KR102542231B1 - Silver nanoparticles derived from Flavobacteriaceae bacterium F202Z8, and uses thereof - Google Patents

Silver nanoparticles derived from Flavobacteriaceae bacterium F202Z8, and uses thereof Download PDF

Info

Publication number
KR102542231B1
KR102542231B1 KR1020210029263A KR20210029263A KR102542231B1 KR 102542231 B1 KR102542231 B1 KR 102542231B1 KR 1020210029263 A KR1020210029263 A KR 1020210029263A KR 20210029263 A KR20210029263 A KR 20210029263A KR 102542231 B1 KR102542231 B1 KR 102542231B1
Authority
KR
South Korea
Prior art keywords
silver nanoparticles
strain
silver
bacterium
flavobacteriaceae
Prior art date
Application number
KR1020210029263A
Other languages
Korean (ko)
Other versions
KR20220125447A (en
Inventor
권용민
김영환
김경우
이대성
최그레이스
배승섭
정다운
Original Assignee
국립해양생물자원관
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 국립해양생물자원관 filed Critical 국립해양생물자원관
Priority to KR1020210029263A priority Critical patent/KR102542231B1/en
Publication of KR20220125447A publication Critical patent/KR20220125447A/en
Application granted granted Critical
Publication of KR102542231B1 publication Critical patent/KR102542231B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N63/00Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
    • A01N63/20Bacteria; Substances produced thereby or obtained therefrom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/20Flavobacterium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Virology (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Environmental Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Pest Control & Pesticides (AREA)
  • Biomedical Technology (AREA)
  • Dentistry (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

본 발명은 플라보박테리아시에 박테리움(Flavobacteriaceae bacterium) F202Z8 균주 유래 은 나노 입자 및 이의 용도에 관한 것으로, 플라보박테리아시에 박테리움 F202Z8 균주가 질산은(AgNO3)이 포함된 조건에서 은 나노 입자를 생산하는 것을 확인하고, 플라보박테리아시에 박테리움 F202Z8 균주 유래의 은 나노 입자가 그람 양성균 및 그람 음성균에 대한 항균활성을 나타내는 것을 확인함으로써, 플라보박테리아시에 박테리움(Flavobacteriaceae bacterium) F202Z8 균주 유래 은 나노 입자, 이를 제조하는 방법 및 이를 포함하는 항균용 조성물을 제공한다.The present invention relates to silver nanoparticles derived from the Flavobacteriaceae bacterium strain F202Z8 and uses thereof, wherein the Flavobacteriaceae bacterium F202Z8 strain is silver nanoparticles under conditions containing silver nitrate (AgNO 3 ) , and confirming that the silver nanoparticles derived from the bacterium F202Z8 strain exhibit antibacterial activity against gram-positive bacteria and gram-negative bacteria, the Flavobacteriaceae bacterium F202Z8 strain Provided are silver nanoparticles derived from silver, a method for preparing the same, and an antibacterial composition including the same.

Description

플라보박테리아시에 박테리움 F202Z8 균주 유래 은 나노 입자 및 이의 용도{Silver nanoparticles derived from Flavobacteriaceae bacterium F202Z8, and uses thereof}Silver nanoparticles derived from Flavobacteriaceae bacterium F202Z8 strain and uses thereof {Silver nanoparticles derived from Flavobacteriaceae bacterium F202Z8, and uses thereof}

본 발명은 플라보박테리아시에 박테리움(Flavobacteriaceae bacterium) F202Z8 균주 유래 은 나노 입자 및 이의 용도에 관한 것이다.The present invention relates to silver nanoparticles derived from the Flavobacteriaceae bacterium strain F202Z8 and uses thereof.

나노입자는 일반적으로 100nm 이하의 크기를 말하며, 마이크로 이상의 큰 입자가 나노화되면서 크기, 형태, 분포 등이 원재료와 전혀 다른 독특한 성질로 변하게 된다. 금속과 준금속 나노입자는 항균활성, 약물전달, 암치료, 의료진단, 생물영상촬영 등 다양한 분야에서 응용되고 있다. 이러한 이유로 최근 몇 년간 금속과 준금속 나노입자에 대한 연구가 주목을 받아오고 있다. 나노입자를 합성하기 위해 물리화학적 방법의 전통방식을 수년간 사용해왔으나 비용이 많이 들며 합성공정에서 여러 환원제와 안정제로 인한 독성물질에 노출될 수 있는 단점이 있다. 저비용으로 생산성을 쉽게 높일 수 있는 환경 친화적인 방법으로 세균, 균류, 식물 등을 이용한 생물학적 나노입자 합성에 대한 연구가 시도되어 왔으며, 특히 극심한 환경에서 높은 적응력을 보이는 세균을 이용한 생물학적 합성 연구가 각광을 받고 있다.Nanoparticles generally refer to a size of 100 nm or less, and as particles larger than micro are nanosized, their size, shape, distribution, etc. change into unique properties that are completely different from those of the original material. Metal and metalloid nanoparticles are applied in various fields such as antibacterial activity, drug delivery, cancer treatment, medical diagnosis, and bioimaging. For this reason, research on metal and metalloid nanoparticles has attracted attention in recent years. Although traditional methods of physicochemical methods have been used for many years to synthesize nanoparticles, they are expensive and may be exposed to toxic substances caused by various reducing agents and stabilizers in the synthesis process. Research on the synthesis of biological nanoparticles using bacteria, fungi, and plants has been attempted as an environmentally friendly method that can easily increase productivity at low cost. In particular, research on biological synthesis using bacteria showing high adaptability in extreme environments is in the limelight. are receiving

생물학적 나노입자를 이용한 합성 메카니즘은 정확하게 규명되어 있진 않지만, 세균을 이용한 생물학적 합성은 세포내 및 세포외적인 두 가지로 구분할 수 있다. 세포내 합성은 세포벽에 위치한 카르복실기 그룹이 전기적 상호작용을 통해 금속이온을 세포내로 유인하여 세포내 단백질과 공동인자와의 상호작용으로 생성된다. 세포외 합성은 세포벽 성분이나 배양액내에 분비된 단백질, 효소, 유기물을 통해 금속이온이 환원되어 합성된다. 세포외 합성은 세포내 합성보다 비용이 적고 세포벽 파괴과정 없이 추출이 간편하며 효율이 높기 때문에 선호도가 높을 뿐만 아니라 합성과정에서 세포외로 분비된 다양한 생체 분자로 인해 나노입자를 안정화시켜 준다.Although the synthesis mechanism using biological nanoparticles has not been precisely identified, biological synthesis using bacteria can be divided into two types: intracellular and extracellular. Intracellular synthesis is produced by interactions between intracellular proteins and cofactors by attracting metal ions into cells through electrical interactions between carboxyl groups located on cell walls. Extracellular synthesis is synthesized by reduction of metal ions through proteins, enzymes, and organic substances secreted in cell wall components or culture medium. Extracellular synthesis is preferred because it is less costly than intracellular synthesis, is easy to extract without destroying cell walls, and has high efficiency, and also stabilizes nanoparticles due to various biomolecules secreted extracellularly during the synthesis process.

은 나노입자는 의약에서부터 전자분야에 이르기까지 다양한 산업분야에서 응용되고 있다. 특히 의약(관절질환, 상처치료 등)분야에서 활용은 전체 나노입자의 23% 이상을 차지하고 있으며, 피부질환 예방, 섬유제 재료 및 항균, 항진균, 항바이러스 등 효과적인 항균제로써 널리 이용되고 있다. 지금까지 금, 은, 구리, 티타늄, 아연 등의 금속 나노입자를 항균제로서 활용하기 위해 지속적인 연구가 이어져왔으며, 그 중 은 나노입자는 다른 금속 나노입자 보다 항균활성, 안정성, 생산성 등이 뛰어나기 때문에 항균제 활용소재로서 가장 적합하다. 저렴한 비용, 무독성, 효율적 생산성, 환경 친화적인 장점을 가지는 생물학적 은 나노입자 합성을 위한 연구는 지속적으로 보고되고 있다. 이와 동시 다양한 나노입자의 합성을 위한 새로운 원천소재의 다양성 또한 지속적인 연구가 필요하다.Silver nanoparticles are applied in various industrial fields from medicine to electronics. In particular, applications in the field of medicine (joint disease, wound treatment, etc.) account for more than 23% of all nanoparticles, and are widely used as effective antibacterial agents such as prevention of skin diseases, textile materials, and antibacterial, antifungal, and antiviral. Until now, continuous research has been conducted to utilize metal nanoparticles such as gold, silver, copper, titanium, and zinc as antibacterial agents. It is most suitable as an antibacterial material. Research on the synthesis of biological silver nanoparticles with advantages of low cost, non-toxicity, efficient productivity, and environmental friendliness has been continuously reported. At the same time, the diversity of new source materials for the synthesis of various nanoparticles also requires continuous research.

한국등록특허 제10-1905026호 (2018. 10. 08. 공고)Korean Patent Registration No. 10-1905026 (2018. 10. 08. Notice)

상기와 같은 문제점을 해결하기 위해, 본 발명의 목적은 플라보박테리아시에 박테리움 F202Z8 균주가 질산은(AgNO3)이 포함된 조건에서 은 나노 입자를 생산하는 것을 확인하고, 플라보박테리아시에 박테리움 F202Z8 균주 유래의 은 나노 입자가 그람 양성균 및 그람 음성균에 대한 항균활성을 나타내는 것을 확인함으로써, 플라보박테리아시에 박테리움(Flavobacteriaceae bacterium) F202Z8 균주 유래 은 나노 입자, 이를 제조하는 방법 및 이를 포함하는 항균용 조성물을 제공하는 것이다.In order to solve the above problems, an object of the present invention is to confirm that the bacterium F202Z8 strain in Flavobacteria produces silver nanoparticles under conditions containing silver nitrate (AgNO 3 ), and the bacteria in Flavobacteria By confirming that silver nanoparticles derived from strain Leeum F202Z8 exhibit antibacterial activity against gram-positive and gram-negative bacteria, silver nanoparticles derived from Flavobacteriaceae bacterium strain F202Z8, a method for preparing the same, and including the same It is to provide an antibacterial composition.

본 발명은 기탁번호 KCCM12947P로 기탁된 플라보박테리아시에 박테리움(Flavobacteriaceae bacterium) F202Z8 균주 유래 은 나노 입자를 제공한다.The present invention provides silver nanoparticles derived from the Flavobacteriaceae bacterium strain F202Z8 deposited under accession number KCCM12947P.

또한, 본 발명은 기탁번호 KCCM12947P로 기탁된 플라보박테리아시에 박테리움(Flavobacteriaceae bacterium) F202Z8 균주를 질산은(AgNO3)을 포함하는 용액에 배양하는 단계를 포함하는 은 나노 입자 제조 방법을 제공한다.In addition, the present invention provides a method for preparing silver nanoparticles comprising culturing the Flavobacteriaceae bacterium F202Z8 strain deposited under accession number KCCM12947P in a solution containing silver nitrate (AgNO 3 ).

또한, 본 발명은 기탁번호 KCCM12947P로 기탁된 플라보박테리아시에 박테리움(Flavobacteriaceae bacterium) F202Z8 균주를 유효성분으로 포함하는 항균용 조성물을 제공한다.In addition, the present invention provides an antibacterial composition comprising a Flavobacteriaceae bacterium strain F202Z8 as an active ingredient.

또한, 본 발명은 기탁번호 KCCM12947P로 기탁된 플라보박테리아시에 박테리움(Flavobacteriaceae bacterium) F202Z8 균주 유래 은 나노 입자를 유효성분으로 포함하는 항균용 조성물을 제공한다.In addition, the present invention provides an antibacterial composition comprising, as an active ingredient, silver nanoparticles derived from the Flavobacteriaceae bacterium strain F202Z8 deposited under Accession No. KCCM12947P.

본 발명에 따르면, 플라보박테리아시에 박테리움 F202Z8 균주는 질산은(AgNO3)이 포함된 조건에서 은 나노 입자를 생산하여 은 나노 입자를 대량 생산할 수 있고, 플라보박테리아시에 박테리움 F202Z8 균주 유래의 은 나노 입자가 그람 양성균 및 그람 음성균에 대한 항균활성을 나타내어, 플라보박테리아시에 박테리움 F202Z8 균주 또는 이의 유래 은 나노 입자를 포함하는 항균용 조성물을 제공할 수 있다.According to the present invention, the bacterium F202Z8 strain in Flavobacteria can mass-produce silver nanoparticles by producing silver nanoparticles in the presence of silver nitrate (AgNO 3 ). Since the silver nanoparticles of exhibit antibacterial activity against gram-positive and gram-negative bacteria, it is possible to provide an antibacterial composition containing the bacterium F202Z8 strain or silver nanoparticles derived from the bacterium F202Z8 in case of Flavobacteria.

도 1은 플라보박테리아시에 박테리움 F202Z8 균주의 고상 배양(좌) 및 액상 배양(우)한 사진이다.
도 2는 플라보박테리아시에 박테리움 F202Z8 균주의 계통분류학적 분석 결과이다.
도 3은 플라보박테리아시에 박테리움 F202Z8 균주의 은 나노입자의 생산능을 평가하기 위한 은 나노입자(AgNPs)의 흡광도(A) 및 농도(B)를 분석한 결과이다.
도 4는 플라보박테리아시에 박테리움 F202Z8 균주 유래의 은 나노입자의 TEM(Transmission Electron Microscopy) 이미지(A,B) 및 EDS(Energy-Dispersive X-ray Spectroscopy) 프로파일(C) 결과이다.
도 5는 플라보박테리아시에 박테리움 F202Z8 균주 유래의 은 나노입자의 항균활성을 평가한 디스크 확산 방법(A) 및 최소저해농도(B) 결과이다.
1 is a photograph of solid-phase culture (left) and liquid-phase culture (right) of the bacterium F202Z8 strain in Flavobacteria.
Figure 2 is a phylogenetic analysis result of the bacterium F202Z8 strain in Flavobacteria.
FIG. 3 is a result of analyzing the absorbance (A) and concentration (B) of silver nanoparticles (AgNPs) for evaluating the ability of the bacterium F202Z8 strain to produce silver nanoparticles in Flavobacteria.
4 shows TEM (Transmission Electron Microscopy) images (A, B) and EDS (Energy-Dispersive X-ray Spectroscopy) profile (C) results of silver nanoparticles derived from the bacterium F202Z8 strain in Flavobacteria.
5 is a disk diffusion method (A) and minimum inhibitory concentration (B) results for evaluating the antibacterial activity of silver nanoparticles derived from the bacterium F202Z8 strain in Flavobacteria.

본 명세서에서 사용되는 용어는 본 발명에서의 기능을 고려하면서 가능한 현재 널리 사용되는 일반적인 용어들을 선택하였으나, 이는 당 분야에 종사하는 기술자의 의도 또는 판례, 새로운 기술의 출현 등에 따라 달라질 수 있다. 또한, 특정한 경우는 출원인이 임의로 선정한 용어도 있으며, 이 경우 해당되는 발명의 설명 부분에서 상세히 그 의미를 기재할 것이다. 따라서 본 발명에서 사용되는 용어는 단순한 용어의 명칭이 아닌, 그 용어가 가지는 의미와 본 발명의 전반에 걸친 내용을 토대로 정의되어야 한다.The terms used in this specification have been selected from general terms that are currently widely used as much as possible while considering the functions in the present invention, but these may vary depending on the intention of a person skilled in the art, precedent, or the emergence of new technologies. In addition, in a specific case, there is also a term arbitrarily selected by the applicant, and in this case, the meaning will be described in detail in the description of the invention. Therefore, the term used in the present invention should be defined based on the meaning of the term and the overall content of the present invention, not simply the name of the term.

다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Unless defined otherwise, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art to which the present invention belongs. Terms such as those defined in commonly used dictionaries should be interpreted as having a meaning consistent with the meaning in the context of the related art, and unless explicitly defined in this application, it should not be interpreted in an ideal or excessively formal meaning. don't

수치 범위는 상기 범위에 정의된 수치를 포함한다. 본 명세서에 걸쳐 주어진 모든 최대의 수치 제한은 낮은 수치 제한이 명확히 쓰여 있는 것처럼 모든 더 낮은 수치 제한을 포함한다. 본 명세서에 걸쳐 주어진 모든 최소의 수치 제한은 더 높은 수치 제한이 명확히 쓰여 있는 것처럼 모든 더 높은 수치 제한을 포함한다. 본 명세서에 걸쳐 주어진 모든 수치 제한은 더 좁은 수치 제한이 명확히 쓰여 있는 것처럼, 더 넓은 수치 범위 내의 더 좋은 모든 수치 범위를 포함할 것이다.Numerical ranges are inclusive of the values defined therein. Every maximum numerical limitation given throughout this specification includes every lower numerical limitation, as if such lower numerical limitations were expressly written. Every minimum numerical limitation given throughout this specification includes every higher numerical limitation, as if such higher numerical limitations were expressly written. Every numerical limitation given throughout this specification will include every better numerical range within the broader numerical range, as if the narrower numerical limitations were expressly written.

이하, 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명의 발명자들은 해안가 녹슨 철로부터 분리된 새로운 신속종으로 금속과 관련된 대사과정이 있을 것으로 예상하고, 신속종인 플라보박테리아시에 박테리움(Flavobacteriaceae bacterium) F202Z8 균주를 순수 분리하였으며, F202Z8 균주 유래의 은 나노입자를 분리하여 병원성 세균인 Bacillus subtilis, Escherichia coli, Salmonella typhimurium, Staphylococcus aureus 4균주에 대한 항균활성 효능을 평가함으로써 본 발명을 완성하였다.The inventors of the present invention predicted that there would be a metal-related metabolic process as a new rapid species isolated from coastal rusty iron, and purified the Flavobacteriaceae bacterium F202Z8 strain, a rapid species, derived from the F202Z8 strain. The present invention was completed by isolating silver nanoparticles and evaluating their antibacterial activity against four strains of pathogenic bacteria , Bacillus subtilis, Escherichia coli, Salmonella typhimurium, and Staphylococcus aureus .

본 발명은 기탁번호 KCCM12947P로 기탁된 플라보박테리아시에 박테리움(Flavobacteriaceae bacterium) F202Z8 균주 유래 은 나노 입자를 제공한다.The present invention provides silver nanoparticles derived from the Flavobacteriaceae bacterium strain F202Z8 deposited under accession number KCCM12947P.

상기 F202Z8 균주는 해안가 녹슨 철로부터 분리된 새로운 신속종으로 금속과 관련된 대사과정을 갖고 있으며, 병원성 세균인 Bacillus subtilis, Escherichia coli, Salmonella typhimurium, Staphylococcus aureus 4균주에 대한 항균 활성을 나타낸다.The F202Z8 strain is a new rapid species isolated from coastal rusty iron, has a metal-related metabolic process, and exhibits antibacterial activity against four strains of pathogenic bacteria , Bacillus subtilis, Escherichia coli, Salmonella typhimurium, and Staphylococcus aureus .

상기 F202Z8 균주 유래 은 나노 입자는 10 ~ 103nm 범위의 직경을 가지며, 그람 음성균인 Escherichia coli, Salmonella typhimurium 및 그람 양성균인 Bacillus subtilis, Staphylococcus aureus에 대해 향균 활성을 나타낸다.The silver nanoparticles derived from the F202Z8 strain have a diameter ranging from 10 to 103 nm, and exhibit antibacterial activity against Gram-negative bacteria such as Escherichia coli and Salmonella typhimurium and Gram-positive bacteria such as Bacillus subtilis and Staphylococcus aureus .

또한, 본 발명은 기탁번호 KCCM12947P로 기탁된 플라보박테리아시에 박테리움(Flavobacteriaceae bacterium) F202Z8 균주를 질산은(AgNO3)을 포함하는 용액에 배양하는 단계를 포함하는 은 나노 입자 제조 방법을 제공한다.In addition, the present invention provides a method for preparing silver nanoparticles comprising culturing the Flavobacteriaceae bacterium F202Z8 strain deposited under accession number KCCM12947P in a solution containing silver nitrate (AgNO 3 ).

또한, 본 발명은 기탁번호 KCCM12947P로 기탁된 플라보박테리아시에 박테리움(Flavobacteriaceae bacterium) F202Z8 균주를 유효성분으로 포함하는 항균용 조성물을 제공한다.In addition, the present invention provides an antibacterial composition comprising a Flavobacteriaceae bacterium strain F202Z8 as an active ingredient.

또한, 본 발명은 기탁번호 KCCM12947P로 기탁된 플라보박테리아시에 박테리움(Flavobacteriaceae bacterium) F202Z8 균주 유래 은 나노 입자를 유효성분으로 포함하는 항균용 조성물을 제공한다.In addition, the present invention provides an antibacterial composition comprising, as an active ingredient, silver nanoparticles derived from the Flavobacteriaceae bacterium strain F202Z8 deposited under Accession No. KCCM12947P.

이하, 본 발명의 이해를 돕기 위하여 실시예를 들어 상세하게 설명하기로 한다. 다만 하기의 실시예는 본 발명의 내용을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.Hereinafter, examples will be described in detail to aid understanding of the present invention. However, the following examples are merely illustrative of the contents of the present invention, but the scope of the present invention is not limited to the following examples. The embodiments of the present invention are provided to more completely explain the present invention to those skilled in the art.

<실시예 1> F202Z8 균주 분리 및 동정<Example 1> F202Z8 strain isolation and identification

2018년도 6월 1일 충청남도 태안군 남면 신온리 곰섬해수욕장 해안가(36°35' 25"N, 126°17' 17"E)의 녹슨 철에서 시료를 채취하였다. 클린벤치에서 시료를 멸균수에 현탁하여 1/100로 희석한 후 조벨 고체배지(ZoBell agar)에 접종하여 20℃에서 5일 동안 배양하였다. 오렌지 색소를 띄는 단일 균주를 마린 고체배지(Marine agar)에 다시 접종하여 단일 균주로 순수 분리하였다. F202Z8 균주의 동정을 위해 마린 액체배지에서 3일 동안 27℃에서 배양된 균주 1ml을 취하여 “Exgene DNA Extraction Kit” (GeneAll, South Korea)를 이용하여 제조회사 프로토콜에 의하여 genomic DNA를 추출하였다. 16S rRNA 유전자 증폭을 위해 27F 및 1492R 프라이머를 사용하여 PCR을 수행하였다. PCR 산물은 “MEGAquick-spin Plus Total Fragment DNA Purification Kit”(iNtRON, South Korea)을 이용하여 정제 후, 마크로젠(South Korea)에서 서열분석기(Applied Biosystems 3730XL)를 이용하여 분석하였다. 이렇게 얻어진 F202Z8 균주의 16S rRNA 유전자 염기서열(서열번호 1)은 EzBioCloud 데이터베이스의 BLAST 검색을 통해 이전에 보고된 균주들의 정보와 비교하였다. F202Z8 종과 근접종들과의 계통발생학적 분석(phylogenetic tree)을 MEGA 프로그램을 통해 분석하였다.On June 1, 2018, samples were taken from rusty iron on the coast of Gomseom Beach (36°35' 25"N, 126°17' 17"E), Sinon-ri, Nam-myeon, Taean-gun, Chungcheongnam-do. In a clean bench, the sample was suspended in sterile water, diluted 1/100, inoculated into ZoBell agar, and incubated at 20° C. for 5 days. A single strain with an orange pigment was inoculated into Marine agar again and isolated as a pure strain. To identify the F202Z8 strain, 1 ml of the strain cultured at 27 ° C for 3 days in marine liquid medium was taken and genomic DNA was extracted using the “Exgene DNA Extraction Kit” (GeneAll, South Korea) according to the manufacturer's protocol. PCR was performed using 27F and 1492R primers for 16S rRNA gene amplification. The PCR product was purified using “MEGAquick-spin Plus Total Fragment DNA Purification Kit” (iNtRON, South Korea) and then analyzed using a sequencer (Applied Biosystems 3730XL) from Macrogen (South Korea). The 16S rRNA gene base sequence (SEQ ID NO: 1) of the F202Z8 strain thus obtained was compared with information of previously reported strains through BLAST search of the EzBioCloud database. A phylogenetic tree of F202Z8 species and neighboring species was analyzed through the MEGA program.

도 1에 나타난 바와 같이, 해안가 녹슨 철로부터 분리된 새로운 신속종인 F202Z8 균주는 오렌지색 색소(도 1좌, 우)를 가지고 있으며, 마린 액체배지에서 성장시 균주들이 서로 엉켜있는 형태(도 1우)를 가진 것으로 나타났다. 16S rRNA 유전자를 통해 동정한 결과 플라보박테리아시에(Flavobacteriaceae) 과(family)에 속하는 마리박터(Maribacter) 속종과 94.5%의 유사성을 보여주었다. 또한, F202Z8 종과 근접한 종들과의 계통발생학적으로 분석한 결과 도 2에 나타난 바와 같이, Pricia antarctica ZS1-8TCostertonia aggregata KCCM 42265T 사이에 분류되어 플라보박테리아시에 과에 속하는 것으로 나타났다.As shown in Figure 1, the F202Z8 strain, a new rapid species isolated from coastal rusty iron, has an orange pigment (Fig. 1 left, right), and when grown in marine broth, the strains are entangled with each other (Fig. 1 right) appeared to have As a result of identification through the 16S rRNA gene, Flavobacteriaceae showed 94.5% similarity with the genus Maribacter belonging to the family. In addition, as a result of phylogenetic analysis of species F202Z8 and adjacent species, as shown in Figure 2, it was classified between Pricia antarctica ZS1-8 T and Costertonia aggregata KCCM 42265 T and belonged to the Flavobacteria family.

<실시예 2> F202Z8 균주를 이용한 은 나노입자 합성<Example 2> Synthesis of silver nanoparticles using F202Z8 strain

멸균된 20ml 마린 액체배지가 담긴 50ml 삼각플라스크에 접종하여 27℃에서 3일 동안 150rpm 속도로 1차 배양을 하였다. 1차 배양 균주를 신선한 60ml 마린 액체배지가 담긴 100ml 삼각플라스크에 1%로 재접종 후 위와 동일한 조건으로 2차 배양을 실시하였다. 2차 배양액 30ml씩 50ml 팔콘 튜브 2개로 분배하여 20℃에서 7,000rpm 속도로 10분 동안 원심분리로 분리하였다. 균주 펠렛을 멸균된 PBS로 2번 세척 후 약 0.4g씩 무게를 동일하게 준비하였다. 은 나노입자 합성을 위해 한 튜브는 1mM 질산은을 30ml 첨가하였고 다른 한 튜브는 control로 사용하기 위해 100℃에서 10분 동안 열처리하여 1mM 질산은(AgNO3) 30ml 첨가하여 25℃의 상온에서 반응시켰다. 또한, 2차 배양액에서 분리된 상등액 30ml을 0.2㎛ 시린지로 제균한 시료를 최종농도 1mM 질산은(AgNO3)을 첨가하여 negative control로 사용하였다. 반응 36시간 후 갈색 변화를 관찰하였고 균주들을 제거하기 위해 4,000rpm 속도로 10분 동안 원심분리하여 상등액을 4℃에 보관하였다. 세포내 합성 유/무를 확인하기 위해 분리된 균주 펠렛에 에탄올을 1:1 비율로 첨가하여 2분 동안 볼텍싱하였다. 추가적으로 10ml의 헥산을 첨가하여 2분 동안 볼텍싱 한 후 상등액을 4℃에 보관하였다.It was inoculated into a 50ml Erlenmeyer flask containing sterilized 20ml marine liquid medium and primary culture was performed at 150rpm for 3 days at 27°C. The primary cultured strain was re-inoculated with 1% in a 100ml Erlenmeyer flask containing fresh 60ml marine liquid medium, and then secondary culture was performed under the same conditions as above. 30ml of the secondary culture medium was divided into two 50ml falcon tubes and separated by centrifugation at 20°C at 7,000rpm for 10 minutes. After washing the strain pellet twice with sterilized PBS, about 0.4 g each was prepared with the same weight. For the synthesis of silver nanoparticles, 30 ml of 1 mM silver nitrate was added to one tube, and 30 ml of 1 mM silver nitrate (AgNO 3 ) was added by heat treatment at 100 ° C. for 10 minutes to the other tube to be used as a control, and reacted at room temperature of 25 ° C. In addition, 30 ml of the supernatant separated from the secondary culture was sterilized with a 0.2 μm syringe, and a final concentration of 1 mM silver nitrate (AgNO 3 ) was added thereto and used as a negative control. Brown change was observed after 36 hours of reaction, and centrifugation was performed at 4,000 rpm for 10 minutes to remove strains, and the supernatant was stored at 4°C. Ethanol was added to the isolated strain pellet in a ratio of 1:1 to confirm the presence/absence of intracellular synthesis and vortexing for 2 minutes. Additionally, 10 ml of hexane was added and vortexed for 2 minutes, and the supernatant was stored at 4°C.

<실시예 3> 은 나노입자의 특성 분석<Example 3> Characteristic analysis of silver nanoparticles

3-1) 흡광도 측정3-1) Absorbance measurement

합성된 나노입자 및 두 개의 controls의 각 시료 100㎕를 96-well plate에 첨가 후 UV-vis 분광광도계(SpectrMas i3x, Molecular Devices, USA)를 이용하여 300~700nm의 파장대에서 5nm 간격으로 측정하였다.100 μl of each sample of the synthesized nanoparticles and two controls was added to a 96-well plate, and then measured at 5 nm intervals in a wavelength range of 300 to 700 nm using a UV-vis spectrophotometer (SpectrMas i3x, Molecular Devices, USA).

3-2) 형태, 농도 및 원소성분 분석3-2) Analysis of shape, concentration and elemental composition

합성된 은 나노입자 5㎕를 카본으로 코팅된 구리 그리드 위에 5분 동안 고정 후 실험타울로 제거한 다음 건조하였다. 건조된 시료는 구면수차보정 투과전자현미경(JEM-ARM200F, JEOL Ltd, Japan)을 이용하여 나노입자의 형태 및 원소성분을 분석하였다. 은 나노입자의 크기와 농도는 나노입자분석기(LM10, Nanosight Ltd, UK)를 이용하여 분석하였다.5 μl of the synthesized silver nanoparticles were fixed on a carbon-coated copper grid for 5 minutes, removed with an experimental towel, and then dried. The dried samples were analyzed for morphology and elemental components of nanoparticles using a spherical aberration corrected transmission electron microscope (JEM-ARM200F, JEOL Ltd, Japan). The size and concentration of silver nanoparticles were analyzed using a nanoparticle analyzer (LM10, Nanosight Ltd, UK).

도 3에 나타난 바와 같이, 질산은(AgNO3)과 반응 36시간 이후 은 나노입자 고유의 암갈색(도 3A 안쪽 적색선 용기)으로 변하는 것을 관찰하였다. 은 이온에서 나노입자로 전환 시 표면 플라스몬 공명(surface plasmon resonance)으로 인해 400~450nm에서 흡광도를 보인다고 알려져 있다. 상기 결과에서 450nm에서 은 나노입자 특유의 흡수피크(도 3A 적색선)가 관찰되었으므로 새롭게 분리된 F202Z8종 유래의 은 나노입자가 성공적으로 합성되었음을 시사하였다. 나노입자분석기를 이용하여 합성된 은 나노입자의 농도와 크기를 확인 한 결과 48nm의 평균 크기(도 3B)와 1.5×109/ml을 합성하였다As shown in FIG. 3 , after 36 hours of reaction with silver nitrate (AgNO 3 ), it was observed that the silver nanoparticles were changed to a dark brown color (inner red line container in FIG. 3A). It is known that silver ions show absorbance at 400-450 nm due to surface plasmon resonance when converted to nanoparticles. From the above results, an absorption peak specific to silver nanoparticles (red line in FIG. 3A) was observed at 450 nm, suggesting that the newly isolated silver nanoparticles derived from the F202Z8 species were successfully synthesized. As a result of confirming the concentration and size of the synthesized silver nanoparticles using a nanoparticle analyzer, an average size of 48 nm (FIG. 3B) and 1.5×10 9 /ml were synthesized.

도 4에 나타난 바와 같이, 구면수차보정 투과전자현미경(Cs corrected Transmission Electron Microscopy)을 이용하여 합성된 은 나노입자의 형태를 관찰한 결과 기존에 보고된 은 나노 입자와 유사하게 약 10 ~ 103nm 범위의 구형 혹은 구형에 가까운 형태(도 4A, B)를 이루고 있었으며, 합성된 은 나노입자의 원소성분을 EDS(Energy-Dispersive X-ray Spectroscopy)로 분석한 결과 3 keV에서 흡수 피크를 보였으며, 91.11%의 은 성분이 관찰되었다(도 4C).As shown in FIG. 4, as a result of observing the shape of the synthesized silver nanoparticles using a spherical aberration corrected transmission electron microscope (Cs corrected Transmission Electron Microscopy), similar to previously reported silver nanoparticles, they had a range of about 10 to 103 nm. It had a spherical or near-spherical shape (Fig. 4A, B), and as a result of analyzing the elemental components of the synthesized silver nanoparticles by EDS (Energy-Dispersive X-ray Spectroscopy), an absorption peak was shown at 3 keV, and 91.11% A silver component of was observed (Fig. 4C).

<실시예 4> 항균활성 조사<Example 4> Investigation of antibacterial activity

4-1) 디스크 확산 방법(Disc Diffusion Aaasy)4-1) Disc Diffusion Aaasy

Bacillus subtilis KCTC 3135, Escherichia coli KCTC 2441, Salmonella typhimurium KCTC 1925, Staphylococcus aureus ATCC 6538 4개 병원균을 LB 액체배지에 접종하여 최적온도에서 24시간 동안 각각 배양하였다. 각 균주들을 약 5×106이 되도록 LB 고체배지에 도말 한 후 합성된 은 나노입자 10, 20, 30㎕와 negative control 20㎕를 첨가한 8mm 디스크를 그 위에 놓은 다음 1~2일 동안 각 균주들의 억제 효과를 관찰하였다.Four pathogens, Bacillus subtilis KCTC 3135, Escherichia coli KCTC 2441, Salmonella typhimurium KCTC 1925, and Staphylococcus aureus ATCC 6538, were inoculated into LB broth and incubated for 24 hours at optimum temperature. Each strain was plated on LB solid medium to a size of about 5 × 10 6 , and then an 8 mm disk containing 10, 20, 30 μl of synthesized silver nanoparticles and 20 μl of negative control was placed thereon, and then each strain for 1 to 2 days. The inhibitory effect of them was observed.

4-2) 최소저해농도(Minimum Inhibitory Concentration) 측정4-2) Measurement of Minimum Inhibitory Concentration

Bacillus subtilis KCTC 3135, Escherichia coli KCTC 2441, Staphylococcus aureus ATCC 6538 3개 병원균을 LB 액체배지에 접종하여 최적온도에서 24시간 동안 각각 배양하였다. 멸균된 10ml LB 액체배지가 담긴 전용 50ml 팔콘 튜브에 각 균주들을 0.1% 접종과 동시 은 나노입자를 10 ~ 100㎍(/ml)의 농도별로 첨가한 후 자동미생물 배양기(RTS-1, Biosan, UK)를 이용하여 30℃에서 36시간 동안 배양하면서 OD600nm에서 측정하였으며 3 반복으로 수행하였다.Three pathogens, Bacillus subtilis KCTC 3135, Escherichia coli KCTC 2441, and Staphylococcus aureus ATCC 6538, were inoculated into LB broth and incubated for 24 hours at optimum temperature. After inoculating 0.1% of each strain in a dedicated 50ml falcon tube containing sterilized 10ml LB liquid medium and adding silver nanoparticles by concentration of 10 ~ 100μg (/ml) at the same time, the automatic microbial incubator (RTS-1, Biosan, UK) ) was measured at OD600nm while incubating at 30 ° C. for 36 hours and was performed in 3 repetitions.

도 5에 나타난 바와 같이, 2개의 그람 음성균(Escherichia coli, Salmonella typhimurium)과 2개의 양성균(Bacillus subtilis, Staphylococcus aureus) 모두에 대해 은 나노입자의 농도에 따라 증가하는 항균활성을 보여주었다(도 5A). 4개의 병원성 균주들에 대해 은 나노입자의 항균활성도는 S. aureus, B. subtilis, E. coli, S. typhimurium의 순으로 특히, 생명 위협의 질병을 유발할 수 있는 대표적인 항생제 내성균주인 S. aureus에 대해 가장 높은 항균활성능력을 보여주었다. 항균활성이 가장 낮은 S. typhimurium을 제외한 3개의 병원성 균주들을 대상으로 은 나노입자를 농도별로 처리한 후 최소저해농도(MIC)를 알아보았다. 그 결과 E. coli, B. subtilis, S. asureus에 대한 은 나노입자의 MIC값은 각각 80, 40, 30㎍/ml로 위 disc diffusion 결과와 일치한 패턴을 보여주었다(도 5B).As shown in FIG. 5, antimicrobial activity increased with the concentration of silver nanoparticles against both gram-negative bacteria ( Escherichia coli, Salmonella typhimurium ) and two positive bacteria ( Bacillus subtilis, Staphylococcus aureus ) (FIG. 5A). . For the four pathogenic strains, the antibacterial activity of silver nanoparticles was in the order of S. aureus, B. subtilis, E. coli, and S. typhimurium, especially against S. aureus , a representative antibiotic-resistant strain that can cause life-threatening diseases. showed the highest antibacterial activity against For three pathogenic strains, except for S. typhimurium , which has the lowest antibacterial activity, silver nanoparticles were treated by concentration and the minimum inhibitory concentration (MIC) was determined. As a result, the MIC values of the silver nanoparticles for E. coli, B. subtilis, and S. asureus were 80, 40, and 30 μg/ml, respectively, showing a pattern consistent with the above disc diffusion results (FIG. 5B).

이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 즉, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다.Having described specific parts of the present invention in detail above, it is clear to those skilled in the art that these specific descriptions are only preferred embodiments, and the scope of the present invention is not limited thereby. do. That is, the substantial scope of the present invention is defined by the appended claims and their equivalents.

한국미생물보존센터(국외)Korea Microbial Conservation Center (Overseas) KCCM12947PKCCM12947P 2021020220210202

<110> National Marine Biodiversity Institute ok Korea <120> Silver nanoparticles derived from Flavobacteriaceae bacterium F202Z8, and uses thereof <130> ADP-2021-0039 <160> 1 <170> KoPatentIn 3.0 <210> 1 <211> 1461 <212> DNA <213> Artificial Sequence <220> <223> F202Z8-16S rRNA <400> 1 aggctcagga tgaacgctag cggcaggcct aacacatgca agtcgagggg cagcggggag 60 tgcttgcact ctgccggcga ccggcgcacg ggtgcgcaac gcgtatggaa cctgcccttt 120 acaggggaat agcccagaga aatttggatt aatgccccat ggtaccttct atagcattat 180 aggacggtta aaggcttcgg ccggtaaggg atggccatgc gtaccattag ttagttggta 240 gggtaacggc ctaccaagac ggcgatggtt aggggccctg agagggggat cccccacact 300 ggtactgaga cacggaccag actcctacgg gaggcagcag tgaggaatat tggacaatgg 360 gcgggagcct gatccagcca tgccgcgtgc aggaagaatg ccctatgggt agtaaactgc 420 ttttgtacgg gaagaaaccc gcctacgtgt aggcggctga cggtaccgta agaataagga 480 ccggctaact ccgtgccagc agccgcggta atacggaggg tccgagcgtt atccggaatt 540 attgggttta aagggtccgt aggcgggccg gtaagtcagt ggtgaaagtc tgcagctcaa 600 ctgtagaact gcctttgata ctgtcggtct tgagtcatag tgaagtgggc ggaatatgta 660 gtgtagcggt gaaatgcata gatattacat agaacaccga ttgcgaaggc agctcactaa 720 ttgtgtactg acgctgatgg acgaaagcgt ggggagcgaa caggattaga taccctggta 780 gtccacgccg taaacgatgg atactagctg tccgtccgcc ttaggcggat gggcggccaa 840 gcgaaagtga taagtatccc acctggggag tacgttcgca agaatgaaac tcaaaggaat 900 tgacgggggc ccgcacaagc ggtggagcat gtggtttaat tcgatgatac gcgaggaacc 960 ttaccagggc ttaaatgcat tacgacaggg gtggagacac cttttccttc gggcgttttg 1020 caaggtgctg catggttgtc gtcagctcgt gccgtgaggt gtcaggttaa gtcctataac 1080 gagcgcaacc cctaccgtta gttgccagca tgtcatgatg gggactctaa cgggactgcc 1140 ggtgcaaacc gcgaggaagg tggggacgac gtcaaatcat cacggccctt acgtcctggg 1200 ccacacacgt gctacaatgg ccggtacaga gagcagccac gtcgcaaggc ggagcgaatc 1260 tacaaaaccg gtcacagttc ggatcggggt ctgcaactcg accccgtgaa gctggaatcg 1320 ctagtaatcg gatatcagcc atgatccggt gaatacgttc ccgggccttg tacacaccgc 1380 ccgtcaagcc atggaagccg ggagtgcctg aagtccgtca ccgcaaggag cggcctaggg 1440 caagatcggt aactaggcta t 1461 <110> National Marine Biodiversity Institute ok Korea <120> Silver nanoparticles derived from Flavobacteriaceae bacterium F202Z8, and uses its <130> ADP-2021-0039 <160> 1 <170> KoPatentIn 3.0 <210> 1 <211> 1461 <212> DNA <213> artificial sequence <220> <223> F202Z8-16S rRNA <400> 1 aggctcagga tgaacgctag cggcaggcct aacacatgca agtcgagggg cagcggggag 60 tgcttgcact ctgccggcga ccggcgcacg ggtgcgcaac gcgtatggaa cctgcccttt 120 acagggggaat agcccagaga aatttggatt aatgccccat ggtaccttct atagcattat 180 aggacggtta aaggcttcgg ccggtaaggg atggccatgc gtaccattag ttagttggta 240 gggtaacggc ctaccaagac ggcgatggtt aggggccctg agagggggat cccccacact 300 ggtactgaga cacggaccag actcctacgg gaggcagcag tgaggaatat tggacaatgg 360 gcgggagcct gatccagcca tgccgcgtgc aggaagaatg ccctatgggt agtaaactgc 420 ttttgtacgg gaagaaaccc gcctacgtgt aggcggctga cggtaccgta agaataagga 480 ccggctaact ccgtgccagc agccgcggta atacggaggg tccgagcgtt atccggaatt 540 attgggttta aagggtccgt aggcgggccg gtaagtcagt ggtgaaagtc tgcagctcaa 600 ctgtagaact gcctttgata ctgtcggtct tgagtcatag tgaagtgggc ggaatatgta 660 gtgtagcggt gaaatgcata gatattacat agaacaccga ttgcgaaggc agctcactaa 720 ttgtgtactg acgctgatgg acgaaagcgt ggggagcgaa caggattaga taccctggta 780 gtccacgccg taaacgatgg atactagctg tccgtccgcc ttaggcggat gggcggccaa 840 gcgaaagtga taagtatccc acctggggag tacgttcgca agaatgaaac tcaaaggaat 900 tgacgggggc ccgcacaagc ggtggagcat gtggtttaat tcgatgatac gcgaggaacc 960 ttaccagggc ttaaatgcat tacgacaggg gtggagacac cttttccttc gggcgttttg 1020 caaggtgctg catggttgtc gtcagctcgt gccgtgaggt gtcaggttaa gtcctataac 1080 gagcgcaacc cctaccgtta gttgccagca tgtcatgatg gggactctaa cgggactgcc 1140 ggtgcaaacc gcgaggaagg tggggacgac gtcaaatcat cacggccctt acgtcctggg 1200 ccacacacgt gctacaatgg ccggtacaga gagcagccac gtcgcaaggc ggagcgaatc 1260 tacaaaaccg gtcacagttc ggatcggggt ctgcaactcg accccgtgaa gctggaatcg 1320 ctagtaatcg gatatcagcc atgatccggt gaatacgttc ccgggccttg tacacaccgc 1380 ccgtcaagcc atggaagccg ggagtgcctg aagtccgtca ccgcaaggag cggcctaggg 1440 caagatcggt aactaggcta t 1461

Claims (6)

기탁번호 KCCM12947P로 기탁된 플라보박테리아시에 박테리움(Flavobacteriaceae bacterium) F202Z8 균주 유래 은 나노 입자.Silver nanoparticles derived from Flavobacteriaceae bacterium strain F202Z8 deposited under accession number KCCM12947P. 제1항에 있어서, 상기 은 나노 입자는 10 ~ 103nm 범위의 직경을 갖는 것을 특징으로 하는 은 나노 입자.The silver nanoparticles of claim 1, wherein the silver nanoparticles have a diameter ranging from 10 to 103 nm. 제1항에 있어서, 상기 은 나노 입자는 그람 음성균인 Escherichia coli, Salmonella typhimurium 및 그람 양성균인 Bacillus subtilis, Staphylococcus aureus에 대해 항균 활성을 나타내는 것을 특징으로 하는 은 나노 입자.The silver nanoparticles of claim 1, wherein the silver nanoparticles exhibit antibacterial activity against Gram-negative bacteria such as Escherichia coli and Salmonella typhimurium and Gram-positive bacteria such as Bacillus subtilis and Staphylococcus aureus . 기탁번호 KCCM12947P로 기탁된 플라보박테리아시에 박테리움(Flavobacteriaceae bacterium) F202Z8 균주를 질산은(AgNO3)을 포함하는 액체에 배양하는 단계를 포함하는 은 나노 입자 제조 방법.A method for producing silver nanoparticles comprising culturing a Flavobacteriaceae bacterium strain F202Z8 deposited under accession number KCCM12947P in a liquid containing silver nitrate (AgNO 3 ). 삭제delete 기탁번호 KCCM12947P로 기탁된 플라보박테리아시에 박테리움(Flavobacteriaceae bacterium) F202Z8 균주 유래 은 나노 입자를 유효성분으로 포함하는 그람 음성균 및 그람 양성균에 대한 항균용 조성물로서,
상기 은 나노 입자는 그람 음성균인 Escherichia coli, Salmonella typhimurium 및 그람 양성균인 Bacillus subtilis, Staphylococcus aureus에 대해 항균 활성을 나타내는 것을 특징으로 하는 항균용 조성물.
An antimicrobial composition against gram-negative bacteria and gram-positive bacteria comprising, as an active ingredient, silver nanoparticles derived from the Flavobacteriaceae bacterium strain F202Z8 deposited under accession number KCCM12947P,
The silver nanoparticles exhibit antibacterial activity against Gram-negative bacteria such as Escherichia coli and Salmonella typhimurium and Gram-positive bacteria such as Bacillus subtilis and Staphylococcus aureus .
KR1020210029263A 2021-03-05 2021-03-05 Silver nanoparticles derived from Flavobacteriaceae bacterium F202Z8, and uses thereof KR102542231B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210029263A KR102542231B1 (en) 2021-03-05 2021-03-05 Silver nanoparticles derived from Flavobacteriaceae bacterium F202Z8, and uses thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210029263A KR102542231B1 (en) 2021-03-05 2021-03-05 Silver nanoparticles derived from Flavobacteriaceae bacterium F202Z8, and uses thereof

Publications (2)

Publication Number Publication Date
KR20220125447A KR20220125447A (en) 2022-09-14
KR102542231B1 true KR102542231B1 (en) 2023-06-12

Family

ID=83279135

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210029263A KR102542231B1 (en) 2021-03-05 2021-03-05 Silver nanoparticles derived from Flavobacteriaceae bacterium F202Z8, and uses thereof

Country Status (1)

Country Link
KR (1) KR102542231B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101905026B1 (en) 2016-01-08 2018-10-08 한국과학기술원 Method for Preparing of Metal Nanoparticles and Metal Sulfide Nanoparticles Using a Recombinant Microorganism

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101905026B1 (en) 2016-01-08 2018-10-08 한국과학기술원 Method for Preparing of Metal Nanoparticles and Metal Sulfide Nanoparticles Using a Recombinant Microorganism

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Appl. Environ. Microbiol., Vol.73, pp.7536-7541(2007.)
Regul. Toxicol. Pharmacol., Vol.98, pp.257-267(2018.)
Soil Syst., Vol.5, pp.1-31(2021.03.01.)

Also Published As

Publication number Publication date
KR20220125447A (en) 2022-09-14

Similar Documents

Publication Publication Date Title
Buszewski et al. Antimicrobial activity of biosilver nanoparticles produced by a novel Streptacidiphilus durhamensis strain
El-Saadony et al. Selenium nanoparticles from Lactobacillus paracasei HM1 capable of antagonizing animal pathogenic fungi as a new source from human breast milk
Akter et al. Biologically rapid synthesis of silver nanoparticles by Sphingobium sp. MAH-11T and their antibacterial activity and mechanisms investigation against drug-resistant pathogenic microbes
Rajeshkumar et al. Intracellular and extracellular biosynthesis of silver nanoparticles by using marine bacteria Vibrio alginolyticus
Peiris et al. Comparison of antimicrobial properties of silver nanoparticles synthesized from selected bacteria
Anasane et al. Acidophilic actinobacteria synthesised silver nanoparticles showed remarkable activity against fungi‐causing superficial mycoses in humans
Madbouly et al. Biosynthesis of nanosilver using Chaetomium globosum and its application to control Fusarium wilt of tomato in the greenhouse
CN111778216A (en) Xanthomonas carpet grass phage, and composition, kit and application thereof
El-Batal et al. Marine Streptomyces cyaneus strain Alex-SK121 mediated eco-friendly synthesis of silver nanoparticles using gamma radiation
De Silva et al. The green synthesis and characterisation of silver nanoparticles from Serratia spp Síntesis verde y caracterización de nanopartículas de plata de Serratia spp
EP3180420A1 (en) Novel bacterium of bacillus genus and uses thereof
Adebayo-Tayo et al. Bacterial synthesis of silver nanoparticles by culture free supernatant of lactic acid bacteria isolated from fermented food samples
Karthik et al. Cytotoxic and antimicrobial activities of microbial proteins from mangrove soil actinomycetes of Mangalore, Dakshina Kannada
Anwar et al. Effect of growth conditions on antibacterial activity of Trichoderma harzianum against selected pathogenic bacteria
Ibrahem et al. Antibacterial activity of zinc oxide nanoparticles against Staphylococcus aureus and Pseudomonas aeruginosa isolated from burn wound infections
Shangguan et al. Anti‐biofilm potential of kefir‐derived Lactobacillus paracasei L10 against Vibrio parahaemolyticus
Liu et al. Novel bio-fabrication of silver nanoparticles using the cell-free extract of Lysinibacillus fusiformis sp. and their potent activity against pathogenic fungi
Cheema et al. Antimicrobial activity of the biologically synthesized zinc oxide nanoparticles against important rice pathogens
KR102542231B1 (en) Silver nanoparticles derived from Flavobacteriaceae bacterium F202Z8, and uses thereof
Bokaeian et al. The antibacterial activity of silver nanoparticles produced in the plant Sesamum indicum seed extract: a green method against multi-drug resistant Escherichia coli
Gajera et al. Green synthesis and characterization of nanosilver derived from extracellular metabolites of potent Bacillus subtilis for antifungal and eco-friendly action against phytopathogen
Yenn et al. Antimicrobial efficacy of endophytic Penicillium purpurogenum ED76 against clinical pathogens and its possible mode of action
Tripathi et al. Toxicity of copper oxide nanoparticles on agriculturally important soil rhizobacteria bacillus megaterium
Hashim The synergistic effect of biosynthesized gold nanoparticles with antibiotic against clinical isolates
Yaaqoob et al. Evaluation the ability of titanum oxide nanoparticles to increase the production of prodigiosin and phenasine from Serratia marcescens and Pseudomonas aeruginosa respectively

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant