KR102540341B1 - a water purification device comprising metal complex filter using 3D printing - Google Patents

a water purification device comprising metal complex filter using 3D printing Download PDF

Info

Publication number
KR102540341B1
KR102540341B1 KR1020210027058A KR20210027058A KR102540341B1 KR 102540341 B1 KR102540341 B1 KR 102540341B1 KR 1020210027058 A KR1020210027058 A KR 1020210027058A KR 20210027058 A KR20210027058 A KR 20210027058A KR 102540341 B1 KR102540341 B1 KR 102540341B1
Authority
KR
South Korea
Prior art keywords
copolymer
antibacterial ball
weight
antibacterial
group
Prior art date
Application number
KR1020210027058A
Other languages
Korean (ko)
Other versions
KR20220123166A (en
Inventor
김운중
김종민
Original Assignee
한남대학교 산학협력단
주식회사 포디믹스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한남대학교 산학협력단, 주식회사 포디믹스 filed Critical 한남대학교 산학협력단
Priority to KR1020210027058A priority Critical patent/KR102540341B1/en
Publication of KR20220123166A publication Critical patent/KR20220123166A/en
Application granted granted Critical
Publication of KR102540341B1 publication Critical patent/KR102540341B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D35/00Filtering devices having features not specifically covered by groups B01D24/00 - B01D33/00, or for applications not specifically covered by groups B01D24/00 - B01D33/00; Auxiliary devices for filtration; Filter housing constructions
    • B01D35/02Filters adapted for location in special places, e.g. pipe-lines, pumps, stop-cocks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/04Additives and treatments of the filtering material
    • B01D2239/0442Antimicrobial, antibacterial, antifungal additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/04Additives and treatments of the filtering material
    • B01D2239/0471Surface coating material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/10Filtering material manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Filtering Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

본 발명은 3D 프린팅을 활용한 금속 착물화 필터 및 이를 포함하는 정수장치에 관한 것으로, 더욱 상세하게는 (a) 3D 프린팅을 사용하여 항균볼을 제조하는 단계; (b) 상기 항균볼을 카르복실기, 하이드록실기, 술폰산기 및 인산기에서 선택되는 하나 이상의 관능기를 갖는 디아조늄염(diazonium salt)으로 처리하는 단계; (c) 상기 디아조늄염으로 처리된 항균볼을 아크릴레이트기 함유 실란 커플링제 및 아크릴산 모노머의 제1공중합체로 처리하는 단계; (d) 상기 제1공중합체로 처리된 항균볼을 아크릴레이트기 함유 실란 커플링제 및 2-하이드록시에틸 아크릴레이트(HEA)의 제2공중합체로 처리하는 단계; 및 (e) 상기 제2공중합체로 처리된 항균볼을 금속 용액으로 처리하는 단계를 포함하는 필터의 제조방법, 이로부터 제조되는 필터 및 이를 포함하는 정수장치에 관한 것이다.
The present invention relates to a metal complex filter using 3D printing and a water purifying device including the same, and more particularly, to (a) manufacturing an antibacterial ball using 3D printing; (b) treating the antibacterial ball with a diazonium salt having at least one functional group selected from a carboxyl group, a hydroxyl group, a sulfonic acid group, and a phosphoric acid group; (c) treating the antimicrobial ball treated with the diazonium salt with a first copolymer of an acrylate group-containing silane coupling agent and an acrylic acid monomer; (d) treating the antibacterial ball treated with the first copolymer with a second copolymer of a silane coupling agent containing an acrylate group and 2-hydroxyethyl acrylate (HEA); And (e) a method for manufacturing a filter comprising the step of treating the antibacterial ball treated with the second copolymer with a metal solution, a filter manufactured therefrom, and a water purifying device including the same.

Description

3D 프린팅을 활용한 금속 착물화 필터 정수장치{a water purification device comprising metal complex filter using 3D printing}A water purification device comprising metal complex filter using 3D printing}

본 발명은 3D 프린팅을 활용한 금속 착물화 필터 및 이를 포함하는 정수장치에 관한 것으로, 더욱 상세하게는 (a) 3D 프린팅을 사용하여 항균볼을 제조하는 단계; (b) 상기 항균볼을 카르복실기, 하이드록실기, 술폰산기 및 인산기에서 선택되는 하나 이상의 관능기를 갖는 디아조늄염(diazonium salt)으로 처리하는 단계; (c) 상기 디아조늄염으로 처리된 항균볼을 아크릴레이트기 함유 실란 커플링제 및 아크릴산 모노머의 제1공중합체로 처리하는 단계; (d) 상기 제1공중합체로 처리된 항균볼을 아크릴레이트기 함유 실란 커플링제 및 2-하이드록시에틸 아크릴레이트(HEA)의 제2공중합체로 처리하는 단계; 및 (e) 상기 제2공중합체로 처리된 항균볼을 금속 용액으로 처리하는 단계를 포함하는 필터의 제조방법, 이로부터 제조되는 필터 및 이를 포함하는 정수장치에 관한 것이다. The present invention relates to a metal complex filter using 3D printing and a water purifying device including the same, and more particularly, to (a) manufacturing an antibacterial ball using 3D printing; (b) treating the antibacterial ball with a diazonium salt having at least one functional group selected from a carboxyl group, a hydroxyl group, a sulfonic acid group, and a phosphoric acid group; (c) treating the antimicrobial ball treated with the diazonium salt with a first copolymer of an acrylate group-containing silane coupling agent and an acrylic acid monomer; (d) treating the antibacterial ball treated with the first copolymer with a second copolymer of a silane coupling agent containing an acrylate group and 2-hydroxyethyl acrylate (HEA); And (e) a method for manufacturing a filter comprising the step of treating the antibacterial ball treated with the second copolymer with a metal solution, a filter manufactured therefrom, and a water purifying device including the same.

산업화가 진행되면서 메르스 등 신종 바이러스, 미세먼지, 황사 등 환경적으로 인체에 유해한 미세입자들이 증가하고 있으며, 이러한 미세입자들의 인체 유입을 차단하기 위해 다양한 필터가 개발되고 있다. As industrialization progresses, new viruses such as MERS, fine dust, and yellow dust that are environmentally harmful to the human body are increasing, and various filters are being developed to block the inflow of these fine particles into the human body.

최근 미세먼지가 사회적으로 이슈화되고, 깨끗한 수질이 건강 유지의 필수 조건으로 떠오르면서 상수도, 하수도, 정수기, 샤워기, 정화장치 등의 수질 관리에 관심이 고조되고 있다. Recently, as fine dust has become a social issue and clean water quality has emerged as an essential condition for maintaining health, interest in water quality management such as tap water, sewage, water purifiers, showers, and purifiers is growing.

다공성 물질은 내부에 다수의 기공을 포함하고 있어 염소, 오염물질, 미생물, 휘발성 유기 화합물, 미세먼지, 바이러스 등을 효과적으로 제거할 수 있으며, 촉매, 지지체, 흡착제, 필터, 마스크, 분리막, 센서, 청정기, 정수장치 등의 분야에 널리 사용되고 있다. Porous materials contain many pores inside, so they can effectively remove chlorine, contaminants, microorganisms, volatile organic compounds, fine dust, and viruses. It is widely used in fields such as , water purification equipment, etc.

상기 다공성 물질은 표면특성에 따라 항균성, 흡착특성 등이 달라지므로, 다공성 물질의 표면을 개질하기 위한 다양한 연구들이 수행되고 있다. Since the porous material has different antibacterial properties and adsorption properties depending on the surface characteristics, various studies have been conducted to modify the surface of the porous material.

다공성 물질의 표면처리와 관련하여 한국등록특허 제10-1801789호 등은 높은 비표면적을 갖는 다공성 탄소재료의 제조방법을 개시하고 있다. Regarding the surface treatment of porous materials, Korean Patent Registration No. 10-1801789 and the like discloses a method for manufacturing a porous carbon material having a high specific surface area.

그러나 상기 문헌에 개시된 기술은 다공성 물질의 표면특성이 불량하여 염소 제거 특성, 미세먼지 제거 특성, 항균성 등이 열등하므로 고기능성 정수장치를 필요로 하는 소비자의 요구를 충족시킬 수 없다. However, the technology disclosed in the above document cannot satisfy the needs of consumers who require a high-functional water purifying device because the surface properties of the porous material are poor and chlorine removal properties, fine dust removal properties, and antibacterial properties are inferior.

한국등록특허 제10-1801789호Korean Patent Registration No. 10-1801789

본 발명은 상기 종래 기술의 문제점을 해결하기 위한 것으로서, 항균볼의 표면을 개질하여 관능기를 형성하고, 표면적과 기공율을 증가시킴으로써 염소 제거 특성, 미세먼지 제거 특성 및 항균성이 우수한 필터의 제조방법을 제공하는데 그 목적이 있다. The present invention is to solve the problems of the prior art, to form a functional group by modifying the surface of the antibacterial ball, and to increase the surface area and porosity to provide a method for manufacturing a filter with excellent chlorine removal characteristics, fine dust removal characteristics and antibacterial properties But it has a purpose.

상기와 같은 목적을 달성하기 위하여 본 발명은 (a) 3D 프린팅을 사용하여 항균볼을 제조하는 단계;In order to achieve the above object, the present invention provides (a) manufacturing an antibacterial ball using 3D printing;

(b) 상기 항균볼을 카르복실기, 하이드록실기, 술폰산기 및 인산기에서 선택되는 하나 이상의 관능기를 갖는 디아조늄염(diazonium salt)으로 처리하는 단계; (b) treating the antibacterial ball with a diazonium salt having at least one functional group selected from a carboxyl group, a hydroxyl group, a sulfonic acid group, and a phosphoric acid group;

(c) 상기 디아조늄염으로 처리된 항균볼을 아크릴레이트기 함유 실란 커플링제 및 아크릴산 모노머의 제1공중합체로 처리하는 단계; (c) treating the antimicrobial ball treated with the diazonium salt with a first copolymer of an acrylate group-containing silane coupling agent and an acrylic acid monomer;

(d) 상기 제1공중합체로 처리된 항균볼을 아크릴레이트기 함유 실란 커플링제 및 2-하이드록시에틸 아크릴레이트(HEA)의 제2공중합체로 처리하는 단계; 및(d) treating the antibacterial ball treated with the first copolymer with a second copolymer of a silane coupling agent containing an acrylate group and 2-hydroxyethyl acrylate (HEA); and

(e) 상기 제2공중합체로 처리된 항균볼을 금속 용액으로 처리하는 단계를 포함하는 필터의 제조방법을 제공한다. (E) It provides a method for manufacturing a filter comprising the step of treating the antibacterial ball treated with the second copolymer with a metal solution.

본 발명의 일실시예에 있어서, 상기 (b) 단계는 항균볼 100중량부에 대하여 디아조늄염 1~10중량부가 사용되는 것을 특징으로 한다. In one embodiment of the present invention, step (b) is characterized in that 1 to 10 parts by weight of diazonium salt is used based on 100 parts by weight of the antibacterial ball.

본 발명의 일실시예에 있어서, 상기 (c) 단계는 항균볼 100중량부에 대하여 제1공중합체 1~10중량부가 사용되는 것을 특징으로 한다.In one embodiment of the present invention, the step (c) is characterized in that 1 to 10 parts by weight of the first copolymer is used based on 100 parts by weight of the antibacterial ball.

본 발명의 일실시예에 있어서, 상기 (d) 단계는 항균볼 100중량부에 대하여 제2공중합체 1~10중량부가 사용되는 것을 특징으로 한다. In one embodiment of the present invention, the step (d) is characterized in that 1 to 10 parts by weight of the second copolymer is used based on 100 parts by weight of the antibacterial ball.

또한 본 발명은 상기 제조방법으로 제조되는 필터를 제공한다. In addition, the present invention provides a filter manufactured by the above manufacturing method.

아울러 본 발명은 상기 필터를 포함하는 정수장치를 제공한다.In addition, the present invention provides a water purifying device including the filter.

본 발명은 항균볼의 표면을 개질하여 관능기를 형성하고, 표면적과 기공율을 증가시킴으로써 염소 제거 특성, 미세먼지 제거 특성 및 항균성이 우수한 필터의 제조방법을 제공할 수 있다. The present invention can provide a method for manufacturing a filter having excellent chlorine removal characteristics, fine dust removal characteristics, and antibacterial properties by modifying the surface of the antibacterial ball to form a functional group and increasing the surface area and porosity.

또한 본 발명은 염소 제거 특성, 미세먼지 제거 특성 및 항균성이 우수하여 장기간 안정적으로 사용될 수 있는 정수장치를 제공할 수 있다. In addition, the present invention can provide a water purifying device that can be stably used for a long period of time due to excellent chlorine removal characteristics, fine dust removal characteristics, and antibacterial properties.

이하 실시예를 바탕으로 본 발명을 상세히 설명한다. 본 발명에 사용된 용어, 실시예 등은 본 발명을 보다 구체적으로 설명하고 통상의 기술자의 이해를 돕기 위하여 예시된 것에 불과할 뿐이며, 본 발명의 권리범위 등이 이에 한정되어 해석되어서는 안 된다.The present invention will be described in detail based on the following examples. The terms, examples, etc. used in the present invention are merely exemplified to explain the present invention in more detail and help the understanding of those skilled in the art, and the scope of the present invention should not be construed as being limited thereto.

본 발명에 사용되는 기술 용어 및 과학 용어는 다른 정의가 없다면 이 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 나타낸다.Technical terms and scientific terms used in the present invention represent meanings commonly understood by those of ordinary skill in the art to which this invention belongs, unless otherwise defined.

본 발명은 (a) 3D 프린팅을 사용하여 항균볼을 제조하는 단계;The present invention comprises the steps of (a) manufacturing an antibacterial ball using 3D printing;

(b) 상기 항균볼을 카르복실기, 하이드록실기, 술폰산기 및 인산기에서 선택되는 하나 이상의 관능기를 갖는 디아조늄염(diazonium salt)으로 처리하는 단계; (b) treating the antibacterial ball with a diazonium salt having at least one functional group selected from a carboxyl group, a hydroxyl group, a sulfonic acid group, and a phosphoric acid group;

(c) 상기 디아조늄염으로 처리된 항균볼을 아크릴레이트기 함유 실란 커플링제 및 아크릴산 모노머의 제1공중합체로 처리하는 단계; (c) treating the antimicrobial ball treated with the diazonium salt with a first copolymer of an acrylate group-containing silane coupling agent and an acrylic acid monomer;

(d) 상기 제1공중합체로 처리된 항균볼을 아크릴레이트기 함유 실란 커플링제 및 2-하이드록시에틸 아크릴레이트(HEA)의 제2공중합체로 처리하는 단계; 및(d) treating the antibacterial ball treated with the first copolymer with a second copolymer of a silane coupling agent containing an acrylate group and 2-hydroxyethyl acrylate (HEA); and

(e) 상기 제2공중합체로 처리된 항균볼을 금속 용액으로 처리하는 단계를 포함하는 필터의 제조방법에 관한 것이다. (E) It relates to a method for manufacturing a filter comprising the step of treating the antibacterial ball treated with the second copolymer with a metal solution.

상기 (a) 단계는 3D 프린팅을 사용하여 항균볼을 제조하는 단계로서,Step (a) is a step of manufacturing an antibacterial ball using 3D printing,

상기 항균볼은 구형 또는 반구형의 고분자 물질로서, 3D 프린팅, 사출, 압출 등의 방법으로 제조될 수 있다. The antibacterial ball is a spherical or hemispherical polymeric material, and may be manufactured by methods such as 3D printing, injection, and extrusion.

상기 항균볼은 비표면적과 기공율이 매우 높으며, 기공 내부 또는 표면에 금속촉매를 침착시킬 수 있어 염소, 유기화합물, 미세먼지, 악취 성분, 유해가스, 바이러스 등을 흡착하거나 분해할 수 있다.The antibacterial ball has a very high specific surface area and porosity, and a metal catalyst can be deposited on the inside or surface of the pores to adsorb or decompose chlorine, organic compounds, fine dust, odorous components, harmful gases, viruses, and the like.

상기 항균볼의 직경은 0.1~50mm 인 것이 바람직하고, 상기 항균볼은 폴리카보네이트, 폴리에스테르, PETG, ABS, 폴리올레핀, 폴리아미드, 폴리우레탄, 폴리아크릴로니트릴, 아크릴 수지 등으로 제조될 수 있다.The diameter of the antibacterial ball is preferably 0.1 to 50 mm, and the antibacterial ball may be made of polycarbonate, polyester, PETG, ABS, polyolefin, polyamide, polyurethane, polyacrylonitrile, acrylic resin, or the like.

상기 (b) 단계는 항균볼을 카르복실기, 하이드록실기, 술폰산기 및 인산기에서 선택되는 하나 이상의 관능기를 갖는 디아조늄염(diazonium salt)으로 처리하여 항균볼의 표면을 개질하는 단계이다.The step (b) is a step of modifying the surface of the antibacterial ball by treating the antibacterial ball with a diazonium salt having at least one functional group selected from a carboxyl group, a hydroxyl group, a sulfonic acid group, and a phosphoric acid group.

상기 표면 개질을 통하여 항균볼의 표면에 형성된 카르복실기, 하이드록실기, 술폰산기, 인산기 등의 관능기는 금속, 미세먼지 또는 다양한 화합물과 결합할 수 있으며, 흡착특성, 유해가스 및 미세먼지 제거특성, 항균성 등이 개선될 수 있다. Functional groups such as carboxyl groups, hydroxyl groups, sulfonic acid groups, and phosphoric acid groups formed on the surface of the antibacterial ball through the surface modification can be combined with metals, fine dust or various compounds, adsorption properties, harmful gas and fine dust removal properties, antibacterial properties etc. can be improved.

디아조늄염의 함량은 항균볼 100중량부에 대하여 1~10중량부인 것이 바람직하며, 디아조늄염의 함량이 상기 수치범위를 만족하는 경우 필터의 흡착특성이 극대화될 수 있다. The content of the diazonium salt is preferably 1 to 10 parts by weight based on 100 parts by weight of the antibacterial ball, and the adsorption characteristics of the filter can be maximized when the content of the diazonium salt satisfies the above numerical range.

상기 디아조늄염은 카르복실기, 하이드록실기, 술폰산기 및 인산기에서 선택되는 하나 이상의 관능기를 갖는 방향족 1차 아민을 염산 및 아질산나트륨과 반응시켜 제조될 수 있다. The diazonium salt may be prepared by reacting an aromatic primary amine having at least one functional group selected from a carboxyl group, a hydroxyl group, a sulfonic acid group, and a phosphoric acid group with hydrochloric acid and sodium nitrite.

상기 디아조늄염은 카르복실기를 갖는 디아조늄염 및 하이드록실기를 갖는 디아조늄염을 동시에 사용하는 것이 좋다. As the diazonium salt, it is preferable to use both a diazonium salt having a carboxyl group and a diazonium salt having a hydroxyl group.

카르복실기를 갖는 디아조늄염과 하이드록실기를 갖는 디아조늄염의 중량비는 60~80:20~40인 것이 바람직하며, 상기 함량 범위를 만족하는 경우 필터의 흡착특성이 우수하다.The weight ratio of the diazonium salt having a carboxyl group and the diazonium salt having a hydroxyl group is preferably 60 to 80:20 to 40, and when the above content range is satisfied, the adsorption characteristics of the filter are excellent.

일예로서, 반응용기에 0.2M HCl 1,000중량부를 넣고 혼합하는 제1단계; 상기 제1단계의 혼합액에 4-아미노벤조산 또는 4-아미노페놀을 10 내지 1,000중량부를 넣고 혼합하는 제2단계; 및 상기 제2단계의 혼합액에 0.02M 아질산나트륨 0.1 내지 500중량부를 넣고 혼합하는 제3단계를 통하여 디아조늄염을 제조할 수 있다. As an example, a first step of mixing 1,000 parts by weight of 0.2M HCl into a reaction vessel; A second step of adding 10 to 1,000 parts by weight of 4-aminobenzoic acid or 4-aminophenol to the mixed solution of the first step and mixing; And a diazonium salt may be prepared through a third step of adding 0.1 to 500 parts by weight of 0.02M sodium nitrite to the mixed solution of the second step and mixing.

본 발명은 상기 (b) 단계 이전에, 항균볼의 표면을 광산화 처리할 수 있다. In the present invention, before the step (b), the surface of the antibacterial ball may be photooxidized.

상기 광산화는 항균볼의 표면에 산화물 형태의 관능기를 도입할 수 있는 방법이라면 제한 없이 실시할 수 있다. 바람직하게는 자외선을 조사하는 것이 좋고, 조사량 및 조사시간은 광산화 정도에 따라 조절이 가능하다. The photo-oxidation can be carried out without limitation as long as it is a method capable of introducing an oxide-type functional group to the surface of the antibacterial ball. Preferably, it is good to irradiate ultraviolet rays, and the irradiation amount and irradiation time can be adjusted according to the degree of photooxidation.

이때 광산화에 의해 항균볼의 표면에 도입될 수 있는 관능기로는 하이드록실기, 카르복실기, 에스테르기, 에테르기 등이 있다. At this time, functional groups that can be introduced to the surface of the antibacterial ball by photo-oxidation include a hydroxyl group, a carboxyl group, an ester group, an ether group, and the like.

상기 광산화에 의하여 도입된 관능기는 디아조늄염과의 결합력이 우수하므로, 항균볼의 표면에 형성되는 디아조늄염의 코팅성 및 결합력을 향상시킬 수 있다. Since the functional group introduced by photo-oxidation has excellent bonding strength with the diazonium salt, the coating property and bonding strength of the diazonium salt formed on the surface of the antibacterial ball can be improved.

상기 광산화는 2~30분 동안 자외선을 조사하는 것이 바람직하고, 더욱 바람직하게는 5~20분 자외선을 조사하는 것이 좋다. 광산화 시간이 2분 미만인 경우 관능기를 효과적으로 도입할 수 없고, 광산화 시간이 30분을 초과하는 경우 항균볼의 표면특성이 저하될 수 있다. For the photo-oxidation, it is preferable to irradiate ultraviolet rays for 2 to 30 minutes, and more preferably to irradiate ultraviolet rays for 5 to 20 minutes. If the photo-oxidation time is less than 2 minutes, functional groups cannot be effectively introduced, and if the photo-oxidation time exceeds 30 minutes, the surface properties of the antibacterial ball may deteriorate.

상기 (c) 단계는 상기 디아조늄염으로 처리된 항균볼을 아크릴레이트기 함유 실란 커플링제 및 아크릴산 모노머의 제1공중합체로 처리하는 단계이다. The step (c) is a step of treating the antibacterial ball treated with the diazonium salt with a first copolymer of an acrylate group-containing silane coupling agent and an acrylic acid monomer.

상기 공중합체는 항균볼의 표면에 공유 결합되거나 또는 디아조늄염에 의해 도입된 관능기와 결합할 수 있으며, 이를 통해 항균볼의 표면에 다수의 카르복실기를 도입할 수 있다. The copolymer may be covalently bonded to the surface of the antibacterial ball or bonded to a functional group introduced by a diazonium salt, through which a plurality of carboxyl groups may be introduced to the surface of the antibacterial ball.

상기 공중합체 내에 포함된 다수의 카르복실기는 금속, 미세먼지 또는 다양한 화합물과 결합할 수 있으며, 흡착 특성, 유해가스 제거특성, 항균성 등이 개선될 수 있다. A plurality of carboxyl groups included in the copolymer can bind to metal, fine dust or various compounds, and adsorption properties, harmful gas removal properties, antibacterial properties, and the like can be improved.

상기 아크릴레이트기 함유 실란 커플링제로는 3-메타크릴록시프로필메틸디메톡시실란, 3-메타크릴록시프로필트리메톡시실란, 3-메타크릴록시프로필메틸디에톡시실란, 3-메타크릴록시프로필트리에톡시실란, 3-아크릴록시프로필트리메톡시실란, 메타크릴록시메틸트리에톡시실란, 메타크릴록시메틸트리메톡시실란 등이 있다. The acrylate group-containing silane coupling agent includes 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltri ethoxysilane, 3-acryloxypropyltrimethoxysilane, methacryloxymethyltriethoxysilane, methacryloxymethyltrimethoxysilane and the like.

상기 아크릴산 모노머는 아크릴산, 메타크릴산, 메틸 아크릴산, 에틸 아크릴산, 부틸 아크릴산, 2-에틸 헥실 아크릴산, 데실아크릴산, 메틸 메타크릴산, 에틸 메타크릴산, 부틸 메타크릴산, 2-에틸 헥실 메타크릴산, 데실메타크릴산 등이 있다. The acrylic acid monomer is acrylic acid, methacrylic acid, methyl acrylic acid, ethyl acrylic acid, butyl acrylic acid, 2-ethylhexyl acrylic acid, decyl acrylic acid, methyl methacrylic acid, ethyl methacrylic acid, butyl methacrylic acid, 2-ethylhexyl methacrylic acid , decyl methacrylic acid, and the like.

상기 아크릴레이트기 함유 실란 커플링제 및 아크릴산 모노머의 중량비는 10~30:70~90인 것이 바람직하며, 중량비가 10:90 미만이면 항균볼과의 결합력이 저하되고, 30:70을 초과하면 흡착특성이 저하된다. The weight ratio of the acrylate group-containing silane coupling agent and the acrylic acid monomer is preferably 10 to 30:70 to 90, and if the weight ratio is less than 10:90, the bonding force with the antibacterial ball is lowered, and if it exceeds 30:70, the adsorption properties this is lowered

상기 제1공중합체는 항균볼 100중량부에 대하여 1~10중량부인 것이 바람직하며, 제1공중합체의 함량이 상기 수치범위를 만족하는 경우 필터의 흡착특성이 극대화될 수 있다. The first copolymer is preferably 1 to 10 parts by weight based on 100 parts by weight of the antibacterial ball, and when the content of the first copolymer satisfies the above numerical range, the adsorption characteristics of the filter can be maximized.

상기 (d) 단계는 상기 제1공중합체로 처리된 항균볼을 아크릴레이트기 함유 실란 커플링제 및 2-하이드록시에틸 아크릴레이트(HEA)의 제2공중합체로 처리하는 단계이다. The step (d) is a step of treating the antibacterial ball treated with the first copolymer with a second copolymer of a silane coupling agent containing an acrylate group and 2-hydroxyethyl acrylate (HEA).

상기 공중합체는 항균볼의 표면에 공유 결합되거나 또는 제1공중합체와 결합할 수 있으며, 이를 통해 항균볼의 표면에 다수의 하이드록실기를 도입할 수 있다. The copolymer may be covalently bonded to the surface of the antibacterial ball or bonded to the first copolymer, through which a plurality of hydroxyl groups may be introduced to the surface of the antibacterial ball.

상기 공중합체 내에 포함된 다수의 하이드록실기는 금속, 미세먼지 또는 다양한 화합물과 결합할 수 있으며, 흡착 특성, 유해가스 제거특성, 항균성 등이 개선될 수 있다. A plurality of hydroxyl groups included in the copolymer can bind to metal, fine dust or various compounds, and adsorption properties, harmful gas removal properties, antibacterial properties, and the like can be improved.

상기 아크릴레이트기 함유 실란 커플링제 및 2-하이드록시에틸 아크릴레이트의 중량비는 20~40:60~80인 것이 바람직하며, 상기 수치 범위에서 흡착특성이 극대화될 수 있다. The weight ratio of the silane coupling agent containing an acrylate group and 2-hydroxyethyl acrylate is preferably 20 to 40:60 to 80, and adsorption characteristics can be maximized within the above range.

상기 제2공중합체는 항균볼 100중량부에 대하여 1~10중량부인 것이 바람직하며, 제2공중합체의 함량이 상기 수치범위를 만족하는 경우 필터의 흡착특성이 극대화될 수 있다. The second copolymer is preferably 1 to 10 parts by weight based on 100 parts by weight of the antibacterial ball, and when the content of the second copolymer satisfies the above numerical range, the adsorption characteristics of the filter can be maximized.

또한 본 발명은 상기 (d) 단계 이후에, 항균볼을 아크릴레이트기 함유 실란 커플링제, 아크릴산 모노머 및 2-하이드록시에틸 아크릴레이트(HEA)의 공중합체로 추가로 표면처리할 수 있다. In addition, in the present invention, after step (d), the surface of the antibacterial ball may be additionally treated with a copolymer of an acrylate group-containing silane coupling agent, an acrylic acid monomer, and 2-hydroxyethyl acrylate (HEA).

상기 공중합체는 금속, 미세먼지 또는 다양한 화합물과 결합할 수 있으며, 흡착 특성, 유해가스 제거특성, 항균성 등을 향상시킬 수 있다. The copolymer can be combined with metal, fine dust or various compounds, and can improve adsorption properties, harmful gas removal properties, antibacterial properties, and the like.

상기 아크릴레이트기 함유 실란 커플링제, 아크릴산 모노머 및 2-하이드록시에틸 아크릴레이트의 중량비는 2~10:100:20~50인 것이 바람직하며, 상기 수치 범위에서 흡착특성이 극대화될 수 있다. The weight ratio of the acrylate group-containing silane coupling agent, acrylic acid monomer and 2-hydroxyethyl acrylate is preferably 2 to 10:100:20 to 50, and adsorption characteristics can be maximized within the above range.

상기 공중합체는 항균볼 100중량부에 대하여 1~10중량부인 것이 바람직하며, 공중합체의 함량이 상기 수치범위를 만족하는 경우 필터의 흡착특성이 극대화될 수 있다. The copolymer is preferably 1 to 10 parts by weight based on 100 parts by weight of the antibacterial ball, and when the content of the copolymer satisfies the above numerical range, the adsorption characteristics of the filter can be maximized.

또한 본 발명은 상기 (d) 단계 이후에, 항균볼을 비스페놀 A(BPA), 트리메틸올프로판 트리글리시딜 에테르(TMPTGE), 1,6-헥산디올디글리시딜 에테르(HDGE) 및 부틸글리시딜 에테르(BGE)를 혼합하여 제조되는 에폭시 화합물로 추가로 표면처리할 수 있다. In addition, the present invention, after step (d), bisphenol A (BPA), trimethylolpropane triglycidyl ether (TMPTGE), 1,6-hexanedioldiglycidyl ether (HDGE) and butyl glyceryl The surface may be additionally treated with an epoxy compound prepared by mixing dil ether (BGE).

이때 비스페놀 A 100중량부에 대하여 트리메틸올프로판 트리글리시딜 에테르 5~30중량부, 1,6-헥산디올디글리시딜 에테르 5~20중량부 및 부틸글리시딜 에테르 5~20중량부를 포함할 수 있다. In this case, 5 to 30 parts by weight of trimethylolpropane triglycidyl ether, 5 to 20 parts by weight of 1,6-hexanediol diglycidyl ether and 5 to 20 parts by weight of butyl glycidyl ether are included based on 100 parts by weight of bisphenol A. can

상기 에폭시 화합물의 함량은 항균볼 100중량부에 대하여 1~10중량부인 것이 바람직하며, 상기 수치 범위에서 흡착특성이 극대화될 수 있다. The content of the epoxy compound is preferably 1 to 10 parts by weight based on 100 parts by weight of the antibacterial ball, and adsorption characteristics can be maximized in the above numerical range.

상기 (e) 단계는 상기 제2공중합체로 처리된 항균볼을 금속 용액으로 처리하는 단계이다. The step (e) is a step of treating the antibacterial ball treated with the second copolymer with a metal solution.

상기 항균볼의 표면에 형성된 관능기와 금속 용액의 금속이 금속착물을 형성할 수 있다.The functional group formed on the surface of the antibacterial ball and the metal of the metal solution may form a metal complex.

상기 금속으로서는 금, 은, 구리, 코발트, 니켈, 아연, 백금 등이 제한 없이 사용될 수 있다.As the metal, gold, silver, copper, cobalt, nickel, zinc, platinum, etc. may be used without limitation.

항균볼의 표면에 형성되는 금속은 유해가스, 미세먼지, 바이러스 등과 결합할 수 있어 흡착특성, 유해가스 제거특성, 항균성 등이 개선될 수 있다. The metal formed on the surface of the antibacterial ball can combine with harmful gases, fine dust, viruses, etc., so adsorption properties, harmful gas removal properties, antibacterial properties, etc. can be improved.

상기 금속착물을 형성하기 위해 금속 전구체가 사용될 수 있으며, 질산은, 황산은, 은아세틸아세토네이트, 은아세테이트, 은카보네이트, 은클로라이드, 질산구리, 황산구리, 구리아세틸아세토네이트, 구리아세테이트, 구리카보네이트, 구리클로라이드 등이 사용 가능하다. Metal precursors may be used to form the metal complex, silver nitrate, silver sulfate, silver acetylacetonate, silver acetate, silver carbonate, silver chloride, copper nitrate, copper sulfate, copper acetylacetonate, copper acetate, copper carbonate, copper chloride and the like can be used.

금속의 함량은 항균볼 100중량부에 대하여 0.1~5중량부인 것이 바람직하며, 상기 수치 범위에서 흡착특성이 극대화될 수 있다. The content of the metal is preferably 0.1 to 5 parts by weight based on 100 parts by weight of the antibacterial ball, and adsorption characteristics can be maximized in the above numerical range.

또한 본 발명은 상기 제조방법으로 제조되는 필터에 관한 것이다. In addition, the present invention relates to a filter manufactured by the above manufacturing method.

본 발명의 필터는 염소 제거 특성, 흡착 특성, 미세먼지 제거 특성 및 항균성이 우수하여 정수장치, 상수도, 하수도, 정수기, 샤워기, 정화장치 등에 장기간 안정적으로 사용될 수 있다.The filter of the present invention has excellent chlorine removal characteristics, adsorption characteristics, fine dust removal characteristics, and antibacterial properties, so that it can be stably used for a long time in water purification devices, water supply, sewage, water purifiers, showers, and purification devices.

이하 실시예 및 비교예를 통해 본 발명을 상세히 설명한다. 하기 실시예는 본 발명의 실시를 위하여 예시된 것일 뿐, 본 발명의 내용이 하기 실시예에 의하여 한정되는 것은 아니다.The present invention will be described in detail through Examples and Comparative Examples below. The following examples are only exemplified for the practice of the present invention, and the content of the present invention is not limited by the following examples.

(실시예 1)(Example 1)

3D 프린팅을 사용하여 직경이 3mm인 구형의 폴리카보네이트 항균볼을 제조하였다. A spherical polycarbonate antibacterial ball having a diameter of 3 mm was prepared using 3D printing.

아이스 베스에 설치된 2L 반응용기에 0.2M HCl 1L를 넣고 300rpm으로 교반하였다.1L of 0.2M HCl was added to a 2L reaction vessel installed on an ice bath and stirred at 300 rpm.

여기에 4-아미노벤조산 27.428g를 가한 후, 0.02M NaNO2 250mL를 20mL/min의 속도로 연동펌프(peristaltic pump)를 이용해 첨가하였다.After adding 27.428 g of 4-aminobenzoic acid here, 250 mL of 0.02M NaNO 2 was added using a peristaltic pump at a rate of 20 mL/min.

상기 혼합액을 300rpm으로 2시간 교반하여 카르복실기를 갖는 디아조늄염을 수득하였다. The mixture was stirred at 300 rpm for 2 hours to obtain a diazonium salt having a carboxyl group.

핫플레이트 상에 70℃로 유지되는 항온수조를 준비하고, 상기 항온수조에 500mL 플라스크를 담근 후, 이 플라스크에 상기에서 수득한 카르복실기를 갖는 디아조늄염 100mL를 첨가하였다. A constant temperature water bath maintained at 70° C. was prepared on a hot plate, a 500 mL flask was immersed in the constant temperature water bath, and 100 mL of the diazonium salt having a carboxyl group obtained above was added to the flask.

상기 플라스크에 상기 항균볼을 첨가하여 함침시킨 후, 카르복실기를 갖는 디아조늄염 1몰에 대하여 0.03몰의 황산칼륨을 가한 다음 500rpm으로 1시간 교반하여 그래프트 중합을 수행하였다. 이때 디아조늄염의 함량은 항균볼 100중량부에 대하여 5중량부를 사용하였다. After adding and impregnating the flask with the antibacterial ball, 0.03 mol of potassium sulfate was added to 1 mol of the diazonium salt having a carboxyl group, followed by stirring at 500 rpm for 1 hour to perform graft polymerization. At this time, the content of the diazonium salt was 5 parts by weight based on 100 parts by weight of the antibacterial ball.

그 후 항균볼을 꺼내 증류수로 세척하고 진공오븐을 사용하여 70℃에서 30분 동안 건조하였다. Thereafter, the antibacterial ball was taken out, washed with distilled water, and dried for 30 minutes at 70° C. using a vacuum oven.

상기 건조된 항균볼을, 3-메타크릴록시프로필트리메톡시실란 20중량% 및 메타크릴산 80중량%를 공중합하여 제조된 제1공중합체로 표면처리하였다. 이때 항균볼 100중량부 대비 5중량부의 제1공중합체를 사용하였다. The dried antibacterial ball was surface treated with a first copolymer prepared by copolymerizing 20% by weight of 3-methacryloxypropyltrimethoxysilane and 80% by weight of methacrylic acid. At this time, 5 parts by weight of the first copolymer was used relative to 100 parts by weight of the antibacterial ball.

상기 제1공중합체로 처리된 항균볼을, 3-메타크릴록시프로필트리메톡시실란 30중량% 및 2-하이드록시에틸 아크릴레이트 70중량%를 공중합하여 제조된 제2공중합체로 표면처리하였다. 이때 항균볼 100중량부 대비 5중량부의 제2공중합체를 사용하였다. The antibacterial ball treated with the first copolymer was surface treated with a second copolymer prepared by copolymerizing 30% by weight of 3-methacryloxypropyltrimethoxysilane and 70% by weight of 2-hydroxyethyl acrylate. At this time, 5 parts by weight of the second copolymer was used relative to 100 parts by weight of the antibacterial ball.

플라스크에 0.2mM의 질산은 용액 250mL을 가하고 상기에서 제조한 항균볼을 넣은 다음 1시간 교반한 후, 항균볼을 다시 꺼내어 증류수로 세척하고 진공오븐을 사용하여 70℃에서 3시간 동안 건조하였다. 이때 은의 함량은 항균볼 100중량부 대비 3중량부를 사용하였다. 250mL of 0.2mM silver nitrate solution was added to the flask, the antibacterial ball prepared above was then stirred for 1 hour, the antibacterial ball was taken out again, washed with distilled water, and dried at 70 ° C. for 3 hours using a vacuum oven. At this time, the content of silver was 3 parts by weight compared to 100 parts by weight of the antibacterial ball.

(실시예 2)(Example 2)

항균볼 100중량부에 대하여 제1공중합체 0.5중량부를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 항균볼을 제조하였다. An antibacterial ball was prepared in the same manner as in Example 1, except that 0.5 parts by weight of the first copolymer was used based on 100 parts by weight of the antibacterial ball.

(실시예 3)(Example 3)

항균볼 100중량부에 대하여 제1공중합체 12중량부를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 항균볼을 제조하였다. An antibacterial ball was prepared in the same manner as in Example 1, except that 12 parts by weight of the first copolymer was used based on 100 parts by weight of the antibacterial ball.

(실시예 4)(Example 4)

항균볼 100중량부에 대하여 제2공중합체 0.5중량부를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 항균볼을 제조하였다. An antibacterial ball was prepared in the same manner as in Example 1, except for using 0.5 parts by weight of the second copolymer based on 100 parts by weight of the antibacterial ball.

(실시예 5)(Example 5)

항균볼 100중량부에 대하여 제2공중합체 12중량부를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 항균볼을 제조하였다. An antibacterial ball was prepared in the same manner as in Example 1, except that 12 parts by weight of the second copolymer was used based on 100 parts by weight of the antibacterial ball.

(비교예 1)(Comparative Example 1)

제2공중합체를 사용하지 않은 것을 제외하고는 실시예 1과 동일한 방법으로 항균볼을 제조하였다.An antibacterial ball was prepared in the same manner as in Example 1, except that the second copolymer was not used.

상기 실시예 및 비교예로부터 제조된 항균볼의 항균성 및 흡착특성을 측정하여 그 결과를 아래의 표 1에 나타내었다. The antibacterial and adsorption characteristics of the antibacterial balls prepared from the above Examples and Comparative Examples were measured, and the results are shown in Table 1 below.

항균성은 공기 중의 미생물을 항균볼의 표면에 채취한 후, 액체배지에 항균볼을 넣고 흔들어 꺼낸 다음 그 액체배지를 64시간 동안 배양하여 액체배지에 대한 셀카운트를 측정하여 미생물의 증식여부를 확인하였다. After collecting microorganisms in the air on the surface of the antibacterial ball, putting the antibacterial ball in the liquid medium, shaking it out, culturing the liquid medium for 64 hours, and measuring the cell count for the liquid medium to check whether the microorganisms proliferated. .

항균볼의 흡착특성은 가스크로마토그래피를 이용하여, 항균볼을 테스트 튜브 안에 투입하고, 이 상태에서 톨루엔 가스를 테스트 튜브 안으로 주입하여 상기 항균볼을 통과한 톨루엔 가스의 시간에 따른 농도변화를 측정하였다. For the adsorption characteristics of the antibacterial ball, the antibacterial ball was put into the test tube using gas chromatography, and in this state, toluene gas was injected into the test tube to measure the concentration change over time of the toluene gas passing through the antibacterial ball. .

수돗물에 포함된 잔류 염소의 양은 ES 04309.2b에 의거하여 측정되었다. The amount of residual chlorine in tap water was measured according to ES 04309.2b.

구분division 실시예Example 비교예comparative example 1One 22 33 44 55 1One Visible cell count(×107) at 720분Visible cell count (×10 7 ) at 720 minutes 00 1818 2121 1919 1717 120120 흡착 시간
(분)
adsorption time
(minute)
980980 645645 665665 620620 660660 230230
잔류 염소의 양(ppm)Amount of residual chlorine (ppm) 88 1818 1717 2020 1717 2727

상기 표 1의 결과로부터, 실시예 1 내지 5는 항균성 및 흡착특성이 우수함을 알 수 있다. 특히 실시예 1은 상기 특성이 가장 우수하다. From the results of Table 1, it can be seen that Examples 1 to 5 have excellent antibacterial and adsorption properties. In particular, Example 1 has the most excellent properties.

반면 비교예 1은 상기 특성이 실시예에 비하여 열등함을 알 수 있다. On the other hand, it can be seen that Comparative Example 1 has inferior properties compared to Examples.

Claims (6)

(a) 3D 프린팅을 사용하여 항균볼을 제조하는 단계;
(b) 상기 항균볼을 카르복실기, 하이드록실기, 술폰산기 및 인산기에서 선택되는 하나 이상의 관능기를 갖는 디아조늄염(diazonium salt)으로 처리하는 단계;
(c) 상기 디아조늄염으로 처리된 항균볼을 아크릴레이트기 함유 실란 커플링제 및 아크릴산 모노머의 제1공중합체로 처리하는 단계;
(d) 상기 제1공중합체로 처리된 항균볼을 아크릴레이트기 함유 실란 커플링제 및 2-하이드록시에틸 아크릴레이트(HEA)의 제2공중합체로 처리하는 단계; 및
(e) 상기 제2공중합체로 처리된 항균볼을 금속 용액으로 처리하는 단계를 포함하는 필터의 제조방법에 있어서,
상기 항균볼은 폴리카보네이트, 폴리에스테르, PETG, ABS, 폴리올레핀, 폴리아미드, 폴리우레탄, 폴리아크릴로니트릴 또는 아크릴 수지로 제조되는 것을 특징으로 하는 필터의 제조방법.
(a) manufacturing an antibacterial ball using 3D printing;
(b) treating the antibacterial ball with a diazonium salt having at least one functional group selected from a carboxyl group, a hydroxyl group, a sulfonic acid group, and a phosphoric acid group;
(c) treating the antimicrobial ball treated with the diazonium salt with a first copolymer of an acrylate group-containing silane coupling agent and an acrylic acid monomer;
(d) treating the antibacterial ball treated with the first copolymer with a second copolymer of a silane coupling agent containing an acrylate group and 2-hydroxyethyl acrylate (HEA); and
(E) In the method of manufacturing a filter comprising the step of treating the antibacterial ball treated with the second copolymer with a metal solution,
The antibacterial ball is a method for producing a filter, characterized in that made of polycarbonate, polyester, PETG, ABS, polyolefin, polyamide, polyurethane, polyacrylonitrile or acrylic resin.
제1항에 있어서,
상기 (b) 단계는
항균볼 100중량부에 대하여 디아조늄염 1~10중량부가 사용되는 것을 특징으로 하는 필터의 제조방법.
According to claim 1,
The step (b) is
Method for manufacturing a filter, characterized in that 1 to 10 parts by weight of diazonium salt is used with respect to 100 parts by weight of the antibacterial ball.
제2항에 있어서,
상기 (c) 단계는
항균볼 100중량부에 대하여 제1공중합체 1~10중량부가 사용되는 것을 특징으로 하는 필터의 제조방법.
According to claim 2,
The step (c) is
A method of manufacturing a filter, characterized in that 1 to 10 parts by weight of the first copolymer is used based on 100 parts by weight of the antibacterial ball.
제3항에 있어서,
상기 (d) 단계는
항균볼 100중량부에 대하여 제2공중합체 1~10중량부가 사용되는 것을 특징으로 하는 필터의 제조방법.
According to claim 3,
The step (d) is
A method of manufacturing a filter, characterized in that 1 to 10 parts by weight of the second copolymer is used based on 100 parts by weight of the antibacterial ball.
제1항 내지 제4항 중 어느 한 항의 제조방법으로 제조되는 필터.
A filter manufactured by the manufacturing method of any one of claims 1 to 4.
제5항의 필터를 포함하는 정수장치.
A water purifier comprising the filter of claim 5.
KR1020210027058A 2021-02-28 2021-02-28 a water purification device comprising metal complex filter using 3D printing KR102540341B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210027058A KR102540341B1 (en) 2021-02-28 2021-02-28 a water purification device comprising metal complex filter using 3D printing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210027058A KR102540341B1 (en) 2021-02-28 2021-02-28 a water purification device comprising metal complex filter using 3D printing

Publications (2)

Publication Number Publication Date
KR20220123166A KR20220123166A (en) 2022-09-06
KR102540341B1 true KR102540341B1 (en) 2023-06-05

Family

ID=83281305

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210027058A KR102540341B1 (en) 2021-02-28 2021-02-28 a water purification device comprising metal complex filter using 3D printing

Country Status (1)

Country Link
KR (1) KR102540341B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102183149B1 (en) 2019-04-17 2020-11-25 한남대학교 산학협력단 a porous carbon composite materials for canister and a method manufacturing the same
KR102207340B1 (en) 2018-10-19 2021-01-22 한남대학교 산학협력단 a surface-modified porous carbon composite materials and a method manufacturing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2258189A1 (en) * 1996-06-14 1997-12-18 Cabot Corporation Modified carbon adsorbents and processes for adsorption using the same
KR101402604B1 (en) * 2012-10-10 2014-06-03 한남대학교 산학협력단 Metal-Complexed carbon Menmbrane and method for preparing the same
KR101801789B1 (en) 2015-11-05 2017-11-28 한국과학기술연구원 Porous carbon materials and methods of manufacturing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102207340B1 (en) 2018-10-19 2021-01-22 한남대학교 산학협력단 a surface-modified porous carbon composite materials and a method manufacturing the same
KR102183149B1 (en) 2019-04-17 2020-11-25 한남대학교 산학협력단 a porous carbon composite materials for canister and a method manufacturing the same

Also Published As

Publication number Publication date
KR20220123166A (en) 2022-09-06

Similar Documents

Publication Publication Date Title
KR102207340B1 (en) a surface-modified porous carbon composite materials and a method manufacturing the same
CN112225893B (en) Porphyrin and hydantoin-based porous organic polymer and preparation method and application thereof
KR20220105059A (en) a air cleaner using low temperature plasma
KR102540341B1 (en) a water purification device comprising metal complex filter using 3D printing
JP2021512208A (en) Polyaniline Conductive polymer is doped with organic acids and metal ions in a certain order. A method for producing a polyaniline composite for antibacterial and heavy metal removal, and a polyaniline composite produced by the method.
KR102262276B1 (en) A filter and non-woven fabric comprising ceramic carrier and active ingredient
CN110528288A (en) A kind of radix saposhnikoviae Ventilated composite fabric
KR102031126B1 (en) a multi-functionalpolymer fiber
CN114130355B (en) Use of activated carbon fiber in preparation of gas adsorption material or in manufacturing iodine filtering device, gas adsorption material and iodine filtering device
CN113100253B (en) Preparation method of carbon oxide nanohorn/sodium alginate-silver composite antibacterial agent, antibacterial coating and antibacterial film
KR101712813B1 (en) Method for preparing filter
CN111167419A (en) Metal organic framework loaded modified polytetrafluoroethylene fiber for removing hexavalent chromium in water and preparation method thereof
CN116371357A (en) Modified activated carbon material for removing persistent organic pollutants and preparation method thereof
KR20230091498A (en) Metal-organic frameworks, polymer composite comprising same and manufacturing method for same
CN108530935A (en) A kind of polyaniline composite functional material, preparation method and application
CN113171756A (en) Degradable 3D ordered macroporous chitosan membrane, preparation method and application thereof
KR20240025077A (en) A manufacture of metal blending antibacterial ball using 3D printing
KR20210154439A (en) Halogen compound impregenation type polymer film for air cleaning filter and method for manufacturing thereof
CN116463029B (en) Antibacterial coating and preparation method thereof, antibacterial glass and preparation method thereof, and vehicle
CN112575617B (en) Wallpaper with function of removing organic pollutants through photocatalysis and preparation method thereof
KR102355083B1 (en) a method for manufacturing silica for antibacterial window-screen
KR102603535B1 (en) Water treatment filter for removing volatile organic compounds and manufacturing method thereof
CN104402824A (en) Cobalt compound used for sewage treatment, preparation method and sewage treating agent comprising cobalt compound
CN113149211B (en) High-mechanical-strength magnetic MBBR filler and preparation method thereof
KR102375859B1 (en) a method for manufacturing functional filter through dry process

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant