KR102544272B1 - Anode for lithium ion battery and manufacturing method for the same - Google Patents

Anode for lithium ion battery and manufacturing method for the same Download PDF

Info

Publication number
KR102544272B1
KR102544272B1 KR1020200103231A KR20200103231A KR102544272B1 KR 102544272 B1 KR102544272 B1 KR 102544272B1 KR 1020200103231 A KR1020200103231 A KR 1020200103231A KR 20200103231 A KR20200103231 A KR 20200103231A KR 102544272 B1 KR102544272 B1 KR 102544272B1
Authority
KR
South Korea
Prior art keywords
lithium ion
ion battery
2dsi
negative electrode
polyimide
Prior art date
Application number
KR1020200103231A
Other languages
Korean (ko)
Other versions
KR20220022267A (en
KR102544272B9 (en
Inventor
전영시
박재우
황현진
강희주
이태규
김윤호
원종찬
소유진
Original Assignee
전남대학교산학협력단
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전남대학교산학협력단, 한국화학연구원 filed Critical 전남대학교산학협력단
Priority to KR1020200103231A priority Critical patent/KR102544272B1/en
Publication of KR20220022267A publication Critical patent/KR20220022267A/en
Application granted granted Critical
Publication of KR102544272B1 publication Critical patent/KR102544272B1/en
Publication of KR102544272B9 publication Critical patent/KR102544272B9/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

리튬 이온 배터리용 음극으로, 활물질인 2차원 실리콘 물질(2DSi) 및 폴리이미드(PI)계 바인더를 포함하는 것을 특징으로 하는 리튬 이온 배터리용 음극이 제공된다.As a negative electrode for a lithium ion battery, a negative electrode for a lithium ion battery is provided, characterized in that it includes a two-dimensional silicon material (2DSi) as an active material and a polyimide (PI)-based binder.

Description

리튬 이온 배터리용 음극 및 그 제조방법{Anode for lithium ion battery and manufacturing method for the same}Anode for lithium ion battery and manufacturing method for the same}

본 발명은 리튬 이온 배터리용 음극 및 그 제조방법에 관한 것으로, 보다 상세하게는 전극 물질 간 안정한 화학적, 구조적 결합이 형성되어 수명이 연장된 리튬 이온 배터리용 음극 및 그 제조방법에 관한 것이다.The present invention relates to a negative electrode for a lithium ion battery and a method for manufacturing the same, and more particularly, to a negative electrode for a lithium ion battery having an extended lifespan by forming stable chemical and structural bonds between electrode materials and a method for manufacturing the same.

리튬 이온 배터리는 가볍고 작은 부피와 높은 에너지 밀도를 가진다. 이들은 이동 통상장치, 디지털 카메라, 랩탑 등에 널리 사용되고 있다. 이러한 리튬 이온 배터리의 음극으로 흑연(~372 mAh/g)이 널리 사용되고 있으나, 실리콘 음극 물질은 4200 mAh/g의 높은 이론용량으로 차세대 음극 물질로 유망하다(한국특허 10-2006-0061064호 등 참조).Lithium-ion batteries have a light weight, small volume and high energy density. These are widely used in mobile conventional devices, digital cameras, laptops, and the like. Graphite (~372 mAh/g) is widely used as the anode of these lithium ion batteries, but silicon anode material is promising as a next-generation anode material with a high theoretical capacity of 4200 mAh/g (see Korean Patent No. 10-2006-0061064, etc.) ).

하지만 리튬 저장시 실리콘의 부피팽창이 매우 심해 전극의 충,방전 안정성을 유도하기 어렵다는 문제가 있다.However, there is a problem in that it is difficult to induce charge and discharge stability of the electrode because the volume expansion of silicon is very severe during lithium storage.

따라서, 본 발명이 해결하고자 하는 과제는 전지 수명과 화학적, 구조적 안정성이 증가한 리튬 이온 배터리 음극과 그 제조방법을 제공하는 것이다.Therefore, the problem to be solved by the present invention is to provide a lithium ion battery negative electrode with increased battery life and chemical and structural stability and a manufacturing method thereof.

본 발명은 상술한 문제를 해결하기 위해, 활물질인 2차원 실리콘 물질(2DSi) 및 폴리이미드(PI)계 바인더를 포함하는 것을 특징으로 하는 리튬 이온 배터리용 음극을 제공한다.In order to solve the above problems, the present invention provides a negative electrode for a lithium ion battery comprising a two-dimensional silicon material (2DSi) as an active material and a polyimide (PI)-based binder.

또한, 상기 2차원 실리콘 물질은 실록센(Si6H3(OH)3)인 것을 특징으로 하는 리튬 이온 배터리용 음극을 제공한다.In addition, the two-dimensional silicon material is siloxene (Si 6 H 3 (OH) 3 ) to provide a negative electrode for a lithium ion battery, characterized in that.

또한, 상기 2차원 실리콘 물질(2DSi)은 2차원 결정구조를 가지나, 2회 싸이클 이후 2차원 결정구조를 상실하여 비정질화되는 것을 특징으로 하는 리튬 이온 배터리용 음극을 제공한다.In addition, the two-dimensional silicon material (2DSi) provides a negative electrode for a lithium ion battery, characterized in that it has a two-dimensional crystal structure, but loses the two-dimensional crystal structure after two cycles and becomes amorphous.

또한, 상기 폴리이미드는 폴리아믹산(PAA)를 열처리하여 이미드화된 것을 특징으로 하는 리튬 이온 배터리용 음극을 제공한다.In addition, the polyimide provides a negative electrode for a lithium ion battery, characterized in that imidized by heat treatment of polyamic acid (PAA).

또한, 상기 음극을 포함하는 리튬 이온 배터리를 제공한다.In addition, a lithium ion battery including the negative electrode is provided.

또한, 상기 음극은 금속 집전체 상에 적층된 것을 특징으로 하는 리튬 이온 배터리를 제공한다.In addition, the negative electrode provides a lithium ion battery, characterized in that laminated on the metal current collector.

또한, 활물질인 2차원 실리콘 물질(2DSi) 및 폴리이미드(PI)계 바인더를 혼합하여 2차원 실리콘 슬러리를 제조하는 단계, 상기 슬러리를 집전체 상에 도포하는 단계 및 상기 도포된 집전체를 소성하는 단계를 포함하는 것을 특징으로 하는 리튬 이온 배터리용 음극 제조방법을 제공한다.In addition, preparing a two-dimensional silicon slurry by mixing a two-dimensional silicon material (2DSi) as an active material and a polyimide (PI)-based binder, applying the slurry on a current collector, and firing the coated current collector It provides a method for manufacturing a negative electrode for a lithium ion battery, characterized in that it comprises the step.

또한, 상기 폴리이미드(PI)계 바인더는 폴리아믹산(PAA)이며, 상기 폴리아믹산은 상기 소성하는 단계에서 이미드화되어 폴리이미드(PI)가 상기 2차원 실리콘 물질(2DSi)에 결합하는 것을 특징으로 하는 리튬 이온 배터리용 음극 제조방법을 제공한다.In addition, the polyimide (PI)-based binder is polyamic acid (PAA), and the polyamic acid is imidized in the firing step so that the polyimide (PI) is bonded to the two-dimensional silicon material (2DSi). It provides a method for manufacturing a negative electrode for a lithium ion battery.

또한, 상기 소성하는 단계의 온도는 120℃ 초과 500℃ 이하인 것을 특징으로 하는 리튬 이온 배터리용 음극 제조방법을 제공한다.In addition, it provides a method for manufacturing a negative electrode for a lithium ion battery, characterized in that the temperature of the firing step is greater than 120 ℃ and less than 500 ℃.

또한, 상기 2차원 실리콘 물질은 실록센인 것을 특징으로 하는 리튬 이온 배터리용 음극 제조방법을 제공한다.In addition, the two-dimensional silicon material provides a method for manufacturing a negative electrode for a lithium ion battery, characterized in that siloxene.

또한, 상기 제조방법에 의하여 제조된 리튬 이온 배터리용 음극을 제공한다.In addition, a negative electrode for a lithium ion battery manufactured by the above manufacturing method is provided.

본 발명에 따르면, 2차원 실리콘 활물질과 폴리이미드계 바인더를 사용하여 리튬 이온 배터리 음극을 제조한다. 특히 본 발명의 일 실시예에서는 바인더인 폴리아믹산의 열처리는 이미드화를 유도하고, 이는 전극 물질 간 안정한 화학적, 구조적 결합을 형성한다. 또한 고온 소성으로 인한 sintering 효과로 물질 간 접촉을 높여 2차원 실리콘 음극의 수명과 싸이클 특성을 향상시킬 수 있다.According to the present invention, a lithium ion battery negative electrode is manufactured using a two-dimensional silicon active material and a polyimide-based binder. In particular, in one embodiment of the present invention, heat treatment of polyamic acid as a binder induces imidation, which forms a stable chemical and structural bond between electrode materials. In addition, it is possible to improve the lifespan and cycle characteristics of the 2D silicon anode by increasing the contact between materials due to the sintering effect caused by high-temperature firing.

도 1은 본 발명의 일 실시예에 따른 리튬 이온 배터리용 음극 제조 모식도이고, 도 2는 리튬 이온 배터리용 음극 제조방법의 단계도이다.
도 3은 전극 소성 전 후의 결정성 물질을 알 수 있는 도면이다.
도 4는 본 발명의 일 실시예에 따른 전극의 IR 스펙트로스코피 분석결과이다.
도 5는 본 발명에 따른 전극을 포함하는 전지의 충,방전 실험 결과이다.
도 6은 본 발명에 따른 전극을 포함하는 전지의 싸이클 테스트 결과이다.
도 7은 본 발명의 일 실시예에 따른 전극의 두 번째 충,방전 싸이클 후의 전극에 대한 XRD 분석 결과이다.
도 8은 PAA(또는 PI계 바인더)를 사용할 경우와 바인더를 사용할 경우와 PVdF 바인더를 사용할 경우의 전극 캐스팅 과정에 대한 모식도이다.
1 is a schematic diagram of manufacturing a negative electrode for a lithium ion battery according to an embodiment of the present invention, and FIG. 2 is a step diagram of a method for manufacturing a negative electrode for a lithium ion battery.
3 is a view showing the crystalline material before and after firing the electrode.
4 is an IR spectroscopy analysis result of an electrode according to an embodiment of the present invention.
5 is a charge and discharge test result of a battery including an electrode according to the present invention.
6 is a cycle test result of a battery including an electrode according to the present invention.
7 is an XRD analysis result of the electrode after the second charge and discharge cycle of the electrode according to an embodiment of the present invention.
8 is a schematic diagram of an electrode casting process in the case of using PAA (or PI-based binder), the case of using the binder, and the case of using the PVdF binder.

이하, 본 발명에 따른 리튬 이온 배터리용 음극 및 그 제조방법의 바람직한 실시예를 첨부한 도면들에 의거하여 상세히 설명한다. 참고로, 본 명세서 및 청구범위에 사용된 용어와 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석해야만 한다.Hereinafter, a preferred embodiment of a negative electrode for a lithium ion battery and a manufacturing method thereof according to the present invention will be described in detail based on the accompanying drawings. For reference, the terms and words used in this specification and claims should not be construed as being limited to their ordinary or dictionary meanings, and the inventors use the concept of terms appropriately to describe their invention in the best way. It should be interpreted as meaning and concept consistent with the technical idea of the present invention based on the principle that it can be defined.

또한, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.In addition, the embodiments described in this specification and the configurations shown in the drawings are only one of the most preferred embodiments of the present invention, and do not represent all of the technical ideas of the present invention. It should be understood that there may be equivalents and variations.

본 발명은 상술한 문제를 해결하기 위하여, 활물질인 2차원 실리콘 물질(2DSi) 및 폴리이미드(PI)계 바인더를 포함하는 것을 특징으로 하는 리튬 이온 배터리용 음극을 제공한다. 본 발명의 일 실시예에 Super P나 NMP와 같은 물질이 사용되었으나, 본 발명의 범위는 이에 제한되지 않으며, 적어도 실록센과 같은 2차원 실리콘과 폴리이미드가 결합된 이상 이는 모두 본 발명의 범위에 속한다.In order to solve the above problems, the present invention provides a negative electrode for a lithium ion battery comprising a two-dimensional silicon material (2DSi) as an active material and a polyimide (PI)-based binder. Although materials such as Super P or NMP are used in one embodiment of the present invention, the scope of the present invention is not limited thereto, and at least as long as two-dimensional silicon such as siloxene and polyimide are combined, they all fall within the scope of the present invention. .

본 명세서에서 폴리이미드계 바인더라 함은 폴리이미드 구조를 포함하는 화합물 뿐만 아니라 열처리 후 최종 음극 내에서 이미드 구조를 갖는 모든 고분자 형태의 바인더가 이에 속한다.In the present specification, the polyimide-based binder includes not only a compound having a polyimide structure but also all polymeric binders having an imide structure in a final negative electrode after heat treatment.

본 발명은 특히 내열온도가 우수한 폴리이미드를 고온 열처리로 생성된 바인더로 활용하며, 리튬 저장 시 부피팽창으로 인한 2차원 실리콘 음극의 손실을 최소화하고, 배터리 수명 안정성 확보할 수 있다. 또한 본 발명에 따라 고온 소성 방식으로 형성된 폴리이미드(PI)는 실리콘 음극 또는 집전체와 공유결합을 형성하고 전극물질 입자간 접촉저항을 최소화하는데, 이는 하기 실험예에서 보다 상세히 설명한다. In the present invention, in particular, polyimide having an excellent heat resistance temperature is used as a binder produced by high-temperature heat treatment, and loss of a two-dimensional silicon anode due to volume expansion during lithium storage can be minimized and battery life stability can be secured. In addition, polyimide (PI) formed by high-temperature firing according to the present invention forms a covalent bond with a silicon negative electrode or a current collector and minimizes contact resistance between electrode material particles, which will be described in more detail in the following experimental examples.

도 1은 본 발명의 일 실시예에 따른 리튬 이온 배터리용 음극 제조 모식도이고, 도 2는 리튬 이온 배터리용 음극 제조방법의 단계도이다.1 is a schematic diagram of manufacturing a negative electrode for a lithium ion battery according to an embodiment of the present invention, and FIG. 2 is a step diagram of a method for manufacturing a negative electrode for a lithium ion battery.

도 1 및 2를 참조하면, 본 발명의 일 실시예에 따른 리튬 이온 배터리용 음극은, 활물질인 2차원 실리콘 물질(2DSi) 및 폴리이미드(PI)계 바인더를 혼합하여 2차원 실리콘 슬러리를 제조하는 단계; 상기 슬러리를 집전체 상에 도포하는 단계; 상기 도포된 집전체를 소성하는 단계를 포함한다. 본 발명의 일 실시예에서 상기 소성하는 단계는 폴리아믹산(Poly(amic acid), PAA)와 같은 바인더를 이미드화하는 공정으로 이로써 최종 제조된 전극은 실록센과 같은 2차원 실리콘 화합물(2DSi)와 이미드기를 포함하는 고분자 화합물이 결합된 구조를 갖는다.1 and 2, a negative electrode for a lithium ion battery according to an embodiment of the present invention is prepared by mixing a two-dimensional silicon material (2DSi) and a polyimide (PI)-based binder as an active material to prepare a two-dimensional silicon slurry. step; applying the slurry on a current collector; and firing the coated current collector. In one embodiment of the present invention, the firing step is a process of imidizing a binder such as poly(amic acid) (PAA), so that the final manufactured electrode is already with a two-dimensional silicon compound (2DSi) such as siloxene. It has a structure in which a polymer compound containing a group is bonded.

이하 실시예 및 실험예를 통하여 본 발명을 보다 상세히 설명한다.The present invention will be described in more detail through the following examples and experimental examples.

실시예Example

2차원 실리콘(2DSi) 합성Two-dimensional silicon (2DSi) synthesis

CaSi2(20 g)을 37 wt.% 염산(67 ml)에 넣고 12시간 이상 반응시켜 Ca 이온을 제거하였다. Ca 이온이 제거되고 남은 물질(2DSi)은 필터를 이용해 회수하고, 아세톤으로 충분히 씻어 준 뒤 100℃ 진공 오븐에서 24 시간 건조 후 회수하였다.CaSi 2 (20 g) was added to 37 wt.% hydrochloric acid (67 ml) and reacted for 12 hours or longer to remove Ca ions. The remaining material (2DSi) after removal of Ca ions was recovered using a filter, sufficiently washed with acetone, and dried in a vacuum oven at 100° C. for 24 hours before recovery.

PAA 합성PAA synthesis

4,4'-옥시디아닐린(ODA) 30 g을 반응기에 넣고 용매로 사용되는 메틸 피롤리돈 564 g을 넣고 교반하였다. 이후 반응기 온도를 0℃로 하고 피로멜리틱산 이무수물(PMDA) 32.7 g을 첨가하고 1시간 교반하여 반응시켰다. 다음으로 상온으로 온도를 올리고 4시간 교반하여 반응을 진행, 고형분 10 wt.%의 폴리아믹산(PAA)을 합성하였다.30 g of 4,4'-oxydianiline (ODA) was put in a reactor, and 564 g of methyl pyrrolidone used as a solvent was added and stirred. Thereafter, the temperature of the reactor was set to 0° C., and 32.7 g of pyromellitic acid dianhydride (PMDA) was added, followed by stirring for 1 hour to react. Next, the reaction was carried out by raising the temperature to room temperature and stirring for 4 hours to synthesize polyamic acid (PAA) having a solid content of 10 wt.%.

2DSi 슬러리 합성2DSi slurry synthesis

상술한 2DSi와 PAA, Super P, NMP를 혼합하여 슬러리를 제조하였다. 이때 바이더인 PAA는 10 wt.% 농도로 NMP 용매에 용해된 상태이며, 본 발명의 일 실시예에서는 2DSi(350 mg), PAA (500 mg), Super P (100 mg)를 2.5 ml NMP에 용해하였으며, 이때 2DSi:PAA:Super P의 질량비는 각각 7:1:2이었으나, 본 발명의 범위는 이에 제한되지 않으며, 적어도 활물질인 2DSi 대비 PAA의 함량이 5:5 내지 10:1이면 이는 본 발명의 범위에 속한다. 만약 바인더가 상기 범위보다 많은 양인 경우 전지 특성이 나빠지고 상기 범위보다 적은 양인 경우 전극의 물리적, 화학적 결합력이 약해진다.A slurry was prepared by mixing the above-described 2DSi with PAA, Super P, and NMP. At this time, PAA, which is a binder, is dissolved in NMP solvent at a concentration of 10 wt.%, and in one embodiment of the present invention, 2DSi (350 mg), PAA (500 mg), and Super P (100 mg) are dissolved in 2.5 ml NMP. At this time, the mass ratio of 2DSi: PAA: Super P was 7: 1: 2, respectively, but the scope of the present invention is not limited thereto. belongs to the range of If the amount of the binder is greater than the above range, battery characteristics are deteriorated, and if the amount is less than the above range, the physical and chemical bonding strength of the electrode is weakened.

2DSI 음극 제조2DSI cathode fabrication

상술한 슬러리를 구리 포일(7.5 cm x 14.5 cm) 위에 닥터 블레이드 법을 이용해 도포하였다. 2DSi 슬러리가 균일하게 도포된 구리 포일(2DSi-PAA-Cu)를 120℃ 진공 오븐에서 24 시간 건조하고 2DSi-PAA-Cu 포일은 코인 셀의 규격에 맞게 지름이 14 mm가 되도록 커팅하여 준비하였다.The above slurry was applied on a copper foil (7.5 cm x 14.5 cm) using a doctor blade method. The copper foil (2DSi-PAA-Cu) to which the 2DSi slurry was uniformly coated was dried in a vacuum oven at 120° C. for 24 hours, and the 2DSi-PAA-Cu foil was prepared by cutting to a diameter of 14 mm in accordance with the coin cell standard.

반쪽 전지 제조half cell manufacturing

소성 온도에 따른 비교를 하기 위하여 워킹 전극은 총 3가지의 소성 온도에 따라 1) 소성되지 않은 전극(as) 2) 350℃로 소성한 전극(-350℃) 3)500℃로 소성한 전극(-500℃)을 준비하였다. 이 외 셀 요소들은 다음과 같이 사용하였다. 1) cell case (CR-2032, MTI KOREA Co.) 2)Li-metal (counter electrode, diameter: 10 mm, thickness: 0.75 mm, Alfa Aesar Co.), 3) separator (GF/C, diameter 19 mm, thickness: 0.26 mm, Whatman Co.), 4) electrolyte (1M LiPF6 dissolved in EC:DMC 1:1 vol.%, Sigma Aldrich Co.)In order to compare the firing temperatures, the working electrodes were classified according to three firing temperatures: 1) non-fired electrode (as) 2) electrode fired at 350 ° C (-350 ° C) 3) electrode fired at 500 ° C (as) -500 ° C) was prepared. Other cell elements were used as follows. 1) cell case (CR-2032, MTI KOREA Co.) 2) Li-metal (counter electrode, diameter: 10 mm, thickness: 0.75 mm, Alfa Aesar Co.), 3) separator (GF/C, diameter 19 mm) , thickness: 0.26 mm, Whatman Co.), 4) electrolyte (1M LiPF6 dissolved in EC:DMC 1:1 vol.%, Sigma Aldrich Co.)

전기화학 성능 평가Electrochemical performance evaluation

전기화학 성능 평가를 위해 자동 전지 싸이클러 (Automatic battery cycler, WonAtech Co., WBCS 3000 model)를 사용하였다. 전압 범위 0.05 ~ 2.0 V vs. Li/Li+, 전류밀도 0.375 mA/cm2으로 조작하였고 전극들 간의 접촉으로 인한 저항(contact resistance)를 줄이기 위해 6 시간 동안의 충분한 휴지시간을 거친 후, 방전-충전 싸이클을 반복하도록 실험조건을 설계하였다.For electrochemical performance evaluation, an automatic battery cycler (WonAtech Co., WBCS 3000 model) was used. Voltage range 0.05 to 2.0 V vs. Li/Li + , current density of 0.375 mA/cm 2 was operated, and after a sufficient rest time for 6 hours to reduce contact resistance due to contact between electrodes, the experimental conditions were set to repeat the discharge-charge cycle. designed.

실험예Experimental example

도 3은 전극 소성 전 후의 결정성 물질을 알 수 있는 도면이다.3 is a view showing the crystalline material before and after firing the electrode.

도 3을 참조하면 본 발명의 일 실시예에 따른 전극 물질의 2DSi인 2D실록센(Si6H3(OH)3)은 XRD 패턴 분석 결과 그래핀과 같은 그래피틱 스태킹(graphtic stacking)과 같은 17°피크가 열처리 후에도 유지되는 것으로 보다 2차원 구조가 안정적으로 유지되는 것을 알 수 있다. 따라서, 폴리이미드로의 전환을 위해 열처리 과정을 거치는 본 발명에서 2차원 구조를 안정적으로 유지하는 2D 실록센은 음극 활물질로 적합하다는 것을 알 수 있다. 또한 43°, 50.2°, 74°에 나타나는 강한 피크는 집전체인 구리 포일의 피크이며, 이는 열처리 후에도 집전체인 Cu 포일의 결정성을 그대로 유지하는 것을 시사한다.Referring to FIG. 3, 2D siloxene (Si 6 H 3 (OH) 3 ), which is 2DSi of an electrode material according to an embodiment of the present invention, has 17 It can be seen that the two-dimensional structure is maintained more stably as the ° peak is maintained even after heat treatment. Therefore, it can be seen that 2D siloxene stably maintaining a two-dimensional structure is suitable as an anode active material in the present invention undergoing a heat treatment process for conversion to polyimide. In addition, the strong peaks appearing at 43 °, 50.2 °, and 74 ° are peaks of the current collector copper foil, which suggests that the crystallinity of the current collector Cu foil is maintained as it is even after heat treatment.

도 4는 본 발명의 일 실시예에 따른 전극의 IR 스펙트로스코피 분석결과이다.4 is an IR spectroscopy analysis result of an electrode according to an embodiment of the present invention.

도 4를 참조하면, 진공 건조(120℃) 및 고온(350℃, 500℃) 열처리 후 PAA의 -NH와 COOH 기능기(3200~4000 cm-1)는 이미드 그룹을 형성하며 사리지는 것을 알 수 있다. 즉, 1350~1780 cm-1에서 발견되는 피크들은 공유결합 형성 후 생성되는 카르보닐(C=O) 결합을 의미하며, 진공 건조 처리만 한 전극에서 가장 많이 발견되었으며, 이어진 고온 소성을 진행한 전극들은 일부의 카르보닐(C=O) 결합이 소실될 수 있는 것으로 보인다.Referring to Figure 4, after vacuum drying (120 ℃) and high temperature (350 ℃, 500 ℃) heat treatment, -NH and COOH functional groups (3200 ~ 4000 cm -1 ) of PAA form an imide group and disappear. can That is, the peaks found at 1350 to 1780 cm -1 refer to carbonyl (C=O) bonds generated after covalent bond formation, and were most frequently found in electrodes subjected to vacuum drying only, followed by high-temperature firing. It appears that some of the carbonyl (C=O) bonds may be lost.

도 5는 본 발명에 따른 전극을 포함하는 전지의 충방전 실험 결과이다. 5 is a charge/discharge test result of a battery including an electrode according to the present invention.

도 5를 참조하면, 전류밀도 3: 375 mA/g (0.375 mA/cm2)에서 충,방전 시험을 진행할 때, 2DSi-PI'Cu('Cu는 구리 포일에 활물질이 도포된 상태), 2DSi-PI'Cu-350(350℃로 2DSi-PI'Cu을 소성한 상태), 2DSi-PI'Cu-500(500℃로 2DSi-PI'Cu을 소성한 상태) 전지들은 모두 0.2 V vs. Li/Li+ 이하에서 플래토우(plateau)를 형성하며 방전용량을 생성하였다. 일반적인 실리콘 물질의 리튬화 포텐셜인 0.1-0.2 V vs. Li/Li+과 같은 위치이며 이는 2DSi가 활물질로서 작용되고 있음을 나타낸다.Referring to FIG. 5, when the charge and discharge test is performed at a current density of 3: 375 mA/g (0.375 mA/cm 2 ), 2DSi-PI'Cu ('Cu is a state in which the active material is applied to copper foil), 2DSi -PI'Cu-350 (2DSi-PI'Cu calcined at 350 °C) and 2DSi-PI'Cu-500 (2DSi-PI'Cu calcined at 500 °C) batteries were all 0.2 V vs. A plateau was formed below Li/Li+ and discharge capacity was generated. The lithiation potential of typical silicon materials, 0.1-0.2 V vs. It is the same position as Li/Li + , indicating that 2DSi is acting as an active material.

도 6은 본 발명에 따른 전극을 포함하는 전지의 싸이클 테스트 결과이다.6 is a cycle test result of a battery including an electrode according to the present invention.

도 6을 참조하면, 전류밀도 3: 375 mA/g (0.375 mA/cm2)에서 2DSi-PI'Cu, 2DSi-PI'Cu-350, 2DSi-PI'Cu-500 샘플들은 20번의 충,방전 싸이클 후 각각 410, 514, 461 mAh/g의 방전용량을 보이며, 2 V vs. Li/Li+ 까지 충전하였을 때 저장한 리튬 이온을 모두 회수하는 것(Coulombic efficiency ~100%)이 가능하였다,Referring to FIG. 6, at a current density of 3: 375 mA/g (0.375 mA/cm 2 ), 2DSi-PI'Cu, 2DSi-PI'Cu-350, and 2DSi-PI'Cu-500 samples were charged and discharged 20 times. After cycles, discharge capacities of 410, 514, and 461 mAh/g were shown, respectively, and 2 V vs. When charging up to Li/Li + , it was possible to recover all stored lithium ions (Coulombic efficiency ~100%).

또한 200번의 충,방전 싸이클 동안 2DSi-PI'Cu, 2DSi-PI'Cu-350, 2DSi-PI'Cu-500은 싸이클당 용량 손실(capacity loss per cycle)이 각각 0.23, 0.03, 0.14 % 이었으며, 고온 소성한 샘플 특히 350℃로 소성한 샘플이 가장 안정한 특성을 보였다. 저온(120℃) 진공건조의 경우 공유결합의 강도가 낮을 것으로 예상되며, 500℃의 경우 폴리이미드(PI)의 열분해가 심화되었기 때문이라고 생각된다. 따라서, 본 발명의 일 실시예에 따른 2DSi-PAA의 소성온도는 바람직하게 120℃ 초과 500℃ 이하가 바람직하며, 보다 바람직하게는 300℃ 이상 500℃ 이하이다.In addition, during 200 charge and discharge cycles, 2DSi-PI'Cu, 2DSi-PI'Cu-350, and 2DSi-PI'Cu-500 had a capacity loss per cycle of 0.23, 0.03, and 0.14%, respectively. The samples calcined at high temperature, especially at 350°C, showed the most stable characteristics. In the case of vacuum drying at a low temperature (120 ° C), the strength of the covalent bond is expected to be low, and in the case of 500 ° C, it is considered that the thermal decomposition of polyimide (PI) is intensified. Therefore, the sintering temperature of 2DSi-PAA according to an embodiment of the present invention is preferably greater than 120°C and less than 500°C, more preferably more than 300°C and less than 500°C.

도 7은 본 발명의 일 실시예에 따른 전극의 두 번째 충,방전 싸이클 후의 전극에 대한 XRD 분석 결과이다.7 is an XRD analysis result of the electrode after the second charge and discharge cycle of the electrode according to an embodiment of the present invention.

일반적으로 실리콘 음극은 0.1~0.2 V vs. Li/Li+에서 리튬 이온을 저장할 때 결합을 끊어내면서 반응하는 것으로 알려져 있다. 도 7을 참조하면, 두 번째 충,방전 싸이클에서 방전 전압에 따라 전극을 분석한 결과, 2DSi-PI'Cu, 2DSi-PI'Cu-350, 2DSi-PI'Cu-500 샘플들의 Si6 고리의 2차원 배열(100)에 해당하는 27˚ 피크가 사라져 있음을 알 수 있다. 따라서, 최초 제조된 2차원 실록센 내의 Si-Si 결합은 리튬화에 의해 사라지게 되며, 이후 결정구조는 회복하지 않고 비정질 상태로 남아 전극의 리튬화/탈리튬화 될 것으로 예상된다.Typically, silicon cathodes have 0.1 to 0.2 V vs. It is known that Li/Li + reacts by breaking bonds when storing lithium ions. Referring to FIG. 7, as a result of analyzing the electrode according to the discharge voltage in the second charge and discharge cycle, the Si 6 ring of the 2DSi-PI'Cu, 2DSi-PI'Cu-350, and 2DSi-PI'Cu-500 samples It can be seen that the 27˚ peak corresponding to the two-dimensional array 100 has disappeared. Therefore, it is expected that the Si-Si bond in the initially prepared two-dimensional siloxene disappears by lithiation, and then the crystal structure remains in an amorphous state without recovery, leading to lithiation/delithiation of the electrode.

도 8은 PAA(또는 PI계 바인더)를 사용할 경우와 바인더를 사용할 경우와 PVdF 바인더를 사용할 경우의 전극 캐스팅 과정에 대한 모식도이다.8 is a schematic diagram of an electrode casting process in the case of using PAA (or PI-based binder), the case of using the binder, and the case of using the PVdF binder.

도 8을 참조하면, PI 바인더를 이용한 경우 열처리를 통한 물리적 화학적 결합으로 인해 전극 물질 간 접촉력이 강화되었을 것으로 판단된다.Referring to FIG. 8 , in the case of using a PI binder, it is determined that the contact force between electrode materials is enhanced due to physical and chemical bonding through heat treatment.

Claims (11)

리튬 이온 배터리용 음극으로,
활물질인 2차원 실리콘 물질(2DSi) 및 폴리이미드(PI)계 바인더를 포함하는 것을 특징으로 하고,
상기 폴리이미드(PI)계 바인더는 폴리아믹산(PAA)인 것을 특징으로 하고,
집전체 상에 상기 2차원 실리콘 물질(2DSi) 및 폴리이미드(PI)계 바인더를 혼합한 슬러리를 도포하고 소성되어 상기 폴리아믹산이 이미드화되어 폴리이미드(PI)가 상기 2차원 실리콘 물질(2DSi)에 결합하는 것을 특징으로 하는 리튬 이온 배터리용 음극.
As a negative electrode for lithium ion batteries,
It is characterized by including a two-dimensional silicon material (2DSi) and a polyimide (PI)-based binder as an active material,
The polyimide (PI)-based binder is characterized in that polyamic acid (PAA),
A slurry in which the two-dimensional silicon material (2DSi) and the polyimide (PI)-based binder are mixed is applied and fired on the current collector, and the polyamic acid is imidized to form the polyimide (PI) into the two-dimensional silicon material (2DSi) A negative electrode for a lithium ion battery, characterized in that coupled to.
제1항에 있어서,
상기 2차원 실리콘 물질은 실록센(Si6H3(OH)3)인 것을 특징으로 하는 리튬 이온 배터리용 음극.
According to claim 1,
The two-dimensional silicon material is a negative electrode for a lithium ion battery, characterized in that siloxene (Si 6 H 3 (OH) 3 ).
제1항에 있어서,
상기 2차원 실리콘 물질(2DSi)은 2차원 결정구조를 가지나, 2회 싸이클 이후 2차원 결정구조를 상실하여 비정질화되는 것을 특징으로 하는 리튬 이온 배터리용 음극.
According to claim 1,
The anode for a lithium ion battery, characterized in that the two-dimensional silicon material (2DSi) has a two-dimensional crystal structure, but loses the two-dimensional crystal structure after two cycles and becomes amorphous.
삭제delete 제1항에 따른 음극을 포함하는 리튬 이온 배터리.A lithium ion battery comprising the negative electrode according to claim 1 . 삭제delete 리튬 이온 배터리용 음극 제조방법으로,
활물질인 2차원 실리콘 물질(2DSi) 및 폴리이미드(PI)계 바인더를 혼합하여 2차원 실리콘 슬러리를 제조하는 단계;
상기 슬러리를 집전체 상에 도포하는 단계; 및
상기 도포된 집전체를 소성하는 단계를 포함하는 것을 특징으로 하고,
상기 폴리이미드(PI)계 바인더는 폴리아믹산(PAA)이며, 상기 폴리아믹산은 상기 소성하는 단계에서 이미드화되어 폴리이미드(PI)가 상기 2차원 실리콘 물질(2DSi)에 결합하는 것을 특징으로 하는 리튬 이온 배터리용 음극 제조방법.
As a method for manufacturing a negative electrode for a lithium ion battery,
preparing a two-dimensional silicon slurry by mixing a two-dimensional silicon material (2DSi) as an active material and a polyimide (PI)-based binder;
applying the slurry on a current collector; and
Characterized in that it comprises the step of firing the coated current collector,
The polyimide (PI)-based binder is polyamic acid (PAA), and the polyamic acid is imidized in the firing step so that the polyimide (PI) bonds to the two-dimensional silicon material (2DSi) Lithium, characterized in that Method for manufacturing negative electrode for ion battery.
삭제delete 제7항에 있어서,
상기 소성하는 단계의 온도는 120℃ 초과 500℃ 이하인 것을 특징으로 하는 리튬 이온 배터리용 음극 제조방법.
According to claim 7,
A negative electrode manufacturing method for a lithium ion battery, characterized in that the temperature of the firing step is more than 120 ℃ and less than 500 ℃.
제 7항에 있어서,
상기 2차원 실리콘 물질은 실록센인 것을 특징으로 하는 리튬 이온 배터리용 음극 제조방법.
According to claim 7,
The method of manufacturing a negative electrode for a lithium ion battery, characterized in that the two-dimensional silicon material is siloxene.
제7항에 따른 방법에 의하여 제조된 리튬 이온 배터리용 음극.An anode for a lithium ion battery manufactured by the method according to claim 7.
KR1020200103231A 2020-08-18 2020-08-18 Anode for lithium ion battery and manufacturing method for the same KR102544272B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200103231A KR102544272B1 (en) 2020-08-18 2020-08-18 Anode for lithium ion battery and manufacturing method for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200103231A KR102544272B1 (en) 2020-08-18 2020-08-18 Anode for lithium ion battery and manufacturing method for the same

Publications (3)

Publication Number Publication Date
KR20220022267A KR20220022267A (en) 2022-02-25
KR102544272B1 true KR102544272B1 (en) 2023-06-16
KR102544272B9 KR102544272B9 (en) 2023-12-08

Family

ID=80490263

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200103231A KR102544272B1 (en) 2020-08-18 2020-08-18 Anode for lithium ion battery and manufacturing method for the same

Country Status (1)

Country Link
KR (1) KR102544272B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013121624A1 (en) * 2012-02-13 2013-08-22 日本電気株式会社 Negative electrode for lithium secondary battery and method for manufacturing same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013121624A1 (en) * 2012-02-13 2013-08-22 日本電気株式会社 Negative electrode for lithium secondary battery and method for manufacturing same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF POWER SOURCES vol. 417, pp.99-107(2019.02.14. 공개)*
JOURNAL OF POWER SOURCES vol.330, pp.246-252(2016.10.31. 공개)*

Also Published As

Publication number Publication date
KR20220022267A (en) 2022-02-25
KR102544272B9 (en) 2023-12-08

Similar Documents

Publication Publication Date Title
CN101515640B (en) Cathode and lithium ion secondary battery containing same
JP5379832B2 (en) Positive electrode material structure and manufacturing method thereof
KR20180035168A (en) Anode with mesh type insulating layer, lithium secondary battery containing the same
US9831500B2 (en) Porous electrode active material and secondary battery including the same
US20230282836A1 (en) Lithium metal negative electrode plate, electrochemical apparatus, and electronic device
US20120045696A1 (en) Negative electrode materials for non-aqueous electrolyte secondary battery
JP2005038720A (en) Method of manufacturing negative electrode and method of manufacturing battery
JP2002319392A (en) Negative active material, and nonaqueous electrolyte secondary battery
CN109075291A (en) Partition including porous adhesive layer and the lithium secondary battery using the partition
JP3965567B2 (en) battery
JP4909512B2 (en) Nonaqueous electrolyte secondary battery
CN111527632A (en) Additive for electrochemical device, binder composition for electrochemical device, slurry composition for electrochemical device, electrode for electrochemical device, and electrochemical device
JP2005005117A (en) Battery
CN113437257A (en) Lithium metal negative pole piece, electrochemical device and electronic equipment
JP4792618B2 (en) Carbonaceous particles for negative electrode of lithium secondary battery, manufacturing method thereof, negative electrode of lithium secondary battery and lithium secondary battery
JP2016170930A (en) Negative electrode active material layer and power storage device having the same
KR101375326B1 (en) Composite anode active material, method of preparing the same, anode and lithium battery containing the material
US8236447B2 (en) Electrode active material for non-aqueous secondary batteries
KR101621384B1 (en) Anode, lithium battery comprising the anode, and method for preparing the anode
JP3972577B2 (en) Lithium secondary battery
KR102544272B1 (en) Anode for lithium ion battery and manufacturing method for the same
US20230081140A1 (en) Catalysts and methods for lowering electrode pyrolysis temperature
CN115275196A (en) Conductive binder, preparation method thereof, positive plate and secondary battery
JP2008084706A (en) Battery
KR101667967B1 (en) Cathode slurry for electrochemical device, cathode manufactured using the slurry, and a method of making the cathode

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
G170 Re-publication after modification of scope of protection [patent]