KR102550014B1 - 오탐지 예방을 위한 조기 경보 시스템 및 방법 - Google Patents
오탐지 예방을 위한 조기 경보 시스템 및 방법 Download PDFInfo
- Publication number
- KR102550014B1 KR102550014B1 KR1020200144490A KR20200144490A KR102550014B1 KR 102550014 B1 KR102550014 B1 KR 102550014B1 KR 1020200144490 A KR1020200144490 A KR 1020200144490A KR 20200144490 A KR20200144490 A KR 20200144490A KR 102550014 B1 KR102550014 B1 KR 102550014B1
- Authority
- KR
- South Korea
- Prior art keywords
- data
- signal
- learning
- early warning
- power generation
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B29/00—Checking or monitoring of signalling or alarm systems; Prevention or correction of operating errors, e.g. preventing unauthorised operation
- G08B29/18—Prevention or correction of operating errors
- G08B29/185—Signal analysis techniques for reducing or preventing false alarms or for enhancing the reliability of the system
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B31/00—Predictive alarm systems characterised by extrapolation or other computation using updated historic data
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S10/00—Systems supporting electrical power generation, transmission or distribution
- Y04S10/50—Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Software Systems (AREA)
- Theoretical Computer Science (AREA)
- Computing Systems (AREA)
- Business, Economics & Management (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Medical Informatics (AREA)
- Emergency Management (AREA)
- General Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Computer Security & Cryptography (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Testing And Monitoring For Control Systems (AREA)
Abstract
플랜트의 이상 징후를 사전에 발견할 수 있는 조기 경보 시스템이 개시된다. 상기 조기 경보 시스템은, 발전 설비의 데이터를 수집하는 수집부, 발전 설비의 상기 데이터를 이용하여 신호별 데이터를 산출하고 상기 신호별 데이터를 이용하여 추천되는 학습구간을 통해 차원축소 및 데이터 시각화 수행을 하여 최종 학습 구간을 설정하고, 대상 모델을 업데이트하여 업데이트 모델을 생성하는 모델 재학습을 실행하는 계산부, 및 상기 업데이트 모델을 이용하여 오탐지 예방을 위해 상기 발전 설비에 대한 실시간 예측하는 예측 정보를 생성하는 예측부를 포함하는 것을 특징으로 한다.
Description
본 발명은 조기 경보 기술에 관한 것으로서, 더 상세하게는 플랜트의 이상 징후를 사전에 발견하기 위한 조기 경보 시스템 및 방법에 대한 것이다.
또한, 본 발명은 조기경보 성능의 핵심이 되는 예측모델을 생성 시 잘못된 학습구간 선정에 따른 빈번한 오탐지(false alarm)를 사전에 예방할 수 있는 조기 경보 시스템 및 방법에 대한 것이다.
일반적으로, 발전 또는 화학 등의 대형 플랜트들은 수백 개의 기계 및 전기 설비들이 복잡하게 연결되어 운전되고 있다. 이런 대형 플랜트들은 안정적으로 전력 및 제품을 공급하기 위해 사고의 발단이 되는 이상 징후를 상시로 측정해 신뢰성을 확보하여야 한다.
조기경보 기술에서 핵심이 되는 예측모델의 성능은 과거 이력 데이터를 기반으로 물리적 상관성이 높은 신호 그룹을 추출하고 신호 그룹의 정상상태 패턴을 학습한 후 신호가 학습된 정상구간을 벗어나 이상상태로 변화해 가는 추세(trend)를 조기에 감지하는 것에 있다.
그런데, 기존의 기계학습 방법의 경우, 매번 이력 데이터를 차트 또는 그래프에 의존하여 사용자가 직접 임의 구간을 선정하여야 한다. 더욱이, 예측모델을 생성하였다 하더라도, 과거 유사한 신호 패턴이 있었는지, 학습에 필요한 데이터양이 어느 정도였는지에 대한 이력 관리가 되지 않고 있다. 따라서, 재학습 시에도 같은 작업을 반복해야 하고 시행착오를 거쳐 적정한 학습구간을 찾을 수 있게 된다.
이로 인해 종래의 기술은 학습구간을 잘못 선정시는 현재 상태의 신호 패턴이 학습되어 있지 않아 다수의 오탐지(false alarm)를 발생시킨다. 이는, 시스템 운영자의 혼란을 가중하고 실제 알람 여부를 확인하기 위한 추가적인 작업이 발생함으로 인해 오히려 사용자의 불편함 및/또는 업무를 가중시키는 결과를 초래한다.
특히, 발전 설비는 장기운영을 위해 유지보수가 필수적으로 정기적/비정기적인 정비작업이 발생하게 되는데, 일반적으로 정비 후 설비의 상태가 변하게 되어, 변경 상태를 반영하기 위해 재학습이 요구된다.
또한, 계절 및 부하조건에 따라서도 설비상태가 변화할 수 있어 기계 학습 모델에 대한 업데이트가 요구되므로 모델수정의 기능을 강화하고 오탐지(false alarm)를 최소화할 수 있는 조기 경보 시스템이 요구된다.
본 발명은 위 배경기술에 따른 문제점을 해소하기 위해 제안된 것으로서, 플랜트의 이상 징후를 사전에 발견할 수 있는 조기 경보 시스템 및 방법을 제공하는데 그 목적이 있다.
또한, 본 발명은 조기경보 성능의 핵심이 되는 예측모델을 생성 시 잘못된 학습구간 선정에 따른 빈번한 오탐지(false alarm)를 사전에 예방할 수 있는 조기 경보 시스템 및 방법을 제공하는데 다른 목적이 있다.
본 발명은 위에서 제시된 과제를 달성하기 위해, 플랜트의 이상 징후를 사전에 발견할 수 있는 조기 경보 시스템을 제공한다.
상기 조기 경보 시스템은,
발전 설비의 데이터를 수집하는 수집부;
발전 설비의 상기 데이터를 이용하여 신호별 데이터를 산출하고 상기 신호별 데이터를 이용하여 추천되는 추천학습구간을 통해 차원축소 및 데이터 시각화를 수행하여 최종 학습 구간을 설정하고, 대상 모델을 업데이트하여 업데이트 모델을 생성하는 모델 재학습을 실행하는 계산부; 및
상기 업데이트 모델을 이용하여 오탐지 예방을 위해 상기 발전 설비에 대한 실시간 예측하는 예측 정보를 생성하는 예측부;를 포함하는 것을 특징으로 한다.
또한, 상기 신호별 데이터는 발전 설비의 상기 데이터에 대한 신호별 현재 운전 데이터 평균값 및 선택된 과거 조회기간의 신호별 과거 데이터 평균값인 것을 특징으로 한다.
또한, 상기 신호별 현재 운전 데이터 평균값을 기준으로 상기 과거 조회기간내 상기 신호별 과거 데이터 평균값과의 유사도가 산출되는 것을 특징으로 한다.
또한, 상기 유사도는 유클리디안 거리, 마하라노비스 거리, 및 맨해튼 거리를 포함하는 거리 척도를 사용하여 산출되는 것을 특징으로 한다.
또한, 상기 추천 학습 구간은 상기 유사도의 순위에 따라 가장 유사도가 높은 월이 투표를 통해 상기 거리 척도 중 2가지 이상의 거리 척도에서 상기 월이 일치하면 결정되는 최종 추천 기간을 이용하여 산출되는 것을 특징으로 한다.
또한, 상기 차원축소는 상기 신호별 데이터를 저차원으로 차원 축소를 수행하여 3차원 공간의 다변량 차원으로 변환되는 것을 특징으로 한다.
또한, 상기 차원 축소는 상기 신호별 데이터의 분산이 최대가 되도록 고차원 데이터 셋(dataset)과 투영된 데이터 셋 간의 평균제곱거리를 최소화하는 축을 찾는 기법 또는 상기 신호별 데이터의 분포를 학습하여 고차원 데이터 셋 간의 분리를 최적화하는 결정 경계에 따라 데이터를 투영(projection)하는 기법을 이용하여 수행되는 것을 특징으로 한다.
또한, 상기 고차원 데이터 셋은, 사용자가 임의로 조회한 기간의 전체 데이터셋, 평균값 기반 유사도 측정으로부터 추천되는 추천 데이터셋, 및 마지막으로 변화된 상기 발전 설비의 상태에 대한 현재 운전 데이터셋을 포함하는 것을 특징으로 한다.
또한, 상기 고차원 데이터 셋의 크기는, 상기 추천 데이터셋의 중심을 찾고 상기 중심으로부터 군집밀도가 높은 데이터의 범위를 계산된 상기 중심으로부터 확률분포의 뾰족한 정도를 나타내는 척도인 첨도(kurtosis)를 이용하여 산포가 정규분포에 가까운 형태의 데이터 범위로 추출되는 것을 특징으로 한다.
또한, 상기 고차원 데이터 셋의 크기는, 사용자의 드래그엔 드롭 방식을 통해 선정되는 것을 특징으로 한다.
또한, 상기 학습구간에서 학습되지 않을 수 있는 신호 패턴으로부터 야기될 수 있는 오탐지(false alarm)를 방지하기 위해 값이 변경되는 가변 임계값이 설정되는 것을 특징으로 한다.
또한, 상기 학습구간에서 학습되지 않을 수 있는 신호 패턴으로부터 야기될 수 있는 오탐지(false alarm)를 방지하기 위해 값이 고정되는 정적 임계값이 설정되는 것을 특징으로 한다.
다른 한편으로, 본 발명의 다른 일실시예는, (a) 수집부가 발전 설비의 데이터를 수집하는 단계; (b) 계산부가 발전 설비의 상기 데이터를 이용하여 신호별 데이터를 산출하고 상기 신호별 데이터를 이용하여 추천되는 추천학습구간을 통해 차원축소 및 데이터 시각화를 수행하여 최종 학습 구간을 설정하고, 대상 모델을 업데이트하여 업데이트 모델을 생성하는 모델 재학습을 실행하는 단계; 및 (c) 예측부가 상기 업데이트 모델을 이용하여 오탐지 예방을 위해 상기 발전 설비에 대해 실시간 예측하는 예측 정보를 생성하는 단계;를 포함하는 것을 특징으로 하는 오탐지 예방을 위한 조기 경보 방법을 제공한다.
본 발명에 따르면, 복잡한 알고리즘이 아닌 통계값 및 데이터 군집의 정도를 유사도(유클리드, 마하라노비스, 맨해튼 거리)로 측정하고, 투표(Voting) 결과를 이용하여 최적의 데이터 셋을 확보하고, 이를 예측모델의 학습데이터로 사용함으로써 예측모델의 성능을 향상시키고 오탐지(false alarm)를 사전에 예방할 수 있다.
또한, 본 발명의 다른 효과로서는 변수의 차원을 축소함으로써, 조기경보의 기계 학습 성능에 영향을 미치는 기계 학습 데이터 셋의 이력구간을 시각적으로 확인하고, 계절변화, 정비로 인한 설비 상태변화, 외부 환경조건 변화(대기온도 변화 등)에 따른 모델의 재학습 필요 유무를 판단하기가 용이하다는 점을 들 수 있다.
또한, 본 발명의 또 다른 효과로서는 학습 데이터의 패턴을 확보하여 장기적으로 DB를 구축 시, 각 설비에 대해 정교한 최적화된 학습데이터를 확보할 수 있다는 점을 들 수 있다.
또한, 본 발명의 또 다른 효과로서는 현재 운전 데이터가 과거 유사한 패턴을 가지는 기존 모델의 데이터셋을 선택적으로 도입하여 재활용할 수 있게 되므로, 빈번하게 발생하는 모델수정 작업을 최소화하고 모델관리의 효율성을 높이고 불필요한 학습기간 제거를 통해 Data 사이즈를 최적화함으로써 학습성능 및 학습속도를 향상시킬 수 있다는 점을 들 수 있다.
도 1은 본 발명의 일실시예에 따른 오탐지 예방을 위한 조기 경보 시스템의 블럭 구성도이다.
도 2는 본 발명의 일실시예에 따른 오탐지 예방을 위한 조기 경보 구현과정을 보여주는 흐름도이다.
도 3은 본 발명의 일실시예에 따른 이벤트 빈도를 이용한 트리거 작동을 보여주는 표이다.
도 4는 본 발명의 일실시예에 따른 2차원을 이용한 데이터 변화 시각화를 위한 차원 축소를 보여주는 개념도이다.
도 5는 본 발명의 일실시예에 따른 차원 축소를 이용한 시각화 그래프이다.
도 6은 본 발명의 일실시예에 따른 학습 구간 제안의 시각화 그래프이다.
도 7은 본 발명의 일실시예에 따른 학습 데이터 추적 관리를 보여주는 그래프이다.
도 8은 본 발명의 일실시예에 따른 설비 이력 데이터를 보여주는 도면이다.
도 9는 본 발명의 일실시예에 따른 설비에 대한 추천된 데이터 셋의 결과를 보여주는 그래프이다.
도 10은 본 발명의 일실시예에 따른 유사도 기반 학습 데이터의 추천 결과를 보여주는 표이다.
도 11 내지 13은 본 발명의 일실시예에 따른 발전 설비에 대한 시각화를 보여주는 그래프이다.
도 14는 본 발명의 일실시예에 따른 학습 데이터 셋의 분포를 이용한 크기 선택을 보여주는 도면이다.
도 15는 본 발명의 일실시예에 따른 학습 데이터 셋의 중심으로부터 거리를 이용한 크기 선택을 보여주는 도면이다.
도 16은 본 발명의 일실시예에 따른 모델 수정을 위한 정보 제공을 보여주는 도면이다.
도 17는 본 발명의 일실시예에 따른 학습 데이터 패턴의 추적을 보여주는 도면이다.
도 18은 본 발명의 일실시예에 따른 정적 임계치로 인한 오탐지 발생을 보여주는 도면이다.
도 19는 본 발명의 일실시예에 따른 가변 임계치로 인한 오탐지 발생을 보여주는 도면이다.
도 20은 본 발명의 일실시예에 따른 최적화 전후를 비교하는 그래프이다.
도 2는 본 발명의 일실시예에 따른 오탐지 예방을 위한 조기 경보 구현과정을 보여주는 흐름도이다.
도 3은 본 발명의 일실시예에 따른 이벤트 빈도를 이용한 트리거 작동을 보여주는 표이다.
도 4는 본 발명의 일실시예에 따른 2차원을 이용한 데이터 변화 시각화를 위한 차원 축소를 보여주는 개념도이다.
도 5는 본 발명의 일실시예에 따른 차원 축소를 이용한 시각화 그래프이다.
도 6은 본 발명의 일실시예에 따른 학습 구간 제안의 시각화 그래프이다.
도 7은 본 발명의 일실시예에 따른 학습 데이터 추적 관리를 보여주는 그래프이다.
도 8은 본 발명의 일실시예에 따른 설비 이력 데이터를 보여주는 도면이다.
도 9는 본 발명의 일실시예에 따른 설비에 대한 추천된 데이터 셋의 결과를 보여주는 그래프이다.
도 10은 본 발명의 일실시예에 따른 유사도 기반 학습 데이터의 추천 결과를 보여주는 표이다.
도 11 내지 13은 본 발명의 일실시예에 따른 발전 설비에 대한 시각화를 보여주는 그래프이다.
도 14는 본 발명의 일실시예에 따른 학습 데이터 셋의 분포를 이용한 크기 선택을 보여주는 도면이다.
도 15는 본 발명의 일실시예에 따른 학습 데이터 셋의 중심으로부터 거리를 이용한 크기 선택을 보여주는 도면이다.
도 16은 본 발명의 일실시예에 따른 모델 수정을 위한 정보 제공을 보여주는 도면이다.
도 17는 본 발명의 일실시예에 따른 학습 데이터 패턴의 추적을 보여주는 도면이다.
도 18은 본 발명의 일실시예에 따른 정적 임계치로 인한 오탐지 발생을 보여주는 도면이다.
도 19는 본 발명의 일실시예에 따른 가변 임계치로 인한 오탐지 발생을 보여주는 도면이다.
도 20은 본 발명의 일실시예에 따른 최적화 전후를 비교하는 그래프이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는바, 특정 실시예들을 도면에 예시하고 상세한 설명에 구체적으로 설명하고자 한다. 그러나 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용한다. 제 1, 제 2등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.
예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제 1 구성요소는 제 2 구성요소로 명명될 수 있고, 유사하게 제 2 구성요소도 제 1 구성요소로 명명될 수 있다. "및/또는" 이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미가 있다.
일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미가 있는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않아야 한다.
이하 첨부된 도면을 참조하여 본 발명의 일실시예에 따른 오탐지 예방을 위한 조기 경보 시스템 및 방법을 상세하게 설명하기로 한다.
도 1은 본 발명의 일실시예에 따른 오탐지 예방을 위한 조기 경보 시스템(100)의 블럭 구성도이다. 도 1을 참조하면, 조기 경보 시스템(100)은, 발전 설비에 관한 데이터를 전송받는 통신부(110), 발전 설비의 데이터를 수집하여 저장하는 수집부(120), 데이터를 이용하여 신호별 데이터를 산출하고 신호별 데이터를 이용하여 추천되는 학습구간을 통해 차원축소 및 데이터 시각화를 수행하여 학습구간을 확정하여 대상 모델을 업데이트하여 업데이트 모델을 생성하는 계산부(130), 업데이트 모델을 이용하여 오탐지를 실시간 예측하는 예측 정보를 생성하는 예측부(140), 예측 정보를 출력하는 출력부(150) 등을 포함하여 구성될 수 있다.
통신부(110)는 통신망(미도시)을 통해 다른 외부 통신 기기(미도시)와 연결되는 기능을 수행한다. 통신은 유무선이 가능하다. 또한, 통신부(110)는 무선 통신 등을 위한 다양한 통신 프로토콜을 이용할 수 있다. 이를 위해, 통신부(110)는 모뎀, 마이크로프로세서, 통신 회로 소자 등이 구성될 수 있다.
통신망은 복수의 단말 및 서버들과 같은 각각의 노드 상호 간에 정보 교환이 가능한 연결 구조를 의미하는 것으로, 공중교환 전화망(PSTN), 공중교환 데이터망(PSDN), 종합정보통신망(ISDN: Integrated Services Digital Networks), 광대역 종합 정보 통신망(BISDN: Broadband ISDN), 근거리 통신망(LAN: Local Area Network), 대도시 지역망(MAN: Metropolitan Area Network), 광역 통신망(WLAN: Wide LAN) 등이 될 수 있다, 그러나, 본 발명은 이에 한정되지는 않으며, 무선 통신망인 CDMA(Code Division Multiple Access), WCDMA(Wideband Code Division Multiple Access), Wibro(Wireless Broadband), WiFi(Wireless Fidelity), HSDPA(High Speed Downlink Packet Access) 망, 블루투스(bluetooth), NFC(Near Field Communication) 네트워크, 위성 방송 네트워크, 아날로그 방송 네트워크, DMB(Digital Multimedia Broadcasting) 네트워크 등이 될 수 있다. 또는, 이들 유선 통신망 및 무선 통신망의 조합일 수 있다.
외부 통신 기기로는 서버, PC(Personal computer), 노트북, 노트패드 등을 들 수 있다. 물론, 이러한 통신망을 통하지 않고 외부 통신기기에 저장된 데이터를 USB에 옮겨 제공하는 것도 가능하다.
수집부(120)는 통신부(110)를 통해 전송되는 발전 설비의 데이터를 수집하는 기능을 수행한다. 발전 설비의 데이터는 발전 설비로부터 전송받을 수도 있고, 발전 설비에서 1차적으로 생성되고, 2차적으로 저장되는 외부 통신 기기를 통해 전송받을 수도 있다. 수집부(120)는 전송된 데이터를 저장부(160)의 데이터베이스(DB)에 저장한다.
계산부(130)는 데이터를 이용하여 신호별 데이터를 산출하고 신호별 데이터를 이용하여 추천되는 학습구간을 통해 차원축소 및 데이터 시각화를 수행하여 학습구간을 확정하여 대상 모델을 업데이트하여 업데이트 모델을 생성하는 기능을 수행한다. 또한, 계산부(130)는 유사도 측정을 통한 최적 학습구간을 추천하고, 차원축소 및 시각화를 통한 현재 운전 데이터와 추천 학습 데이터를 검증하는 기능을 수행한다. 또한, 학습 데이터의 추적관리를 통한 최적 학습 패턴의 데이터베이스를 확보하며, 중심으로부터 거리 또는 통계값을 이용한 학습 데이터의 크기를 최적화한다. 또한, 가변 임계치를 적용한 오탐지 방지를 구현한다.
예측부(140)는 업데이트 모델을 이용하여 오탐지를 실시간 예측하는 예측 정보를 생성하는 기능을 수행한다. 또한, 학습 데이터 중심-현재 운전 데이터 중심 거리를 모니터링하여 거리 증가가 발생하면 알람을 생성하는 기능도 수행한다.
출력부(150)는 수집부(120), 계산부(130), 예측부(140) 등에서 처리하는 정보를 표시하는 기능을 수행한다. 따라서, 출력부(150)는 문자, 음성, 및 그래픽의 조합으로 정보를 출력할 수 있다. 이를 위해 출력부(150)는 디스플레이, 사운드 시스템 등을 포함하여 구성될 수 있다.
디스플레이는 LCD(Liquid Crystal Display), LED(Light Emitting Diode) 디스플레이, PDP(Plasma Display Panel), OLED(Organic LED) 디스플레이, 터치 스크린, CRT(Cathode Ray Tube), 플렉시블 디스플레이 등이 될 수 있다. 터치 스크린의 경우, 입력 수단으로 기능할 수 있다.
저장부(160)는 시스템(100)을 동작시키기 위한 소프트웨어, 명령어 세트, 또는 데이터 등을 저장하기 위한 기능을 수행한다. 이를 위해 저장부(160)는 랜덤액세스메모리(Random Access Memory, RAM), 자기 디스크(Magnetic Disc), 플래시 메모리(Flash Memory), 정적램(Static Random Access Memory, SRAM), 롬(Read Only Memory, ROM), EEPROM(Electrically Erasable Programmable Read Only Memory), PROM(Programmable Read Only Memory) 등으로 구현될 수 있으나 이에 한정되는 것은 아니다.
도 1에 도시된 수집부(120), 계산부(130), 예측부(140)는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 소프트웨어 및/또는 하드웨어로 구현될 수 있다. 하드웨어 구현에 있어, 상술한 기능을 수행하기 위해 디자인된 ASIC(application specific integrated circuit), DSP(digital signal processing), PLD(programmable logic device), FPGA(field programmable gate array), 프로세서, 마이크로프로세서, 다른 전자 유닛 또는 이들의 조합으로 구현될 수 있다.
소프트웨어 구현에 있어, 소프트웨어 구성 컴포넌트(요소), 객체 지향 소프트웨어 구성 컴포넌트, 클래스 구성 컴포넌트 및 작업 구성 컴포넌트, 프로세스, 기능, 속성, 절차, 서브 루틴, 프로그램 코드의 세그먼트, 드라이버, 펌웨어, 마이크로 코드, 데이터, 데이터베이스, 데이터 구조, 테이블, 배열 및 변수를 포함할 수 있다. 소프트웨어, 데이터 등은 메모리에 저장될 수 있고, 프로세서에 의해 실행된다. 메모리나 프로세서는 당업자에게 잘 알려진 다양한 수단을 채용할 수 있다.
도 2는 본 발명의 일실시예에 따른 오탐지 예방을 위한 조기 경보 구현과정을 보여주는 흐름도이다. 도 2를 참조하면, 정비 또는 계절변화로 인해 발전 설비의 상태가 변해 다수의 예측모델에서 일정 시간내 오탐지(false alarm)가 빈번하게 발생하는 경우, 트리거(Trigger) 기능을 이용하여 사용자에게 모델 재학습을 요청한다(단계 S210). 이러한 모델 재학습을 요청하기 위한 이벤트 빈도를 통한 트리거 작동을 보여주는 예시가 도 3에 도시된다. 이에 대해서는 후술하기로 한다.
모델 재학습 요청이 있으면, 데이터를 처리하여 모델 재학습을 실행하는 절차(S200)가 실행된다. 모델 재학습 절차(S200)는 단계 S220 내지 단계 S270로 구성될 수 있다.
먼저 수집부(120)를 통해 획득된 발전 설비의 데이터에 대해 신호별 현재 운전 데이터 평균값을 계산한다(단계 S220,S230). 신호별 현재 운전 데이터 평균값의 산출의 경우, 사용자가 학습에 필요한 전체기간을 조회하며, 개발 시스템은 현재 운전 데이터에 대한 각 신호(Tag)별 평균값과 선택된 과거 조회 기간에 대한 월별 평균값으로 각각 산출된다. 이를 표로 나타내면 다음과 같다.
위표에서, 열 "P1LAB~" 등은 신호(Tag)를 나타내며, 행은 신호별 조회기간에 대한 월별 평균값 산출을 나타낸다. 또한, 현재값은 현재 운전 데이터 평균값을 나타낸다.
위표는 BFP(boiler feed pump, 보일러 급수펌프)에 대한 신호(Tag)로써 BFP는 발전설비의 급수계통에 해당하며 증기를 생성하기위해 보일러로 물을 공급해주는 보조설비에 해당한다. BFP는 펌프(Pump)와 모터(motor)부로 구성되며 상기에 표기된 신호(Tag)는 BFP의 입구/출구 온도, 입/출구의 차압(discharge pressure), 펌프 및 모터부의 베어링 진동 및 온도 신호를 각각 나타내며 설비의 운전데이터를 의미한다.
부연하면, 사용자가 학습에 필요한 과거 이력 데이터의 조회 기간을 설정(약 1~3년)하면, 시스템은 정비이후부터 현재시점까지의 해당 모델에 포함된 신호(Tag)별 평균값을 각각 산출하고, 조회 구간에 대해 월별로 신호(Tag)별 데이터 평균값을 산출한다.
이후, 각 신호(Tag)의 현재 운전 데이터 평균값을 기준으로 조회 기간(예를 들면 약 3년의 기간인 2016-10 ~ 2019-10) 내 월별 신호(Tag)별 데이터 평균값과 유사도를 측정한다(단계 S240). 이때, 측정 방식은 유클리디안 거리, 마하라노비스 거리, 맨해튼 거리 등의 거리 척도가 될 수 있다.
유클리디안 거리(Euclidean distance), 마할라노비스 거리(Mahalanobis Distance), 맨하탄(Manhattan distance)에 대한 수식은 아래와 같다.
유클리디안 거리는 두 데이터(x,y)(벡터)간 직선 거리를 측정하는 방식이다.
마할라노비스 거리는 평균과의 거리가 표준편차의 몇 배인지 나타낸 방식이다. 따라서, 유클리디안 거리에 공분산(σ) 계산이 더해진 것으로 데이터의 공분산이 모두 0일 경우, 마할라노비스와 유클리디안 거리는 동일하다. 여기서, T는 변환행렬을 나타낸다.
맨하탄 거리는 두 벡터(x,y)를 잇는 가장 짧은 거리의 절대치를 합한 거리를 나타낸 방식이다.
따라서, 조회기간에 대해 현재 운전 데이터 평균값과 신호별 과거 데이터 평균값과의 거리값을 유클리디안 거리(Euclidean distance), 마할라노비스 거리(Mahalanobis Distance), 맨하탄(Manhattan distance)으로 각각 산출한다. 이를 정리하면 다음 표와 같다.
위 표에서 맨윗행은 현재 운전 데이터의 월별을 나타내고, 최좌측열은 과거 데이터의 월별을 나타낸다.
이후, 투표를 통한 최적 학습구간의 추천이 이루어진다(단계 S250). 부연하면, 3가지의 거리 척도를 통해 유사도(similarity) 순위를 산출하고, 이 유사도 순위에 따라 가장 유사도가 높은 해당 월을 Voting(투표)하게 된다. 즉, 전체 산출된 거리값을 이용하여 유사도가 가장 높은 전체 이력 데이터 구간을 추천받게 된다. 3가지의 거리 척도 중 2가지 이상의 기법에서 추천 기간(월)이 일치하는 경우, 사용자에게 학습기간을 최종 추천기간으로 정보를 전달한다.
또한, 사용자가 2개월 이상의 데이터를 추천받고자 할 때에도, 유사도를 이용하여 월별 순위를 선정하고 Voting 결과에 따라 학습 데이터를 추천받게 된다.
이후, 사용자는 최종 추천기간을 확정하기 위해 시각적으로 확인이 필요하며, 이때 모든 신호(Tag)를 대상으로 확인하기가 어려우므로 저차원으로 차원을 축소하여 3차원의 다변량 차원으로 데이터를 변환한다(단계 S260). 3차원 공간에서 조회기간에 대한 전체 이력 데이터(즉, 사용자가 임의로 조회한 기간에 대한 과거 데이터 셋), 추천 학습 구간(즉, Voting 결과로 추천된 데이터 셋), 현재 운전 데이터의 상태를 시각화하여 표현하고, 사용자는 이를 확인한 후에 추천 학습 구간 설정을 확정한다(단계 S261).
물론, 단계 S261에서 추천 학습 구간이 확정되지 않으면, 단계 S230 내지 단계 S260가 다시 진행된다.
한편, 가변(variable) 임계값(threshold) 설정을 통해 학습구간에서 학습되지 않을 수 있는 신호 패턴으로부터 야기될 수 있는 오탐지(false alarm)를 체계적으로 보완하는 기능을 수행할 수도 있다(단계 S270).
단계 S261에서, 확인결과, 추천 학습 구간이 확정되면, 대상 모델에 대한 업데이트가 실행되어 업데이트 모델이 생성된다(단계 S280).
이후, 업데이트 모델을 이용하여 발전 설비에 대한 실시간 예측을 수행한다(단계 S290).
한편, 업데이트 모델이 생성되면, 학습 데이터 중심 - 현재 운전 데이터 중심 거리를 모니터링한다(단계 S280). 모니터링은 모델에 참여한 복수개의 신호(Tag)들에 대한 과거 데이터 중 학습(training)을 위해 선택된 데이터 셋에 대해 차원축소 후 재구축된 데이터 셋의 중심(평균)과 동일 신호(Tag)의 현재 운전 데이터의 차원축소후 재구축된 데이터 셋의 중심(평균)과의 거리를 감시한다.
이후, 학습 데이터 중심과 현재 운전 데이터 중심의 거리가 멀어질수록 현재 상태가 학습패턴과 달라지고 있음을 의미한다. 사용자가 설정한 값 이상으로 중심간 거리가 멀어지고 이와 더불어 조기경보시스템에서 알람이 빈번하게 발생하게 되면 예측모델 업데이트가 필요함을 사용자에게 알려 줄 수 있다. 즉, 중심거리의 증가와 조기경보시스템의 알람 빈도 두 가지 정보를 이용하여 사용자는 모델 업데이트를 수행함으로써 오탐지(false alarm)를 미연에 방지하게 된다(단계 S281).
도 3은 본 발명의 일실시예에 따른 이벤트 빈도를 이용한 트리거 작동을 보여주는 표이다. 도 3을 참조하면, 계절변화 또는 정비이후 설비 상태변화 시, 동일 신호(Tag)의 알람(Alarm)이 지속적으로 발생하게 되며, 이는 실제 설비의 이상징후로 인한 경보(alarm)가 아니라 설비 상태의 변화로 인해 예측모델의 학습패턴과 현재 패턴이 달라짐으로 인해 발생된 오탐지이다. 그러므로, 기존 모델의 재학습이 필요함을 알 수 있다. 따라서, 대상 모델과 알람 발생 빈도수를 기준으로 트리거(Trigger)를 사용하여 모델 재학습을 사용자에게 요청한다.
도 4는 본 발명의 일실시예에 따른 2차원을 이용한 데이터 변화 시각화를 위한 차원 축소를 보여주는 개념도이다. 일반적으로, 발전설비와 같은 대형 플랜트에서는 다양한 설비가 존재하므로, 각 설비당 기계학습모델을 20개의 이상을 가동해야 한다. 이로 인해 관리해야 하는 신호(Tag)는 20×20~30 = 400~600개가 된다. 따라서, 설비가 늘어날수록 관리 태그(Tag)의 수도 급격히 늘어나므로 종래의 방식으로는 효율적으로 모델을 관리하기가 어렵다.
또한, 모델 내 다수의 신호(Tag)에 대한 신호의 변화를 확인하기 위해서는, 2차원 그래프를 이용해 하나씩 전체 신호를 확인해야 하는 번거로움이 있다. 이러한 번거로움을 해소하기 위해 차원축소를 실시한다. 고차원 데이터 특성 중, 일부 특성으로 고차원 데이터의 표현이 가능하며, 저차원 공간으로 투영(Projection)시켜 차원을 줄여가는 방식이다(410,420,430,440). 도 4를 참조하면, 차원축소를 위해, 데이터의 분산이 최대가 되도록 고차원 데이터 셋(dataset)과 투영된 데이터 셋 간의 평균제곱거리를 최소화하는 축을 찾는 기법 또는 데이터의 분포를 학습하여 고차원 데이터 셋 간의 분리를 최적화하는 결정 경계에 따라, 데이터를 투영(projection)하는 기법을 도입할 수 있다.
시각적으로 표현되어야 할 고차원 데이터 셋은 총 3가지로 나누어진다. 첫째, 사용자가 임의로 조회한 기간의 전체 데이터셋, 둘째, 평균값 기반 유사도 측정으로부터 추천된 추천 데이터셋, 마지막으로 변화된 발전 설비의 상태에 대한 현재 운전 데이터셋을 각각 시각적으로 도식하여야 한다. 앞서 설명한 바와 같이, 한 개의 예측모델 내에도 태그의 수(차원수)가 너무 많으므로 이를 한 개의 그래프에 도식화하기가 어렵다. 이를 위해 상기와 같이 저차원으로 축소시킨 3차원 공간에서 차원이 축소된 전체 태그에 대해 군집 정도를 한 번에 확인할 수 있다.
도 5는 본 발명의 일실시예에 따른 차원 축소를 이용한 시각화 그래프이고, 도 6은 본 발명의 일실시예에 따른 학습 구간 제안의 시각화 그래프이다. 도 5 및 도 6을 참조하면, 학습성능을 높게 유지하면서 학습 데이터를 최소화하기 위한 방법으로 추천 데이터셋의 중심을 찾고 중심으로부터 군집밀도가 높은 데이터의 범위를 계산된 중심으로부터 확률분포의 뾰족한 정도를 나타내는 척도인 첨도(kurtosis)를 이용하여 산포가 정규분포에 가까운 형태의 데이터 범위를 추출하여 데이터 셋의 크기를 최적화할 수 있다. 사용자의 판단에 따라 학습 데이터의 거리를 임의로 조정가능하며, 선택한 거리에 따라 학습 데이터의 사이즈도 변경될 수 있다.
도 7은 본 발명의 일실시예에 따른 학습 데이터 추적 관리를 보여주는 그래프이다. 도 7을 참조하면, 현재 운전 데이터 셋과 추천된 데이터 셋을 월별로 또는 선택적으로 확인이 가능하며, 시스템으로부터 추천받은 데이터 셋을 모델 업데이트를 위한 학습 데이터로 설정여부를 결정한다. 또한, 학습 데이터 중심의 이동 경로를 추적(Trace) 관리함으로써 시스템 장기운영 시, 최적의 학습패턴에 정보를 제공할 수 있다.
도 8은 본 발명의 일실시예에 따른 설비 이력 데이터를 보여주는 도면이다. 특히, 도 8은 발전소 보조기기(balance of plant) 설비 중 CEP(Changjo Energy Plant) 설비에 대한 이력 데이터이다. 도 8을 참조하면, 조회기간 중에 3회의 발전 설비의 정비가 발생되었으며 정비 전후 발전 설비의 상태에 따라 신호의 패턴이 조금씩 달라지는 것을 확인할 수 있다.
도 9는 본 발명의 일실시예에 따른 설비에 대한 추천된 추천 데이터 셋의 결과를 보여주는 그래프이다. 도 9를 참조하면, 거리를 이용한 유사도 기법의 유효성을 검토하기 위해 CEP 설비에 대해 현재 운전 데이터셋을 과거 데이터 셋(2016.7월~2018.4월)로부터 임의로 10개의 달을 선택했다. 선택된 10개 사례에 대해 3가지 유사도 기법이 추천한 데이터 셋이 투표(Voting)를 통해 데이터 셋 중 2가지 이상이 동일한 달을 추천 해주는지 검토하였다. 10개의 사례에 대해 2가지 이상의 유사도 기법이 같은 달을 추천한 것을 확인하였다.
도 10은 본 발명의 일실시예에 따른 유사도 기반 학습 데이터의 추천 결과를 보여주는 표이다. 도 10을 참조하면, CEP(Condensate Extraction Pump) 설비뿐만 아니라 BFP(Boiler Feedwater Pump), CWP(Circulating Water Pump) 펌프 2종과 FAB(Fluidizing Air Blower), IDF(Induced Draft Fan), PAF(Primary Air Fan), SAF(Secondary Air Fan) 4종에 대해 동일한 조회기간에 대해 오탐지(false alarm) 방지를 위한 학습데이터 선정을 실시하였다. 각 설비는 동일한 설비가 이중으로 구성되고 2개 호기에 각각 설치되므로 총 28개의 사례를 확인할 수 있다.
조회기간 2016.7월부터 2018.4월까지에 대해 설비별로 현재 운전 데이터 셋을 설정하고 과거 이력데이터 셋(매월)과 평균값을 이용하여 유사도(유클리디안 거리, 마할라노비스 거리, 맨하튼 거리)를 측정한 결과, 전체 사례 중 약 92%가 동일한 기간(달)을 학습 데이터로 추천하였으며, 8%만이 3가지 유사도가 각기 다른 데이터 셋(달)을 추천한 것을 확인할 수 있다.
이 중 일부는 실제 설비의 상태가 변화되어 현재의 상태가 과거 이력데이터와는 완전히 다른 데이터 군집을 이루고 있는 경우를 포함하고 있어, 이를 제외한다면 유사도 기반의 성능은 더 높아질 수 있다.
도 11 내지 도 13은 본 발명의 일실시예에 따른 발전 설비에 대한 시각화를 보여주는 그래프이다. 특히, 도 11은 1호기 IDF 설비에 대한 시각화이다. 전체 고차원 데이터 셋(1110)이 추천 데이터 셋, 과거 데이터 셋, 현재 운전 데이터 셋(1120)으로 시각화된다.
도 12는 1호기 SAF 설비에 대한 시각화이다. 전체 고차원 데이터 셋(1210)이 추천 데이터 셋, 과거 데이터 셋, 현재 운전 데이터 셋(1220)으로 시각화된다.
도 13은 1호기 SAF 설비에 대한 시각화이다. 전체 고차원 데이터 셋(1310)이 추천 데이터 셋, 과거 데이터 셋, 현재 운전 데이터 셋(1320)으로 시각화된다.
도 14는 본 발명의 일실시예에 따른 학습 데이터 셋의 분포를 이용한 크기 선택을 보여주는 도면이다. 도 14를 참조하면, 추천된 추천 데이터 셋에 대해서도 데이터가 분포된 형상에 따라 데이터의 밀집된 부분을 구별해 시스템으로부터 데이터 크기(1410)를 추천받거나 현재 운전 데이터 셋으로부터 거리를 이용하여 크기를 추천받는다. 또한, 사용자가 임의의 데이터 셋(1420)을 선택할 수 있도록 구성될 수 있다. 즉, 학습데이터 크기를 선정하지 않고, 사용자가 직접 드래그엔 드롭 방식으로 영역을 설정하여 크기를 선정할 수 있다.
도 15는 본 발명의 일실시예에 따른 학습 데이터 셋의 중심으로부터 거리를 이용한 크기 선택을 보여주는 도면이다. 도 15를 참조하면, 학습 데이터 셋(1510)에서 학습 데이터 셋의 중심으로부터 거리를 이용한 크기 선택(1520)가 가능하다.
도 16은 본 발명의 일실시예에 따른 모델 수정을 위한 정보 제공을 보여주는 도면이다. 도 16을 참조하면, 학습모델의 중심을 추적(trace) 함으로써 설비의 상태변화를 파악하기가 쉽고 학습데이터의 중심과 현재 상태의 중심간 거리가 일정 거리 이상이 되고 알람 발생이 많아질수록 모델 재수정이 필요한 상황임을 사용자에게 알려줄 수 있다.
도 17는 본 발명의 일실시예에 따른 학습 데이터 패턴의 추적을 보여주는 도면이다. 도 17을 참조하면, 학습데이터의 패턴을 장기적으로 축적 시, 전주기에 걸쳐 정교하고 최적화된 학습데이터 셋 구축이 가능하며, 이를 통해 예측 모델 성능 향상뿐만 아니라 오탐지(false alarm)도 미연에 방지할 수 있다.
도 18은 본 발명의 일실시예에 따른 정적 임계치로 인한 오탐지 발생을 보여주는 도면이다. 도 18을 참조하면, 앞서 모델의 학습 데이터를 최적화함으로써 오탐지(False) 알람을 방지하였다면, 후처리에서는 잔차의 정적 임계치 조건에서 알람을 발생시키지 않는 트리거(Triggering) 기능을 조합하여 예측모델의 한계를 추가적으로 보완할 수 있다. 즉, 정적 임계치의 이상 또는 이하에는 알람이 발생되지 않는다.
도 19는 본 발명의 일실시예에 따른 가변 임계치로 인한 오탐지 발생을 보여주는 도면이다. 도 19를 참조하면, 앞서 모델의 학습 데이터를 최적화함으로써 오탐지(False) 알람을 방지하였다면, 후처리에서는 잔차의 가변 임계치 조건에서 알람을 발생시키지 않는 트리거(Triggering) 기능을 조합하여 예측모델의 한계를 추가적으로 보완할 수 있다.
도 20은 본 발명의 일실시예에 따른 최적화 전후를 비교하는 그래프이다. 도 20을 참조하면, 최적화전(2010)에서는 센서값이 자주 발생하나 최적화후(2020)에서는 센서값의 빈도가 줄어든다. 또한, 최적화전(2010)에는 신뢰도(reliability)가 83.5002%임에 반해, 최적화후(2020)에서는 신뢰도가 97.2979%이다.
또한, 여기에 개시된 실시형태들과 관련하여 설명된 방법 또는 알고리즘의 단계들은, 마이크로프로세서, 프로세서, CPU(Central Processing Unit) 등과 같은 다양한 컴퓨터 수단을 통하여 수행될 수 있는 프로그램 명령 형태로 구현되어 컴퓨터 판독 가능 매체에 기록될 수 있다. 상기 컴퓨터 판독 가능 매체는 프로그램 (명령) 코드, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다.
상기 매체에 기록되는 프로그램 (명령) 코드는 본 발명을 위하여 특별히 설계되고 구성된 것들이거나 컴퓨터 소프트웨어 당업자에게 공지되어 사용 가능한 것일 수도 있다. 컴퓨터 판독 가능 기록 매체의 예에는 하드 디스크, 플로피 디스크 및 자기 테이프 등과 같은 자기 매체(magnetic media), CD-ROM, DVD, 블루레이 등과 같은 광기록 매체(optical media) 및 롬(ROM), 램(RAM), 플래시 메모리 등과 같은 프로그램 (명령) 코드를 저장하고 수행하도록 특별히 구성된 반도체 기억 소자가 포함될 수 있다.
여기서, 프로그램 (명령) 코드의 예에는 컴파일러에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용해서 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드를 포함한다. 상기된 하드웨어 장치는 본 발명의 동작을 수행하기 위해 하나 이상의 소프트웨어 모듈로서 작동하도록 구성될 수 있으며, 그 역도 마찬가지이다.
100: 오탐지 예방을 위한 조기 경보 시스템
110: 통신부
120: 수집부
130: 계산부
140: 예측부
150: 출력부
160: 저장부
110: 통신부
120: 수집부
130: 계산부
140: 예측부
150: 출력부
160: 저장부
Claims (20)
- 발전 설비의 데이터를 수집하는 수집부(120);
발전 설비의 상기 데이터를 이용하여 신호별 데이터를 산출하고 상기 신호별 데이터를 이용하여 추천되는 추천 학습 구간을 통해 차원축소 및 데이터 시각화를 수행하여 최종 학습 구간을 설정하고, 대상 모델을 업데이트하여 업데이트 모델을 생성하는 모델 재학습을 실행하는 계산부(130); 및
상기 업데이트 모델을 이용하여 오탐지 예방을 위해 상기 발전 설비에 대한 실시간 예측하는 예측 정보를 생성하는 예측부(140);를 포함하며,
상기 신호별 데이터는 발전 설비의 상기 데이터에 대한 신호별 현재 운전 데이터 평균값 및 선택된 과거 조회기간의 신호별 과거 데이터 평균값이고,
상기 신호별 현재 운전 데이터 평균값을 기준으로 상기 과거 조회기간내 상기 신호별 과거 데이터 평균값과의 유사도가 산출되며,
상기 유사도는 유클리디안 거리, 마하라노비스 거리, 및 맨해튼 거리를 포함하는 거리 척도를 사용하여 산출되고,
상기 추천 학습 구간은 상기 유사도의 순위에 따라 가장 유사도가 높은 월이 투표를 통해 상기 거리 척도 중 2가지 이상의 거리 척도에서 상기 월이 일치하면 결정되는 최종 추천 기간을 이용하여 산출되는 것을 특징으로 하는 오탐지 예방을 위한 조기 경보 시스템.
- 삭제
- 삭제
- 삭제
- 삭제
- 제 1 항에 있어서,
상기 차원축소는 상기 신호별 데이터를 저차원으로 차원 축소를 수행하여 3차원 공간의 다변량 차원으로 변환되는 것을 특징으로 하는 오탐지 예방을 위한 조기 경보 시스템.
- 제 6 항에 있어서,
상기 차원 축소는 상기 신호별 데이터의 분산이 최대가 되도록 고차원 데이터 셋(dataset)과 투영된 데이터 셋 간의 평균제곱거리를 최소화하는 축을 찾는 기법 또는 상기 신호별 데이터의 분포를 학습하여 고차원 데이터 셋 간의 분리를 최적화하는 결정 경계에 따라 데이터를 투영(projection)하는 기법을 이용하여 수행되는 것을 특징으로 하는 오탐지 예방을 위한 조기 경보 시스템.
- 제 7 항에 있어서,
상기 고차원 데이터 셋은, 사용자가 임의로 조회한 기간의 전체 데이터셋, 평균값 기반 유사도 측정으로부터 추천되는 추천 데이터셋, 및 마지막으로 변화된 상기 발전 설비의 상태에 대한 현재 운전 데이터셋을 포함하는 것을 특징으로 하는 오탐지 예방을 위한 조기 경보 시스템.
- 제 8 항에 있어서,
상기 고차원 데이터 셋의 크기는, 상기 추천 데이터셋의 중심을 찾고 상기 중심으로부터 군집밀도가 높은 데이터의 범위를 계산된 상기 중심으로부터 확률분포의 뾰족한 정도를 나타내는 척도인 첨도(kurtosis)를 이용하여 산포가 정규분포에 가까운 형태의 데이터 범위로 추출되는 것을 특징으로 하는 오탐지 예방을 위한 조기 경보 시스템.
- 제 8 항에 있어서,
상기 고차원 데이터 셋의 크기는, 사용자의 드래그엔 드롭 방식을 통해 선정되는 것을 특징으로 하는 오탐지 예방을 위한 조기 경보 시스템.
- 제 1 항에 있어서,
상기 추천 학습 구간에서 학습되지 않을 수 있는 신호 패턴으로부터 야기될 수 있는 오탐지(false alarm)를 방지하기 위해 값이 가변되는 가변 임계값이 설정되는 것을 특징으로 하는 오탐지 예방을 위한 조기 경보 시스템.
- 제 1 항에 있어서,
상기 추천 학습 구간에서 학습되지 않을 수 있는 신호 패턴으로부터 야기될 수 있는 오탐지(false alarm)를 방지하기 위해 값이 고정되는 정적 임계값이 설정되는 것을 특징으로 하는 오탐지 예방을 위한 조기 경보 시스템.
- (a) 수집부(120)가 발전 설비의 데이터를 수집하는 단계;
(b) 계산부(130)가 발전 설비의 상기 데이터를 이용하여 신호별 데이터를 산출하고 상기 신호별 데이터를 이용하여 추천되는 추천 학습 구간을 통해 차원축소 및 데이터 시각화를 수행하여 최종 학습 구간을 설정하고, 대상 모델을 업데이트하여 업데이트 모델을 생성하는 모델 재학습을 실행하는 단계; 및
(c) 예측부(140)가 상기 업데이트 모델을 이용하여 오탐지 예방을 위해 상기 발전 설비에 대해 실시간 예측하는 예측 정보를 생성하는 단계;를 포함하며,
상기 신호별 데이터는 발전 설비의 상기 데이터에 대한 신호별 현재 운전 데이터 평균값 및 선택된 과거 조회기간의 신호별 과거 데이터 평균값이고,
상기 신호별 현재 운전 데이터 평균값을 기준으로 상기 과거 조회기간내 상기 신호별 과거 데이터 평균값과의 유사도가 산출되며,
상기 유사도는 유클리디안 거리, 마하라노비스 거리, 및 맨해튼 거리를 포함하는 거리 척도를 사용하여 산출되고,
상기 추천 학습 구간은 상기 유사도의 순위에 따라 가장 유사도가 높은 월이 투표를 통해 상기 거리 척도 중 2가지 이상의 거리 척도에서 상기 월이 일치하면 결정되는 최종 추천 기간을 이용하여 산출되는 것을 특징으로 하는 오탐지 예방을 위한 조기 경보 방법.
- 삭제
- 삭제
- 삭제
- 삭제
- 제 13 항에 있어서,
상기 차원축소는 상기 신호별 데이터를 저차원으로 차원 축소를 수행하여 3차원 공간의 다변량 차원으로 변환되는 것을 특징으로 하는 오탐지 예방을 위한 조기 경보 방법.
- 제 18 항에 있어서,
상기 차원 축소는 상기 신호별 데이터의 분산이 최대가 되도록 고차원 데이터 셋(dataset)과 투영된 데이터 셋 간의 평균제곱거리를 최소화하는 축을 찾는 기법 또는 상기 신호별 데이터의 분포를 학습하여 고차원 데이터 셋 간의 분리를 최적화하는 결정 경계에 따라 데이터를 투영(projection)하는 기법을 이용하여 수행되는 것을 특징으로 하는 오탐지 예방을 위한 조기 경보 방법.
- 제 13 항에 있어서,
상기 추천 학습 구간에서 학습되지 않을 수 있는 신호 패턴으로부터 야기될 수 있는 오탐지(false alarm)를 방지하기 위해 값이 가변되는 가변 임계값이 설정되는 것을 특징으로 하는 오탐지 예방을 위한 조기 경보 방법.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020200144490A KR102550014B1 (ko) | 2020-11-02 | 2020-11-02 | 오탐지 예방을 위한 조기 경보 시스템 및 방법 |
KR1020230081237A KR20230104552A (ko) | 2020-11-02 | 2023-06-23 | 오탐지 예방을 위한 조기 경보 시스템 및 방법 |
KR1020230081238A KR20230098123A (ko) | 2020-11-02 | 2023-06-23 | 오탐지 예방을 위한 조기 경보 시스템 및 방법 |
KR1020230081239A KR20230104096A (ko) | 2020-11-02 | 2023-06-23 | 오탐지 예방을 위한 조기 경보 시스템 및 방법 |
KR1020230081236A KR20230104551A (ko) | 2020-11-02 | 2023-06-23 | 오탐지 예방을 위한 조기 경보 시스템 및 방법 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020200144490A KR102550014B1 (ko) | 2020-11-02 | 2020-11-02 | 오탐지 예방을 위한 조기 경보 시스템 및 방법 |
Related Child Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020230081236A Division KR20230104551A (ko) | 2020-11-02 | 2023-06-23 | 오탐지 예방을 위한 조기 경보 시스템 및 방법 |
KR1020230081238A Division KR20230098123A (ko) | 2020-11-02 | 2023-06-23 | 오탐지 예방을 위한 조기 경보 시스템 및 방법 |
KR1020230081237A Division KR20230104552A (ko) | 2020-11-02 | 2023-06-23 | 오탐지 예방을 위한 조기 경보 시스템 및 방법 |
KR1020230081239A Division KR20230104096A (ko) | 2020-11-02 | 2023-06-23 | 오탐지 예방을 위한 조기 경보 시스템 및 방법 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20220059193A KR20220059193A (ko) | 2022-05-10 |
KR102550014B1 true KR102550014B1 (ko) | 2023-07-03 |
Family
ID=81591953
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020200144490A KR102550014B1 (ko) | 2020-11-02 | 2020-11-02 | 오탐지 예방을 위한 조기 경보 시스템 및 방법 |
KR1020230081238A KR20230098123A (ko) | 2020-11-02 | 2023-06-23 | 오탐지 예방을 위한 조기 경보 시스템 및 방법 |
KR1020230081236A KR20230104551A (ko) | 2020-11-02 | 2023-06-23 | 오탐지 예방을 위한 조기 경보 시스템 및 방법 |
KR1020230081239A KR20230104096A (ko) | 2020-11-02 | 2023-06-23 | 오탐지 예방을 위한 조기 경보 시스템 및 방법 |
KR1020230081237A KR20230104552A (ko) | 2020-11-02 | 2023-06-23 | 오탐지 예방을 위한 조기 경보 시스템 및 방법 |
Family Applications After (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020230081238A KR20230098123A (ko) | 2020-11-02 | 2023-06-23 | 오탐지 예방을 위한 조기 경보 시스템 및 방법 |
KR1020230081236A KR20230104551A (ko) | 2020-11-02 | 2023-06-23 | 오탐지 예방을 위한 조기 경보 시스템 및 방법 |
KR1020230081239A KR20230104096A (ko) | 2020-11-02 | 2023-06-23 | 오탐지 예방을 위한 조기 경보 시스템 및 방법 |
KR1020230081237A KR20230104552A (ko) | 2020-11-02 | 2023-06-23 | 오탐지 예방을 위한 조기 경보 시스템 및 방법 |
Country Status (1)
Country | Link |
---|---|
KR (5) | KR102550014B1 (ko) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115393798B (zh) * | 2022-09-01 | 2024-04-09 | 深圳市冠标科技发展有限公司 | 预警方法、装置、电子设备及存储介质 |
KR20240061824A (ko) * | 2022-11-01 | 2024-05-08 | 한국전력공사 | 조기경보 운영 최적화를 위한 오탐지 평가 시스템 및 방법 |
CN116844307B (zh) * | 2023-07-24 | 2023-12-26 | 广州市水务规划勘测设计研究院有限公司 | 一种多情景山洪预警方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101960754B1 (ko) | 2017-05-31 | 2019-03-25 | 주식회사 지오네트 | 화력발전 운영 방법 및 시스템 |
KR102025145B1 (ko) * | 2017-09-01 | 2019-09-25 | 두산중공업 주식회사 | 플랜트 데이터 예측 장치 및 방법 |
KR101978569B1 (ko) * | 2017-09-01 | 2019-05-14 | 두산중공업 주식회사 | 플랜트 데이터 예측 장치 및 방법 |
-
2020
- 2020-11-02 KR KR1020200144490A patent/KR102550014B1/ko active IP Right Grant
-
2023
- 2023-06-23 KR KR1020230081238A patent/KR20230098123A/ko not_active Application Discontinuation
- 2023-06-23 KR KR1020230081236A patent/KR20230104551A/ko not_active Application Discontinuation
- 2023-06-23 KR KR1020230081239A patent/KR20230104096A/ko not_active Application Discontinuation
- 2023-06-23 KR KR1020230081237A patent/KR20230104552A/ko not_active Application Discontinuation
Non-Patent Citations (2)
Title |
---|
박기범 외 3인. ″AAKR을 이용한 원자력 발전소 고장 패턴 추출에 관한 연구″. 한국압력기기공학회 논문집. Vol. 13. No. 1. pp.40~47. (2017.06.) 1부.* |
오준석. ″발전설비 예측진단을 위한 조기경보시스템″ KEPRI News. 한국전력공사 전력연구원. 페이지 8-11. Vol. 291. Jun. 2020. 1부.* |
Also Published As
Publication number | Publication date |
---|---|
KR20230104096A (ko) | 2023-07-07 |
KR20220059193A (ko) | 2022-05-10 |
KR20230098123A (ko) | 2023-07-03 |
KR20230104551A (ko) | 2023-07-10 |
KR20230104552A (ko) | 2023-07-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102550014B1 (ko) | 오탐지 예방을 위한 조기 경보 시스템 및 방법 | |
Kim et al. | Dynamic risk assessment with bayesian network and clustering analysis | |
CN108780315B (zh) | 用于优化旋转设备的诊断的方法和装置 | |
JP2013025367A (ja) | 設備状態監視方法およびその装置 | |
Zio et al. | Multiobjective optimization of the inspection intervals of a nuclear safety system: A clustering-based framework for reducing the Pareto Front | |
EP3795975B1 (en) | Abnormality sensing apparatus, abnormality sensing method, and abnormality sensing program | |
JP6172317B2 (ja) | 混合モデル選択の方法及び装置 | |
JP2020035407A (ja) | 異常予兆診断装置及び異常予兆診断方法 | |
No et al. | Monitoring severe accidents using AI techniques | |
CN110337640B (zh) | 用于问题警报聚合和识别次优行为的方法、系统和介质 | |
CN115577701A (zh) | 针对大数据安全的风险行为识别方法、装置、设备及介质 | |
Puppo et al. | A framework based on finite mixture models and adaptive kriging for characterizing non-smooth and multimodal failure regions in a nuclear passive safety system | |
Salim et al. | Classification predictive maintenance using XGboost with genetic algorithm | |
Alharthi et al. | Sentiment analysis based error detection for large-scale systems | |
CN118428718A (zh) | 一种配电网的安全隐患智能分析系统 | |
CN110162743A (zh) | 一种基于k邻域非线性状态估计算法的数据治理方法 | |
Vargas et al. | A hybrid feature learning approach based on convolutional kernels for ATM fault prediction using event-log data | |
KR20230127861A (ko) | 신용평가 모델 업데이트 또는 교체 방법 및 장치 | |
US20180157718A1 (en) | Episode mining device, method and non-transitory computer readable medium of the same | |
Han et al. | A fault diagnosis method based on active example selection | |
Chou et al. | Economic design of variable sampling intervals charts with B&L switching rule | |
CN118885374A (zh) | 故障预测方法及计算机存储介质和终端设备 | |
KR102697214B1 (ko) | 상관도 누적 가중치를 이용한 조기 경보 시스템 및 방법 | |
CN117828300B (zh) | 一种基于异常指标时序关系的银行业务根因指标分析方法、系统、设备及可读存储介质 | |
US20220284061A1 (en) | Search system and search method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E902 | Notification of reason for refusal | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |