KR102536462B1 - Adsorbent using Coffee waste to remove Microplastics and Manufacturing method there of - Google Patents

Adsorbent using Coffee waste to remove Microplastics and Manufacturing method there of Download PDF

Info

Publication number
KR102536462B1
KR102536462B1 KR1020210029176A KR20210029176A KR102536462B1 KR 102536462 B1 KR102536462 B1 KR 102536462B1 KR 1020210029176 A KR1020210029176 A KR 1020210029176A KR 20210029176 A KR20210029176 A KR 20210029176A KR 102536462 B1 KR102536462 B1 KR 102536462B1
Authority
KR
South Korea
Prior art keywords
coffee
microplastics
adsorbent
waste
hydrogel
Prior art date
Application number
KR1020210029176A
Other languages
Korean (ko)
Other versions
KR20220125409A (en
Inventor
유민철
오지윤
Original Assignee
유민철
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 유민철 filed Critical 유민철
Priority to KR1020210029176A priority Critical patent/KR102536462B1/en
Publication of KR20220125409A publication Critical patent/KR20220125409A/en
Application granted granted Critical
Publication of KR102536462B1 publication Critical patent/KR102536462B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/291Gel sorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/24Naturally occurring macromolecular compounds, e.g. humic acids or their derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3071Washing or leaching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3206Organic carriers, supports or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/3441Regeneration or reactivation by electric current, ultrasound or irradiation, e.g. electromagnetic radiation such as X-rays, UV, light, microwaves
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/286Treatment of water, waste water, or sewage by sorption using natural organic sorbents or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/40Devices for separating or removing fatty or oily substances or similar floating material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Dispersion Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)

Abstract

수계상에 존재하는 미세플라스틱을 제거하기 위한 흡착제가 개시된다. 상기 흡착제는 커피찌꺼기의 표면을 하이드로겔로 처리한 흡착제로서 미세플라스틱의 흡착 성능을 높인 것을 특징으로 한다. 이를 활용하여 육상의 폐기물인 커피박과 해상의 폐기물은 미세플라스틱을 제거하거나 재활용할 수 있게 되었다.An adsorbent for removing microplastics present in an aqueous phase is disclosed. The adsorbent is an adsorbent in which the surface of coffee grounds is treated with a hydrogel, and is characterized in that the adsorption performance of microplastics is improved. By using this, it is possible to remove or recycle microplastics from coffee grounds, which are wastes on land, and wastes at sea.

Description

커피박을 이용한 미세플라스틱 제거용 흡착제 및 이의 제조 방법.{Adsorbent using Coffee waste to remove Microplastics and Manufacturing method there of}Adsorbent using Coffee waste to remove Microplastics and Manufacturing method there of}

본 발명은 미세플라스틱을 흡착시키는 흡착제에 관한 것이며, 더욱 상세하게는 커피찌꺼기 즉, 커피박을 이용하여 수계 상의 미세플라스틱을 제거하는 흡착제에 관한 것이다. The present invention relates to an adsorbent for adsorbing microplastics, and more particularly, to an adsorbent for removing microplastics in an aqueous system using coffee grounds, that is, coffee waste.

최근 플라스틱의 사용량이 증가함에 따라 버려지는 플라스틱 역시 증가하였다. 특히 플라스틱이 물에 버려지는 경우, 자외선, 열, 충격 등에 의해 분해되어 미세플라스틱으로 수계에 떠다니게 된다. Recently, as the amount of plastic used increases, the amount of plastic that is discarded also increases. In particular, when plastic is discarded in water, it is decomposed by ultraviolet rays, heat, impact, etc., and floats in the water system as microplastics.

미세플라스틱은 플라스틱 자체가 가지고 있는 위험성을 포함하여 가공 중에 첨가되는 가소제, 첨가제, 색소 및 안정제 등 다양한 화학물질에 의한 위험을 내포하고 있다.Microplastics pose risks due to various chemicals such as plasticizers, additives, pigments, and stabilizers added during processing, including the risks inherent in plastic itself.

이러한 화학물질은 생체 내에 흡수가 되면 분해가 되지않고 체내에 축적이 되어 이를 섭취하는 해양 생물과 인간뿐 아니라 지구 생태계에 큰 문제를 일으킬 것으로 예상된다. When these chemicals are absorbed into the body, they are not decomposed and accumulated in the body, and are expected to cause great problems not only to marine organisms and humans that consume them, but also to the Earth's ecosystem.

따라서 해양 플라스틱의 양과 분포, 오염 현황에 관한 연구 및 미세플라스틱 섭취로 인한 독성에 관한 연구가 활발하게 진행되고 있다.Therefore, studies on the amount and distribution of marine plastics, pollution status, and toxicity caused by ingestion of microplastics are being actively conducted.

이와 더불어 미세플라스틱을 제거하고자 하는 기술이 최근 활발히 연구 중에 있는데 이 중 대표적인 방법은 막생물 반응기, 전기응고법 등이 알려져 있다.In addition, technologies for removing microplastics are being actively researched recently, and among them, membrane bioreactors and electrocoagulation methods are known as representative methods.

막생물 반응기는 미생물 등을 활용한 생물학적 폐수처리 방법으로 다만 우리가 플라스틱을 소비하는 속도에 비해 미생물의 분해속도는 매우 느리기 때문에 아직 실용화 단계에 접어들지 못했다.Membrane bioreactor is a biological wastewater treatment method using microorganisms. However, compared to the speed at which we consume plastics, the decomposition rate of microorganisms is very slow, so it has not yet entered the practical use stage.

전기응고법은 고주파의 전기로 열을 발생시켜 흩어져 있는 미세플라스틱 입자를 모아 응고시킨 뒤 걸러내는 방법으로 다만 처리량과 과도한 에너지 소비로 인해 당분간은 실용화되기 어려운 실정이다.Electrocoagulation is a method of generating heat with high-frequency electricity to collect and solidify scattered microplastic particles and then filtering them out.

이에 따라 보다 효과적이면서 단순하고, 경비가 저렴한 미세플라스틱의 제거 기술에 대한 요구가 증가하고 있다.Accordingly, there is an increasing demand for a technology for removing microplastics that is more effective, simple, and inexpensive.

한편, 원두커피의 소비량이 크게 증가하면서, 원두커피를 분쇄한 것에서 커피 원액을 추출하고 남겨지는 커피박의 발생량도 함께 증가하고 있다. 이러한 커피박을 새로운 자원으로 재활용하는 문제도 큰 관심을 끌고 있으나 현재는 생활 쓰레기로 분류되어 100% 소각 혹은 매립되고 있다. On the other hand, as the consumption of coffee beans increases significantly, the amount of coffee waste remaining after extracting the coffee undiluted solution from the pulverized coffee beans is also increasing. The problem of recycling such coffee waste as a new resource is also attracting great attention, but it is currently classified as household waste and is 100% incinerated or landfilled.

통계에 따르면 국내에서만 연간 발생하는 커피박의 경우 2021년 현재 15만 톤 정도로 이를 처리하는 비용만 41억 정도의 비용이 소요되는 것으로 추산된다. 따라서 버려지는 커피박의 활용방안에 대해 많은 연구가 필요한 실정이다. According to statistics, it is estimated that the cost of processing 150,000 tons of coffee waste, which is generated annually only in Korea, will cost about 4.1 billion won as of 2021. Therefore, a lot of research is needed on how to utilize discarded coffee grounds.

이와 관련하여 커피박을 활용하여 불순물을 제거하려고 하는 특허문헌 1에 소개된 연구가 진행된 바 있으며, 이 선행기술은 중금속을 흡착하기 위해 커피박에 나노영가철을 담지하는 기술을 소개하고 있다. In this regard, a study introduced in Patent Document 1 to remove impurities using coffee waste has been conducted, and this prior art introduces a technology of supporting nano-permanent iron on coffee waste to adsorb heavy metals.

즉, 종래 기술은 이온 크기의 범위에서 흡착을 하는 경우로 주로 중금속을 대상으로 한다는 점에서, 소수성을 띄는 입자성 물질인 미세플라스틱을 흡착하는 것은 실질적으로 불가능하다. That is, in that the prior art mainly targets heavy metals in the case of adsorption in a range of ion sizes, it is practically impossible to adsorb microplastics, which are particulate matter having a high hydrophobicity.

그리고, 수계 상의 미세플라스틱을 흡착하는 데 커피박을 활용한 사례는 아직 관련 업계에 소개된 바 없다.In addition, the case of using coffee waste to adsorb microplastics in the water system has not yet been introduced to the related industry.

공개특허공보 제10-2019-0134335호(2019.12.04.)Publication No. 10-2019-0134335 (2019.12.04.)

본 발명은 위와 같이 버려지는 커피박을 미세플라스틱의 흡착 제거 특히, 수계 상의 미세플라스틱 제거에 이용함으로써 커피박을 새로운 자원으로 재활용함과 동시에 미세플라스틱을 제거하는 효율적인 기술을 제공하기 위하여 개발된 것이다.The present invention was developed to provide an efficient technology for recycling coffee waste as a new resource and simultaneously removing microplastics by using the discarded coffee waste as described above for adsorption removal of microplastics, in particular for removal of microplastics in water.

구체적으로 본 발명은 수계 상에 존재하는 미세플라스틱을 흡착하여 제거할 수 있게 되는 하이드로겔로 처리된 커피박과 이를 제조하는 방법을 제공하되, 하이드로겔로 처리된 커피박과 미세플라스틱 간의 반응성을 유지할 수 있도록 함으로써 미세플라스틱을 효과적으로 제거할 수 있도록 한다.Specifically, the present invention provides a coffee waste treated with a hydrogel capable of adsorbing and removing microplastics present in a water system and a method for producing the same, while maintaining the reactivity between the coffee waste treated with the hydrogel and the microplastics. This allows for effective removal of microplastics.

상기 본 발명의 목적들 및 다른 특징들을 달성하기 위한 본 발명의 일 관점에 따르면, 커피박을 유기 용매에 담지하여 커피박 내 친수성 물질이 용출되는 단계; 친수성 물질이 용출된 상기 커피박을 세척하는 단계; 세척된 상기 커피박에 자외선을 조사하고 건조시키는 단계; 건조된 상기 커피박 분말을 하이드로겔 분말과 혼합한 다음 염화칼슘 수용액에 담지하여 커피박을 하이드로겔로 처리하는 단계; 및 하이드로겔 처리된 상기 커피박을 필터링한 다음 건조 시키는 단계를 포함하는 커피박을 이용한 미세플라스틱 제거용 흡착제의 제조방법을 제공한다.According to one aspect of the present invention for achieving the above objects and other features of the present invention, the step of supporting the coffee waste in an organic solvent to elute the hydrophilic substance in the coffee waste; Washing the coffee grounds from which the hydrophilic material is eluted; Irradiating UV rays to the washed coffee grounds and drying them; Mixing the dried coffee ground powder with hydrogel powder and then soaking in an aqueous solution of calcium chloride to treat the coffee grounds as a hydrogel; and filtering and then drying the hydrogel-treated coffee waste.

본 발명의 일 실시예에 따르면, 상기 유기 용매는 에탄올인 것을 특징으로 한다. According to one embodiment of the present invention, the organic solvent is characterized in that ethanol.

본 발명의 다른 실시예에 따르면, 상기 자외선은 파장 영역이 100nm 내지 300nm 인 것을 특징으로 한다.According to another embodiment of the present invention, the ultraviolet rays are characterized in that the wavelength range is 100nm to 300nm.

본 발명의 또 다른 실시예에 따르면 상기 하이드로겔 분말은 고형화 시에 다공성을 띠고, 팽윤성을 지니는 분말을 사용하는 것을 특징으로 한다.According to another embodiment of the present invention, the hydrogel powder is characterized by using a powder having porosity and swelling property during solidification.

본 발명의 또 다른 실시예에 따르면 상기 하이드로겔 분말과 상기 커피박 분말을 혼합 시 혼합 비율은 중량비로 커피박 분말 대비 하이드로겔 분말의 중량이 0.16 내지 0.5인 것을 특징으로 한다.According to another embodiment of the present invention, when mixing the hydrogel powder and the coffee ground powder, the mixing ratio is characterized in that the weight of the hydrogel powder to the coffee ground powder is 0.16 to 0.5 in weight ratio.

본 발명의 또 다른 실시예에 따르면 상기 흡착제의 제조방법에 의해 제조된 커피박을 활용하여 미세플라스틱 제거용 흡착제를 제공한다.According to another embodiment of the present invention, an adsorbent for removing microplastics is provided by utilizing the coffee waste produced by the method for preparing the adsorbent.

본 발명의 또 다른 실시예에 따르면 상기 흡착제를 이용한 미세플라스틱 제거용 흡착시스템으로, 상기 시스템은 미세플라스틱이 포함된 오염수를 끌어올리는 워터펌프, 상기 워터펌프에 연결되어 오염수를 저류 박스로 이동시키는 공급파이프, 상기 공급파이프로부터 공급된 오염수가 저류되면서 상기 오염수 내 미세플라스틱이 흡착될 수 있는 하이드로겔로 처리된 커피박을 포함하는 저류 박스 및 상기 오염수 내 미세플라스틱이 제거된 정수를 배출시키는 배수파이프를 포함하는 흡착시스템을 제공한다.According to another embodiment of the present invention, an adsorption system for removing microplastics using the adsorbent, wherein the system is connected to a water pump for raising polluted water containing microplastics, and is connected to the water pump to move the polluted water to a storage box. A supply pipe, a storage box containing coffee grounds treated with a hydrogel capable of adsorbing microplastics in the contaminated water while the contaminated water supplied from the supply pipe is stored, and discharging purified water from which microplastics in the contaminated water are removed Provided is an adsorption system including a drain pipe for

하이드로겔 처리된 커피박으로 이루어진 본 발명에 따른 미세플라스틱 제거용 흡착제에서 하이드로겔 처리된 커피박과 미세플라스틱간의 반응성이 향상되어 매우 우수한 흡착 및 제거 효능을 보이게 된다. In the adsorbent for removing microplastics according to the present invention made of hydrogel-treated coffee waste, the reactivity between the hydrogel-treated coffee waste and microplastics is improved, resulting in very excellent adsorption and removal efficiency.

또한 본 발명에서는 버려지던 커피박을 수계 상의 미세플라스틱을 흡착하는 담체로 사용함으로써 폐기물을 새로운 자원으로서 재활용할 수 있게 되는 친환경적인 기술로서의 큰 가치를 가질 수 있다.In addition, in the present invention, by using discarded coffee waste as a carrier for adsorbing microplastics in water, it can have great value as an eco-friendly technology that can recycle waste as a new resource.

도 1은 본 발명의 실시예에 따른 흡착제를 제조하는 방법을 설명하기 위한 공정 순서도이다.
도 2는 미세플라스틱이 포함된 오염수를 커피박을 이용한 흡착제를 통과시킨 다음 수득한 용액을 촬영한 도면이다.
도 3 내지 도 5는 커피박을 이용한 흡착제에 부착된 미세플라스틱의 상태를 나타내는 FE-SEM 도면이다.
도 6은 본 발명인 흡착제를 이용하여 미세플라스틱을 제거하는 흡착시스템을 나타내는 도면이다.
1 is a process flow chart for explaining a method for preparing an adsorbent according to an embodiment of the present invention.
2 is a view of a solution obtained after passing contaminated water containing microplastics through an adsorbent using coffee waste.
3 to 5 are FE-SEM views showing states of microplastics attached to adsorbents using coffee waste.
6 is a view showing an adsorption system for removing microplastics using the adsorbent of the present invention.

본 발명에 관한 설명은 구조적 내지 기능적 설명을 위한 실시예에 불과하므로, 본 발명의 권리범위는 본문에 설명된 실시예에 의하여 제한되는 것으로 해석되어서는 아니 된다. Since the description of the present invention is only an embodiment for structural or functional description, the scope of the present invention should not be construed as being limited by the embodiments described in the text.

즉, 실시예는 다양한 변경이 가능하고 여러 가지 형태를 가질 수 있으므로 본 발명의 권리범위는 기술적 사상을 실현할 수 있는 균등물 들을 포함하는 것으로 이해되어야 한다. That is, since the embodiment can be changed in various ways and can have various forms, it should be understood that the scope of the present invention includes equivalents capable of realizing the technical idea.

또한, 본 발명에서 제시된 목적 또는 효과는 특정 실시예가 이를 전부 포함하여야 한다거나 그러한 효과만을 포함하여야 한다는 의미는 아니므로, 본 발명의 권리범위는 이에 의하여 제한되는 것으로 이해되어서는 아니 될 것이다.In addition, since the object or effect presented in the present invention does not mean that a specific embodiment should include all of them or only such effects, the scope of the present invention should not be construed as being limited thereto.

이하, 본 발명의 바람직한 실시예를 첨부한 도면을 참조하여 설명한다.Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings.

본 발명의 실시예에 따른 흡착제는 하이드로겔로 처리된 커피박인 것을 특징으로 한다. The adsorbent according to an embodiment of the present invention is characterized in that it is coffee grounds treated with a hydrogel.

도 1은 본 발명의 실시예에 따른 흡착제를 제조하는 방법을 설명하기 위한 공정 순서도이다.1 is a process flow chart for explaining a method for preparing an adsorbent according to an embodiment of the present invention.

도 1을 참조하면, 본 발명의 커피박 흡착제의 제조방법은 커피박을 유기 용매에 담지하는 단계(S100), 커피박을 세척하는 단계(S200), 자외선(UV)을 조사하는 단계(S300), 하이드로겔로 처리하는 단계(S400) 및 필터링 후 건조하는 단계(S500)를 포함한다.Referring to FIG. 1, the manufacturing method of the coffee waste adsorbent of the present invention includes the steps of supporting the coffee waste in an organic solvent (S100), washing the coffee waste (S200), and irradiating ultraviolet (UV) rays (S300). , It includes a step of treating with a hydrogel (S400) and a step of drying after filtering (S500).

먼저 커피박을 유기용매에 담지하는 단계(S100)는 커피 원액을 추출하고 남겨진 커피박을 수거하여 건조시킨 다음, 상기 커피박을 유기 용매에 10 분 내지 1시간 동안 담지하는 단계이며, 바람직하게는 30분간 담지하는 것이 효과적이다.First, the step of supporting the coffee waste in an organic solvent (S100) is a step of extracting the coffee undiluted solution, collecting and drying the remaining coffee waste, and then supporting the coffee waste in an organic solvent for 10 minutes to 1 hour, preferably It is effective to hold for 30 minutes.

커피박을 10분 이내로 담지하게 되면 친수성 물질의 제거가 불충분하고, 1시간 이상 담지하면 친수성 물질 제거량이 변함이 없기 때문에 10분 내지 1시간 동안 담지하는 것이 적당하다. When the coffee grounds are supported for less than 10 minutes, the removal of hydrophilic substances is insufficient, and when supported for more than 1 hour, the amount of hydrophilic substances removed is unchanged, so it is appropriate to support them for 10 minutes to 1 hour.

이때 유기 용매를 1~2회 새로운 용매로 교체해 줌으로써 친수성 물질을 더 빠른 시간에 제거할 수 있게 된다.At this time, by replacing the organic solvent with a new solvent once or twice, the hydrophilic material can be removed in a faster time.

이 단계에서 사용되는 유기 용매로는 아세톤, 알코올 등이 사용될 수 있으며, 바람직하게는 무수에탄올이 사용된다. 에탄올은 커피박 내 함유되어 있는 친수성 물질을 용출하는데 효과적이면서도 카페인의 용출은 최소화할 수 있어 커피박 표면을 소수성으로 만드는 역할을 한다. As the organic solvent used in this step, acetone, alcohol, etc. may be used, and anhydrous ethanol is preferably used. Ethanol is effective in eluting the hydrophilic substances contained in the coffee waste, while minimizing the elution of caffeine, thereby making the surface of the coffee waste hydrophobic.

커피박 내에 존재하는 친수성 물질이 용출되게 되면 커피박 내의 기공이 증가함과 동시에 기공의 표면적이 증가하게 된다. 이와 함께 친수성 물질이 제거됨에 따라 커피박 표면이 소수성을 띄게 된다.When the hydrophilic substance present in the coffee waste is eluted, the pores in the coffee waste increase and the surface area of the pores also increases. At the same time, as the hydrophilic material is removed, the surface of the coffee grounds becomes hydrophobic.

본 발명을 통해 제거하고자 하는 미세플라스틱은 표면 특성이 소수성이므로 커피박 표면이 친수성인 경우 흡착되기 어려우나, 커피박 표면이 소수성을 띄게 된다면 소수성인 미세플라스틱을 쉽게 끌어당겨 흡착시킬 수 있게 된다.Microplastics to be removed through the present invention have hydrophobic surface characteristics, so it is difficult to adsorb when the surface of the coffee waste is hydrophilic, but if the surface of the coffee waste becomes hydrophobic, the hydrophobic microplastic can be easily attracted and adsorbed.

이 단계에서 일 실시예에 따르면, 커피박 1kg과 에탄올 10L를 섞은 다음 상온 내지 45℃에서 30분간 교반한 다음 필터링 하게 되면 고상 성분인 커피박과 액상 성분으로 분리된다.In this step, according to an embodiment, 1 kg of coffee grounds and 10 L of ethanol are mixed, stirred at room temperature to 45 ° C. for 30 minutes, and then filtered to separate solid coffee grounds and liquid components.

한편, 커피박에는 대략적으로 단백질이 10~15% 정도 함유되어 있는데 용매인 에탄올에 의해 커피박 내의 단백질이 변성되어 내부 구조가 영향을 받게 된다.On the other hand, the coffee waste contains approximately 10 to 15% of protein, and the internal structure is affected by denaturation of the protein in the coffee waste by the solvent ethanol.

그 다음으로 커피박을 세척하는 단계(S200)는 친수성 물질이 제거된 상기 커피박을 순수로 세척하고 걸러낸 다음 수집하는 단계이다. 이 때 유기 용매 또는 친수성 물질이 커피박 표면에 남지 않도록 2~3회 순수로 세척을 하는 것이 바람직하다.Next, the step of washing the coffee waste (S200) is a step of washing the coffee waste from which the hydrophilic material has been removed with pure water, filtering, and collecting the coffee waste. At this time, it is preferable to wash with pure water 2 to 3 times so that organic solvents or hydrophilic substances do not remain on the surface of the coffee grounds.

그 다음 자외선(UV)을 조사하는 단계(S300)는 상기 세척된 커피박을 12시간 동안 자외선을 조사함과 동시에 건조시키는 단계이다.Next, the step of irradiating ultraviolet (UV) rays (S300) is a step of irradiating and drying the washed coffee waste for 12 hours at the same time.

상기 자외선은 10nm 내지 400nm 범위의 파장 영역을 가지며, 이 범위를 벗어나게 되면 자외선을 조사해서 얻는 효과가 발생하지 않는다. The ultraviolet light has a wavelength range of 10 nm to 400 nm, and when it is out of this range, the effect obtained by irradiating the ultraviolet light does not occur.

바람직하게는 100nm 내지 300nm 파장을 갖는 자외선을 사용하는 것이 좋다. 그 이유는 파장이 상기 범위보다 짧으면 친수성 물질의 분해속도가 느려지게 된다. 반대로 상기 범위보다 길면 살균력이 떨어지게 된다.Preferably, it is good to use ultraviolet rays having a wavelength of 100 nm to 300 nm. The reason is that when the wavelength is shorter than the above range, the decomposition rate of the hydrophilic material is slowed down. Conversely, if it is longer than the above range, the sterilizing power is lowered.

이 단계에서 커피박 내에 잔존하는 친수성 물질들이 분해되고, 커피박이 살균되는 효과가 발생한다. 이 때 분해되는 친수성 물질로는 폴리페놀류, 비타민 C, 토코페롤 등이 있다. In this step, the hydrophilic substances remaining in the coffee waste are decomposed, and the effect of sterilizing the coffee waste occurs. Hydrophilic substances that are degraded at this time include polyphenols, vitamin C, tocopherol, and the like.

또한 이 단계에서 자외선 조사에 따라 분해과정을 통해 커피박 내의 기공과 외부 표면적이 증가하게 된다. In addition, in this step, pores and external surface area in the coffee waste are increased through a decomposition process according to UV irradiation.

자외선 조사와 함께 자연 건조시키는 것이 바람직하나 자연 건조 외에 열풍 건조 등 건조 방법을 제한하지 않는다.It is preferable to dry naturally with UV irradiation, but drying methods such as hot air drying other than natural drying are not limited.

그 다음, 하이드로겔로 처리하는 단계(S400)는 자외선 처리된 상기 커피박을 분말상태에서 하이드로겔 분말과 혼합한 다음, 상기 혼합물을 염화칼슘 수용액에 넣어 교반하는 단계이다. Then, the step of treating with a hydrogel (S400) is a step of mixing the UV-treated coffee grounds with the hydrogel powder in a powder state, and then putting the mixture into an aqueous calcium chloride solution and stirring.

이 때 염화칼슘 수용액의 농도는 순수 100ml 당 염화칼슘 1~5g의 비율로 농도를 맞추며, 바람직하게는 순수 100ml 당 염화칼슘 2g을 용해시켜 제조된 염화칼슘 수용액을 사용하는 것이다.At this time, the concentration of the calcium chloride aqueous solution is adjusted at a rate of 1 to 5 g of calcium chloride per 100 ml of pure water, and preferably, an aqueous calcium chloride solution prepared by dissolving 2 g of calcium chloride per 100 ml of pure water is used.

염화칼슘의 양이 상기 범위보다 적으면 가교에 의한 고형화가 덜 일어나게 되고, 염화칼슘의 양이 상기 범위보다 많으면 커피박에 부착되지 않은 채로 하이드로겔끼리 고형화를 일으키는 비율이 높아진다.If the amount of calcium chloride is less than the above range, less solidification by crosslinking occurs, and if the amount of calcium chloride is greater than the above range, the rate of solidification of the hydrogels without being attached to the coffee waste increases.

상기 하이드로겔 분말은 알긴산나트륨과 같이 고형화 시에 다공성을 띠고, 팽윤성을 지니는 분말을 사용하는 것이 바람직하다.As the hydrogel powder, it is preferable to use a powder having porosity and swelling property during solidification, such as sodium alginate.

이 단계에서 알긴산이 칼슘 이온과 반응하여 고형화 즉, 가교현상이 발생하고 물에 녹지 않는 알긴산 하이드로겔이 만들어지게 된다.In this step, alginic acid reacts with calcium ions to solidify, that is, cross-linking occurs, and a water-insoluble alginate hydrogel is created.

알긴산(alginate acid)이라고 불리는 천연 고분자는 자연산 다당류로, 미역 등의 갈조류의 구성성분으로서, 생체 적합성이 좋고, 가격이 싸다는 장점이 있다. A natural polymer called alginate acid is a natural polysaccharide and is a component of brown algae such as seaweed, and has good biocompatibility and low cost.

알긴산의 다당류는 음전하를 띄고 있기 때문에 2가 양이온과 결합하여 계란 박스 구조를 형성하여 비교적 쉽게 하이드로겔을 형성할 수 있다.Since the polysaccharide of alginic acid has a negative charge, it can form a hydrogel relatively easily by combining with divalent cations to form an egg box structure.

하이드로겔 분말은 커피박의 중량 대비 0.16 내지 0.5의 범위로 혼합하는 것이 바람직하다. The hydrogel powder is preferably mixed in the range of 0.16 to 0.5 based on the weight of the coffee grounds.

하이드로겔 분말의 양이 상기 범위보다 적으면 처리되는 커피박의 비율이 적어지게 되고, 상기 범위보다 많으면 효율이 떨어지고 커피박에 붙지 않고 하이드로겔 끼리 고형화되는 양이 늘어나게 된다.If the amount of the hydrogel powder is less than the above range, the ratio of the coffee waste to be treated is reduced, and if it is more than the above range, the efficiency is lowered and the amount of hydrogel solidified without adhering to the coffee waste increases.

상기 알긴산 하이드로겔이 커피박 표면에 부착되면 커피박 표면이 소수성을 띄게 된다. When the alginate hydrogel is attached to the surface of the coffee waste, the surface of the coffee waste becomes hydrophobic.

그 다음 커피박을 필터링 후 건조하는 단계(S500)는 상기 하이드로겔로 표면 처리된 커피박을 필터링한 다음 건조시키는 단계이다. Next, filtering and drying the coffee waste (S500) is a step of filtering and then drying the coffee waste surface-treated with the hydrogel.

이 때 필터링을 위해 사용될 수 있는 재료로는 헝겊 필터 등이 사용될 수 있다.At this time, as a material that can be used for filtering, a cloth filter or the like may be used.

<실험예 1: 하이드로겔 처리된 커피박 흡착제 제조><Experimental Example 1: Preparation of hydrogel-treated coffee waste adsorbent>

앞서 설명한 것처럼 본 발명에 의한 흡착제는 하이드로겔 처리된 커피박으로 이루어져 있다. As described above, the adsorbent according to the present invention is composed of hydrogel-treated coffee grounds.

이와 같은 본 발명의 흡착제를 제조하는 방법의 일 실시예로 다음과 같이 흡착제를 제조하였다. As an example of the method for preparing the adsorbent of the present invention, the adsorbent was prepared as follows.

(1) 커피박 20g을 헝겊에 감싼 다음 비커에 담아 준비하였다.(1) 20 g of coffee grounds were wrapped in a cloth and prepared by putting them in a beaker.

(2) 상기 비커에 무수에탄올 200ml를 넣어준다.(2) Add 200ml of anhydrous ethanol to the beaker.

(3) 천천히 교반하는 상태로 상온에서 30분 동안 커피박이 담긴 헝겊을 둔 다음 커피박이 있는 헝겊을 비커에서 꺼내고 내부의 커피박을 회수한다.(3) Leave the cloth containing the coffee waste at room temperature for 30 minutes with slow stirring, then take the cloth with the coffee waste out of the beaker and recover the coffee waste inside.

(4) 상기 커피박을 세척해준다.(4) The coffee waste is washed.

(5) 세척된 커피박을 12시간 동안 자외선을 쬐며 자연 건조해준다.(5) Dry the washed coffee grounds naturally under UV light for 12 hours.

(6) 상기 커피박을 분말상태로 알긴산나트륨 4g과 혼합한 다음 상기 혼합물을 염화칼슘 수용액(물 200ml, 염화칼슘 4g)에 넣어 천천히 1분 동안 교반한다.(6) The coffee waste was mixed with 4 g of sodium alginate in a powder state, and then the mixture was slowly added to an aqueous calcium chloride solution (200 ml of water, 4 g of calcium chloride) for 1 minute. Stir.

(7) 헝겊을 이용해 상기 혼합물을 걸러낸 다음, 건조과정을 거쳐 하이드로겔로 처리된 커피박 흡착제를 수득한다.(7) After filtering the mixture using a cloth, a coffee ground adsorbent treated with a hydrogel is obtained through a drying process.

<실험예 2: 실험예 1로 제조된 흡착제를 이용한 미세플라스틱 제거 성능 비교> <Experimental Example 2: Comparison of microplastic removal performance using the adsorbent prepared in Experimental Example 1>

위의 실험예 1에 따라 제조된 본 발명의 흡착제를 이용하여 상온에서 미세플라스틱 제거 실험을 수행한 뒤, 비교 대상 흡착제와의 성능 평가 결과를 표 1 및 도 2에 실었다.After performing a microplastic removal experiment at room temperature using the adsorbent of the present invention prepared according to Experimental Example 1 above, the performance evaluation results with the comparative adsorbent are shown in Table 1 and FIG. 2.

비교 대상 흡착제로는 상용화된 제품이 없으므로, 상기 실험예 1에서 하이드로겔 처리된 커피박을 만들기 전 단계의 에탄올만 처리한 커피박(비교예 2), 에탄올 처리 후 자외선을 조사한 커피박(비교예 3) 및 단순히 헝겊만 이용해서 수계상의 미세플라스틱을 제거한 비교예 1 및 실험예 1로 제조된 커피박으로 미세플라스틱을 제거한 실시예의 결과를 표 1 및 도 2에 실었다.Since there is no commercially available adsorbent for comparison, coffee waste treated with only ethanol before making the hydrogel-treated coffee waste in Experimental Example 1 (Comparative Example 2), coffee waste irradiated with ultraviolet rays after ethanol treatment (Comparative Example) 3) and Comparative Example 1 and Experimental Example 1 in which water-based microplastics were removed using only a cloth are shown in Table 1 and FIG. 2.

실험 방법은 다음과 같이 이루어졌다. 먼저 미세플라스틱을 제거할 커피박을 준비한다. 그 다음 미세플라스틱의 한 종류인 아크릴 파우더 1g과 물 200ml로 이루어진 오염물을 제조한 후, 이 오염물을 흡착 가능한 커피박이 들어있는 장치(도 6)에 통과시킨다.The experimental method was performed as follows. First, prepare coffee grounds to remove microplastics. Then, after preparing a contaminant composed of 1 g of acrylic powder, which is a type of microplastic, and 200 ml of water, the contaminant is passed through a device containing adsorbable coffee waste (FIG. 6).

커피박을 통과한 오염물을 따로 모아 부유물의 양, 물의 색, 투과된 물의 양에 대한 투수성을 평가하였다.Contaminants passing through the coffee waste were separately collected and permeability was evaluated for the amount of suspended matter, color of water, and amount of permeated water.

또한 오염물이 통과한 커피박을 따로 모아 Hitachi사의 FE(Field Emission)-SEM(scanning electron emission) 장비인 S-4800 장치를 이용하여 FE-SEM 이미지를 얻었다. In addition, the coffee grounds through which contaminants passed were separately collected and FE-SEM images were obtained using Hitachi's FE (Field Emission)-SEM (scanning electron emission) equipment S-4800 device.

흡착 성능과 관련된 실험 결과에 대해 이하에서 설명하기로 한다.Experimental results related to adsorption performance will be described below.

표 1 및 도 2는 커피박을 통과한 오염물의 외관 상태를 육안으로 측정한 결과이다. Table 1 and FIG. 2 are the results of visually measuring the appearance of contaminants passing through the coffee waste.

비교예 1
(헝겊 필터)
Comparative Example 1
(cloth filter)
비교예 2
(에탄올 처리 커피박)
Comparative Example 2
(ethanol-treated coffee waste)
비교예 3
(에탄올+UV 처리 커피박)
Comparative Example 3
(Ethanol + UV treated coffee waste)
실시예Example
부유물 유무With or without float 하얀색 부유물 다량A lot of white floaters 없음doesn't exist 없음doesn't exist 없음doesn't exist 처리 후 색color after processing 탁한 흰색dull white 갈색brown 갈색brown 맑은 황색clear yellow 투수성permeability 높음height 낮음lowness 중간middle 높음height

먼저, 상기 오염물을 단순히 헝겊필터를 이용하여 거른 결과인 비교예 1은 부유물(아크릴 파우더)이 다량 존재하고, 물의 색도 탁한 흰색인 것으로 보아 기공 크기가 큰 헝겊을 이용하여 아크릴 파우더를 제거하는 것은 효과적이지 못함을 알 수 있다.(도 2의 가장 왼쪽 샘플)First, in Comparative Example 1, which is the result of simply filtering the contaminants using a cloth filter, there is a large amount of suspended matter (acrylic powder), and the color of the water is turbid white, so it is effective to remove the acrylic powder using a cloth with large pores. It can be seen that it is not. (The leftmost sample in FIG. 2)

에탄올로 친수성 물질을 제거한 커피박을 이용한 필터링 시험(비교예 2)의 경우 가시적인 부유물이 제거됨은 알 수 있으나, 필터링 후 남은 물색과 투수성 결과로 살펴볼 때 커피박이 오염물질과 함께 손실되고, 아크릴 파우더가 여전히 오염물 내에 남아 있음을 알 수 있다(도 2의 왼쪽에서 두번째 샘플)In the case of the filtering test (Comparative Example 2) using coffee grounds in which hydrophilic substances were removed with ethanol, it can be seen that visible suspended matter is removed, but when looking at the water color and water permeability results remaining after filtering, coffee grounds are lost along with contaminants, and acrylic It can be seen that the powder still remains in the contaminants (second sample from the left in Figure 2).

여기에서 투수성이라 함은 흡착제에 오염수를 통과시켰을 때 물이 통과되는 정도를 의미한다.Here, the water permeability means the degree to which water passes when contaminated water passes through the adsorbent.

에탄올 처리 후 UV를 조사하였으나, 하이드로겔로 처리하지 않은 커피박의 경우(비교예 3)는 비교예 2보다는 개선된 것으로 보이나, 여전히 아크릴 파우더는 존재하는 것으로 보인다. (도 2의 왼쪽에서 세번째 샘플)UV was irradiated after ethanol treatment, but in the case of coffee grounds not treated with hydrogel (Comparative Example 3), it seems to be improved compared to Comparative Example 2, but acrylic powder still seems to exist. (third sample from the left in Fig. 2)

본 발명의 실험결과인 하이드로겔로 최종 처리한 커피박의 경우 부유물이 없고, 필터링 후 남은 물색이나 투수성 등의 결과로 볼 때 아크릴 파우더가 효과적으로 제거되었음을 알 수 있다.(도 2의 가장 오른쪽 샘플)In the case of the coffee grounds finally treated with the hydrogel, which is the result of the experiment of the present invention, there is no floating matter, and it can be seen that the acrylic powder is effectively removed from the results of the remaining water color or water permeability after filtering. (The rightmost sample in FIG. 2 )

추가적으로 흡착된 아크릴 파우더 및 커피박의 상태를 확인하기 위하여 FE-SEM 장치를 통해 이미지를 촬영하여 보았다. (도 3 내지 도 5)In order to check the state of additionally adsorbed acrylic powder and coffee grounds, images were taken through a FE-SEM device. (FIGS. 3 to 5)

비교예 2(도 3) 및 비교예 3(도 4)의 경우 커피박 외부에 구형의 아크릴 파우더가 부착되어 있으나, 탈착되기 쉬운 상태로 존재하는 반면, 본 발명인 실시예(도 5)의 경우 하이드로겔 내부에 아크릴 파우더가 견고하게 붙잡혀 있어 탈착이 어렵기 때문에 미세플라스틱인 아크릴 파우더 제거에 효과적임을 알 수 있다.In the case of Comparative Example 2 (Fig. 3) and Comparative Example 3 (Fig. 4), spherical acrylic powder is attached to the outside of the coffee waste, but exists in a state that is easily detached, whereas in the case of the present invention Example (Fig. 5), the hydrogel powder Since the acrylic powder is firmly held inside the gel, it is difficult to desorb, so it can be seen that it is effective in removing the acrylic powder, which is a microplastic.

특히, 커피박 표면에 위치한 하이드로겔은 팽윤하는 가운데 액상에서 수분을 흡수하면서 미세플라스틱을 함께 흡수하게 되는데 흡수된 미세플라스틱이 소수성을 띠는 커피박에 붙잡히게 된다. In particular, the hydrogel located on the surface of the coffee waste absorbs moisture in the liquid phase while swelling and absorbs microplastics together, and the absorbed microplastics are captured by the hydrophobic coffee waste.

다음으로 상기 흡착제를 이용한 흡착시스템에 대해 설명을 하고자 한다. Next, an adsorption system using the adsorbent will be described.

도 6에 따르면, 상기 시스템은 워터펌프(10), 공급파이프(20), 저류 박스(30) 및 배수파이프(40)를 포함한다. According to FIG. 6 , the system includes a water pump 10 , a supply pipe 20 , a storage box 30 and a drain pipe 40 .

구체적으로 미세플라스틱이 포함된 오염수를 끌어올리는 워터펌프(10), 상기 워터펌프(10)에 연결되어 오염수를 저류 박스(30)로 이동시키는 공급파이프(20), 상기 공급파이프(20)로부터 공급된 오염수가 저류되면서 내부의 커피박 흡착제에 의해 미세플라스틱이 흡착되는 저류 박스(30), 정수된 오염수를 배출시키는 배수 파이프(40)로 이루어져 있다. Specifically, a water pump 10 that raises the contaminated water containing microplastics, a supply pipe 20 connected to the water pump 10 and moving the contaminated water to the storage box 30, and the supply pipe 20 It consists of a storage box 30 in which microplastics are adsorbed by an internal coffee waste adsorbent while the contaminated water supplied from the reservoir is stored, and a drain pipe 40 for discharging purified contaminated water.

상기 저류 박스(30)의 도입부 및 배출부에는 공급파이프(20)와 배수파이프(40)로 커피박 흡착제가 유출되지 못하도록 기능하는 메쉬(31, 32)가 설치되어 있다.Meshes 31 and 32 that function to prevent the coffee waste adsorbent from flowing out to the supply pipe 20 and the drain pipe 40 are installed at the inlet and outlet of the storage box 30 .

따라서 발명의 일 실시예에 따르면 미세플라스틱이 포함된 오염수를 워터펌프(10)가 공급파이프(20)를 통해 저류 박스(30)로 공급하게 된다. Therefore, according to one embodiment of the invention, the water pump 10 supplies the contaminated water containing microplastics to the storage box 30 through the supply pipe 20.

그 다음 일정시간 동안 오염수가 저류 박스(30) 내에 위치하면서 하이드로겔 처리된 커피박 흡착제에 미세플라스틱이 흡착하게 된다.Then, while the contaminated water is located in the storage box 30 for a certain period of time, the microplastics are adsorbed to the hydrogel-treated coffee waste adsorbent.

최종적으로 미세플라스틱이 제거된 정수된 물은 배수파이프(40)를 통해 배출되게 된다.Finally, purified water from which microplastics are removed is discharged through the drain pipe 40 .

상기에서는 본 발명의 일 실시예를 참조하여 설명하였지만, 해당 기술 분야에서 통상의 지식을 가진 자라면 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다. Although the above has been described with reference to an embodiment of the present invention, those skilled in the art can make various modifications to the present invention within the scope not departing from the spirit and scope of the present invention described in the claims below. It will be appreciated that modifications and changes may be made.

10: 워터펌프, 20: 공급파이프
30: 저류 박스 31: 공급부 메쉬
32: 배수부 메쉬 40: 배수파이프
10: water pump, 20: supply pipe
30: storage box 31: supply mesh
32: drain mesh 40: drain pipe

Claims (7)

커피박을 유기 용매에 담지하여 커피박 내 친수성 물질이 용출되는 단계(S100);
친수성 물질이 용출된 상기 커피박을 세척하는 단계(S200);
세척된 상기 커피박에 자외선을 조사하고 건조시키는 단계(S300);
건조된 상기 커피박 분말을 하이드로겔 분말과 혼합한 다음 염화칼슘 수용액에 담지하여 커피박을 하이드로겔로 처리하는 단계(S400); 및
하이드로겔 처리된 상기 커피박을 필터링한 다음 건조시키는 단계(S500);를 포함하는 것을 특징으로 하는
커피박을 이용한 미세플라스틱 제거용 흡착제의 제조방법.
Eluting the hydrophilic substance in the coffee waste by supporting the coffee waste in an organic solvent (S100);
Washing the coffee grounds from which the hydrophilic material is eluted (S200);
Irradiating UV rays to the washed coffee grounds and drying them (S300);
Mixing the dried coffee ground powder with hydrogel powder and then soaking in an aqueous solution of calcium chloride to treat the coffee grounds as a hydrogel (S400); and
Filtering the hydrogel-treated coffee grounds and then drying (S500); characterized in that it comprises
Manufacturing method of adsorbent for removing microplastics using coffee waste.
제1항에 있어서,
상기 유기 용매는 에탄올인 것을 특징으로 하는,
커피박을 이용한 미세플라스틱 제거용 흡착제의 제조방법.
According to claim 1,
Characterized in that the organic solvent is ethanol,
Manufacturing method of adsorbent for removing microplastics using coffee waste.
제1항에 있어서,
상기 하이드로겔 분말은 고형화 시에 다공성을 띠고, 팽윤성을 지니는 분말을 사용하는 것을 특징으로 하는
커피박을 이용한 미세플라스틱 제거용 흡착제의 제조방법.
According to claim 1,
Characterized in that the hydrogel powder is porous when solidified and a powder having swelling property is used
Manufacturing method of adsorbent for removing microplastics using coffee waste.
제1항에 있어서,
상기 자외선은 파장 영역이 100nm 내지 300nm 인 것을 특징으로하는
커피박을 이용한 미세플라스틱 제거용 흡착제의 제조방법.
According to claim 1,
The ultraviolet rays are characterized in that the wavelength range is 100nm to 300nm
Manufacturing method of adsorbent for removing microplastics using coffee waste.
제1항에 있어서,
상기 하이드로겔 분말과 상기 커피박 분말을 혼합 시 혼합 비율은 중량비로 커피박 분말 대비 하이드로겔 분말의 중량이 0.16 내지 0.5인 것을 특징으로 하는
커피박을 이용한 미세플라스틱 제거용 흡착제의 제조방법.
According to claim 1,
When mixing the hydrogel powder and the coffee ground powder, the mixing ratio is 0.16 to 0.5 in weight ratio of the hydrogel powder to the coffee ground powder.
Manufacturing method of adsorbent for removing microplastics using coffee waste.
수계상의 미세플라스틱 제거용 흡착제로서,
제1항 내지 제5항 중 어느 한 항에 의한 제조방법에 의해 제조된 커피박을 이용한 미세플라스틱 제거용 흡착제.
As an adsorbent for removing microplastics in an aqueous phase,
An adsorbent for removing microplastics using coffee waste prepared by the method according to any one of claims 1 to 5.
미세플라스틱이 포함된 오염수를 끌어올리는 워터펌프; 상기 워터펌프에 연결되어 오염수를 저류 박스로 이동시키는 공급파이프; 상기 공급파이프로부터 공급된 오염수가 저류되면서 상기 오염수 내 미세플라스틱이 흡착될 수 있는 제6항의 흡착제를 포함하는 저류 박스; 및 상기 오염수 내 미세플라스틱이 제거된 정수를 배출시키는 배수파이프를 포함하는 것을 특징으로 하는
커피박을 이용한 미세플라스틱 제거용 흡착시스템.
A water pump that raises contaminated water containing microplastics; a supply pipe connected to the water pump to move contaminated water to a storage box; a storage box containing the adsorbent of claim 6 capable of adsorbing microplastics in the contaminated water while the contaminated water supplied from the supply pipe is stored; And a drain pipe for discharging purified water from which microplastics are removed from the contaminated water.
Adsorption system for removing microplastics using coffee waste.
KR1020210029176A 2021-03-05 2021-03-05 Adsorbent using Coffee waste to remove Microplastics and Manufacturing method there of KR102536462B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210029176A KR102536462B1 (en) 2021-03-05 2021-03-05 Adsorbent using Coffee waste to remove Microplastics and Manufacturing method there of

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210029176A KR102536462B1 (en) 2021-03-05 2021-03-05 Adsorbent using Coffee waste to remove Microplastics and Manufacturing method there of

Publications (2)

Publication Number Publication Date
KR20220125409A KR20220125409A (en) 2022-09-14
KR102536462B1 true KR102536462B1 (en) 2023-05-26

Family

ID=83278721

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210029176A KR102536462B1 (en) 2021-03-05 2021-03-05 Adsorbent using Coffee waste to remove Microplastics and Manufacturing method there of

Country Status (1)

Country Link
KR (1) KR102536462B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115925014A (en) * 2022-12-25 2023-04-07 湖南大学 Application of hydrogel in removing micro-plastics in water body
CN116212825B (en) * 2023-03-10 2024-05-14 山东交通学院 Modified waste coffee grounds biochar adsorption material and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102114995B1 (en) 2018-05-25 2020-05-26 서울대학교산학협력단 Heavy Metal Absorbent having Nano Zero Valent Iron and Used Coffee Grounds, and Manufacturing Method thereof
KR102351279B1 (en) * 2019-04-18 2022-01-13 영남대학교 산학협력단 A deodorant composition comprising used coffee grounds and sanitary article comprising the same
KR20200095326A (en) * 2019-09-23 2020-08-10 주식회사 이피엠 Apparatus for filtering minute plastic in sea water
KR102459542B1 (en) * 2020-11-26 2022-10-27 한남대학교 산학협력단 A method for reducing caffeine in coffee grounds by hydrogen peroxide and UV irradiation

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
Fang Yuan et al., Study on the adsorption of polystyrene microplastics by three-dimensional reduced graphene oxide, Water Sci Technol (2020) 81 (10): 2163~2175쪽, 2020.6.8. 발행
K-W Jung et al., Fabrication of granular activated carbons derived from ~ and methylene blue, Bioresource Technology, 219, 185~195쪽, 2016.7.26. 발행
Marina R.-G. et al, Extraction of polyphenols and synthesis of new activated carbon from spent coffee grounds, Scientific Reports 9, 17706, 2019.11.27.발행
Pei-Ling Yen et al., Removal of nano-sized polystyrene plastic from aqueous solutions using untreated coffee grounds, Chemosphere, 286, Part 3, 131863, 2021.8.10. 발행
Sam Hibbert et al, An innovative method of extraction of coffee oil ~ Soxhlet extraction method, SN Applied Sciences 1, 1467, 2019.10.24.발행
Teresa M. Mata et al, Bio-refinery approach for spent coffee grounds valorization, Bioresource Technology 247, 1077~1084쪽, 2017.9.20.온라인 공개
Yihao Leow et al, Recycling of spent coffee grounds for useful extracts and green composites, RSC Adv., 2021,11, 2682~2692쪽, 2021.1.13.발행

Also Published As

Publication number Publication date
KR20220125409A (en) 2022-09-14

Similar Documents

Publication Publication Date Title
Aragaw et al. Biomass-based adsorbents for removal of dyes from wastewater: a review
Ahmad et al. Recent advances in new generation dye removal technologies: novel search for approaches to reprocess wastewater
KR102536462B1 (en) Adsorbent using Coffee waste to remove Microplastics and Manufacturing method there of
Esmaeli et al. Acidic dye wastewater treatment onto a marine macroalga, Nizamuddina zanardini (Phylum: Ochrophyta)
Kavitha et al. Recycling coir pith, an agricultural solid waste, for the removal of procion orange from wastewater
Mahmoud et al. Enhanced biosorptive removal of cadmium from aqueous solutions by silicon dioxide nano-powder, heat inactivated and immobilized Aspergillus ustus
Bożęcka et al. Methods of dyes removal from aqueous environment
Raiyaan et al. Bio-adsorption of methylene blue dye using chitosan-extracted from Fenneropenaeus indicus shrimp shell waste
Ugya et al. BIOSORPTION OF Cr 3+ AND Pb 2+ FROM TANNERY WASTEWATER USING COMBINED FRUIT WASTE.
CN105771889A (en) Preparation method and application of modified activated carbon
CN109894095A (en) A kind of sodium alginate-chitosan composite gel microsphere absorption arsenic removal material and preparation method thereof containing iron and manganese oxides
Waghmare et al. Experimental investigation of H3PO4 activated papaya peels for methylene blue dye removal from aqueous solution: Evaluation on optimization, kinetics, isotherm, thermodynamics, and reusability studies
Zarei et al. Removal of acid red 88 from wastewater by adsorption on agrobased waste material. A case study of Iranian golden Sesamum indicum hull
Laowansiri Kinetic and efficiency of reactive dye sorption by plant biomass
KR101055661B1 (en) Heavy metal adsorption removal agent containing yulpi and heavy metal adsorption removal method using the same
Saleh et al. Scientific insights into modified and non-modified biomaterials for sorption of heavy metals from water
Sudiana et al. Adsorption kinetic and isotherm studies of reactive red B textile dye removal using activated coconut leaf stalk
KR101110709B1 (en) Multi-step water purification system including filtering step using dna on solid support catalyst
Keshawy et al. Low-cost Bio-Adsorbent Based on Amorphous Carbon Thin Film/Chitosan Composite for Removal of Methylene Blue Dye from Aqueous Solutions: Kinetic and Isotherm
Nodoushan et al. Adsorption of arsenite from aqueous solutions using granola modified lemon peel
Piffer et al. Sugarcane bagasse biomass applied to the adsorption of reactive blue bb dye
Omar et al. The characterization of banana blossom peel and floret as an adsorbent for the removal of manganese in groundwater
Ostovan et al. Evaluation of the sawdust modified with diethylenetriamine as an effective adsorbent for Fe (III) removal from water
RU2470872C2 (en) Sorbent catalyst for purifying natural and waste water and method for production thereof
Zaman et al. Utilization of magnetic GAC adsorbent for the removal of COD and BOD parameters in tofu wastewater

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant