data 1 및/또는 Data 2에 대한 HARQ-ACK 정보를 전송할 수 있다.
이와 유사하게, 상술한 S1920-1 / S1920-2 단계의 Network side(도 22 내지 도 26의 100/200)가 UE(도 22 내지 도 26의 100/200)로부터 하나 이상의 PUCCH를 통해 상기 Data 1 및/또는 Data 2에 대한 HARQ-ACK 정보를 수신하는 동작은 이하 설명될 도 22 내지 도 26의 장치에 의해 구현될 수 있다. 예를 들어, 도 23을 참고하면, 하나 이상의 프로세서 102는 상기 Data 1 및/또는 Data 2에 대한 HARQ-ACK 정보를 수신하도록 하나 이상의 트랜시버 106 및/또는 하나 이상의 메모리 104 등을 제어할 수 있으며, 하나 이상의 트랜시버 106은 UE로부터 상기 Data 1 및/또는 Data 2에 대한 HARQ-ACK 정보를 수신할 수 있다.
상술한 도 19에서는 단일 DCI 기반의 M-TRP 동작을 중심으로 설명하였으나, 경우에 따라 다중 DCI 기반의 M-TRP 동작에도 적용될 수도 있다.
도 20은 본 명세서에서 제안하는 방법(예: 제안 1/ 제안 1-1/ 제안 2 등)들이 적용될 수 있는 단말(User equipment, UE)의 PTRS 수신 동작 순서도의 일례를 나타낸다. 상기 단말은 복수의 TRP들에 의해 지원될 수 있고, 복수의 TRP들 간에는 ideal/non-ideal backhaul이 설정될 수도 있다. 예를 들어, 상기 단말은 하나 이상의 송수신기, 하나 이상의 프로세서들 및 상기 하나 이상의 프로세서들에 의해 실행되는 동작들에 대한 지시(instruction)들을 저장하고, 상기 하나 이상의 프로세서들과 연결되는 하나 이상의 메모리들을 포함할 수 있다. 도 20은 단지 설명의 편의를 위한 것일 뿐, 본 발명의 범위를 제한하는 것이 아니다. 또한, 도 20에 나타난 일부 step(들)은 상황 및/또는 설정 등에 따라 생략될 수도 있다.
이하 설명에서는 "TRP"를 기준으로 설명되지만, 상술한 바와 같이, "TRP"는 패널(panel), 안테나 어레이(antenna array), 셀(cell)(예: macro cell / small cell / pico cell 등), TP(transmission point), 기지국(base station, gNB 등) 등의 표현으로 대체되어 적용될 수 있다. 또한, 상술한 바와 같이, TRP는 CORESET 그룹(또는 CORESET 풀(pool))에 대한 정보(예: 인덱스, ID)에 따라 구분될 수 있다. 일례로, 하나의 단말이 다수의 TRP(또는 셀)들과 송수신을 수행하도록 설정된 경우, 이는 하나의 단말에 대해 다수의 CORESET 그룹(또는 CORESET 풀)들이 설정된 것을 의미할 수 있다. 이와 같은 CORESET 그룹(또는 CORESET 풀)에 대한 설정은 상위 계층 시그널링(예: RRC 시그널링 등)을 통해 수행될 수 있다.
도 20의 동작을 수행함에 있어, 상기 단말이 FDM 기반의 M-TRP 들에 의해 지원되는 상황을 가정할 수 있다. 또한, DCI의 TCI 필드를 통해 복수의 TCI state들(예: TCI state 1 및 TCI state 2)이 매핑 된 코드 포인트가 단말에게 설정된 것을 가정할 수 있다.
단말(UE)은 PTRS 설정 정보를 수신할 수 있다(S2010). 예를 들어, 상기 PTRS 설정 정보는 RRC 시그널링을 통해 수신될 수 있다.
예를 들어, 상기 PTRS 설정 정보는 PTRS-DownlinkConfig IE를 지칭할 수 있다. 상기 PTRS 설정 정보(예: PTRS-DownlinkConfig)는 PTRS의 주파수 밀도(frequency density)에 대한 정보(예: frequencyDensity 파라미터), 시간 밀도에 대한 정보(예: timeDensity 파라미터), epre-Ratio 파라미터, 자원 요소 오프셋 파라미터(예: (resourceElementOffset) 등을 포함할 수 있다. 예를 들어, 상기 PTRS의 주파수 밀도에 대한 정보(즉, 주파수 밀도 파라미터)는 PTRS의 주파수 밀도 결정을 위한 대역폭의 임계값들(예: 제1 임계 값, 제2 임계 값)을 포함할 수 있다. 일례로, M-TRP 전송을 고려하여, 상기 제1 임계 값 및 상기 제 2 임계 값은 각각 복수 개의 값으로 설정될 수도 있다. 다시 말해, 각 TRP 별로 PTRS의 주파수 밀도 결정을 위한 임계값들이 다르게 설정될 수 있다.
예를 들어, 상술한 S2010 단계의 단말(도 22 내지 도 26의 100/200)이 PTRS 설정 정보를 수신하는 동작은 이하 설명될 도 22 내지 도 26의 장치에 의해 구현될 수 있다. 예를 들어, 도 23을 참고하면, 하나 이상의 프로세서 102는 상기 PTRS 설정 정보를 수신하도록 하나 이상의 트랜시버 106 및/또는 하나 이상의 메모리 104 등을 제어할 수 있으며, 하나 이상의 트랜시버 106은 상기 PTRS 설정 정보를 수신할 수 있다.
단말(UE)은 하향링크 제어 정보(Downlink Control Information, DCI)를 수신할 수 있다(S2020). 상기 DCI는 제어 채널 (예: PDCCH)를 통해 전송될 수 있다.
상기 DCI는 i) 전송 설정 지시(transmission configuration indication, TCI) 필드, ii) 안테나 포트(antenna port) 필드 또는 iii) 주파수 자원 할당(assignment) 필드 중 적어도 하나를 포함할 수 있다.
예를 들어, 상기 TCI 필드에 기반하여 하나 이상의 TCI state와 대응되는 코드 포인트(code point)가 지시될 수 있다. 일례로, 복수의 TCI state들(예: TCI state 1 및 TCI state 2)이 매핑 된 코드 포인트가 상기 DCI의 TCI 필드에 기반하여 설정/지시될 수 있다.
예를 들어, 데이터 없는(without data) CDM 그룹의 수와 DMRS 포트의 조합과 관련된 복수 개의 상태 정보가 미리 정의될 수 있으며, 상기 DCI의 안테나 포트 필드를 통해 상기 복수 개의 상태 정보 중 특정 상태 정보(또는, 값)가 지시될 수 있다. 일례로, 상기 상태 정보는 DMRS 포트 관련 정보(예: 3gpp TS38.212 Table 7.3.1.2.2-1/2/3/4 등)를 의미할 수 있다. 또한, DMRS 포트와 CDM 그룹의 매핑 관계가 미리 정의되어 있을 수 있다. 지시된 특정 상태 정보(또는, 값)를 통해 DMRS 포트 및 DMRS 포트를 포함하는 CDM 그룹의 수가 결정될 수 있다. 일례로, 상기 안테나 포트 필드에 기반하여 동일한 CDM 그룹의 DMRS 포트들이 지시될 수 있다.
예를 들어, 상기 주파수 자원 할당 필드에 기반하여 NCJT로 동작하는 M-TRP 전체에 대한 주파수 자원이 할당될 수 있다(예: FRA 방법 1). 상술한 제안 방법 및/또는 실시 예(예: 제안 1/ 제안 1-1/ 제안 1-2 등)들에 기반하여 할당된 전체 주파수 자원을 각 TRP 별로 나누어 할당할 수 있다. 일례로, PRG 또는 PRG 세트 단위에 기반하여 할당된 전체 주파수 자원을 나눌 수 있다. 단말에게 프리코딩 granularity 가 2 또는 4로 설정/지시되는 경우, 짝수 PRG/ PRG 세트들은(예: 제1 영역) TRP 1에게 할당되고, 홀수 PRG/ PRG 세트들은(예: 제2 영역) TRP 2에게 할당될 수 있다. 또 다른 일례로, RB 또는 RB 세트 단위에 기반하여 할당된 전체 주파수 자원을 나눌 수 있다. 단말에게 프리코딩 granularity 가 광대역(wideband)으로 설정/지시되는 경우, 각 TRP에 대한 자원을 균등하게 분배하기 위하여 floor(할당된 전체 자원/2)로 자원을 분배할 수 있다.
또한, 상기 주파수 자원 할당 필드에 기반하여 할당된 주파수 자원 영역에 대해 DCI의 TCI 필드를 통해 지시되는 복수의 TCI state들이 매핑 될 수 있다. 예를 들어, 상기 할당된 주파수 자원 영역은 주파수 영역에서 중첩되지 않는 제1 영역 및 제2 영역을 포함할 수 있다. 즉, DCI 로 할당된 주파수 자원 영역이 제1 영역 및 제2 영역으로 나뉠 수 있다. 상기 제1 영역은 제1 TCI state와 연관되고, 상기 제2 영역은 제2 TCI state에 연관될 수 있다. 이 경우, 상기 제1 영역의 자원 블록들의 수에 의해 상기 PTRS의 제1 주파수 밀도가 결정될 수 있으며, 상기 제2 영역의 자원 블록들의 수에 의해 상기 PTRS의 제2 주파수 밀도가 결정될 수 있다.
예를 들어, 상기 주파수 자원 할당 필드에 기반하여 NCJT로 동작하는 M-TRP 전체에 대한 주파수 자원이 할당되고, TB 크기를 계산하기 위해 특정 TRP들에 대한 주파수 자원을 고려해야 한다면, TB 크기 계산을 위한 상기 특정 TRP에 대한 주파수 자원이 기지국으로부터 지시되거나 또는 미리 정의된 규칙에 의해 결정될 수 있다.
또 다른 예로, 상기 주파수 자원 할당 필드에 기반하여 NCJT로 동작하는 M-TRP 중 특정 TRP에 대한 주파수 자원이 할당될 수 있다(예: FRA 방법 2). 상술한 제안 방법 및/또는 실시 예(예: 제안 1/ 제안 1-1/ 제안 1-2 등)들에 기반하여 특정 TRP 에 대해 할당된 주파수 자원을 기준으로 NCJT를 수행하는 다른 TRP에 대한 주파수 자원이 결정될 수 있다. 일례로, 다른 TRP에 대한 주파수 자원은 DCI 로 할당된 자원과 크기가 동일하고, 연접하여 할당될 수 있다. 또는, DCI 로 할당된 주파수 자원과의 차이 값이 별도의 시그널링(예: DCI)을 통해 설정될 수도 있다.
예를 들어, 상기 주파수 자원 할당 필드에 기반하여 NCJT로 동작하는 M-TRP 중 특정 TRP에 대한 주파수 자원이 할당되고, 다른 TRP에 대한 주파수 자원은 상기 DCI를 통해 할당된 자원을 이용하는 경우, TB 크기를 계산하기 위해 전체 TRP들에 대한 주파수 자원을 고려해야 한다면, DCI로 스케줄링 된 자원 크기에 TCI state 의 수를 곱한 크기의 주파수 자원의 크기를 이용하여 TB 크기를 계산할 수 있다.
예를 들어, 상술한 S2020 단계의 단말(도 22 내지 도 26의 100/200)이 하향링크 제어 정보를 수신하는 동작은 이하 설명될 도 22 내지 도 26의 장치에 의해 구현될 수 있다. 예를 들어, 도 23을 참고하면, 하나 이상의 프로세서 102는 상기 DCI를 수신하도록 하나 이상의 트랜시버 106 및/또는 하나 이상의 메모리 104 등을 제어할 수 있으며, 하나 이상의 트랜시버 106은 상기 DCI를 수신할 수 있다.
단말은 상기 DCI에 기반하여 PTRS를 수신할 수 있다(S2030). 상기 PTRS는 안테나 포트(예: PTRS port)를 통해 수신될 수 있다. 상기 PTRS를 수신하는 안테나 포트는 PTRS가 전송되는/수신되는 자원 요소를 의미할 수 있다.
예를 들어, 상기 PTRS는 시간 및/또는 주파수 자원에 매핑되어 수신될 수 있다. 상기 PTRS는 주파수 영역에서 일정 간격으로 자원 요소에 매핑될 수 있다. PTRS 사이의 간격(예: RB의 개수)은 PTRS의 주파수 밀도를 의미할 수 있다. 상기 PTRS의 주파수 밀도는 스케줄 된 대역폭에 따라 결정될 수 있다.
예를 들어, 단일 TRP 전송에서, PTRS 주파수 밀도는 DCI로 스케줄 된 전체 주파수 영역의 대역폭을 기준으로 결정될 수 있다. 반면, M-TRP 전송에서, DCI에 기반하여 복수의 TCI state들이 지시되고 및 복수의 TCI state들의 각 TCI state와 연관된 주파수 영역의 자원이 중첩되지 않는 것에 기초하여, PTRS의 주파수 밀도는 각 TCI state와 연관된 자원 블록(resource block)들의 수에 의해 결정될 수 있다.
구체적인 예로, 상기 PTRS의 주파수 밀도에 대한 정보를 통해 설정되는 임계 값들(예: 제1 임계 값, 제2 임계 값) 중 적어도 하나와 각 TCI state와 연관된 자원 블록들의 수를 비교하여 PTRS의 주파수 밀도가 결정될 수 있다. 예를 들어, 제1 TCI state와 연관된 자원 영역(예: 제1 영역)의 자원 블록들의 수에 의해 PTRS의 제1 주파수 밀도가 결정될 수 있고, 제2 TCI state와 연관된 자원 영역(예: 제2 영역)의 자원 블록들의 수에 의해 PTRS의 제2 주파수 밀도가 결정될 수 있다. 상기 제1 영역에서 상기 제1 주파수 밀도에 기반하여 상기 PTRS가 자원 요소에 매핑 되고, 상기 제2 영역에서, 상기 제2 주파수 밀도에 기반하여 상기 PTRS가 자원 요소에 매핑 되어 수신될 수 있다.
단말은 상기 수신된 PTRS를 이용하여 위상 잡음에 대한 보상을 수행할 수 있다.
예를 들어, 상술한 S2030 단계의 단말(도 22 내지 도 26의 100/200)이 상기 PTRS를 수신하는 동작은 이하 설명될 도 22 내지 도 26의 장치에 의해 구현될 수 있다. 예를 들어, 도 23을 참고하면, 하나 이상의 프로세서 102는 상기 PTRS를 수신하도록 하나 이상의 트랜시버 106 및/또는 하나 이상의 메모리 104 등을 제어할 수 있으며, 하나 이상의 트랜시버 106은 상기 PTRS를 수신할 수 있다.
도 21은 본 명세서에서 제안하는 방법(예: 제안 1/ 제안 1-2/ 제안 3 등)들이 적용될 수 있는 기지국(Base station, BS)의 PTRS 송신 동작 순서도의 일례를 나타낸다. 도 21은 단지 설명의 편의를 위한 것일 뿐, 본 발명의 범위를 제한하는 것이 아니다. 또한, 도 21에 나타난 일부 step(들)은 상황 및/또는 설정 등에 따라 생략될 수도 있다.
상기 기지국은 단말과 데이터의 송수신을 수행하는 객체(object)를 총칭하는 의미일 수 있다. 예를 들어, 상기 기지국은 하나 이상의 송수신기, 하나 이상의 프로세서들 및 상기 하나 이상의 프로세서들에 의해 실행되는 동작들에 대한 지시(instruction)들을 저장하고, 상기 하나 이상의 프로세서들과 연결되는 하나 이상의 메모리들을 포함할 수 있다. 예를 들어, 상기 기지국은 하나 이상의 TP(Transmission Point)들, 하나 이상의 TRP(Transmission and Reception Point)들 등을 포함하는 개념일 수 있다. 또한, TP 및/또는 TRP는 기지국의 패널, 송수신 유닛(transmission and reception unit) 등을 포함하는 것일 수 있다. 또한, 상술한 바와 같이, TRP는 CORESET 그룹(또는 CORESET 풀)에 대한 정보(예: 인덱스, ID)에 따라 구분될 수 있다. 일례로, 하나의 단말이 다수의 TRP(또는 셀)들과 송수신을 수행하도록 설정된 경우, 이는 하나의 단말에 대해 다수의 CORESET 그룹(또는 CORESET 풀)들이 설정된 것을 의미할 수 있다. 이와 같은 CORESET 그룹(또는 CORESET 풀)에 대한 설정은 상위 계층 시그널링(예: RRC 시그널링 등)을 통해 수행될 수 있다.
기지국(BS)은 단말(UE)로 PTRS 설정 정보를 전송할 수 있다(S2110). 예를 들어, 상기 PTRS 설정 정보는 RRC 시그널링을 통해 전송될 수 있다.
예를 들어, 상기 PTRS 설정 정보는 PTRS-DownlinkConfig IE를 지칭할 수 있다. 상기 PTRS 설정 정보(예: PTRS-DownlinkConfig)는 PTRS의 주파수 밀도(frequency density)에 대한 정보(예: frequencyDensity 파라미터), 시간 밀도에 대한 정보(예: timeDensity 파라미터), epre-Ratio 파라미터, 자원 요소 오프셋 파라미터(예: (resourceElementOffset) 등을 포함할 수 있다. 예를 들어, 상기 PTRS의 주파수 밀도에 대한 정보(즉, 주파수 밀도 파라미터)는 PTRS의 주파수 밀도 결정을 위한 대역폭의 임계값들(예: 제1 임계 값, 제2 임계 값)을 포함할 수 있다. 일례로, M-TRP 전송을 고려하여, 상기 제1 임계 값 및 상기 제 2 임계 값은 각각 복수 개의 값으로 설정될 수도 있다. 다시 말해, 각 TRP 별로 PTRS의 주파수 밀도 결정을 위한 임계값들이 다르게 설정될 수 있다.
예를 들어, 상술한 S2110 단계의 기지국(도 22 내지 도 26의 100/200)이 PTRS 설정 정보를 전송하는 동작은 이하 설명될 도 22 내지 도 26의 장치에 의해 구현될 수 있다. 예를 들어, 도 23을 참고하면, 하나 이상의 프로세서 102는 상기 PTRS 설정 정보를 전송하도록 하나 이상의 트랜시버 106 및/또는 하나 이상의 메모리 104 등을 제어할 수 있으며, 하나 이상의 트랜시버 106은 상기 PTRS 설정 정보를 단말로 전송할 수 있다.
기지국은 단말에게 하향링크 제어 정보(Downlink Control Information, DCI)를 전송할 수 있다(S2120). 상기 DCI는 제어 채널 (예: PDCCH)를 통해 전송될 수 있다.
상기 DCI는 i) 전송 설정 지시(transmission configuration indication, TCI) 필드, ii) 안테나 포트(antenna port) 필드 또는 iii) 주파수 자원 할당(assignment) 필드 중 적어도 하나를 포함할 수 있다.
예를 들어, 상기 TCI 필드에 기반하여 하나 이상의 TCI state와 대응되는 코드 포인트(code point)가 지시될 수 있다. 일례로, 복수의 TCI state들(예: TCI state 1 및 TCI state 2)이 매핑 된 코드 포인트가 상기 DCI의 TCI 필드에 기반하여 설정/지시될 수 있다.
예를 들어, 상기 안테나 포트 필드에 기반하여 동일한 CDM 그룹의 DMRS 포트들이 지시될 수 있다.
예를 들어, 상기 주파수 자원 할당 필드에 기반하여 NCJT로 동작하는 M-TRP 전체에 대해 할당된 주파수 자원이 지시될 수 있다(예: FRA 방법 1). 상술한 제안 방법 및/또는 실시 예(예: 제안 1/ 제안 1-1/ 제안 1-2 등)들에 기반하여 할당된 전체 주파수 자원을 각 TRP 별로 나누어 할당할 수 있다. 또 다른 예로, 상기 주파수 자원 할당 필드에 기반하여 NCJT로 동작하는 M-TRP 중 특정 TRP에 대한 주파수 자원이 지시될 수 있다(예: FRA 방법 2). 상술한 제안 방법 및/또는 실시 예(예: 제안 1/ 제안 1-1/ 제안 1-2 등)들에 기반하여 특정 TRP 에 대해 할당된 주파수 자원을 기준으로 NCJT를 수행하는 다른 TRP에 대한 주파수 자원이 결정될 수 있다.
예를 들어, 상술한 S2120 단계의 기지국(도 22 내지 도 26의 100/200)이 하향링크 제어 정보를 전송하는 동작은 이하 설명될 도 22 내지 도 26의 장치에 의해 구현될 수 있다. 예를 들어, 도 23을 참고하면, 하나 이상의 프로세서 102는 상기 DCI를 전송하도록 하나 이상의 트랜시버 106 및/또는 하나 이상의 메모리 104 등을 제어할 수 있으며, 하나 이상의 트랜시버 106은 상기 DCI를 단말로 전송할 수 있다.
기지국은 단말로 PTRS를 전송할 수 있다(S2130). 상기 PTRS는 위상 잡음에 대한 보상을 위해 이용될 수 있다. 구체적으로, 기지국은 PTRS에 사용되는 시퀀스를 생성하고, 생성된 PTRS 시퀀스를 자원 요소(resource element)에 매핑하여 상기 PTRS를 전송할 수 있다. 기지국은 PTRS 시퀀스를 시간 자원, 주파수 자원 또는 시간 및 주파수 자원에 매핑하여 전송할 수 있다.
예를 들어, DCI의 주파수 자원 할당 필드에 기반하여 할당된 주파수 자원 영역이 FDM 방식으로 복수의 영역(예: 제 1 영역 및 제 2영역)들로 나뉘어 질 수 있다(구분될 수 있다). 상기 복수의 영역들 각각은 중첩되지 않을 수 있으며, 각 영역에 대해 TCI 필드를 통해 지시되는 TCI state들이 대응될 수 있다. 일례로, 상기 제1 영역은 제1 TCI state와 연관되고, 상기 제2 영역은 제2 TCI state에 연관될 수 있다. 주파수 영역에서 PTRS의 자원 요소 매핑은 각 TCI state에 대해 할당된 자원 블록들과 연관될 수 있다.
예를 들어, 상기 PTRS의 패턴은 주파수 영역의 밀도와 시간 영역의 밀도에 따라 결정될 수 있다. PTRS의 주파수 밀도는 주파수 영역에서 PTRS 사이의 간격(e.g. RB의 개수)를 의미할 수 있다. 시간 영역의 밀도(즉, PTRS의 시간 밀도)는 시간 영역에서 PTRS 사이의 간격(e.g. 심볼 개수)을 의미할 수 있다.
구체적인 예로, DCI에 기반하여 복수의 TCI state들이 지시되고 및 복수의 TCI state들의 각 TCI state와 연관된 주파수 영역의 자원이 중첩되지 않는 것에 기초하여, PTRS의 주파수 밀도는 각 TCI state와 연관된 자원 블록(resource block)들의 수에 의해 결정될 수 있다. 상기 PTRS의 주파수 밀도에 대한 정보를 통해 설정되는 임계 값들(예: 제1 임계 값, 제2 임계 값) 중 적어도 하나와 각 TCI state와 연관된 자원 블록들의 수를 비교하여 PTRS의 주파수 밀도가 결정될 수 있다.
예를 들어, 제1 TCI state와 연관된 자원 영역(예: 제1 영역)의 자원 블록들의 수에 의해 PTRS의 제1 주파수 밀도가 결정될 수 있고, 제2 TCI state와 연관된 자원 영역(예: 제2 영역)의 자원 블록들의 수에 의해 PTRS의 제2 주파수 밀도가 결정될 수 있다. 기지국은 상기 제1 영역에서 상기 제1 주파수 밀도에 기반하여 상기 PTRS를 자원 요소에 매핑 하고, 상기 제2 영역에서, 상기 제2 주파수 밀도에 기반하여 상기 PTRS를 자원 요소에 매핑 하여 전송할 수 있다.
예를 들어, 상술한 S2130 단계의 기지국(도 22 내지 도 26의 100/200)이 상기 PTRS를 단말에게 전송하는 동작은 이하 설명될 도 22 내지 도 26의 장치에 의해 구현될 수 있다. 예를 들어, 도 23을 참고하면, 하나 이상의 프로세서 102는 상기 PTRS를 전송하도록 하나 이상의 트랜시버 106 및/또는 하나 이상의 메모리 104 등을 제어할 수 있으며, 하나 이상의 트랜시버 106은 상기 PTRS를 단말에게 전송할 수 있다.
앞서 언급한 바와 같이, 상술한 Network side/UE 시그널링 및 동작(e.g. 제안 1/ 제안 1-1/ 제안 2/ 도 19/ 도 20/ 도 21 등)은 이하 설명될 장치(e.g. 도 22 내지 도 26)에 의해 구현될 수 있다. 예를 들어, Network side(e.g. TRP 1 / TRP 2)는 제 1 무선장치, UE는 제 2 무선장치 해당할 수 있고, 경우에 따라 그 반대의 경우도 고려될 수 있다. 예를 들어, 제1 장치(e.g. TRP 1) / 제2 장치(e.g. TRP 2)는 제 1 무선장치, UE는 제 2 무선장치 해당할 수 있고, 경우에 따라 그 반대의 경우도 고려될 수 있다.
예를 들어, 상술한 Network side/UE signaling 및 동작(e.g. 제안 1/ 제안 1-1/ 제안 2/ 도 19/ 도 20/ 도 21 등)은 도 22 내지 도 26의 하나 이상의 프로세서(e.g. 102, 202) 에 의해 처리될 수 있으며, 상술한 Network side/UE signaling 및 동작(e.g. 제안 1/ 제안 1-1/ 제안 2/ 도 19/ 도 20/ 도 21 등)은 도 22 내지 도 26의 적어도 하나의 프로세서(e.g. 102, 202)를 구동하기 위한 명령어/프로그램(e.g. instruction, executable code)형태로 하나 이상의 메모리(e.g. 104, 204) 에 저장될 수도 있다.
예를 들어, 본 명세서의 일 실시 예에 따른 하나 이상의 메모리들 및 상기 하나 이상의 메모리들과 기능적으로 연결되어 있는 하나 이상의 프로세서들을 포함하는 장치에 있어서, 상기 하나 이상의 프로세서들은 상기 장치가, PTRS 설정 정보를 수신하고, 하향링크 제어 정보(Downlink Control Information, DCI)를 수신하며, 및 상기 PTRS를 수신하도록 제어할 수 있다. 이 때, 상기 PTRS 설정 정보는 PTRS의 주파수 밀도(frequency density)에 대한 정보를 포함하고, 상기 DCI에 기반하여 복수의 TCI state들이 지시되며, 및 상기 복수의 TCI state들의 각 TCI state와 연관된 주파수 영역의 자원이 중첩되지 않는 것에 기초하여, 상기 PTRS의 주파수 밀도는 각 TCI state와 연관된 자원 블록(resource block)들의 수에 의해 결정될 수 있다.
예를 들어, 본 명세서의 일 실시 예에 따른 하나 이상의 명령어(instructions)을 저장하는 하나 이상의 비-일시적인(non-transitory) 컴퓨터 판독 가능 매체(computer-readable medium)에 있어서, 하나 이상의 프로세서에 의해 실행 가능한(executable) 상기 하나 이상의 명령어는, 단말(User equipment, UE)이 PTRS 설정 정보를 수신하고, 하향링크 제어 정보(Downlink Control Information, DCI)를 수신하며, 및 상기 PTRS를 수신하도록 지시하는 명령어를 포함할 수 있다. 이때, 상기 PTRS 설정 정보는 PTRS의 주파수 밀도(frequency density)에 대한 정보를 포함하고, 상기 DCI에 기반하여 복수의 TCI state들이 지시되며, 및 상기 복수의 TCI state들의 각 TCI state와 연관된 주파수 영역의 자원이 중첩되지 않는 것에 기초하여, 상기 PTRS의 주파수 밀도는 각 TCI state와 연관된 자원 블록(resource block)들의 수에 의해 결정될 수 있다.
본 발명이 적용되는 통신 시스템 예
이로 제한되는 것은 아니지만, 본 문서에 개시된 본 발명의 다양한 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 기기들간에 무선 통신/연결(예, 5G)을 필요로 하는 다양한 분야에 적용될 수 있다.
이하, 도면을 참조하여 보다 구체적으로 예시한다. 이하의 도면/설명에서 동일한 도면 부호는 다르게 기술하지 않는 한, 동일하거나 대응되는 하드웨어 블록, 소프트웨어 블록 또는 기능 블록을 예시할 수 있다.
도 22는 본 발명에 적용되는 통신 시스템(1)을 예시한다.
도 22를 참조하면, 본 발명에 적용되는 통신 시스템(1)은 무선 기기, 기지국 및 네트워크를 포함한다. 여기서, 무선 기기는 무선 접속 기술(예, 5G NR(New RAT), LTE(Long Term Evolution))을 이용하여 통신을 수행하는 기기를 의미하며, 통신/무선/5G 기기로 지칭될 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(100a), 차량(100b-1, 100b-2), XR(eXtended Reality) 기기(100c), 휴대 기기(Hand-held device)(100d), 가전(100e), IoT(Internet of Thing) 기기(100f), AI기기/서버(400)를 포함할 수 있다. 예를 들어, 차량은 무선 통신 기능이 구비된 차량, 자율 주행 차량, 차량간 통신을 수행할 수 있는 차량 등을 포함할 수 있다. 여기서, 차량은 UAV(Unmanned Aerial Vehicle)(예, 드론)를 포함할 수 있다. XR 기기는 AR(Augmented Reality)/VR(Virtual Reality)/MR(Mixed Reality) 기기를 포함하며, HMD(Head-Mounted Device), 차량에 구비된 HUD(Head-Up Display), 텔레비전, 스마트폰, 컴퓨터, 웨어러블 디바이스, 가전 기기, 디지털 사이니지(signage), 차량, 로봇 등의 형태로 구현될 수 있다. 휴대 기기는 스마트폰, 스마트패드, 웨어러블 기기(예, 스마트워치, 스마트글래스), 컴퓨터(예, 노트북 등) 등을 포함할 수 있다. 가전은 TV, 냉장고, 세탁기 등을 포함할 수 있다. IoT 기기는 센서, 스마트미터 등을 포함할 수 있다. 예를 들어, 기지국, 네트워크는 무선 기기로도 구현될 수 있으며, 특정 무선 기기(200a)는 다른 무선 기기에게 기지국/네트워크 노드로 동작할 수도 있다.
무선 기기(100a~100f)는 기지국(200)을 통해 네트워크(300)와 연결될 수 있다. 무선 기기(100a~100f)에는 AI(Artificial Intelligence) 기술이 적용될 수 있으며, 무선 기기(100a~100f)는 네트워크(300)를 통해 AI 서버(400)와 연결될 수 있다. 네트워크(300)는 3G 네트워크, 4G(예, LTE) 네트워크 또는 5G(예, NR) 네트워크 등을 이용하여 구성될 수 있다. 무선 기기(100a~100f)는 기지국(200)/네트워크(300)를 통해 서로 통신할 수도 있지만, 기지국/네트워크를 통하지 않고 직접 통신(e.g. 사이드링크 통신(sidelink communication))할 수도 있다. 예를 들어, 차량들(100b-1, 100b-2)은 직접 통신(e.g. V2V(Vehicle to Vehicle)/V2X(Vehicle to everything) communication)을 할 수 있다. 또한, IoT 기기(예, 센서)는 다른 IoT 기기(예, 센서) 또는 다른 무선 기기(100a~100f)와 직접 통신을 할 수 있다.
무선 기기(100a~100f)/기지국(200), 기지국(200)/기지국(200) 간에는 무선 통신/연결(150a, 150b, 150c)이 이뤄질 수 있다. 여기서, 무선 통신/연결은 상향/하향링크 통신(150a)과 사이드링크 통신(150b)(또는, D2D 통신), 기지국간 통신(150c)(e.g. relay, IAB(Integrated Access Backhaul)과 같은 다양한 무선 접속 기술(예, 5G NR)을 통해 이뤄질 수 있다. 무선 통신/연결(150a, 150b, 150c)을 통해 무선 기기와 기지국/무선 기기, 기지국과 기지국은 서로 무선 신호를 송신/수신할 수 있다. 예를 들어, 무선 통신/연결(150a, 150b, 150c)은 다양한 물리 채널을 통해 신호를 송신/수신할 수 있다. 이를 위해, 본 발명의 다양한 제안들에 기반하여, 무선 신호의 송신/수신을 위한 다양한 구성정보 설정 과정, 다양한 신호 처리 과정(예, 채널 인코딩/디코딩, 변조/복조, 자원 매핑/디매핑 등), 자원 할당 과정 등 중 적어도 일부가 수행될 수 있다.
본 발명이 적용되는 무선기기 예
도 23은 본 발명에 적용될 수 있는 무선 기기를 예시한다.
도 23을 참조하면, 제1 무선 기기(100)와 제2 무선 기기(200)는 다양한 무선 접속 기술(예, LTE, NR)을 통해 무선 신호를 송수신할 수 있다. 여기서, {제1 무선 기기(100), 제2 무선 기기(200)}은 도 22의 {무선 기기(100x), 기지국(200)} 및/또는 {무선 기기(100x), 무선 기기(100x)}에 대응할 수 있다.
제1 무선 기기(100)는 하나 이상의 프로세서(102) 및 하나 이상의 메모리(104)를 포함하며, 추가적으로 하나 이상의 송수신기(106) 및/또는 하나 이상의 안테나(108)을 더 포함할 수 있다. 프로세서(102)는 메모리(104) 및/또는 송수신기(106)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(102)는 메모리(104) 내의 정보를 처리하여 제1 정보/신호를 생성한 뒤, 송수신기(106)을 통해 제1 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(102)는 송수신기(106)를 통해 제2 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제2 정보/신호의 신호 처리로부터 얻은 정보를 메모리(104)에 저장할 수 있다. 메모리(104)는 프로세서(102)와 연결될 수 있고, 프로세서(102)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(104)는 프로세서(102)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(102)와 메모리(104)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(106)는 프로세서(102)와 연결될 수 있고, 하나 이상의 안테나(108)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(106)는 송신기 및/또는 수신기를 포함할 수 있다. 송수신기(106)는 RF(Radio Frequency) 유닛과 혼용될 수 있다. 본 발명에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.
제2 무선 기기(200)는 하나 이상의 프로세서(202), 하나 이상의 메모리(204)를 포함하며, 추가적으로 하나 이상의 송수신기(206) 및/또는 하나 이상의 안테나(208)를 더 포함할 수 있다. 프로세서(202)는 메모리(204) 및/또는 송수신기(206)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(202)는 메모리(204) 내의 정보를 처리하여 제3 정보/신호를 생성한 뒤, 송수신기(206)를 통해 제3 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(202)는 송수신기(206)를 통해 제4 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제4 정보/신호의 신호 처리로부터 얻은 정보를 메모리(204)에 저장할 수 있다. 메모리(204)는 프로세서(202)와 연결될 수 있고, 프로세서(202)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(204)는 프로세서(202)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(202)와 메모리(204)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(206)는 프로세서(202)와 연결될 수 있고, 하나 이상의 안테나(208)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(206)는 송신기 및/또는 수신기를 포함할 수 있다 송수신기(206)는 RF 유닛과 혼용될 수 있다. 본 발명에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.
이하, 무선 기기(100, 200)의 하드웨어 요소에 대해 보다 구체적으로 설명한다. 이로 제한되는 것은 아니지만, 하나 이상의 프로토콜 계층이 하나 이상의 프로세서(102, 202)에 의해 구현될 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 계층(예, PHY, MAC, RLC, PDCP, RRC, SDAP와 같은 기능적 계층)을 구현할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 하나 이상의 PDU(Protocol Data Unit) 및/또는 하나 이상의 SDU(Service Data Unit)를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 메시지, 제어정보, 데이터 또는 정보를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 기능, 절차, 제안 및/또는 방법에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 포함하는 신호(예, 베이스밴드 신호)를 생성하여, 하나 이상의 송수신기(106, 206)에게 제공할 수 있다. 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)로부터 신호(예, 베이스밴드 신호)를 수신할 수 있고, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 획득할 수 있다.
하나 이상의 프로세서(102, 202)는 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 또는 마이크로 컴퓨터로 지칭될 수 있다. 하나 이상의 프로세서(102, 202)는 하드웨어, 펌웨어, 소프트웨어, 또는 이들의 조합에 의해 구현될 수 있다. 일 예로, 하나 이상의 ASIC(Application Specific Integrated Circuit), 하나 이상의 DSP(Digital Signal Processor), 하나 이상의 DSPD(Digital Signal Processing Device), 하나 이상의 PLD(Programmable Logic Device) 또는 하나 이상의 FPGA(Field Programmable Gate Arrays)가 하나 이상의 프로세서(102, 202)에 포함될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있고, 펌웨어 또는 소프트웨어는 모듈, 절차, 기능 등을 포함하도록 구현될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 수행하도록 설정된 펌웨어 또는 소프트웨어는 하나 이상의 프로세서(102, 202)에 포함되거나, 하나 이상의 메모리(104, 204)에 저장되어 하나 이상의 프로세서(102, 202)에 의해 구동될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 코드, 명령어 및/또는 명령어의 집합 형태로 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있다.
하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 다양한 형태의 데이터, 신호, 메시지, 정보, 프로그램, 코드, 지시 및/또는 명령을 저장할 수 있다. 하나 이상의 메모리(104, 204)는 ROM, RAM, EPROM, 플래시 메모리, 하드 드라이브, 레지스터, 캐쉬 메모리, 컴퓨터 판독 저장 매체 및/또는 이들의 조합으로 구성될 수 있다. 하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)의 내부 및/또는 외부에 위치할 수 있다. 또한, 하나 이상의 메모리(104, 204)는 유선 또는 무선 연결과 같은 다양한 기술을 통해 하나 이상의 프로세서(102, 202)와 연결될 수 있다.
하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치에게 본 문서의 방법들 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 전송할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치로부터 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 수신할 수 있다. 예를 들어, 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 무선 신호를 송수신할 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치에게 사용자 데이터, 제어 정보 또는 무선 신호를 전송하도록 제어할 수 있다. 또한, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치로부터 사용자 데이터, 제어 정보 또는 무선 신호를 수신하도록 제어할 수 있다. 또한, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)와 연결될 수 있고, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)를 통해 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 송수신하도록 설정될 수 있다. 본 문서에서, 하나 이상의 안테나는 복수의 물리 안테나이거나, 복수의 논리 안테나(예, 안테나 포트)일 수 있다. 하나 이상의 송수신기(106, 206)는 수신된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 하나 이상의 프로세서(102, 202)를 이용하여 처리하기 위해, 수신된 무선 신호/채널 등을 RF 밴드 신호에서 베이스밴드 신호로 변환(Convert)할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)를 이용하여 처리된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 베이스밴드 신호에서 RF 밴드 신호로 변환할 수 있다. 이를 위하여, 하나 이상의 송수신기(106, 206)는 (아날로그) 오실레이터 및/또는 필터를 포함할 수 있다.
본 발명이 적용되는 신호 처리 회로 예
도 24은 전송 신호를 위한 신호 처리 회로를 예시한다.
도 24을 참조하면, 신호 처리 회로(1000)는 스크램블러(1010), 변조기(1020), 레이어 매퍼(1030), 프리코더(1040), 자원 매퍼(1050), 신호 생성기(1060)를 포함할 수 있다. 이로 제한되는 것은 아니지만, 도 24의 동작/기능은 도 23의 프로세서(102, 202) 및/또는 송수신기(106, 206)에서 수행될 수 있다. 도 24의 하드웨어 요소는 도 23의 프로세서(102, 202) 및/또는 송수신기(106, 206)에서 구현될 수 있다. 예를 들어, 블록 1010~1060은 도 23의 프로세서(102, 202)에서 구현될 수 있다. 또한, 블록 1010~1050은 도 23의 프로세서(102, 202)에서 구현되고, 블록 1060은 도 23의 송수신기(106, 206)에서 구현될 수 있다.
코드워드는 도 24의 신호 처리 회로(1000)를 거쳐 무선 신호로 변환될 수 있다. 여기서, 코드워드는 정보블록의 부호화된 비트 시퀀스이다. 정보블록은 전송블록(예, UL-SCH 전송블록, DL-SCH 전송블록)을 포함할 수 있다. 무선 신호는 다양한 물리 채널(예, PUSCH, PDSCH)을 통해 전송될 수 있다.
구체적으로, 코드워드는 스크램블러(1010)에 의해 스크램블된 비트 시퀀스로 변환될 수 있다. 스크램블에 사용되는 스크램블 시퀀스는 초기화 값에 기반하여 생성되며, 초기화 값은 무선 기기의 ID 정보 등이 포함될 수 있다. 스크램블된 비트 시퀀스는 변조기(1020)에 의해 변조 심볼 시퀀스로 변조될 수 있다. 변조 방식은 pi/2-BPSK(pi/2-Binary Phase Shift Keying), m-PSK(m-Phase Shift Keying), m-QAM(m-Quadrature Amplitude Modulation) 등을 포함할 수 있다. 복소 변조 심볼 시퀀스는 레이어 매퍼(1030)에 의해 하나 이상의 전송 레이어로 매핑될 수 있다. 각 전송 레이어의 변조 심볼들은 프리코더(1040)에 의해 해당 안테나 포트(들)로 매핑될 수 있다(프리코딩). 프리코더(1040)의 출력 z는 레이어 매퍼(1030)의 출력 y를 N*M의 프리코딩 행렬 W와 곱해 얻을 수 있다. 여기서, N은 안테나 포트의 개수, M은 전송 레이어의 개수이다. 여기서, 프리코더(1040)는 복소 변조 심볼들에 대한 트랜스폼(transform) 프리코딩(예, DFT 변환)을 수행한 이후에 프리코딩을 수행할 수 있다. 또한, 프리코더(1040)는 트랜스폼 프리코딩을 수행하지 않고 프리코딩을 수행할 수 있다.
자원 매퍼(1050)는 각 안테나 포트의 변조 심볼들을 시간-주파수 자원에 매핑할 수 있다. 시간-주파수 자원은 시간 도메인에서 복수의 심볼(예, CP-OFDMA 심볼, DFT-s-OFDMA 심볼)을 포함하고, 주파수 도메인에서 복수의 부반송파를 포함할 수 있다. 신호 생성기(1060)는 매핑된 변조 심볼들로부터 무선 신호를 생성하며, 생성된 무선 신호는 각 안테나를 통해 다른 기기로 전송될 수 있다. 이를 위해, 신호 생성기(1060)는 IFFT(Inverse Fast Fourier Transform) 모듈 및 CP(Cyclic Prefix) 삽입기, DAC(Digital-to-Analog Converter), 주파수 상향 변환기(frequency uplink converter) 등을 포함할 수 있다.
무선 기기에서 수신 신호를 위한 신호 처리 과정은 도 24의 신호 처리 과정(1010~1060)의 역으로 구성될 수 있다. 예를 들어, 무선 기기(예, 도 23의 100, 200)는 안테나 포트/송수신기를 통해 외부로부터 무선 신호를 수신할 수 있다. 수신된 무선 신호는 신호 복원기를 통해 베이스밴드 신호로 변환될 수 있다. 이를 위해, 신호 복원기는 주파수 하향 변환기(frequency downlink converter), ADC(analog-to-digital converter), CP 제거기, FFT(Fast Fourier Transform) 모듈을 포함할 수 있다. 이후, 베이스밴드 신호는 자원 디-매퍼 과정, 포스트코딩(postcoding) 과정, 복조 과정 및 디-스크램블 과정을 거쳐 코드워드로 복원될 수 있다. 코드워드는 복호(decoding)를 거쳐 원래의 정보블록으로 복원될 수 있다. 따라서, 수신 신호를 위한 신호 처리 회로(미도시)는 신호 복원기, 자원 디-매퍼, 포스트코더, 복조기, 디-스크램블러 및 복호기를 포함할 수 있다.
본 발명이 적용되는 무선 기기 활용 예
도 25은 본 발명에 적용되는 무선 기기의 다른 예를 나타낸다. 무선 기기는 사용-예/서비스에 따라 다양한 형태로 구현될 수 있다(도 22 참조).
도 25을 참조하면, 무선 기기(100, 200)는 도 23의 무선 기기(100,200)에 대응하며, 다양한 요소(element), 성분(component), 유닛/부(unit), 및/또는 모듈(module)로 구성될 수 있다. 예를 들어, 무선 기기(100, 200)는 통신부(110), 제어부(120), 메모리부(130) 및 추가 요소(140)를 포함할 수 있다. 통신부는 통신 회로(112) 및 송수신기(들)(114)을 포함할 수 있다. 예를 들어, 통신 회로(112)는 도 23의 하나 이상의 프로세서(102,202) 및/또는 하나 이상의 메모리(104,204) 를 포함할 수 있다. 예를 들어, 송수신기(들)(114)는 도 23의 하나 이상의 송수신기(106,206) 및/또는 하나 이상의 안테나(108,208)을 포함할 수 있다. 제어부(120)는 통신부(110), 메모리부(130) 및 추가 요소(140)와 전기적으로 연결되며 무선 기기의 제반 동작을 제어한다. 예를 들어, 제어부(120)는 메모리부(130)에 저장된 프로그램/코드/명령/정보에 기반하여 무선 기기의 전기적/기계적 동작을 제어할 수 있다. 또한, 제어부(120)는 메모리부(130)에 저장된 정보를 통신부(110)을 통해 외부(예, 다른 통신 기기)로 무선/유선 인터페이스를 통해 전송하거나, 통신부(110)를 통해 외부(예, 다른 통신 기기)로부터 무선/유선 인터페이스를 통해 수신된 정보를 메모리부(130)에 저장할 수 있다.
추가 요소(140)는 무선 기기의 종류에 따라 다양하게 구성될 수 있다. 예를 들어, 추가 요소(140)는 파워 유닛/배터리, 입출력부(I/O unit), 구동부 및 컴퓨팅부 중 적어도 하나를 포함할 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(도 22, 100a), 차량(도 22, 100b-1, 100b-2), XR 기기(도 22, 100c), 휴대 기기(도 22, 100d), 가전(도 22, 100e), IoT 기기(도 22, 100f), 디지털 방송용 단말, 홀로그램 장치, 공공 안전 장치, MTC 장치, 의료 장치, 핀테크 장치(또는 금융 장치), 보안 장치, 기후/환경 장치, AI 서버/기기(도 22, 400), 기지국(도 22, 200), 네트워크 노드 등의 형태로 구현될 수 있다. 무선 기기는 사용-예/서비스에 따라 이동 가능하거나 고정된 장소에서 사용될 수 있다.
도 25에서 무선 기기(100, 200) 내의 다양한 요소, 성분, 유닛/부, 및/또는 모듈은 전체가 유선 인터페이스를 통해 상호 연결되거나, 적어도 일부가 통신부(110)를 통해 무선으로 연결될 수 있다. 예를 들어, 무선 기기(100, 200) 내에서 제어부(120)와 통신부(110)는 유선으로 연결되며, 제어부(120)와 제1 유닛(예, 130, 140)은 통신부(110)를 통해 무선으로 연결될 수 있다. 또한, 무선 기기(100, 200) 내의 각 요소, 성분, 유닛/부, 및/또는 모듈은 하나 이상의 요소를 더 포함할 수 있다. 예를 들어, 제어부(120)는 하나 이상의 프로세서 집합으로 구성될 수 있다. 예를 들어, 제어부(120)는 통신 제어 프로세서, 어플리케이션 프로세서(Application processor), ECU(Electronic Control Unit), 그래픽 처리 프로세서, 메모리 제어 프로세서 등의 집합으로 구성될 수 있다. 다른 예로, 메모리부(130)는 RAM(Random Access Memory), DRAM(Dynamic RAM), ROM(Read Only Memory), 플래시 메모리(flash memory), 휘발성 메모리(volatile memory), 비-휘발성 메모리(non-volatile memory) 및/또는 이들의 조합으로 구성될 수 있다.
본 발명이 적용되는 휴대 기기 예
도 26는 본 발명에 적용되는 휴대 기기를 예시한다. 휴대 기기는 스마트폰, 스마트패드, 웨어러블 기기(예, 스마트워치, 스마트글래스), 휴대용 컴퓨터(예, 노트북 등)을 포함할 수 있다. 휴대 기기는 MS(Mobile Station), UT(user terminal), MSS(Mobile Subscriber Station), SS(Subscriber Station), AMS(Advanced Mobile Station) 또는 WT(Wireless terminal)로 지칭될 수 있다.
도 26를 참조하면, 휴대 기기(100)는 안테나부(108), 통신부(110), 제어부(120), 메모리부(130), 전원공급부(140a), 인터페이스부(140b) 및 입출력부(140c)를 포함할 수 있다. 안테나부(108)는 통신부(110)의 일부로 구성될 수 있다. 블록 110~130/140a~140c는 각각 도 25의 블록 110~130/140에 대응한다.
통신부(110)는 다른 무선 기기, 기지국들과 신호(예, 데이터, 제어 신호 등)를 송수신할 수 있다. 제어부(120)는 휴대 기기(100)의 구성 요소들을 제어하여 다양한 동작을 수행할 수 있다. 제어부(120)는 AP(Application Processor)를 포함할 수 있다. 메모리부(130)는 휴대 기기(100)의 구동에 필요한 데이터/파라미터/프로그램/코드/명령을 저장할 수 있다. 또한, 메모리부(130)는 입/출력되는 데이터/정보 등을 저장할 수 있다. 전원공급부(140a)는 휴대 기기(100)에게 전원을 공급하며, 유/무선 충전 회로, 배터리 등을 포함할 수 있다. 인터페이스부(140b)는 휴대 기기(100)와 다른 외부 기기의 연결을 지원할 수 있다. 인터페이스부(140b)는 외부 기기와의 연결을 위한 다양한 포트(예, 오디오 입/출력 포트, 비디오 입/출력 포트)를 포함할 수 있다. 입출력부(140c)는 영상 정보/신호, 오디오 정보/신호, 데이터, 및/또는 사용자로부터 입력되는 정보를 입력 받거나 출력할 수 있다. 입출력부(140c)는 카메라, 마이크로폰, 사용자 입력부, 디스플레이부(140d), 스피커 및/또는 햅틱 모듈 등을 포함할 수 있다.
일 예로, 데이터 통신의 경우, 입출력부(140c)는 사용자로부터 입력된 정보/신호(예, 터치, 문자, 음성, 이미지, 비디오)를 획득하며, 획득된 정보/신호는 메모리부(130)에 저장될 수 있다. 통신부(110)는 메모리에 저장된 정보/신호를 무선 신호로 변환하고, 변환된 무선 신호를 다른 무선 기기에게 직접 전송하거나 기지국에게 전송할 수 있다. 또한, 통신부(110)는 다른 무선 기기 또는 기지국으로부터 무선 신호를 수신한 뒤, 수신된 무선 신호를 원래의 정보/신호로 복원할 수 있다. 복원된 정보/신호는 메모리부(130)에 저장된 뒤, 입출력부(140c)를 통해 다양한 형태(예, 문자, 음성, 이미지, 비디오, 헵틱)로 출력될 수 있다.
여기서, 본 명세서의 무선 기기(100, 200)에서 구현되는 무선 통신 기술은 LTE, NR 및 6G뿐만 아니라 저전력 통신을 위한 Narrowband Internet of Things를 포함할 수 있다. 이때, 예를 들어 NB-IoT 기술은 LPWAN(Low Power Wide Area Network) 기술의 일례일 수 있고, LTE Cat NB1 및/또는 LTE Cat NB2 등의 규격으로 구현될 수 있으며, 상술한 명칭에 한정되는 것은 아니다. 추가적으로 또는 대체적으로, 본 명세서의 무선 기기(100, 200)에서 구현되는 무선 통신 기술은 LTE-M 기술을 기반으로 통신을 수행할 수 있다. 이때, 일 예로, LTE-M 기술은 LPWAN 기술의 일례일 수 있고, eMTC(enhanced Machine Type Communication) 등의 다양한 명칭으로 불릴 수 있다. 예를 들어, LTE-M 기술은 1) LTE CAT 0, 2) LTE Cat M1, 3) LTE Cat M2, 4) LTE non-BL(non-Bandwidth Limited), 5) LTE-MTC, 6) LTE Machine Type Communication, 및/또는 7) LTE M 등의 다양한 규격 중 적어도 어느 하나로 구현될 수 있으며 상술한 명칭에 한정되는 것은 아니다. 추가적으로 또는 대체적으로, 본 명세서의 무선 기기(100, 200)에서 구현되는 무선 통신 기술은 저전력 통신을 고려한 지그비(ZigBee), 블루투스(Bluetooth) 및 저전력 광역 통신망(Low Power Wide Area Network, LPWAN) 중 적어도 어느 하나를 포함할 수 있으며, 상술한 명칭에 한정되는 것은 아니다. 일 예로 ZigBee 기술은 IEEE 802.15.4 등의 다양한 규격을 기반으로 소형/저-파워 디지털 통신에 관련된 PAN(personal area networks)을 생성할 수 있으며, 다양한 명칭으로 불릴 수 있다.
이상에서 설명된 실시 예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시 예를 구성하는 것도 가능하다. 본 발명의 실시 예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시 예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시 예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 발명에 따른 실시 예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시 예는 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시 예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리는 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 발명은 본 발명의 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 통상의 기술자에게 자명하다. 따라서, 상술한 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니 되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
본 발명의 무선 통신 시스템에서 PTRS를 송수신하는 방법은 3GPP LTE/LTE-A 시스템, 5G 시스템(New RAT 시스템)에 적용되는 예를 중심으로 설명하였으나, 이외에도 다양한 무선 통신 시스템에 적용하는 것이 가능하다.

Claims (20)

  1. 무선 통신 시스템에서 단말(User equipment, UE)이 위상 추적 참조 신호(Phase Tracking Reference Signal, PTRS)를 수신하는 방법에 있어서,
    물리 하향링크 공유 채널(Physical Downlink Shared Channel, PDSCH)에 대한 설정 정보를 수신하는 단계,
    상기 설정 정보는 복수의 TCI(transmission configuration indication) state들의 설정(configuration)들을 포함하고,
    각 TCI state는 참조 신호(reference signal)와 상기 PDSCH 간의 quasi-co-location(QCL) 관계(relationship)를 설정하기 위한 파라미터들을 포함하며;
    PTRS 설정 정보를 수신하는 단계,
    상기 PTRS 설정 정보는 PTRS의 주파수 밀도(frequency density)에 대한 정보를 포함하고, 상기 PTRS의 주파수 밀도에 대한 정보는 제1 임계 값 및 제2 임계 값을 포함하며;
    활성화 명령(activation command)을 수신하는 단계,
    상기 활성화 명령에 기반하여 상기 복수의 TCI state들 중 하나 이상의 TCI state들이 TCI 필드의 코드포인트(codepoint)들에 매핑되며;
    상기 PDSCH의 스케줄링을 위한 하향링크 제어 정보(Downlink Control Information, DCI)를 수신하는 단계, 상기 DCI는 상기 TCI 필드를 포함하고; 및
    상기 DCI에 기반하여, 상기 PDSCH와 상기 PTRS를 수신하는 단계를 포함하되,
    상기 PDSCH와 관련된 물리 자원 블록 번들링(Physical Resource Block bundling, PRB bundling)을 위해, 프리코딩 단위(precoding granularity)가 광대역(wideband), 2 및 4 중 하나로 결정되며,
    상기 DCI는 단일 DCI(single DCI)이고, 상기 TCI 필드는 2개의 TCI state들이 매핑된 코드포인트를 나타내며,
    상기 단일 DCI에 기초하여 할당된 주파수 자원 영역 내에서 제1 TCI state와 연관된 주파수 영역 자원이 제2 TCI state와 연관된 주파수 영역 자원과 중첩되지 않는 것에 기초하여:
    i) 상기 PTRS의 주파수 밀도는 상기 제1 TCI state 및 상기 제2 TCI state 각각에 대해 결정되며,
    ii) 상기 PTRS의 주파수 밀도는 (i) 상기 단일 DCI에 기초하여 할당된 주파수 자원 영역 내에서 상기 제1 TCI state 및 상기 제2 TCI state 각각과 연관된 PRB들의 수와 (ii) 상기 제1 임계 값 또는 상기 제2 임계 값 중 적어도 하나를 비교하여 결정되고,
    iii) 상기 프리코딩 단위(precoding granularity)가 광대역(wideband)으로 결정된 것에 기초하여, 상기 제1 TCI state와 관련된 제1 PRB들은
    Figure 112023041399027-pct00116
    개의 PRB들이고, X는 상기 할당된 주파수 자원 영역 내에서 전체 PRB들의 개수이고, 상기 제2 TCI state와 관련된 제2 PRB들은 상기 할당된 주파수 자원 영역 내에서 상기 제1 PRB들을 제외한 나머지 PRB들이며,
    iv) 상기 프리코딩 단위(precoding granularity)가 2 또는 4로 결정된 것에 기초하여, 상기 제1 TCI state와 관련된 제1 PRB들은 상기 할당된 주파수 자원 영역 내의 짝수 PRG들(even Precoding Resource block Groups, even PRGs)을 포함하고, 상기 제2 TCI state와 관련된 상기 제2 PRB들은 상기 할당된 주파수 자원 영역 내의 홀수 PRG들(odd PRGs)을 포함하는 방법.
  2. 제 1항에 있어서,
    상기 제1 임계 값 및 상기 제 2 임계 값은 각각 복수 개의 값으로 설정되는 것을 특징으로 하는 방법.
  3. 제 1항에 있어서,
    상기 DCI는 주파수 자원 할당(frequency resource assignment) 필드를 포함하고,
    상기 제1 TCI state 및 상기 제2 TCI state는 상기 주파수 자원 할당 필드에 기반하여 할당된 상기 주파수 자원 영역에 매핑되는 것을 특징으로 하는 방법.
  4. 삭제
  5. 삭제
  6. 삭제
  7. 제 1항에 있어서,
    상기 제1 PRB들의 수에 기초하여 상기 PTRS의 제1 주파수 밀도가 결정되고,
    상기 제2 PRB들의 수에 기초하여 상기 PTRS의 제2 주파수 밀도가 결정되는 것을 특징으로 하는 방법.
  8. 제 7항에 있어서,
    상기 제1 PRB들에서, 상기 PTRS는 상기 제1 주파수 밀도에 기반하여 자원 요소에 매핑되고,
    상기 제2 PRB들에서, 상기 PTRS는 상기 제2 주파수 밀도에 기반하여 자원 요소에 매핑되는 것을 특징으로 하는 방법.
  9. 제 1항에 있어서,
    상기 DCI는 안테나 포트 필드를 포함하고, 및
    상기 안테나 포트 필드에 기반하여 동일한 CDM 그룹의 DM-RS 포트들이 지시되는 것을 특징으로 하는 방법.
  10. 무선 통신 시스템에서 위상 추적 참조 신호(Phase Tracking Reference Signal, PTRS)를 수신하는 단말(User equipment, UE)에 있어서, 상기 단말은,
    하나 이상의 송수신기;
    하나 이상의 프로세서들; 및
    상기 하나 이상의 프로세서들에 의해 실행되는 동작들에 대한 지시(instruction)들을 저장하고, 상기 하나 이상의 프로세서들과 연결되는 하나 이상의 메모리들을 포함하며,
    상기 동작들은,
    물리 하향링크 공유 채널(Physical Downlink Shared Channel, PDSCH)에 대한 설정 정보를 수신하는 단계,
    상기 설정 정보는 복수의 TCI(transmission configuration indication) state들의 설정(configuration)들을 포함하고,
    각 TCI state는 참조 신호(reference signal)와 상기 PDSCH 간의 quasi-co-location(QCL) 관계(relationship)를 설정하기 위한 파라미터들을 포함하며;
    PTRS 설정 정보를 수신하는 단계,
    상기 PTRS 설정 정보는 PTRS의 주파수 밀도(frequency density)에 대한 정보를 포함하고, 상기 PTRS의 주파수 밀도에 대한 정보는 제1 임계 값 및 제2 임계 값을 포함하며;
    활성화 명령(activation command)을 수신하는 단계,
    상기 활성화 명령에 기반하여 상기 복수의 TCI state들 중 하나 이상의 TCI state들이 TCI 필드의 코드포인트(codepoint)들에 매핑되며;
    상기 PDSCH의 스케줄링을 위한 하향링크 제어 정보(Downlink Control Information, DCI)를 수신하는 단계, 상기 DCI는 상기 TCI 필드를 포함하고; 및
    상기 DCI에 기반하여, 상기 PDSCH와 상기 PTRS를 수신하는 단계를 포함하되,
    상기 PDSCH와 관련된 물리 자원 블록 번들링(Physical Resource Block bundling, PRB bundling)을 위해, 프리코딩 단위(precoding granularity)가 광대역(wideband), 2 및 4 중 하나로 결정되며,
    상기 DCI는 단일 DCI(single DCI)이고, 상기 TCI 필드는 2개의 TCI state들이 매핑된 코드포인트를 나타내며,
    상기 단일 DCI에 기초하여 할당된 주파수 자원 영역 내에서 제1 TCI state와 연관된 주파수 영역 자원이 제2 TCI state와 연관된 주파수 영역 자원과 중첩되지 않는 것에 기초하여:
    i) 상기 PTRS의 주파수 밀도는 상기 제1 TCI state 및 상기 제2 TCI state 각각에 대해 결정되며,
    ii) 상기 PTRS의 주파수 밀도는 (i) 상기 단일 DCI에 기초하여 할당된 주파수 자원 영역 내에서 상기 제1 TCI state 및 상기 제2 TCI state 각각과 연관된 PRB들의 수와 (ii) 상기 제1 임계 값 또는 상기 제2 임계 값 중 적어도 하나를 비교하여 결정되고,
    iii) 상기 프리코딩 단위(precoding granularity)가 광대역(wideband)으로 결정된 것에 기초하여, 상기 제1 TCI state와 관련된 제1 PRB들은
    Figure 112023041399027-pct00117
    개의 PRB들이고, X는 상기 할당된 주파수 자원 영역 내에서 전체 PRB들의 개수이고, 상기 제2 TCI state와 관련된 제2 PRB들은 상기 할당된 주파수 자원 영역 내에서 상기 제1 PRB들을 제외한 나머지 PRB들이며,
    iv) 상기 프리코딩 단위(precoding granularity)가 2 또는 4로 결정된 것에 기초하여, 상기 제1 TCI state와 관련된 제1 PRB들은 상기 할당된 주파수 자원 영역 내의 짝수 PRG들(even Precoding Resource block Groups, even PRGs)을 포함하고, 상기 제2 TCI state와 관련된 상기 제2 PRB들은 상기 할당된 주파수 자원 영역 내의 홀수 PRG들(odd PRGs)을 포함하는 단말.
  11. 제 10항에 있어서,
    상기 DCI는 주파수 자원 할당(frequency resource assignment) 필드를 포함하고, 및
    상기 제1 TCI state 및 상기 제2 TCI state는 상기 주파수 자원 할당 필드에 기반하여 할당된 상기 주파수 자원 영역에 매핑되는 것을 특징으로 하는 단말.
  12. 삭제
  13. 제 10항에 있어서,
    상기 제1 PRB들의 수에 기초하여 상기 PTRS의 제1 주파수 밀도가 결정되고,
    상기 제2 PRB들의 수에 기초하여 상기 PTRS의 제2 주파수 밀도가 결정되는 것을 특징으로 하는 단말.
  14. 제 13항에 있어서,
    상기 제1 PRB들에서, 상기 PTRS는 상기 제1 주파수 밀도에 기반하여 자원 요소에 매핑되고,
    상기 제2 PRB들에서, 상기 PTRS는 상기 제2 주파수 밀도에 기반하여 자원 요소에 매핑되는 것을 특징으로 하는 단말.
  15. 무선 통신 시스템에서 기지국(Base station, BS)이 위상 추적 참조 신호(Phase Tracking Reference Signal, PTRS)를 전송하는 방법에 있어서,
    단말로, 물리 하향링크 공유 채널(Physical Downlink Shared Channel, PDSCH)에 대한 설정 정보를 전송하는 단계,
    상기 설정 정보는 복수의 TCI(transmission configuration indication) state들의 설정(configuration)들을 포함하고,
    각 TCI state는 참조 신호(reference signal)와 상기 PDSCH 간의 quasi-co-location(QCL) 관계(relationship)를 설정하기 위한 파라미터들을 포함하며;
    상기 단말로, PTRS 설정 정보를 전송하는 단계,
    상기 PTRS 설정 정보는 PTRS의 주파수 밀도(frequency density)에 대한 정보를 포함하고, 상기 PTRS의 주파수 밀도에 대한 정보는 제1 임계 값 및 제2 임계 값을 포함하며;
    활성화 명령(activation command)을 전송하는 단계,
    상기 활성화 명령에 기반하여 상기 복수의 TCI state들 중 하나 이상의 TCI state들이 TCI 필드의 코드포인트(codepoint)들에 매핑되며;
    상기 단말로, 상기 PDSCH의 스케줄링을 위한 하향링크 제어 정보(Downlink Control Information, DCI)를 전송하는 단계, 상기 DCI는 상기 TCI 필드를 포함하고; 및
    상기 단말로, 상기 DCI에 기반하여 상기 PDSCH와 상기 PTRS를 전송하는 단계를 포함하되,
    상기 PDSCH와 관련된 물리 자원 블록 번들링(Physical Resource Block bundling, PRB bundling)을 위해, 프리코딩 단위(precoding granularity)가 광대역(wideband), 2 및 4 중 하나로 결정되며,
    상기 DCI는 단일 DCI(single DCI)이고, 상기 TCI 필드는 2개의 TCI state들이 매핑된 코드포인트를 나타내며,
    상기 단일 DCI에 기초하여 할당된 주파수 자원 영역 내에서 제1 TCI state와 연관된 주파수 영역 자원이 제2 TCI state와 연관된 주파수 영역 자원과 중첩되지 않는 것에 기초하여:
    i) 상기 PTRS의 주파수 밀도는 상기 제1 TCI state 및 상기 제2 TCI state 각각에 대해 결정되며,
    ii) 상기 PTRS의 주파수 밀도는 (i) 상기 단일 DCI에 기초하여 할당된 주파수 자원 영역 내에서 상기 제1 TCI state 및 상기 제2 TCI state 각각과 연관된 PRB들의 수와 (ii) 상기 제1 임계 값 또는 상기 제2 임계 값 중 적어도 하나를 비교하여 결정되고,
    iii) 상기 프리코딩 단위(precoding granularity)가 광대역(wideband)으로 결정된 것에 기초하여, 상기 제1 TCI state와 관련된 제1 PRB들은
    Figure 112023041399027-pct00118
    개의 PRB들이고, X는 상기 할당된 주파수 자원 영역 내에서 전체 PRB들의 개수이고, 상기 제2 TCI state와 관련된 제2 PRB들은 상기 할당된 주파수 자원 영역 내에서 상기 제1 PRB들을 제외한 나머지 PRB들이며,
    iv) 상기 프리코딩 단위(precoding granularity)가 2 또는 4로 결정된 것에 기초하여, 상기 제1 TCI state와 관련된 제1 PRB들은 상기 할당된 주파수 자원 영역 내의 짝수 PRG들(even Precoding Resource block Groups, even PRGs)을 포함하고, 상기 제2 TCI state와 관련된 상기 제2 PRB들은 상기 할당된 주파수 자원 영역 내의 홀수 PRG들(odd PRGs)을 포함하는 방법.
  16. 삭제
  17. 삭제
  18. 삭제
  19. 삭제
  20. 삭제
KR1020227005376A 2019-10-03 2020-10-05 무선 통신 시스템에서 위상 추적 참조 신호의 송수신 방법 및 이에 대한 장치 KR102553638B1 (ko)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
KR1020190122731 2019-10-03
KR20190122731 2019-10-03
KR1020190143014 2019-11-08
KR20190143014 2019-11-08
PCT/KR2020/013501 WO2021066622A1 (ko) 2019-10-03 2020-10-05 무선 통신 시스템에서 위상 추적 참조 신호의 송수신 방법 및 이에 대한 장치

Publications (2)

Publication Number Publication Date
KR20220039751A KR20220039751A (ko) 2022-03-29
KR102553638B1 true KR102553638B1 (ko) 2023-07-11

Family

ID=75338453

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020227005376A KR102553638B1 (ko) 2019-10-03 2020-10-05 무선 통신 시스템에서 위상 추적 참조 신호의 송수신 방법 및 이에 대한 장치

Country Status (6)

Country Link
US (1) US11638279B2 (ko)
EP (1) EP4030670B1 (ko)
JP (1) JP7335436B2 (ko)
KR (1) KR102553638B1 (ko)
CN (1) CN114503496B (ko)
WO (1) WO2021066622A1 (ko)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112312547A (zh) * 2019-07-26 2021-02-02 大唐移动通信设备有限公司 资源分配、确定方法及装置
EP4055752A1 (en) 2019-11-08 2022-09-14 Telefonaktiebolaget Lm Ericsson (Publ) Determining phase tracking reference signals in multiple transmission points
KR20220049988A (ko) * 2020-10-15 2022-04-22 삼성전자주식회사 무선 통신 시스템에서 고속 이동 단말을 위한 신호 전송 방법 및 장치
US11824803B2 (en) * 2021-03-25 2023-11-21 Telefonaktiebolaget Lm Ericsson (Publ) Phase tracking reference signaling for a wireless communication network
CN115623509A (zh) * 2021-07-16 2023-01-17 维沃移动通信有限公司 Tci状态确定方法、装置、终端及网络侧设备
WO2023176386A1 (en) * 2022-03-15 2023-09-21 Sharp Kabushiki Kaisha Terminal devices and communication methods
WO2024020718A1 (en) * 2022-07-25 2024-02-01 Zte Corporation Reference signals with different resource densities
CN117812718A (zh) * 2022-09-22 2024-04-02 维沃移动通信有限公司 资源处理方法、装置及通信设备
US20240107519A1 (en) * 2022-09-22 2024-03-28 Qualcomm Incorporated Per-panel ptrs density for ue cooperation

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019160379A1 (en) 2018-02-16 2019-08-22 Samsung Electronics Co., Ltd. Configuration of reference signals in a multi-transmission point telecommunication system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5554205B2 (ja) * 2010-10-18 2014-07-23 シャープ株式会社 無線送信装置、無線受信装置、無線通信システム、無線送信装置の制御プログラムおよび集積回路
CN108282877B (zh) * 2017-01-06 2023-12-01 华为技术有限公司 一种参考信号的配置方法、装置及系统
US10616896B2 (en) * 2017-05-05 2020-04-07 National Instruments Corporation Wireless communication system that performs beam management using nested reference signals
US11743879B2 (en) * 2017-11-03 2023-08-29 Futurewei Technologies, Inc. System and method for indicating wireless channel status
US10764896B2 (en) * 2017-11-08 2020-09-01 Samsung Electronics Co., Ltd. Method and apparatus for beam management in the unlicensed spectrum
WO2019103550A1 (ko) * 2017-11-24 2019-05-31 엘지전자 주식회사 무선 통신 시스템에서 단말과 기지국 간 하향링크 신호 송수신 방법 및 이를 지원하는 장치
US10594382B2 (en) * 2018-01-02 2020-03-17 Apple Inc. Phase tracking reference signal (PT-RS) power boosting
US10701724B2 (en) * 2018-01-12 2020-06-30 Apple Inc. Time density and frequency density determination of phase tracking reference signals (PT-RS) in new radio (NR) systems
WO2021062719A1 (en) * 2019-09-30 2021-04-08 Nec Corporation Methods for communication, terminal device, network device, and computer readable medium

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019160379A1 (en) 2018-02-16 2019-08-22 Samsung Electronics Co., Ltd. Configuration of reference signals in a multi-transmission point telecommunication system

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
3GPP R1-1803333
3GPP R1-1908699*
3GPP TS38.212 v15.7.0
3GPP TS38.214 v15.7.0*

Also Published As

Publication number Publication date
EP4030670A1 (en) 2022-07-20
US11638279B2 (en) 2023-04-25
EP4030670B1 (en) 2024-02-21
KR20220039751A (ko) 2022-03-29
EP4030670A4 (en) 2022-12-14
US20220225359A1 (en) 2022-07-14
CN114503496A (zh) 2022-05-13
WO2021066622A1 (ko) 2021-04-08
JP2022550866A (ja) 2022-12-05
JP7335436B2 (ja) 2023-08-29
CN114503496B (zh) 2024-02-27

Similar Documents

Publication Publication Date Title
KR102520456B1 (ko) 무선 통신 시스템에서 harq-ack 정보를 송수신 하는 방법 및 이에 대한 장치
KR102553638B1 (ko) 무선 통신 시스템에서 위상 추적 참조 신호의 송수신 방법 및 이에 대한 장치
KR102371957B1 (ko) 무선 통신 시스템에서 harq-ack 정보를 송수신 하는 방법 및 이에 대한 장치
KR102508031B1 (ko) 무선 통신 시스템에서 위상 추적 참조 신호의 송수신 방법 및 이에 대한 장치
KR102485171B1 (ko) 무선 통신 시스템에서 물리 하향링크 공유 채널을 송수신 하는 방법 및 이에 대한 장치
KR102251731B1 (ko) 무선 통신 시스템에서 하향링크 데이터를 송수신 하는 방법 및 이에 대한 장치
KR102489523B1 (ko) 무선 통신 시스템에서 위상 추적 참조 신호의 송수신 방법 및 이에 대한 장치
KR102251727B1 (ko) 무선 통신 시스템에서 하향링크 데이터를 송수신 하는 방법 및 이에 대한 장치
CN113796146B (zh) 在无线通信系统中发送或接收数据信道的方法及其设备
US20220191081A1 (en) Method for transmitting/receiving data in wireless communication system, and device therefor
KR20200127906A (ko) 무선 통신 시스템에서 데이터 채널의 송수신 방법 및 이에 대한 장치
US20220322399A1 (en) Method for transmitting and receiving pdsch in wireless communication system, and device for same
KR20220086600A (ko) 무선 통신 시스템에서 채널 상태 정보를 보고하는 방법 및 이에 대한 장치
KR20200127907A (ko) 무선 통신 시스템에서 물리적 하향링크 공유 채널의 송수신 방법 및 이에 대한 장치
KR20200127908A (ko) 무선 통신 시스템에서 복조 참조 신호의 송수신 방법 및 이에 대한 장치
KR20230088735A (ko) 무선 통신 시스템에서 물리 상향링크 제어 채널의 송수신 방법 및 그 장치
KR102587576B1 (ko) 무선 통신 시스템에서 데이터를 송수신 하는 방법 및 이에 대한 장치
KR20220047296A (ko) 무선 통신 시스템에서 반복 전송되는 데이터를 송수신 하는 방법 및 이에 대한 장치
KR20220018580A (ko) 무선 통신 시스템에서 하향링크 채널을 송수신 하는 방법 및 이에 대한 장치

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant