KR102537600B1 - Lithium secondary battery with self-assembled three-dimensional nanostructures as active materials of electrode plate - Google Patents

Lithium secondary battery with self-assembled three-dimensional nanostructures as active materials of electrode plate Download PDF

Info

Publication number
KR102537600B1
KR102537600B1 KR1020220092167A KR20220092167A KR102537600B1 KR 102537600 B1 KR102537600 B1 KR 102537600B1 KR 1020220092167 A KR1020220092167 A KR 1020220092167A KR 20220092167 A KR20220092167 A KR 20220092167A KR 102537600 B1 KR102537600 B1 KR 102537600B1
Authority
KR
South Korea
Prior art keywords
secondary battery
self
lithium secondary
substrate
dimensional
Prior art date
Application number
KR1020220092167A
Other languages
Korean (ko)
Inventor
김기출
김미리
Original Assignee
목원대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 목원대학교 산학협력단 filed Critical 목원대학교 산학협력단
Priority to KR1020220092167A priority Critical patent/KR102537600B1/en
Application granted granted Critical
Publication of KR102537600B1 publication Critical patent/KR102537600B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • H01M4/0423Physical vapour deposition
    • H01M4/0426Sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

본 발명에 따른 자기조립적 3차원 나노구조물을 전극 활물질로 갖는 리튬이차전지는, 3차원 나노구조물을 집전체 위에 직접 성장시켜 전극 활물질로 사용하는 것을 특징으로 한다.A lithium secondary battery having a self-assembling 3D nanostructure as an electrode active material according to the present invention is characterized in that the 3D nanostructure is directly grown on a current collector and used as an electrode active material.

Description

자기조립적 3차원 나노구조를 전극 활물질로 갖는 리튬이차전지{Lithium secondary battery with self-assembled three-dimensional nanostructures as active materials of electrode plate}Lithium secondary battery with self-assembled three-dimensional nanostructures as active materials of electrode plate}

본 발명은 자기조립적 3차원 나노구조를 전극 활물질로 갖는 리튬이차전지에 관한 것으로서, 상세하게는 3차원 나노구조물을 집전체 위에 직접 성장시켜 전극 활물질로 사용한 리튬이차전지에 관한 것이다. The present invention relates to a lithium secondary battery having a self-assembling three-dimensional nanostructure as an electrode active material, and more particularly, to a lithium secondary battery in which a three-dimensional nanostructure is directly grown on a current collector and used as an electrode active material.

센서나 배터리 등과 같이 전기화학적 반응을 이용하는 응용제품에서는 높은 비표면적(specific surface area) 특성이 요구된다. 비표면적이 크면 표면에너지가 커 전기화학적 반응의 활성도가 높아지게 된다.Applications using electrochemical reactions, such as sensors and batteries, require high specific surface area characteristics. When the specific surface area is large, the surface energy is large, and the activity of the electrochemical reaction is increased.

비표면적을 크게 하는 방법은 입도의 크기를 작게 하거나 3차원(3-dimensional, 이하 ‘3D’라 칭함) 나노구조물을 형성하는 방법이 있다.As a method of increasing the specific surface area, there is a method of reducing the particle size or forming a 3-dimensional (hereinafter referred to as '3D') nanostructure.

3D 나노구조물을 제작하는 방법은 일반적으로 반도체 공정을 사용하여 적층과 식각을 조합하여 형성할 수 있다. 스퍼터링이나 CVD와 같은 증착 방법으로 2차원적 평면을 형성하고, 포토 리소그라피(photolithography) 공정으로 마스크 패터닝을 하고, 불필요한 부분을 플라즈마 에칭과 같은 장비로 식각하여 3D 나노구조물을 형성하기 때문에 고가의 생산 장비와 복잡한 공정으로 공정수가 증가하여 생산 비용이 증가하는 문제점이 있다.A method of fabricating a 3D nanostructure can be formed by combining stacking and etching using a semiconductor process. Expensive production equipment because 3D nanostructures are formed by forming a two-dimensional plane with a deposition method such as sputtering or CVD, patterning a mask with a photolithography process, and etching unnecessary parts with equipment such as plasma etching. There is a problem in that the production cost increases due to the increase in the number of processes due to the complicated process.

또한, 특정 응용에 적용하기 위하여 결정상을 제어하고자 할 경우에는 박막 형성 후 높은 온도에서 후열처리(post annealing)를 해야만 하는 문제점도 있다.In addition, in the case of trying to control the crystal phase for application to a specific application, there is also a problem in that post annealing must be performed at a high temperature after thin film formation.

또한, 종래의 리튬이차전지를 제조하는 방법은 전극 활물질을 도전재 및 바인더 등과 혼합하여 슬러리 형태로 제조한 후, 집전체 위에 도포하고 액체전해질과 분리막을 적층한 후 상대전극 물질 또한 슬러리 형태로 도포한 다음 패키징하는 형태로 제작되는데, 슬러리가 균일하게 혼합되지 않거나 균일한 두께로 도포되지 않아 전기화학적 특성이 일정하지 않은 문제점이 있다.In addition, in the conventional method of manufacturing a lithium secondary battery, electrode active material is mixed with a conductive material and a binder to form a slurry, then applied on a current collector, a liquid electrolyte and a separator are laminated, and then a counter electrode material is also applied in a slurry form. Then, it is manufactured in a packaging form, but there is a problem in that the electrochemical properties are not constant because the slurry is not uniformly mixed or applied in a uniform thickness.

한국공개특허 제 10-2011-0117592호Korean Patent Publication No. 10-2011-0117592

상기의 문제점을 해결하고자 본 발명은 전극 활물질을 집전체에 슬러리로 도포하지 않고 결정상이 제어된 3차원 나노구조의 활물질을 집전체 위에 직접 성장시켜 제조한 리튬이차전지를 제공하고자 한다.In order to solve the above problems, the present invention is to provide a lithium secondary battery manufactured by directly growing an active material having a three-dimensional nanostructure in which the crystal phase is controlled on the current collector without applying the electrode active material as a slurry to the current collector.

상기의 해결하고자 하는 과제를 위한 본 발명에 따른 자기조립적 3차원 나노구조의 전극 활물질로 갖는 리튬이차전지는, 3차원 나노구조물을 집전체 위에 직접 성장시켜 전극 활물질로 사용하는 것을 특징으로 한다.A lithium secondary battery having a self-assembling three-dimensional nanostructure as an electrode active material according to the present invention for the above problems is characterized in that the three-dimensional nanostructure is directly grown on a current collector and used as an electrode active material.

상기 3차원 나노구조물은 스퍼터로 SUS 집전체 위에 단사정 β-MoO3 결정상으로 형성된 것을 특징으로 한다.The three-dimensional nanostructure is formed as a monoclinic β-MoO 3 crystal phase on a SUS current collector by sputtering.

리튬이차전지는 액체전해질을 사용하는 리튬이온전지 또는 전고체 리튬이차전지로서, 고체전해질은 PEO나 Copolymer를 기반으로 한 고분자 전해질, Li2S-B2S3나 Li2S-SiS2등의 황화물(sulfides)기반 전해질, LiPON, Li3N, NASICON 등의 비정질 전해질 또는 garnet이나 perovskite 구조의 결정질을 포함하는 것을 특징으로 한다.A lithium secondary battery is a lithium ion battery or an all-solid lithium secondary battery using a liquid electrolyte. The solid electrolyte is a polymer electrolyte based on PEO or copolymer, a sulfide such as Li 2 SB 2 S 3 or Li 2 S-SiS 2 ( sulfides)-based electrolytes, amorphous electrolytes such as LiPON, Li 3 N, and NASICON, or garnet or perovskite structures.

본 발명에 따른 자기조립적 3차원 나노구조를 전극 활물질로 갖는 리튬이차전지는 열CVD 또는 스퍼터링 장비로 간단하게 대면적으로 기판 위에 3D 나노구조물을 직접 성장시킬 수 있어, 고가의 포토리소그라피 장비와 식각 장비가 필요 없어 설비 비용이 절감됨은 물론 공정 소요시간이 단축되어 생산 비용을 줄일 수 있다.The lithium secondary battery having the self-assembling three-dimensional nanostructure according to the present invention as an electrode active material can directly grow a 3D nanostructure on a large-area substrate using thermal CVD or sputtering equipment, and thus requires expensive photolithography equipment and etching equipment. As equipment is not required, facility costs are reduced, as well as process time is shortened, which can reduce production costs.

또한, 바인더 및 도전재를 혼합한 슬러리를 사용하지 않고 집전체 위에 직접 3차원 나노구조로 성장시키고, 액체전해질과 분리막 또는 고체전해질을 적층한 다음, 상대 전극을 적층하는 매우 간단한 방법으로 높은 전기용량 및 우수한 전기화학적 특성을 갖는 리튬이차전지를 제조할 수 있다.In addition, it is a very simple method of growing a three-dimensional nanostructure directly on a current collector without using a slurry mixed with a binder and a conductive material, stacking a liquid electrolyte and a separator or solid electrolyte, and then stacking a counter electrode to achieve high capacitance. And a lithium secondary battery having excellent electrochemical properties can be prepared.

도 1은 자기조립적 3차원 나노구조물의 성장 메커니즘이다.
도 2는 본 발명에 따라 제조된 몰리브덴산화물의 FE-SEM 사진이다.
도 3은 본 발명에 따라 제조된 몰리브덴산화물의 XRD 차트이다.
도 4는 본 발명에 따라 제조된 주석산화물의 라만 스펙트럼 차트이다.
도 5는 2D 구조의 SnO와 자기조립적 3D SnO 나노구조 음극물질로 제조된 리튬이온전지의 충방전 특성 그래프이다.
도 6은 2D 구조의 MoO3와 자기조립적 3D MoO3 나노구조 음극물질로 제조된 리튬이온전지의 충방전 특성 및 율속(C-rate) 테스트 그래프이다.
도 7은 2D 구조의 MoO3와 자기조립적 3D MoO3 나노구조 음극물질로 제조된 리튬이온전지의 순환 전압 전류(cyclic voltammetry) 곡선이다.
1 is a growth mechanism of self-assembling 3D nanostructures.
2 is a FE-SEM picture of a molybdenum oxide prepared according to the present invention.
3 is an XRD chart of molybdenum oxide prepared according to the present invention.
4 is a Raman spectrum chart of tin oxide prepared according to the present invention.
5 is a graph of charge and discharge characteristics of a lithium ion battery made of 2D structured SnO and self-assembled 3D SnO nanostructured negative electrode material.
6 is a graph showing charge/discharge characteristics and C-rate test of a lithium ion battery made of 2D MoO 3 and self-assembling 3D MoO 3 nanostructured anode materials.
7 is a cyclic voltammetry curve of a lithium ion battery made of 2D MoO 3 and self-assembling 3D MoO 3 nanostructured anode materials.

이하, 본 발명의 실시를 위한 구체적인 실시예와 도면을 참고하여 설명한다. 본 발명의 실시예는 하나의 발명을 설명하기 위한 것으로서 권리범위는 예시된 실시예에 한정되지 아니하고, 예시된 도면은 발명의 명확성을 위하여 핵심적인 내용만 확대 도시하고 부수적인 것을 생략하였으므로 도면에 한정하여 해석하여서는 아니 된다.Hereinafter, it will be described with reference to specific embodiments and drawings for the implementation of the present invention. The embodiment of the present invention is for explaining one invention, and the scope of rights is not limited to the illustrated embodiment, and the illustrated drawings are limited to the drawings because only the essential contents are enlarged and the auxiliary parts are omitted for clarity of the invention. should not be interpreted as such.

본 발명에 따른 3D 나노구조물은 증착되는 물질의 원자간 상호작용 에너지가 기판과의 상호작용 에너지보다 커 자기조립적 성장(self-assembled growth)을 하는 메커니즘을 적용하여 복잡한 공정을 적용하지 않고도 비교적 저렴하고 간단하게 3D 나노구조물을 구현할 수 있다.The 3D nanostructure according to the present invention is relatively inexpensive without applying a complicated process by applying a self-assembled growth mechanism in which the interaction energy between atoms of the deposited material is greater than the interaction energy with the substrate. and can easily realize 3D nanostructures.

박막의 진공증착 공정에서 2D 또는 3D 구조가 형성되는 메커니즘을 도 1에 나타내었다. 박막 성장 시 원자들 간의 상호작용에 따라서 Frank-van der Merwe 성장모드(layer-by-layer growth), Stranski-Krastanov 성장모드(3D island growth on top of predeposited thin-layer), Volmer-Weber 성장모드(3D island growth)로 3가지 성장모드가 가능하다. The mechanism by which the 2D or 3D structure is formed in the vacuum deposition process of the thin film is shown in FIG. 1 . Depending on the interaction between atoms during thin film growth, Frank-van der Merwe growth mode (layer-by-layer growth), Stranski-Krastanov growth mode (3D island growth on top of predeposited thin-layer), and Volmer-Weber growth mode ( 3D island growth) allows three growth modes.

도 1(a)는 Frank-van der Merwe 성장모드로서, 금속 원자-금속 원자 간의 상호작용 에너지(ψMe-Me)보다 금속 원자-기판 원자 간의 상호작용 에너지(ψMe-S)가 매우 강하고 금속 원자 간의 거리(dMe)와 기판 원자 간의 거리(dS)가 비슷하여 금속 원자-기판 원자의 거리 불일치(Me-S misfit)가 상대적으로 작을 때, 원자가 한 층 한 층(layer-by-layer) 적층되어 2D 박막이 형성된다. 1(a) is a Frank-van der Merwe growth mode, in which the interaction energy between metal atoms and substrate atoms (ψ Me-S ) is much stronger than the interaction energy between metal atoms and metal atoms (ψ Me- Me ), and the metal When the distance between atoms (d Me ) and the distance between substrate atoms (d S ) are similar and the metal atom-substrate atom distance misfit (Me-S misfit) is relatively small, atoms are layer-by-layer ) to form a 2D thin film.

도 1(b)는 Stranski-Krastanov 성장모드로서, 금속 원자-금속 원자 간의 상호작용 에너지보다 금속 원자-기판 원자 간의 상호작용 에너지가 매우 강하지만, 금속 원자 간의 거리와 기판 원자 간의 거리가 같지 않아서 Me-S misfit이 상대적으로 클 때 layer-by-layer 성장이 진행되다가 3D island 성장이 진행되어 박막 위에 3차원 나노구조물이 성장된다. FIG. 1(b) shows the Stranski-Krastanov growth mode. Although the interaction energy between metal atoms and substrate atoms is much stronger than the interaction energy between metal atoms and metal atoms, the distance between metal atoms and substrate atoms is not the same, so Me -When the S misfit is relatively large, layer-by-layer growth proceeds, followed by 3D island growth, and a 3D nanostructure is grown on the thin film.

도 1(c)는 Volmer-Weber 성장모드로서, 금속 원자와 기판 원자의 Me-S misfit과 상관없이 금속 원자-금속 원자 간의 상호작용 에너지보다 금속 원자-기판 원자 간의 상호작용 에너지가 매우 약할 때 3D island 성장모드로 3D 나노월(nanowalls)이 성장된다. 1(c) is a Volmer-Weber growth mode, when the interaction energy between metal atoms and substrate atoms is much weaker than the interaction energy between metal atoms and metal atoms regardless of the Me-S misfit of metal atoms and substrate atoms. In the island growth mode, 3D nanowalls are grown.

도 1(d)에는 박막의 진공 증착시 3개의 성장모드를 3차원적 이미지로 나타내었다. 한편, RF 마그네트론 스퍼터링 공정에서는 기판의 온도, RF 파워 등을 제어하여 3가지 성장모드를 구현할 수 있다.1(d) shows three growth modes in a three-dimensional image during vacuum deposition of a thin film. Meanwhile, in the RF magnetron sputtering process, three growth modes may be implemented by controlling substrate temperature, RF power, and the like.

산화몰리브덴은 전이금속 산화물로서 결정상에 따라 다양한 분야에 응용된다. 가스센서의 감지물질, 리튬이온전지의 음극소재, 슈퍼커패시터 소재 및 오염물질을 분해하는 광촉매 소재 등으로 활용된다. Molybdenum oxide is a transition metal oxide and is applied to various fields depending on its crystal phase. It is used as a sensing material for gas sensors, cathode materials for lithium ion batteries, supercapacitor materials, and photocatalyst materials that decompose pollutants.

산화몰리브덴은 산화상태에 따라 다양한 결정상이 존재한다. 즉, monoclinic MoO2, hexagonal MoO2, orthorhombic α-MoO3, monoclinic β-MoO3, hexagonal h-MoO3 등으로 다양한 결정상이 존재한다. 다양한 응용에 활용되는 산화몰리브덴은 응용하는 분야에 따라 특정 결정상이 매우 유용하게 활용된다. 예를 들면 hexagonal h-MoO3 결정상은 가시광선 영역에서 높은 광촉매 효율을 나타내는 것으로 알려져 있다. Molybdenum oxide exists in various crystal phases depending on its oxidation state. That is, there are various crystal phases such as monoclinic MoO 2 , hexagonal MoO 2 , orthorhombic α-MoO 3 , monoclinic β-MoO 3 , and hexagonal h-MoO 3 . Molybdenum oxide, which is used for various applications, has a specific crystal phase that is very useful depending on the application field. For example, the hexagonal h-MoO 3 crystal phase is known to exhibit high photocatalytic efficiency in the visible light region.

산화몰리브덴 나노소재는 화학적 합성 방법인 수열합성 공정(hydrothermal process)으로 합성하여 사용하는 것이 일반적이다. 스퍼터링으로 증착하는 경우 2차원 박막으로 증착하는 것이 일반적이나, 본 발명은 증착 공정 중에 결정상을 제어하여 3차원 나노구조물을 기판 위에 직접 성장시키는 것이 특징이다.Molybdenum oxide nanomaterials are generally synthesized and used by a hydrothermal process, which is a chemical synthesis method. When depositing by sputtering, it is common to deposit as a two-dimensional thin film, but the present invention is characterized in that the three-dimensional nanostructure is directly grown on a substrate by controlling the crystal phase during the deposition process.

본 발명에 따른 자기조립적 3차원 나노구조를 갖는 리튬이차전지 제조방법은 기판을 준비하는 단계; RF 마그네트론 스퍼터에 Mo 금속 타겟을 준비하는 단계; 초기 진공도 5 × 10 -5 Pa이하에서 산소(99.999%) 10 sccm과 아르곤(99.999%) 40 sccm을 주입하여 스퍼터링 증착 시 압력 0.39 Pa, 타겟과 기판거리 10 cm로 하여 두께 500 nm ~ 1000 nm로 증착하는 단계; 기판온도가 상온(RT)인 경우 RF 파워는 40 watt, 기판온도가 200 ℃, 300 ℃, 500 ℃인 경우에는 RF 파워는 120 watt로 증착하는 단계를 포함한다.A method for manufacturing a lithium secondary battery having a self-assembled three-dimensional nanostructure according to the present invention includes preparing a substrate; Preparing a Mo metal target for RF magnetron sputter; At an initial vacuum of 5 × 10 -5 Pa or less, 10 sccm of oxygen (99.999%) and 40 sccm of argon (99.999%) were injected to obtain a thickness of 500 nm to 1000 nm with a pressure of 0.39 Pa and a distance of 10 cm between the target and the substrate during sputtering deposition. depositing; and depositing RF power of 40 watts when the substrate temperature is room temperature (RT) and 120 watts of RF power when the substrate temperatures are 200 °C, 300 °C, and 500 °C.

RF 마그네트론 스퍼터링 후 기판의 온도가 상온으로 충분히 식은 다음에 분석을 위해 시료를 RF 마그네트론 스퍼터 시스템 밖으로 꺼내어 표면형상과 단면 형상을 FE-SEM과 cross-sectional FE-SEM으로 분석하였고, 결정학적 특성을 XRD로 분석하였다.After the RF magnetron sputtering, the substrate temperature was sufficiently cooled to room temperature, and then the sample was taken out of the RF magnetron sputter system for analysis, and the surface shape and cross-sectional shape were analyzed by FE-SEM and cross-sectional FE-SEM, and the crystallographic properties were analyzed by XRD was analyzed.

도 2는 본 발명에 따라 제조된 몰리브덴산화물의 FE-SEM 사진으로 기판온도가 상온이고 RF 파워가 40 watt에서는 layer-by-layer(Frank-van der Merwe 성장모드)로 성장하고, 기판온도가 200 ℃이고 RF 파워가 120 watt에서는 Stranski-Krastanov 성장모드로 성장하며, 기판온도가 섭씨 300 ℃ 이상이고 RF 파워가 120 watt에서는 3D island growth(Volmer-Weber 성장모드)로 성장함을 확인할 수 있다. 특히, 기판온도가 상온 ~ 450 ℃이하에서는 orthorhombic α-MoO3 결정상으로 성장하고, 기판 온도가 섭씨 450~650 ℃이고 RF 파워가 120 watt에서는 monoclinic β-MoO3 결정상으로 성장함을 도 3의 XRD 분석 결과로 확인할 수 있다.Figure 2 is a FE-SEM picture of the molybdenum oxide prepared according to the present invention, the substrate temperature is room temperature and the RF power is 40 watt, layer-by-layer (Frank-van der Merwe growth mode) is grown, and the substrate temperature is 200 It can be seen that it grows in Stranski-Krastanov growth mode at ℃ and RF power of 120 watt, and grows in 3D island growth (Volmer-Weber growth mode) at substrate temperature of 300 ℃ or higher and RF power of 120 watt. In particular, when the substrate temperature is below room temperature ~ 450 ℃, it grows as an orthorhombic α-MoO 3 crystal phase, and when the substrate temperature is 450 ~ 650 ℃ and the RF power is 120 watt, it grows into a monoclinic β-MoO 3 crystal phase XRD analysis in FIG. 3 results can be verified.

본 발명의 다른 실시예로서 열화학기상증착(thermal CVD) 공정으로 기판 위에 직접 성장된 자기조립적 3차원 나노구조의 SnO(SnO/SUS)를 형성할 수 있다. 증착되는 물질과 기판 물질과의 상호작용 에너지에 따라서 2D 구조의 SnO 박막과 자기조립적 3D 나노월 구조의 SnO로 성장된다. As another embodiment of the present invention, a self-assembled three-dimensional nanostructured SnO (SnO/SUS) directly grown on a substrate can be formed by a thermal CVD process. Depending on the interaction energy between the deposited material and the substrate material, it is grown into a 2D structured SnO thin film and a self-assembled 3D nanowall structured SnO.

자기조립적 3차원 SnO 나노구조를 갖는 리튬이차전지 제조방법은, 기판을 준비하는 단계; 열CVD에 SnO2 파우더(99.9%)를 준비하는 단계; 초기 진공도 5.0 × 10 -4 Torr 이하에서 아르곤(99.999%) 1,000 sccm을 주입하여 1096 ℃에서 기상화된 원료물질을 이송하는 단계; SnO 나노구조의 성장을 위해 압력을 3.7 Torr로 조절하는 단계; 기판의 온도를 424 ℃로 제어하는 단계를 포함한다.A method for manufacturing a lithium secondary battery having a self-assembled three-dimensional SnO nanostructure includes preparing a substrate; preparing SnO 2 powder (99.9%) by thermal CVD; Injecting 1,000 sccm of argon (99.999%) at an initial vacuum degree of 5.0 × 10 -4 Torr or less to transfer the raw material vaporized at 1096 ° C; Adjusting the pressure to 3.7 Torr for the growth of SnO nanostructures; and controlling the temperature of the substrate to 424°C.

도 4는 FE-SEM 이미지를 분석한 주석산화물 시료의 결정성을 라만 분광학(Raman spectrum)으로 분석한 결과이고, Cu 포일 위에 2차원으로 성장되거나 SUS 포일 위에 자기조립적 3차원 나노구조물로 성장된 SnO 모두 정방정 결정상을 갖는다.Figure 4 is a result of analyzing the crystallinity of a tin oxide sample analyzed by FE-SEM image by Raman spectroscopy (Raman spectrum), grown in two dimensions on Cu foil or grown as a self-assembling three-dimensional nanostructure on SUS foil Both SnO have a tetragonal crystal phase.

기판은 Si 웨이퍼 기판뿐만 아니라 SUS 포일, Cu 포일 등을 사용할 수 있다.As the substrate, not only a Si wafer substrate but also SUS foil, Cu foil, and the like can be used.

도 5는 2D 구조와 자기조립적 3D SnO 나노구조 음극물질로 제조된 리튬이온전지의 충방전 특성 그래프이다.5 is a graph of charge and discharge characteristics of a lithium ion battery made of a 2D structure and a self-assembling 3D SnO nanostructure anode material.

thermal CVD 공정으로 기판 위에 직접 성장된 3차원 나노구조의 SnO(SnO/SUS)와 2차원 박막 형태의 SnO(SnO/Cu) 리튬이온전지의 전기화학적 특성분석 결과를 비교하면 3차원 나노구조의 SnO가 보다 우수한 전기용량 특성을 갖는 것으로 분석되었다. 이것은 3차원 나노구조의 SnO가 높은 유효표면적으로 인해 전기용량이 증가하는 것으로 판단된다. Comparing the electrochemical characterization results of 3D nanostructured SnO (SnO/SUS) and 2D thin film SnO (SnO/Cu) lithium-ion batteries grown directly on the substrate by thermal CVD process, 3D nanostructured SnO was analyzed to have better capacitance characteristics. It is believed that the capacitance increases due to the high effective surface area of the 3D nanostructured SnO.

도 6은 2D 구조와 자기조립적 3D MoO3 나노구조 음극물질로 제조된 리튬이온전지의 충방전 특성 및 율속(C-rate) 테스트 그래프이다.6 is a graph showing charge/discharge characteristics and C-rate test of a lithium ion battery made of a 2D structure and a self-assembling 3D MoO 3 nanostructure negative electrode material.

전류밀도를 100 mA/g ~ 1000 mA/g으로 변화시키면서 충전/방전 특성을 평가한 결과(C-rate)로서 2차원 박막보다 3차원 박막이 보다 높은 전기용량 특성을 나타내었으며, 동일한 3차원 구조에는 orthorhombic α-MoO3 결정상보다는 monoclinic β-MoO3 결정상에서 보다 높은 전기용량 특성을 보여준다.As a result of evaluating the charge/discharge characteristics (C-rate) while changing the current density from 100 mA/g to 1000 mA/g, the 3-dimensional thin film showed higher capacitance characteristics than the 2-dimensional thin film, and the same 3-dimensional structure shows higher capacitance characteristics in the monoclinic β-MoO 3 crystal phase than in the orthorhombic α-MoO 3 crystal phase.

도 7은 2D 구조와 자기조립적 3D MoO3 나노구조 음극물질로 제조된 리튬이온전지의 순환 전압 전류(cyclic voltammetry) 곡선이다.7 is a cyclic voltammetry curve of a lithium ion battery made of a 2D structure and a self-assembling 3D MoO 3 nanostructured anode material.

본 발명은 3차원 산화몰리브덴 나노구조물을 RF 마그네트론 스퍼터링 공정으로 기판 위에 대면적으로 직접 성장시키는 것으로서, 증착 공정 중에 산화몰리브덴의 결정상을 제어하여 높은 비표면적을 갖는 3차원 산화몰리브덴 나노구조물을 자기조립적 성장 메커니즘으로 기판 위에 직접 성장시킨다. 성장 중에 결정상을 제어함으로써 특정 응용에 사용할 수 있는 고기능성 3차원 산화몰리브덴 나노구조물을 one-step 공정으로 제조할 수 있고, 높은 비표면적을 갖는 3차원 산화몰리브덴 나노구조물은 고감도 가스센서 및 높은 전기용량을 갖는 리튬이온전지의 음극 소재 등으로 응용할 수 있다.The present invention directly grows three-dimensional molybdenum oxide nanostructures on a large area on a substrate through an RF magnetron sputtering process, and controls the crystal phase of molybdenum oxide during the deposition process to self-assemble three-dimensional molybdenum oxide nanostructures having a high specific surface area. It grows directly on the substrate with the growth mechanism. By controlling the crystal phase during growth, highly functional three-dimensional molybdenum oxide nanostructures that can be used for specific applications can be manufactured in a one-step process. It can be applied as an anode material of a lithium ion battery having

또한, 바인더 및 도전재를 혼합한 슬러리를 사용하지 않고 집전체 위에 직접 3차원 나노구조로 성장시키고, 액체전해질과 분리막 또는 고체전해질을 적층한 다음, 상대 전극을 적층하는 매우 간단한 방법으로 높은 전기용량 및 우수한 전기화학적 특성을 갖는 리튬이차전지를 제조할 수 있다.In addition, it is a very simple method of growing a three-dimensional nanostructure directly on a current collector without using a slurry mixed with a binder and a conductive material, stacking a liquid electrolyte and a separator or solid electrolyte, and then stacking a counter electrode to achieve high capacitance. And a lithium secondary battery having excellent electrochemical properties can be prepared.

본 발명에 따른 자기조립적 3차원 나노구조를 갖는 리튬이차전지는 액체 전해질과 고체 전해질 모두 사용가능하다. 고체전해질은 PEO나 copolymer를 기반의 고분자 전해질, Li2S-B2S3, Li2S-SiS2, LiPON, Li3N, NASICON 등을 포함한 비정질 전해질 또는 garnet이나 perovskite 기반의 결정질 전해질 등이 될 수 있다.The lithium secondary battery having a self-assembling three-dimensional nanostructure according to the present invention can use both a liquid electrolyte and a solid electrolyte. The solid electrolyte can be a polymer electrolyte based on PEO or copolymer, an amorphous electrolyte including Li 2 SB 2 S 3 , Li 2 S-SiS 2 , LiPON, Li 3 N, NASICON, etc., or a garnet or perovskite based crystalline electrolyte. there is.

Claims (3)

3차원 나노구조물인 단사정 β-MoO3 결정상을 스퍼터로 SUS 집전체 위에 직접 성장시켜 전극 활물질로 사용하는 것을 특징으로 하는 자기조립적 3차원 나노구조를 전극 활물질로 갖는 리튬이차전지.A lithium secondary battery having a self-assembling three-dimensional nanostructure as an electrode active material, characterized in that the monoclinic β-MoO 3 crystal phase, which is a three-dimensional nanostructure, is directly grown on a SUS current collector by sputtering and used as an electrode active material. 삭제delete 제1항의 리튬이차전지는 전고체 리튬이차전지로서, 고체전해질은 PEO나 copolymer 기반의 고분자 전해질, Li2S-B2S3, Li2S-SiS2, LiPON, Li3N, NASICON을 포함한 비정질 전해질 또는 garnet이나 perovskite 기반의 결정질 전해질을 포함하는 것을 특징으로 하는 자기조립적 3차원 나노구조를 전극 활물질로 갖는 리튬이차전지.
The lithium secondary battery of claim 1 is an all-solid lithium secondary battery, and the solid electrolyte is a PEO or copolymer-based polymer electrolyte, an amorphous electrolyte including Li 2 SB 2 S 3 , Li 2 S-SiS 2 , LiPON, Li 3 N, and NASICON. Or a lithium secondary battery having a self-assembling three-dimensional nanostructure as an electrode active material, characterized in that it comprises a garnet or perovskite-based crystalline electrolyte.
KR1020220092167A 2022-07-26 2022-07-26 Lithium secondary battery with self-assembled three-dimensional nanostructures as active materials of electrode plate KR102537600B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220092167A KR102537600B1 (en) 2022-07-26 2022-07-26 Lithium secondary battery with self-assembled three-dimensional nanostructures as active materials of electrode plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220092167A KR102537600B1 (en) 2022-07-26 2022-07-26 Lithium secondary battery with self-assembled three-dimensional nanostructures as active materials of electrode plate

Publications (1)

Publication Number Publication Date
KR102537600B1 true KR102537600B1 (en) 2023-05-26

Family

ID=86536536

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220092167A KR102537600B1 (en) 2022-07-26 2022-07-26 Lithium secondary battery with self-assembled three-dimensional nanostructures as active materials of electrode plate

Country Status (1)

Country Link
KR (1) KR102537600B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110117592A (en) 2010-04-21 2011-10-27 서울대학교산학협력단 Semiconductor optoelectronic device and method for manufacturing thereof
JP2017073319A (en) * 2015-10-08 2017-04-13 トヨタ自動車株式会社 All-solid battery
JP2017228438A (en) * 2016-06-22 2017-12-28 日本ケミコン株式会社 Lithium secondary battery and method for manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110117592A (en) 2010-04-21 2011-10-27 서울대학교산학협력단 Semiconductor optoelectronic device and method for manufacturing thereof
JP2017073319A (en) * 2015-10-08 2017-04-13 トヨタ自動車株式会社 All-solid battery
JP2017228438A (en) * 2016-06-22 2017-12-28 日本ケミコン株式会社 Lithium secondary battery and method for manufacturing the same

Similar Documents

Publication Publication Date Title
US10461337B2 (en) Oxide all-solid-state battery
Yoon et al. Lattice orientation control of lithium cobalt oxide cathode film for all-solid-state thin film batteries
US9105903B2 (en) All-solid-state lithium battery, and production method therefor
AU2019240681A1 (en) Nano-engineered coatings for anode active materials, cathode active materials, and solid-state electrolytes and methods of making batteries containing nano-engineered coatings
WO2011128976A1 (en) Solid electrolyte material, lithium battery, and manufacturing method for solid electrolyte material
CN114512709A (en) Electrolyte and cathode electrolyte composition containing lithium, phosphorus, sulfur and iodine
Quinzeni et al. Structural, morphological and electrochemical properties of nanocrystalline V2O5 thin films deposited by means of radiofrequency magnetron sputtering
WO2013099442A1 (en) Solid electrolyte, process for producing solid electrolyte, and electrochemical device
US20130189588A1 (en) Method for producing solid electrolyte membrane
US20170054138A1 (en) Ultra-high output power and extremely robust cycle life negative electrode material for lithium secondary battery and method for manufacturing the same, using layer structure of metal oxide nanoparticles and porous graphene
Navone et al. Electrochemical behaviour of sputtered c-V2O5 and LiCoO2 thin films for solid state lithium microbatteries
Hu et al. Roles of Al-doped ZnO (AZO) modification layer on improving electrochemical performance of LiNi 1/3 Co 1/3 Mn 1/3 O 2 thin film cathode
JPH09249962A (en) Formation of oxide thin film and oxide thin film
US8586139B2 (en) Method for producing electrode composite material
KR102537600B1 (en) Lithium secondary battery with self-assembled three-dimensional nanostructures as active materials of electrode plate
Cabello et al. Self-assembled Li4Ti5O12/TiO2/Li3PO4 for integrated Li–ion microbatteries
KR101200306B1 (en) Thin film battery having improved anode characteristics and method of manufacturing the same
Chung et al. Structural and electrochemical properties of LiNi 0.7 Co 0.15 Mn 0.15 O 2 thin film prepared by high frequency hybrid direct current and radio frequency magnetron sputtering
KR100495674B1 (en) A cathode thin film for all solid state battery, preparation method thereof, and lithium thin film battery using the same
KR20150042011A (en) Preparation method of a film comprising nanowires, the film comprising nanowires and a thin film battery conprsing the same
Chen et al. Ionic conductivity of metal oxides: An essential property for all-solid-state lithium-ion batteries
Aaltonen et al. ALD of thin films for lithium-ion batteries
WO2021094773A1 (en) Method of forming crystalline layer, method of forming a battery half cell
WO2021094727A1 (en) Method of manufacturing crystalline material from different materials
KR102497397B1 (en) Method for manufacturing self-assembled 3D molybdenum oxide nanostructures

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant