KR102539180B1 - Emulsion oil comprising catalytic pyrolysis bio oil and diesel and manufacturing method thereof - Google Patents

Emulsion oil comprising catalytic pyrolysis bio oil and diesel and manufacturing method thereof Download PDF

Info

Publication number
KR102539180B1
KR102539180B1 KR1020200185978A KR20200185978A KR102539180B1 KR 102539180 B1 KR102539180 B1 KR 102539180B1 KR 1020200185978 A KR1020200185978 A KR 1020200185978A KR 20200185978 A KR20200185978 A KR 20200185978A KR 102539180 B1 KR102539180 B1 KR 102539180B1
Authority
KR
South Korea
Prior art keywords
oil
bio
emulsified
catalytic pyrolysis
mixture
Prior art date
Application number
KR1020200185978A
Other languages
Korean (ko)
Other versions
KR20220094600A (en
Inventor
박영권
김지희
Original Assignee
서울시립대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울시립대학교 산학협력단 filed Critical 서울시립대학교 산학협력단
Priority to KR1020200185978A priority Critical patent/KR102539180B1/en
Publication of KR20220094600A publication Critical patent/KR20220094600A/en
Application granted granted Critical
Publication of KR102539180B1 publication Critical patent/KR102539180B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/32Liquid carbonaceous fuels consisting of coal-oil suspensions or aqueous emulsions or oil emulsions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/08Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal with moving catalysts
    • C10G1/086Characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/04Liquid carbonaceous fuels essentially based on blends of hydrocarbons
    • C10L1/08Liquid carbonaceous fuels essentially based on blends of hydrocarbons for compression ignition
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/16Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/04Organic compounds
    • C10L2200/0407Specifically defined hydrocarbon fractions as obtained from, e.g. a distillation column
    • C10L2200/0438Middle or heavy distillates, heating oil, gasoil, marine fuels, residua
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/04Organic compounds
    • C10L2200/0461Fractions defined by their origin
    • C10L2200/0469Renewables or materials of biological origin
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/34Applying ultrasonic energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

본원발명은 HZSM-5 촉매를 사용하여 리그닌을 600℃에서 열분해한 바이오 오일을 유화하였다. Span 80, Tween 60, Span 80 및 Atlox 4916, Atlox 4916 및 Zephrym PD3315와 같은 다양한 유화제 조합을 다양한 HLB(5.8 내지 7.3) 조건에 적용하여 안정적인 유화 오일을 수득하였다. 본원발명은 바이오 오일 외에 경유를 부가하였으며, 초음파 유화기를 사용하여 유화 오일을 제조하였다.In the present invention, bio-oil obtained by thermal decomposition of lignin at 600° C. was emulsified using the HZSM-5 catalyst. Stable emulsified oils were obtained by applying various emulsifier combinations such as Span 80, Tween 60, Span 80 and Atlox 4916, Atlox 4916 and Zephrym PD3315 under various HLB (5.8 to 7.3) conditions. In the present invention, light oil was added in addition to bio-oil, and emulsified oil was prepared using an ultrasonic emulsifier.

Description

촉매 열분해 바이오 오일과 경유 혼합물을 포함하는 유화 오일 및 이의 제조방법{Emulsion oil comprising catalytic pyrolysis bio oil and diesel and manufacturing method thereof}Emulsion oil comprising catalytic pyrolysis bio oil and diesel oil mixture and manufacturing method thereof

본원발명은 촉매 열분해 바이오 오일과 경유 혼합물을 포함하는 유화 오일 및 이의 제조방법에 관한 것이다. 구체적으로 ZSM-5 촉매에 의한 열분해 바이오 오일과 경유를 초음파유화기를 사용하여 혼합한 유화 오일 및 이의 제조방법에 관한 것이다.The present invention relates to an emulsified oil comprising a mixture of catalytic pyrolysis bio-oil and light oil and a method for preparing the same. Specifically, it relates to an emulsified oil obtained by mixing pyrolysis bio-oil and light oil by a ZSM-5 catalyst using an ultrasonic emulsifier and a method for producing the same.

최근 에너지에 대한 수요 증가와 화석 연료의 감소에 따라 연료 원자재의 가격이 상승되고 있다. 늘어나는 에너지 수요를 충족하고 시장을 안정화 시키기 위해서는 대체 자원의 공급이 필요하다. 주요한 해결책 중의 하나는 재생 에너지를 활용하거나, 화석 연료와 혼합한 재생 에너지를 사용하는 것이다(비특허문헌 1 참조).Recently, the price of fuel raw materials is rising according to the increase in demand for energy and the decrease in fossil fuels. The supply of alternative resources is needed to meet growing energy demand and stabilize the market. One of the main solutions is to utilize renewable energy or to use renewable energy mixed with fossil fuel (see Non-Patent Document 1).

유력한 에너지 자원인 바이오 매스는 열분해, 가스화 및 액화와 같은 열 화학적 전환 과정에 의해서 액체 및 기체로 전화될 수 있다(비특허문헌 2 내지 5 참조). 열분해는 바이오 매스 기반 폐기물을 바이오 오일로 빠르게 변환 할 수 있으며, 또한 이를 다양한 분야에서 활용이 가능하다(비특허문헌 6 내지 13 참조).Biomass, which is a powerful energy resource, can be converted into liquid and gas by thermochemical conversion processes such as pyrolysis, gasification and liquefaction (see Non-Patent Documents 2 to 5). Pyrolysis can quickly convert biomass-based waste into bio-oil, which can also be used in various fields (see Non-Patent Documents 6 to 13).

바이오 매스를 열분해 할 경유 생성되는 물질과 이에 대한 수율은 바이오 매스 내의 리그닌, 셀룰로오스, 헤미셀룰로오스의 분포에 따라 달라진다(비특허문헌 14 참조). 열분해 시 촉매를 사용할 경유 탈산소화, 방향족화, 크래킹, 올리고머화 및 고리화와 같은 반응이 수반되며, 이를 통해서 방향족 및 페놀 화합물의 함량이 높은 고품질의 바이오 오일을 생성시킬 수 있다(비특허문헌 15 내지 22 참조).Materials produced through thermal decomposition of biomass and their yields vary depending on the distribution of lignin, cellulose, and hemicellulose in biomass (see Non-Patent Document 14). During thermal decomposition, reactions such as diesel deoxygenation, aromatization, cracking, oligomerization, and cyclization using a catalyst are accompanied, and through this, high-quality bio-oil with a high content of aromatic and phenolic compounds can be produced (Non-Patent Document 15 see 22).

비특허문헌 16은 산성 특성을 가진 KH-ZSM-5 제올라이트를 사용한 열분해 바이오 오일의 품질 변화를 조사하였다. 촉매에 의해서 올리고머의 전환율이 향상되었고, 또한 탈산소화 및 크래킹이 증가되었다. 비특허문헌 15 또한 HZSM-5를 사용한 바이오 매스의 촉매 열분해를 조사했으며, 여기에서는 방향족 화합물의 현저한 증가가 관찰되었다.Non-Patent Document 16 investigated the quality change of pyrolysis bio-oil using KH-ZSM-5 zeolite having acidic properties. Oligomer conversion was improved by the catalyst, and deoxygenation and cracking were also increased. Non-Patent Document 15 also investigated the catalytic thermal decomposition of biomass using HZSM-5, where a significant increase in aromatic compounds was observed.

빠른 열분해로 얻은 바이오 오일은 높은 점도, 높은 수분 함량(15-30 중량%), 끈적임 및 낮은 발열량 (16 내지 19 MJ/㎏) 등으로 엔진 등의 연료로 바로 사용할 수 없다(비특허문헌 23, 24 참조). 상기 바이오 오일을 개질하는 방법으로는 촉매 수소화, 에스테르화 및 유화(에멀젼화) 등이 있다(비특허문헌 25 내지 27 참조).Bio-oil obtained by rapid pyrolysis cannot be immediately used as a fuel for engines due to its high viscosity, high water content (15-30% by weight), stickiness and low calorific value (16-19 MJ/kg) (Non-Patent Document 23, 24). Methods for reforming the bio-oil include catalytic hydrogenation, esterification, and emulsification (emulsification) (see Non-Patent Documents 25 to 27).

상기 방법 중 유화는 가장 경제적이면서 단순하고, 효과적인 개질 방법이다. 통상적으로 바이오 오일의 유화는 바이오 오일과 경유와 같은 두 가지 이상의 비혼화성(혼합되지 않는) 액체를 계면활성제를 사용하여 유화시키는 것이다. 계면활성제는 HLB 값에 따라 선택이 가능하며, 계면활성제 단독으로 또는 여러 다른 유화제와 조합하여 사용할 수 있다(비특허문헌 28 참조).Among the above methods, emulsification is the most economical, simple, and effective reforming method. Typically, emulsification of bio-oil is emulsification of two or more immiscible (immiscible) liquids such as bio-oil and light oil using a surfactant. The surfactant can be selected according to the HLB value, and the surfactant can be used alone or in combination with several other emulsifiers (see Non-Patent Document 28).

이와 같이 유화 오일을 제조하는 일반적인 방법은 이미 알려져 있다. 종래의 방법을 통해서 제조된 유화 오일은 시간이 지남에 따라 층분리가 발생하거나, 혼합이 고르지 못하여 엔진과 같은 민감한 기기에 연료로 사용하기에는 아직까지 문제점이 많다.General methods for producing emulsified oils in this way are already known. Emulsified oil produced through the conventional method still has many problems to use as a fuel for sensitive equipment such as engines because layer separation occurs over time or mixing is uneven.

Martin J.A., Mullen C.A. and Boateng A.A., 2014. Maximizing the Stability of Pyrolysis Oil/Diesel Fuel Emulsions. Energy & Fuels, 28, pp. 5918-5929. ('비특허문헌 1')Martin J.A., Mullen C.A. and Boateng A.A., 2014. Maximizing the Stability of Pyrolysis Oil/Diesel Fuel Emulsions. Energy & Fuels, 28, pp. 5918-5929. ('Non-Patent Document 1') Biller P. and Ross A.B., 2011. Potential yields and properties of oil from the hydrothermal liquefaction of microalgae with different biochemical content. Bioresource Technology, 102(1), pp. 215-225. ('비특허문헌 2')Biller P. and Ross A.B., 2011. Potential yields and properties of oil from the hydrothermal liquefaction of microalgae with different biochemical content. Bioresource Technology, 102(1), pp. 215-225. ('Non-Patent Document 2') Heidenreich S. and Foscolo P.U., 2015. New concepts in biomass gasification. Progress in Energy and Combustion Science, 46, pp. 72-95. ('비특허문헌 3')Heidenreich S. and Foscolo P.U., 2015. New concepts in biomass gasification. Progress in Energy and Combustion Science, 46, pp. 72-95. ('Non-Patent Document 3') Kim Y.-M., Park S., Kang B.S., Jae J., Rhee G.H., Jung S.-C. and Park Y.-K., 2018. Suppressed char agglomeration by rotary kiln reactor with alumina ball during the pyrolysis of Kraft lignin. Journal of Industrial and Engineering Chemistry, 66, pp. 72-77. ('비특허문헌 4')Kim Y.-M., Park S., Kang B.S., Jae J., Rhee G.H., Jung S.-C. and Park Y.-K., 2018. Suppressed char agglomeration by rotary kiln reactor with alumina ball during the pyrolysis of Kraft lignin. Journal of Industrial and Engineering Chemistry, 66, pp. 72-77. ('Non-Patent Document 4') Abdullah, A., Ahmed, A., Akhtar, P., Razzaq, A., Zafar, M., Hussain, M., Shahzad, N., Majeed, K., Khurrum, S., Abu Bakar, M.S. and Park, Y.-K., 2020. Bioenergy potential and thermochemical characterization of lignocellulosic biomass residues available in Pakistan. Korean Journal of Chemical Engineering, in press. ('비특허문헌 5')Abdullah, A., Ahmed, A., Akhtar, P., Razzaq, A., Zafar, M., Hussain, M., Shahzad, N., Majeed, K., Khurrum, S., Abu Bakar, M.S. and Park, Y.-K., 2020. Bioenergy potential and thermochemical characterization of lignocellulosic biomass residues available in Pakistan. Korean Journal of Chemical Engineering, in press. ('Non-Patent Document 5') Boateng A.A., Daugaard D.E., Goldberg N.M. and Hicks K.B., 2007. Bench-Scale Fluidized-Bed Pyrolysis of Switchgrass for Bio-Oil Production. Industrial & Engineering Chemistry Research, 46, pp. 1891-1897. ('비특허문헌 6')Boateng A.A., Daugaard D.E., Goldberg N.M. and Hicks K.B., 2007. Bench-Scale Fluidized-Bed Pyrolysis of Switchgrass for Bio-Oil Production. Industrial & Engineering Chemistry Research, 46, pp. 1891-1897. ('Non-Patent Document 6') Pittman C.U., Mohan D., Eseyin A., Li Q., Ingram L., Hassan E.-B.M., Mitchell B., Guo H. and Steele P.H., 2012. Characterization of Bio-oils Produced from Fast Pyrolysis of Corn Stalks in an Auger Reactor. Energy & Fuels, 26, pp. 3816-3825. ('비특허문헌 7')Pittman C.U., Mohan D., Eseyin A., Li Q., Ingram L., Hassan E.-B.M., Mitchell B., Guo H. and Steele P.H., 2012. Characterization of Bio-oils Produced from Fast Pyrolysis of Corn Stalks in an Auger Reactor. Energy & Fuels, 26, pp. 3816-3825. ('Non-Patent Document 7') Bertero M., Puente G. and Sedran U., 2012. Fuels from bio-oils: Bio-oil production from different residual sources, characterization and thermal conditioning. Fuel, 95, pp. 263-271. ('비특허문헌 8')Bertero M., Puente G. and Sedran U., 2012. Fuels from bio-oils: Bio-oil production from different residual sources, characterization and thermal conditioning. Fuel, 95, pp. 263-271. ('Non-Patent Document 8') Park, J.H, Jeong, J., Lee, J.Y., Kim Y.-M. and Park Y.-K., 2018. Pyrolysis of Waste Oriental Medicine Byproduct Obtained from the Decoction Process of Achyranthes Root. Applied Chemistry for Engineering, 29, pp. 474-478. ('비특허문헌 9')Park, J.H, Jeong, J., Lee, J.Y., Kim Y.-M. and Park Y.-K., 2018. Pyrolysis of Waste Oriental Medicine Byproduct Obtained from the Decoction Process of Achyranthes Root. Applied Chemistry for Engineering, 29, pp. 474-478. ('Non-Patent Document 9') Lee, J.Y., Lee H.W., Kim Y.-M. and Park Y.-K., 2018. The Effect of Biomass Torrefaction on the Catalytic Pyrolysis of Korean Cork Oak. Applied Chemistry for Engineering, 29, pp. 350-355. ('비특허문헌 10')Lee, J.Y., Lee H.W., Kim Y.-M. and Park Y.-K., 2018. The Effect of Biomass Torrefaction on the Catalytic Pyrolysis of Korean Cork Oak. Applied Chemistry for Engineering, 29, pp. 350-355. ('Non-Patent Document 10') Kwon D., Oh J.-I., Lam S.S., Moon D.H. and Kwon E.E., 2019. Orange peel valorization by pyrolysis under the carbon dioxide environment. Bioresource Technology, 285, pp. 121356. ('비특허문헌 11')Kwon D., Oh J.-I., Lam S.S., Moon D.H. and Kwon E.E., 2019. Orange peel valorization by pyrolysis under the carbon dioxide environment. Bioresource Technology, 285, pp. 121356. ('Non-Patent Document 11') Kwon E.E., Jung J.-M., Kim H.J. and Lee J., 2020. Sustainable production of alkyl esters via thermal process in the presence of carbon black. Environmental Research, 183, pp. 109199. ('비특허문헌 12')Kwon E.E., Jung J.-M., Kim H.J. and Lee J., 2020. Sustainable production of alkyl esters via thermal process in the presence of carbon black. Environmental Research, 183, pp. 109199. ('Non-Patent Document 12') Kim J.-H., Oh J.-I., Lee J. and Kwon E.E., 2019. Valorization of sewage sludge via a pyrolytic platform using carbon dioxide as a reactive gas medium. Energy, 179, pp. 163-172. ('비특허문헌 13')Kim J.-H., Oh J.-I., Lee J. and Kwon E.E., 2019. Valorization of sewage sludge via a pyrolytic platform using carbon dioxide as a reactive gas medium. Energy, 179, pp. 163-172. ('Non-Patent Document 13') Czernik S. and Bridgwater A.V., 2004. Overview of Applications of Biomass Fast Pyrolysis Oil. Energy & Fuels, 18, pp. 590-598. ('비특허문헌 14')Czernik S. and Bridgwater A.V., 2004. Overview of Applications of Biomass Fast Pyrolysis Oil. Energy & Fuels, 18, pp. 590-598. ('Non-Patent Document 14') Thangalazhy-Gopakumar S., Adhikari S. and Gupta R.B., 2012. Catalytic Pyrolysis of Biomass over H+ZSM-5 under Hydrogen Pressure. Energy & Fuels, 26, pp. 5300-5306. ('비특허문헌 15')Thangalazhy-Gopakumar S., Adhikari S. and Gupta R.B., 2012. Catalytic Pyrolysis of Biomass over H+ZSM-5 under Hydrogen Pressure. Energy & Fuels, 26, pp. 5300-5306. ('Non-Patent Document 15') Lopez-Renau L.M., Garcia-Pina L., Hernando H., Gomez-Pozuelo G., Botas J.A. and Serrano D.P., 2019. Enhanced bio-oil upgrading in biomass catalytic pyrolysis using KH-ZSM-5 zeolite with acid-base properties. Biomass Conversion and Biorefinery. in press. ('비특허문헌 16')Lopez-Renau L.M., Garcia-Pina L., Hernando H., Gomez-Pozuelo G., Botas J.A. and Serrano D.P., 2019. Enhanced bio-oil upgrading in biomass catalytic pyrolysis using KH-ZSM-5 zeolite with acid-base properties. Biomass Conversion and Biorefinery. in press. ('Non-Patent Document 16') Fermoso J., Pizarro P., Coronado J.M. and Serrano D.P., 2017. Advanced biofuels production by upgrading of pyrolysis bio-oil. WIREs Energy and Environment, 6, pp. e245. ('비특허문헌 17')Fermoso J., Pizarro P., Coronado J.M. and Serrano D.P., 2017. Advanced biofuels production by upgrading of pyrolysis bio-oil. WIREs Energy and Environment, 6, pp. e245. ('Non-Patent Document 17') Tomas P.E., Fermoso J., Herrador E., Hernando H., Jimenez S.S., Ballesteros M., Gonzalez-Fernandez C. and Serrano D.P., 2017. Valorization of steam-exploded wheat straw through a biorefinery approach: Bioethanol and bio-oil co-production. Fuel, 199, pp. 403-412. ('비특허문헌 18')Tomas P.E., Fermoso J., Herrador E., Hernando H., Jimenez S.S., Ballesteros M., Gonzalez-Fernandez C. and Serrano D.P., 2017. Valorization of steam-exploded wheat straw through a biorefinery approach: Bioethanol and bio-oil co-production. Fuel, 199, pp. 403-412. ('Non-Patent Document 18') Kim Y.-M., Lee H.W., Jang S.H., Jeong J., Ryu S., Jung S.-C. and Park Y.-K., 2020. Production of biofuels from pine needle via catalytic fast pyrolysis over HBeta. Korean Journal of Chemical Engineering, 37, pp. 493-496. ('비특허문헌 19')Kim Y.-M., Lee H.W., Jang S.H., Jeong J., Ryu S., Jung S.-C. and Park Y.-K., 2020. Production of biofuels from pine needle via catalytic fast pyrolysis over HBeta. Korean Journal of Chemical Engineering, 37, pp. 493-496. ('Non-Patent Document 19') Shin, D, Jeong, S., Kim, Y.M., Lee H.W. and Park, Y.-K., 2018. Catalytic Pyrolysis of Waste Paper Cup Containing Coffee Residuals. Applied Chemistry for Engineering, 29, pp. 248-251. ('비특허문헌 20')Shin, D, Jeong, S., Kim, Y.M., Lee H.W. and Park, Y.-K., 2018. Catalytic Pyrolysis of Waste Paper Cup Containing Coffee Residuals. Applied Chemistry for Engineering, 29, pp. 248-251. ('Non-Patent Document 20') Hita I., Cordero-Lanzac T., Bonura G., Cannilla C., Arandes J.M., Frusteri F. and Bilbao J., 2019. Hydrodeoxygenation of raw bio-oil towards platform chemicals over FeMoP/zeolite catalysts. Journal of Industrial and Engineering Chemistry, 80, pp. 392-400. ('비특허문헌 21')Hita I., Cordero-Lanzac T., Bonura G., Cannilla C., Arandes J.M., Frusteri F. and Bilbao J., 2019. Hydrodeoxygenation of raw bio-oil towards platform chemicals over FeMoP/zeolite catalysts. Journal of Industrial and Engineering Chemistry, 80, pp. 392-400. ('Non-Patent Document 21') Kwon E.E., Lee T., Ok Y.S., Tsang D.C.W., Park C. and Lee J., 2018. Effects of calcium carbonate on pyrolysis of sewage sludge. Energy, 153, pp. 726-731. ('비특허문헌 22')Kwon E.E., Lee T., Ok Y.S., Tsang D.C.W., Park C. and Lee J., 2018. Effects of calcium carbonate on pyrolysis of sewage sludge. Energy, 153, pp. 726-731. ('Non-Patent Document 22') Marsman J.H., Wildschut J., Evers P., de Koning S. and Heeres H.J., 2008. Identification and classification of components in flash pyrolysis oil and hydrodeoxygenated oils by two-dimensional gas chromatography and time-of-flight mass spectrometry. Journal of Chromatography A, 1188, pp. 17-25. ('비특허문헌 23')Marsman J.H., Wildschut J., Evers P., de Koning S. and Heeres H.J., 2008. Identification and classification of components in flash pyrolysis oil and hydrodeoxygenated oils by two-dimensional gas chromatography and time-of-flight mass spectrometry. Journal of Chromatography A, 1188, pp. 17-25. ('Non-Patent Document 23') Wang Z., Fu Z., Lin W., Li S. and Song W., 2019. In-situ hydrodeoxygenation of furfural to furans over supported Ni catalysts in aqueous solution. Korean Journal of Chemical Engineering, 36, pp. 1235-1242. ('비특허문헌 24')Wang Z., Fu Z., Lin W., Li S. and Song W., 2019. In-situ hydrodeoxygenation of furfural to furans over supported Ni catalysts in aqueous solution. Korean Journal of Chemical Engineering, 36, pp. 1235-1242. ('Non-Patent Document 24') Phan, D.-P., Vo, T.K., Le, V.N., Kim, J. and Lee, E.Y., 2020. Spray pyroysis synthesis of bimetallic NiMo/Al2O3-TiO2 catalyst for hydrodeoxygenation of guaiacol: Effects of bimetallic composition and reduction temperature. 83, pp. 351-358. ('비특허문헌 25')Phan, D.-P., Vo, T.K., Le, V.N., Kim, J. and Lee, E.Y., 2020. Spray pyroysis synthesis of bimetallic NiMo/Al2O3-TiO2 catalyst for hydrodeoxygenation of guaiacol: Effects of bimetallic composition and reduction temperature . 83, pp. 83; 351-358. ('Non-Patent Document 25') Jiang X. and Ellis N., 2010. Upgrading Bio-oil through Emulsification with Biodiesel: Mixture Production. Energy & Fuels, 24, pp. 1358-1364. ('비특허문헌 26')Jiang X. and Ellis N., 2010. Upgrading Bio-oil through Emulsification with Biodiesel: Mixture Production. Energy & Fuels, 24, pp. 1358-1364. ('Non-Patent Document 26') Liu Y., Li Z., Leahy J.J. and Kwapinski W., 2015. Catalytically Upgrading Bio-oil via Esterification. Energy & Fuels, 29, pp. 3691-3698. ('비특허문헌 27')Liu Y., Li Z., Leahy J.J. and Kwapinski W., 2015. Catalytically Upgrading Bio-oil via Esterification. Energy & Fuels, 29, pp. 3691-3698. ('Non-Patent Document 27') Lin B.-J., Chen W.-H., Budzianowski W.M., Hsieh C.-T.,and Lin P.-H., 2016. Emulsification analysis of bio-oil and diesel under various combinations of emulsifiers. Applied Energy, 178, pp. 746-757. ('비특허문헌 28')Lin B.-J., Chen W.-H., Budzianowski W.M., Hsieh C.-T.,and Lin P.-H., 2016. Emulsification analysis of bio-oil and diesel under various combinations of emulsifiers. Applied Energy, 178, pp. 746-757. ('Non-Patent Document 28')

본원발명은 바이오 매스의 촉매 열분해를 통한 바이오 오일을 유화 오일로 변화하는 효과적인 방법 및 이를 통해서 제조된 고품질의 유화 오일을 제공하는 것을 목적으로 한다.An object of the present invention is to provide an effective method for changing bio-oil into emulsified oil through catalytic pyrolysis of biomass and a high-quality emulsified oil produced through the method.

상기와 같은 문제점을 해결하기 위해서 본원발명은 1) 바이오 매스를 촉매 열분해하여 바이오 오일을 수득하는 단계; 2) 상기 바이오 오일에 경유 및 계면활성제를 혼합하는 단계; 3) 상기 단계 2)의 혼합물을 초음파 유화기를 사용하여 유화하는 단계;를 포함하는 촉매 열분해 바이오 오일과 경유 혼합물을 포함하는 유화 오일 및 이의 제조방법을 제공한다.In order to solve the above problems, the present invention comprises the steps of 1) obtaining bio-oil by catalytic pyrolysis of biomass; 2) mixing light oil and a surfactant with the bio-oil; 3) emulsifying the mixture of step 2) using an ultrasonic emulsifier; provides an emulsified oil comprising a mixture of catalytic pyrolysis bio-oil and diesel oil and a method for producing the same.

상기 바이오 매스는 리그닌의 함량이 50중량% 이상이며, 상기 촉매는 HZSM-5를 포함하고, 상기 열분해는 600℃ 이상에서 진행되며, 상기 계면활성제는 span 80, Atox 4916, Zephrym PD 3315를 포함하는 그룹 중에서 적어도 하나 이상이 선택될 수 있다.The biomass has a lignin content of 50% by weight or more, the catalyst includes HZSM-5, the thermal decomposition proceeds at 600 ° C or more, and the surfactant includes span 80, Atox 4916, and Zephrym PD 3315 At least one or more may be selected from the group.

상기 바이오 오일, 경유, 계면활성제를 포함하는 혼합물에서 경유는 80중량% 이상, 계면활성제는 2중량% 내지 5중량%일 수 있다.In the mixture including the bio-oil, light oil, and surfactant, the light oil may be 80% by weight or more, and the surfactant may be 2% to 5% by weight.

한편, 상기 단계 3)에서 초음파 유화기를 사용하여 5분 이상 유화를 진행할 수 있다.Meanwhile, in step 3), emulsification may be performed for 5 minutes or more using an ultrasonic emulsifier.

본원발명은 또한 상기 촉매 열분해 바이오 오일과 경유 혼합물을 포함하는 유화 오일 및 이의 제조방법에 의해서 제조된 유화 오일 및 상기 유화 오일을 포함하는 연료 조성물을 제공한다.The present invention also provides an emulsified oil comprising the catalytic pyrolysis bio-oil and diesel mixture, an emulsified oil prepared by a method for preparing the same, and a fuel composition comprising the emulsified oil.

이와 같은 본원발명은 촉매 열분해 바이오 오일과 경유 혼합물을 포함하는 유화 오일 및 이의 제조방법을 제공한다. 본원발명에 따른 촉매 열분해는 시간이 매우 빠르고, 본원발명에 따른 방법에 의해서 제조되는 유화 오일은 전체적으로 매우 균일한 물성을 제공할 뿐만 아니라 장시간 동안 층분리가 발생하지 않는 안정된 특성을 보인다.The present invention as described above provides an emulsified oil comprising a mixture of catalytic pyrolysis bio-oil and light oil, and a method for preparing the same. Catalytic thermal decomposition according to the present invention takes a very short time, and the emulsified oil prepared by the method according to the present invention not only provides very uniform physical properties as a whole, but also shows stable characteristics that do not cause layer separation for a long time.

도 1은 본원발명에 따른 벤치 규모 반응기의 개략적인 모식도이다.
도 2는 본원발명에 따른 초음파 유화기의 개략적인 모식도이다.
도 3은 본원발명에 따른 열분해 바이오 오일의 분석 결과를 나타낸다.
도 4는 5.8 내지 7.3의 HLB 범위에서 안정적인 유화 오일을 얻기 위해 시험한 다양한 실험예의 결과이다.
도 5는 본원발명에 따른 유화 오일의 시간에 따른 변이를 관측한 결과이다.
1 is a schematic schematic diagram of a bench-scale reactor according to the present invention.
2 is a schematic schematic diagram of an ultrasonic emulsifier according to the present invention.
3 shows the analysis results of the pyrolysis bio-oil according to the present invention.
Figure 4 is the result of various experimental examples tested to obtain a stable emulsified oil in the HLB range of 5.8 to 7.3.
Figure 5 is the result of observing the variation over time of the emulsified oil according to the present invention.

본 출원에서 "포함한다", "가지다" 또는 "구비하다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.In this application, terms such as "comprise", "have" or "have" are intended to indicate that there is a feature, number, step, component, part, or combination thereof described in the specification, but one or more other It should be understood that it does not preclude the possibility of addition or existence of features, numbers, steps, operations, components, parts, or combinations thereof.

또한, 도면 전체에 걸쳐 유사한 기능 및 작용을 하는 부분에 대해서는 동일한 도면 부호를 사용한다. 명세서 전체에서, 어떤 부분이 다른 부분과 연결되어 있다고 할 때, 이는 직접적으로 연결되어 있는 경우 뿐만 아니라, 그 중간에 다른 소자를 사이에 두고, 간접적으로 연결되어 있는 경우도 포함한다. 또한, 어떤 구성요소를 포함한다는 것은 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라, 다른 구성요소를 더 포함할 수 있는 것을 의미한다.In addition, the same reference numerals are used for parts having similar functions and actions throughout the drawings. Throughout the specification, when a part is said to be connected to another part, this includes not only the case where it is directly connected but also the case where it is indirectly connected with another element interposed therebetween. In addition, including a certain component does not exclude other components unless otherwise stated, but means that other components may be further included.

이하 본원발명에 따른 바이오 매스의 촉매 열분해를 통한 바이오 오일을 유화 오일로 변화하는 효과적인 방법 및 이를 통해서 제조된 고품질의 유화 오일에 관하여 첨부한 도면을 참조하여 자세하게 설명한다.Hereinafter, an effective method for changing bio-oil into emulsified oil through catalytic pyrolysis of biomass according to the present invention and a high-quality emulsified oil produced through the method will be described in detail with reference to the accompanying drawings.

실험 절차는 두 단계로 구성되었다. 첫 번째 단계는 리그닌을 공급 원료로 사용하고 나노 다공성 HZSM-5를 촉매로 사용하는 촉매 열분해 오일을 생성하는 것이다. 두 번째 단계는 HLB 값을 기반으로 한 유화제 조합을 사용하여 경유와 촉매 열분해 바이오 오일(이하 'CPO')을 제조하는 것이다.The experimental procedure consisted of two steps. The first step is to create catalytic pyrolysis oil using lignin as the feedstock and nanoporous HZSM-5 as the catalyst. The second step is to prepare gas oil and catalytic pyrolysis bio-oil (hereinafter 'CPO') using a combination of emulsifiers based on the HLB value.

첫 번째 단계에서는 리그닌을 공급 원료로 사용하고 나노 다공성 HZSM-5(SiO2/Al2O3 = 50, 중량 기준)를 촉매로 사용하는 벤치 규모 반응기에서 600℃에서 CPO를 생성하였다. 공급 원료는 분말 형태로 사용되는 반면 촉매는 펠렛 형태를 사용하였다. 촉매/바이오 매스 (중량)비율은 1/20으로 유지하였다. 바이오 오일은 -12℃로 유지되는 응축기에 수집되었다. 상기 응축기를 통해서 수성 및 유기상의 물질이 수득되었다. 상기 혼합물 중 유기상 물질만을 사용하여 유화 오일을 제조하였다. 도 1은 본원발명에 따른 벤치 규모 반응기의 개략도이다.In the first step, CPO was produced at 600 °C in a bench-scale reactor using lignin as the feedstock and nanoporous HZSM-5 (SiO 2 /Al 2 O 3 = 50, by weight) as the catalyst. The feedstock was used in powder form while the catalyst was used in pellet form. The catalyst/biomass (weight) ratio was maintained at 1/20. Bio-oil was collected in a condenser maintained at -12 °C. The material of the aqueous and organic phases was obtained through the condenser. An emulsified oil was prepared using only organic phase materials in the mixture. 1 is a schematic diagram of a bench scale reactor according to the present invention.

두 번째 단계에서 CPO와 경유를 다양한 유화제를 사용하여 유화화는 과정이다. Span 80 및 Tween 60, Span 80 및 Atlox 4916, Atlox 4916 및 Zephrym PD3315와 같은 유화제 조합을 적용하여 안정적인 유화 오일을 얻었다. Span 80의 HLB 값은 4.3이고 Atlox 4916, Zephrym PD3315, Tween 60의 HLB 값은 각각 6.0, 12.0, 14.0이다. 다양한 유화제 조합은 HLB 값에 따라 선택되었다. HLB 값은 안정적인 유화 오일을 얻기 위해 5.8 내지 7.3의 범위에서 진행되었다. 모든 실험은 TU-1800Y 초음파 유화기에서 진행되었다.In the second step, CPO and light oil are emulsified using various emulsifiers. Stable emulsified oils were obtained by applying emulsifier combinations such as Span 80 and Tween 60, Span 80 and Atlox 4916, Atlox 4916 and Zephrym PD3315. The HLB value of Span 80 is 4.3, and the HLB values of Atlox 4916, Zephrym PD3315, and Tween 60 are 6.0, 12.0, and 14.0, respectively. Various emulsifier combinations were selected according to their HLB values. The HLB values ranged from 5.8 to 7.3 to obtain a stable emulsified oil. All experiments were conducted in a TU-1800Y ultrasonic emulsifier.

도 2는 본원발명에 따른 초음파 유화기의 개략적인 모식도이다. 본원발명에 따른 초음파 유화기는 펄스 생성을 위한 초음파 프로브, 온도 측정을 위한 센서, 전체 제어를 디지털 컨트롤러, 및 방음 상자를 포함한다. 미리 정해진 양의 CPO(5중량% 내지 15중량%), 유화제(1중량% 내지 3중량%) 및 경유(83중량% 내지 93중량%)를 플라스크 반응기에 붓고 여기에 초음파 프로브를 삽입하였다. 모든 유화는 10분 동안 40% 전력 주파수를 사용하여 진행하였다. 수득 된 유화 오일 100㎖를 실린더에 옮기고 10일 동안 정기적으로 검사하여 안정성을 관찰하였다.2 is a schematic schematic diagram of an ultrasonic emulsifier according to the present invention. The ultrasonic emulsifier according to the present invention includes an ultrasonic probe for pulse generation, a sensor for temperature measurement, a digital controller for overall control, and a soundproof box. Predetermined amounts of CPO (5 to 15 wt%), emulsifier (1 to 3 wt%) and light oil (83 to 93 wt%) were poured into a flask reactor into which an ultrasonic probe was inserted. All emulsifications were run using 40% power frequency for 10 minutes. 100 ml of the obtained emulsified oil was transferred to a cylinder and checked regularly for 10 days to observe stability.

나노 다공성 촉매 (HZSM-5, 기공 직경 : 3.02149㎚)에 대한 물리 화학적 특성 분석은 Micrometrix 3Flex 표면적 및 다공성 분석기를 사용하였으며, 이에 대한 결과를 표 1에 기재하였다.The physical and chemical properties of the nanoporous catalyst (HZSM-5, pore diameter: 3.02149 nm) were analyzed using a Micrometrix 3Flex surface area and porosity analyzer, and the results are shown in Table 1.

PropertiesProperties ValueValue BET Surface AreaBET Surface Area 294.8 m2/g294.8 m2/g Pore volumePore volume 0.22 cm3/g0.22 cm3/g Pore DiameterPore Diameter 3.02 nm3.02 nm SiO2/Al2O3SiO2/Al2O3 5050

상기 측정은 ASTM D3663 절차에 따라 진행하였으며, 질소의 등온 흡착을 기반으로 하였다.도 3은 본원발명에 따른 열분해 바이오 오일의 분석 결과를 나타낸다. 상기 열분해 바이오 오일은Agilent 5977E GCMS를 사용하여 분석하였다. 분석 결과 벤젠 유도체, 페놀, 산 및 에스테르가 주요 성분으로 나타났다. MAH와 관련하여 톨루엔만 존재하는 것으로 나타났다. PAH, 알데히드 및 푸란은 소량 관측이 되었다.The measurement was performed according to the ASTM D3663 procedure and was based on isothermal adsorption of nitrogen. FIG. 3 shows the analysis results of the pyrolysis bio-oil according to the present invention. The pyrolysis bio-oil was analyzed using an Agilent 5977E GCMS. Analysis showed that benzene derivatives, phenols, acids and esters were the main constituents. Regarding MAH, only toluene was found to be present. PAHs, aldehydes and furans were observed in small amounts.

도 4는 5.8 내지 7.3의 HLB 범위에서 안정적인 유화 오일을 얻기 위해 시험한 다양한 실험예의 결과이다. 다양한 농도의 CPO, 유화제 및 경유로 여러 유화제 조합을 조사하였다. 도 4에 있어서, (a) 내지 (e)에 대해서 조건은 다음과 같다. (a) HLB 7.3의 Span 80 및 Tween 60 1중량%; CPO 10중량%; 경유 89중량%, (b) HLB 7.3의 Span 80, Tween 60, 및 PD3315 3중량%; CPO 15중량%; 경유 82중량%, (c) HLB 5.8의 Atlox 4916 및 Span 80 2중량%, CPO 15중량%, 경유 83중량%, (d) HLB 5.8의 Span 80 및 Atlox 4916 3중량%, CPO 15중량%, 경유 82중량%Figure 4 is the result of various experimental examples tested to obtain a stable emulsified oil in the HLB range of 5.8 to 7.3. Several emulsifier combinations were investigated with different concentrations of CPO, emulsifier and light oil. In Fig. 4, the conditions for (a) to (e) are as follows. (a) 1% by weight of Span 80 and Tween 60 of HLB 7.3; 10 wt% CPO; 89 wt% light oil, (b) 3 wt% Span 80, Tween 60, and PD3315 at HLB 7.3; 15% by weight of CPO; 82 wt% light oil, (c) 2 wt% Atlox 4916 and Span 80 at HLB 5.8, 15 wt% CPO, 83 wt% light oil, (d) 3 wt% Span 80 and Atlox 4916 at HLB 5.8, 15 wt% CPO, 82% by weight of diesel

도 4를 참조하면 도 3의 (a) 내지 (d)의 경우는 모두 10분 이내에 상 분리를 나타냈다. (e) HLB 7.3의 Atlox 4916 및 Zephrym PD3315 5중량%, CPO 15중량%, 경유 80중량%는 8시간 동안 상분리가 일어나지 않았다.Referring to FIG. 4, in the case of (a) to (d) of FIG. 3, phase separation was shown within 10 minutes. (e) 5% by weight of Atlox 4916 and Zephrym PD3315 of HLB 7.3, 15% by weight of CPO, and 80% by weight of diesel did not undergo phase separation for 8 hours.

도 5는 본원발명에 따른 유화 오일의 시간에 따른 변이를 관측한 결과이다. 실험을 통해서 Span 80 및 Atlox 4916의 유화제, HLB 5.8과 CPO:유화제:경유의 중량비가 5:2:93일때 가장 안정적인 유화 오일을 제공하는 것으로 나타났다. 유화 오일은 10일 동안 관측하였으며, 도 5에서 볼 수 있듯이 10일동안 어떠한 변화도 관측되지 않았다.Figure 5 is the result of observing the variation over time of the emulsified oil according to the present invention. Experiments have shown that the most stable emulsified oil is provided when the weight ratio of Span 80 and Atlox 4916 emulsifier, HLB 5.8 and CPO: emulsifier: light oil is 5:2:93. The emulsified oil was observed for 10 days, and as shown in FIG. 5, no change was observed for 10 days.

수분 함량, 산가, HHV 및 산화 안정성은 모든 연료의 중요한 물리적 지표다. 표 2는 가장 안정적인 유화 오일에 대한 특성을 나타내고 있다. 수분 함량은 2.328중량%, 산가는 1.409 KOH/g, 산화 안정성은 24 시간 이상으로 나타났다. 본원발명에 따른 가장 안정된 유화 오일은 HHV 값이 44.21MJ/kg으로 상용 경유 (45.65MJ/kg)와 유사하다. 따라서 CPO와 경유의 유화에서 얻은 유화 오일은 잠재적으로 경유 엔진의 연료로 사용될 수 있다.Moisture content, acid number, HHV and oxidation stability are important physical indicators of all fuels. Table 2 shows the properties for the most stable emulsified oil. The water content was 2.328% by weight, the acid value was 1.409 KOH/g, and the oxidation stability was 24 hours or more. The most stable emulsified oil according to the present invention has an HHV value of 44.21 MJ/kg, which is similar to commercial gas oil (45.65 MJ/kg). Thus, emulsified oil obtained from the emulsification of CPO and diesel can potentially be used as fuel for diesel engines.

PropertiesProperties ValueValue HHV (MJ/kg)HHV (MJ/kg) 44.2144.21 Total acid value (mg KOH/g)Total acid value (mg KOH/g) 1.4091.409 Water content (wt%)Water content (wt%) 2.3282.328 Oxidation stabilityOxidation stability More than 24 hrs.More than 24 hours.

Claims (9)

1) 바이오 매스를 촉매 열분해하여 바이오 오일을 수득하는 단계;
2) 상기 바이오 오일에 경유 및 계면활성제를 혼합하는 단계;
3) 상기 단계 2)의 혼합물을 초음파 유화기를 사용하여 유화하는 단계;
를 포함하는 촉매 열분해 바이오 오일과 경유 혼합물을 포함하는 유화 오일의 제조방법에 있어서,
상기 바이오 매스는 리그닌의 함량이 50중량% 이상이고,
상기 촉매는 HZSM-5를 포함하며,
상기 계면활성제는 span 80, Atox 4916, Zephrym PD 3315를 포함하는 그룹 중에서 적어도 하나 이상이 선택되고,
상기 계면활성제의 HLB는 5.8 내지 7.3이며,
상기 바이오 오일, 경유, 계면활성제를 포함하는 혼합물에서 바이오 오일은 5중량% 내지 15중량%, 경유는 80중량% 이상 내지 93중량%, 계면활성제는 2중량% 내지 5중량%인 촉매 열분해 바이오 오일과 경유 혼합물을 포함하는 유화 오일의 제조방법.
1) obtaining bio-oil by catalytic pyrolysis of biomass;
2) mixing light oil and a surfactant with the bio-oil;
3) emulsifying the mixture of step 2) using an ultrasonic emulsifier;
In the method for producing an emulsified oil comprising a mixture of catalytic pyrolysis bio-oil and light oil,
The biomass has a lignin content of 50% by weight or more,
The catalyst includes HZSM-5,
The surfactant is at least one selected from the group including span 80, Atox 4916, and Zephrym PD 3315,
The HLB of the surfactant is 5.8 to 7.3,
In the mixture including the bio-oil, light oil, and surfactant, the bio-oil is 5% to 15% by weight, the light oil is 80% to 93% by weight, and the surfactant is 2% to 5% by weight. Catalytic pyrolysis bio-oil Method for producing an emulsified oil comprising a gas oil mixture.
삭제delete 삭제delete 제1항에 있어서,
상기 열분해는 600℃ 이상에서 진행되는 촉매 열분해 바이오 오일과 경유 혼합물을 포함하는 유화 오일의 제조방법.
According to claim 1,
The pyrolysis is a method for producing emulsified oil comprising a mixture of catalytic pyrolysis bio-oil and diesel fuel that proceeds at 600 ° C or higher.
삭제delete 삭제delete 제1항에 있어서,
상기 단계 3)에서 초음파 유화기를 사용하여 5분 이상 유화를 진행하는 촉매 열분해 바이오 오일과 경유 혼합물을 포함하는 유화 오일의 제조방법.
According to claim 1,
Method for producing an emulsified oil comprising a mixture of catalytic pyrolysis bio-oil and diesel oil, which is emulsified for 5 minutes or more using an ultrasonic emulsifier in step 3).
제1항, 제4항, 및 제7항 중 어느 한 항에 따른 촉매 열분해 바이오 오일과 경유 혼합물을 포함하는 유화 오일의 제조방법에 의해서 제조된 유화 오일.An emulsified oil prepared by a method for producing an emulsified oil comprising a mixture of the catalytic pyrolysis bio-oil according to any one of claims 1, 4, and 7 and diesel oil. 제8항에 따른 유화 오일을 포함하는 연료 조성물.A fuel composition comprising the emulsified oil according to claim 8.
KR1020200185978A 2020-12-29 2020-12-29 Emulsion oil comprising catalytic pyrolysis bio oil and diesel and manufacturing method thereof KR102539180B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200185978A KR102539180B1 (en) 2020-12-29 2020-12-29 Emulsion oil comprising catalytic pyrolysis bio oil and diesel and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200185978A KR102539180B1 (en) 2020-12-29 2020-12-29 Emulsion oil comprising catalytic pyrolysis bio oil and diesel and manufacturing method thereof

Publications (2)

Publication Number Publication Date
KR20220094600A KR20220094600A (en) 2022-07-06
KR102539180B1 true KR102539180B1 (en) 2023-06-01

Family

ID=82400622

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200185978A KR102539180B1 (en) 2020-12-29 2020-12-29 Emulsion oil comprising catalytic pyrolysis bio oil and diesel and manufacturing method thereof

Country Status (1)

Country Link
KR (1) KR102539180B1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001247873A (en) 2000-03-03 2001-09-14 Hitachi Ltd Process and apparatus for producing liquid fuel and valuables from biomass
KR100763340B1 (en) 2006-08-14 2007-10-04 김인욱 Baiodeungyu's manufacture method for boiler
JP2009544810A (en) 2006-07-26 2009-12-17 オルターネイティヴ フュエルズ グループ インコーポレイテッド Alternative organic fuel formulations including vegetable oil and petroleum diesel
KR101145935B1 (en) 2009-10-30 2012-05-15 서울시립대학교 산학협력단 Producing method of reformed bio-oil using mesoporous mfi as a catalyst
US20130118058A1 (en) 2011-05-10 2013-05-16 Thu Thi Le Nguyen Diesel microemulsion biofuels
KR101725178B1 (en) 2016-03-25 2017-04-10 서울시립대학교 산학협력단 Production of bio oil from lignin by two step catalysis pyrolysis

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100136874A (en) * 2009-06-19 2010-12-29 박해영 Energy efficiency and energy-saving micro-emulsified biological petrol and diesel oil mixed fuel and additive with seawater, and animal and plant oil and ethanol

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001247873A (en) 2000-03-03 2001-09-14 Hitachi Ltd Process and apparatus for producing liquid fuel and valuables from biomass
JP2009544810A (en) 2006-07-26 2009-12-17 オルターネイティヴ フュエルズ グループ インコーポレイテッド Alternative organic fuel formulations including vegetable oil and petroleum diesel
KR100763340B1 (en) 2006-08-14 2007-10-04 김인욱 Baiodeungyu's manufacture method for boiler
KR101145935B1 (en) 2009-10-30 2012-05-15 서울시립대학교 산학협력단 Producing method of reformed bio-oil using mesoporous mfi as a catalyst
US20130118058A1 (en) 2011-05-10 2013-05-16 Thu Thi Le Nguyen Diesel microemulsion biofuels
KR101725178B1 (en) 2016-03-25 2017-04-10 서울시립대학교 산학협력단 Production of bio oil from lignin by two step catalysis pyrolysis

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
학술논문, Martin, J.A, et al, Maximizing the Stability of Pyrolysis Oil/Diesel Fuel Emulsions, Energy Fuels 2014, 28, 5918-5929(2014.08.28.) 1부.*
학위논문, 이예진, 바이오매스 열분해 오일의 촉매 개질에 관한 연구, 서울시립대학교 대학원 환경공학과, 석사학위논문(2017.02.28.) 1부.*

Also Published As

Publication number Publication date
KR20220094600A (en) 2022-07-06

Similar Documents

Publication Publication Date Title
Lian et al. Progress on upgrading methods of bio‐oil: a review
Ahamed et al. Upgrading of bio-oil from thermochemical conversion of various biomass–Mechanism, challenges and opportunities
Valle et al. Recent research progress on bio‐oil conversion into bio‐fuels and raw chemicals: a review
Yang et al. Review of recent developments to improve storage and transportation stability of bio-oil
Quah et al. An overview of biodiesel production using recyclable biomass and non-biomass derived magnetic catalysts
Stöcker Biofuels and biomass‐to‐liquid fuels in the biorefinery: Catalytic conversion of lignocellulosic biomass using porous materials
Gollakota et al. A review on the upgradation techniques of pyrolysis oil
Naqvi et al. Catalytic pyrolysis of paddy husk in a drop type pyrolyzer for bio-oil production: The role of temperature and catalyst
Budarin et al. Use of green chemical technologies in an integrated biorefinery
Onay Influence of pyrolysis temperature and heating rate on the production of bio-oil and char from safflower seed by pyrolysis, using a well-swept fixed-bed reactor
Hollak et al. Hydrothermal deoxygenation of triglycerides over Pd/C aided by in situ hydrogen production from glycerol reforming
Ding et al. The effect of Ni-ZSM-5 catalysts on catalytic pyrolysis and hydro-pyrolysis of biomass
van Rossum et al. Liquefaction of lignocellulosic biomass: solvent, process parameter, and recycle oil screening
Cai et al. Review on aging of bio-oil from biomass pyrolysis and strategy to slowing aging
Kumar et al. Saw dust pyrolysis: effect of temperature and catalysts
Dai et al. Bridging the relationship between hydrothermal pretreatment and co-pyrolysis: Effect of hydrothermal pretreatment on aromatic production
Mishra et al. Pyrolysis of Manilkara zapota seeds over ZSM-5 to produce high-quality bio-oil and chemicals
Rahman et al. Green synthesis, properties, and catalytic application of zeolite (P) in production of biofuels from bagasse
Kim et al. Production of biofuels from pine needle via catalytic fast pyrolysis over HBeta
Tshikesho et al. Catalytic co-pyrolysis of red cedar with methane to produce upgraded bio-oil
Galadima et al. Hydroisomerization of sustainable feedstock in biomass‐to‐fuel conversion: a critical review
Tong et al. The efficient and sustainable pyrolysis and gasification of biomass by catalytic processes
Srivatsa et al. Optimization of reaction parameters for bio-oil production by catalytic pyrolysis of microalga Tetraselmis suecica: influence of Ni-loading on the bio-oil composition
Zhandnezhad et al. Thermal and catalytic pyrolysis process of neem seed to produce valuable fuels over RFCC catalyst: process development and evaluation
Yin et al. Review of bio-oil upgrading technologies and experimental study on emulsification of bio-oil and diesel

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right