KR102534099B1 - Apparatus for operating hvdc - Google Patents

Apparatus for operating hvdc Download PDF

Info

Publication number
KR102534099B1
KR102534099B1 KR1020210082294A KR20210082294A KR102534099B1 KR 102534099 B1 KR102534099 B1 KR 102534099B1 KR 1020210082294 A KR1020210082294 A KR 1020210082294A KR 20210082294 A KR20210082294 A KR 20210082294A KR 102534099 B1 KR102534099 B1 KR 102534099B1
Authority
KR
South Korea
Prior art keywords
hvdc
inverter bus
short
inverter
capacity
Prior art date
Application number
KR1020210082294A
Other languages
Korean (ko)
Other versions
KR20230000193A (en
Inventor
윤종수
양성은
김시환
김재한
김선오
Original Assignee
한국전력공사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전력공사 filed Critical 한국전력공사
Priority to KR1020210082294A priority Critical patent/KR102534099B1/en
Publication of KR20230000193A publication Critical patent/KR20230000193A/en
Priority to KR1020230062376A priority patent/KR20230070437A/en
Priority to KR1020230062377A priority patent/KR20230070438A/en
Application granted granted Critical
Publication of KR102534099B1 publication Critical patent/KR102534099B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00001Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by the display of information or by user interaction, e.g. supervisory control and data acquisition systems [SCADA] or graphical user interfaces [GUI]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/01Arrangements for reducing harmonics or ripples
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/123Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving renewable energy sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/20Information technology specific aspects, e.g. CAD, simulation, modelling, system security

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Human Computer Interaction (AREA)

Abstract

본 발명은 HVDC 운전 장치가 개시된다. 본 발명의 HVDC 운전 장치는, 수전단 계통의 전력조류 계산데이터를 기반으로 인버터 모선전압과 신재생 발전원 계통접속 모선전압의 전압변동비에 의한 상호영향지수와, 인버터 모선의 단락용량을 연산하는 계통 해석부; 상호영향지수, 인버터 모선의 단락용량, 신재생 발전량 및 인버터 모선에 접속된 AC 필터의 용량을 기반으로 인버터 모선의 유효단락비율을 적용하여 HVDC의 운전 한계량을 계산하는 운전량 계산부; 및 운전 지령값과 운전 한계량을 기반으로 HVDC를 제어하는 HVDC 제어부;를 포함하는 것을 특징으로 한다. The present invention discloses an HVDC driving device. The HVDC operating device of the present invention calculates the mutual influence index and the short-circuit capacity of the inverter bus based on the power flow calculation data of the receiving end system based on the voltage fluctuation ratio of the inverter bus voltage and the bus voltage connected to the renewable power generation grid. analysis department; An operating amount calculation unit that calculates an operating limit of HVDC by applying an effective short-circuit ratio of an inverter bus based on a mutual influence index, a short-circuit capacity of an inverter bus, a renewable generation amount, and a capacity of an AC filter connected to the inverter bus; and an HVDC control unit controlling the HVDC based on the operation command value and the operation threshold.

Description

HVDC 운전 장치{APPARATUS FOR OPERATING HVDC}HVDC driving device {APPARATUS FOR OPERATING HVDC}

본 발명은 HVDC 운전 장치에 관한 것으로서, 보다 상세하게는 신재생 발전원이 적용되는 수신지역의 독립계통에서 HVDC를 통해 전력을 공급할 경우, 신재생 에너지원의 불확실성을 고려한 HVDC 운전량을 도출하여 정류실패 없이 안정적으로 운전할 수 있도록 하는 HVDC 운전 장치에 관한 것이다. The present invention relates to an HVDC operating device, and more particularly, when power is supplied through HVDC in an independent system in a receiving area to which a renewable power source is applied, an HVDC operation quantity considering the uncertainty of a new renewable energy source is derived and rectified. It relates to an HVDC driving device that enables stable operation without failure.

HVDC(High Voltage DC transmission) 시스템은 컨버터를 이용하여 AC를 DC로 변환하여 DC로 전력을 전송하는 시스템이다. AC에 비하여 DC는 송전 손실이 적고, 컨버터를 신속히 제어할 수 있으므로 장거리 대용량 전력송전 및 계통 안정화 제어 수단으로 많이 활용된다. A high voltage DC transmission (HVDC) system is a system that converts AC to DC using a converter and transmits power to DC. Compared to AC, DC has less transmission loss and can quickly control the converter, so it is widely used as a means of long-distance large-capacity power transmission and system stabilization control.

일반적으로 계통에서 사용되고 있는 전류형 HVDC는 싸이리스터를 사용하므로 신뢰성이 높고 경제적이며 대용량 전력전송에 적합하다. 따라서 국가 간 연계, 장거리 계통 연계, 도서지역 연계 및 계통 분할 등 많은 용도에 활용된다. 특히, 섬과 같은 원거리 도서 지역에는 자체 발전력으로 인한 계통 운용보다는 HVDC를 통한 전력공급이 계통 안정성과 공급 신뢰성이 높고, 경제적이다. Current-type HVDC generally used in systems uses thyristors, so it is highly reliable, economical, and suitable for large-capacity power transmission. Therefore, it is used for many purposes such as inter-country connection, long-distance system connection, island area connection, and system division. In particular, in remote island regions such as islands, power supply through HVDC rather than system operation due to self-generated power has higher system stability and supply reliability, and is economical.

그러나 전류형 HVDC의 경우 섬과 같은 도서 지역(독립계통)에 전력을 공급하기 위해서는 몇 가지 고려사항이 있다. 우선 컨버터가 싸이리스터를 사용하므로 전력소자의 Turn-Off를 위하여 반드시 전력수전단 계통(도서 지역)에 발전력이 있어야 한다. 그리고 송전단 및 수전단 계통 모두 일정 규모의 강인도가 확보되어야 한다. However, in the case of current type HVDC, there are some considerations to supply power to island areas (isolated systems) such as islands. First of all, since the converter uses a thyristor, there must be generating power in the power receiving end system (island area) for turn-off of the power device. In addition, both the transmission end and the reception end systems must have a certain level of robustness.

전류형 HVDC에서는 컨버터가 무효전력을 흡수하므로 컨버터가 연계된 계통의 강인도가 약할 경우, 무효전력 부족으로 전력전송 제약이나 계통 불안정이 발생하게 된다. 따라서 전류형 HVDC는 대용량의 커패시터로 구성된 AC 필터를 변환소에 설치하고 이를 개폐하여 컨버터의 무효전력을 보상함으로써 이를 해결하고 있다. In the current type HVDC, since the converter absorbs reactive power, when the robustness of the system connected to the converter is weak, power transmission restrictions or system instability occur due to the lack of reactive power. Therefore, the current type HVDC solves this problem by installing an AC filter composed of a large-capacity capacitor in the conversion station and opening and closing it to compensate for the reactive power of the converter.

또한, AC 전압 및 전력안정도를 유지하기 위해서 실제 컨버터 전력 대비 AC 계통의 단락용량의 비인 단락비(SCR, Short Circuit Ratio)를 최소값 이상으로 유지해야 한다. 그러나, 발전기, 송전선로 탈락 등과 같은 계통의 상정사고의 경우에 단락비가 감소하게 되고, 단락비가 임계 단락비(Critical SCR)보다 낮아지게 되면 전력 불안정이 발생하게 되는 문제가 발생할 수 있기 때문에 HVDC 송전제한을 낮게 운전하고 있다. In addition, in order to maintain AC voltage and power stability, a short circuit ratio (SCR), which is a ratio of short circuit capacity of an AC system to actual converter power, must be maintained above a minimum value. However, in the case of an assumed fault in the system, such as a generator or transmission line dropout, the short-circuit ratio decreases, and when the short-circuit ratio becomes lower than the critical short-circuit ratio (Critical SCR), power instability may occur, so HVDC transmission restrictions may occur. is driving low.

그리고, 계통의 강인도가 약할 경우, 계통의 고장 시 저전압 문제가 크게 발생할 수 있다. 이와 같은 경우 HVDC 수전단 컨버터, 즉 인버터에서 정류실패(Commutation Failure)가 발생할 수 있으며, 인버터 각 상 싸이리스터 간 단락(Short)이 발생하면 이로 인하여 인버터 DC측 전류가 0이 됨에 따라 DC 과전류 및 DC 전력전송 중단이 발생하게 된다. 이러한 정류실패는 3상 저전압 및 단상 저전압시 자주 발생하게 된다. In addition, when the robustness of the system is weak, a low voltage problem may occur significantly when the system fails. In this case, a commutation failure may occur in the HVDC receiving end converter, that is, the inverter, and when a short circuit occurs between the thyristors of each phase of the inverter, the current on the DC side of the inverter becomes 0, resulting in DC overcurrent and DC Power transmission interruption occurs. Such rectification failure frequently occurs in the case of three-phase undervoltage and single-phase undervoltage.

본 발명의 배경기술은 대한민국 공개특허공보 제10-2021-0033671호(2021.03.29. 공개, 풍력발전과 연계된 HVDC 시스템의 송전제한값 제어를 통한 전력계통 안정화 장치)에 개시되어 있다. The background art of the present invention is disclosed in Republic of Korea Patent Publication No. 10-2021-0033671 (2021.03.29. Publication, power system stabilization device through transmission limit value control of HVDC system linked to wind power generation).

한편, 최근에는 HVDC가 연계된 섬과 같은 도서지역(독립계통)에 풍력발전, 태양광 등 신재생 에너지원의 운전이 증가하고 있으나, 이와 같은 경우 신재생 발전량의 변동성과 불확실성으로 인하여 기존 계통의 강인도가 영향 받게 되면서 계통의 저 전압이 발생할 수 있고, 이로 인해 HVDC 인버터의 정류실패 가능성을 높이게 되면서 HVDC 정류실패로 인한 수전지역의 계통에 전력공급이 일시 정지되기 때문에 계통 안정도에 큰 문제가 발생하는 문제점이 있다. On the other hand, in recent years, the operation of new and renewable energy sources such as wind power and solar power is increasing in island areas (independent systems) such as islands connected to HVDC, but in this case, due to the variability and uncertainty of new and renewable power generation, the existing system As robustness is affected, low voltage of the system may occur, which increases the possibility of HVDC inverter rectification failure, causing a major problem in system stability because power supply to the grid in the receiving area is temporarily suspended due to HVDC rectification failure There is a problem with

본 발명은 상기와 같은 문제점들을 개선하기 위하여 안출된 것으로, 일 측면에 따른 본 발명의 목적은 신재생 발전원이 적용되는 수신지역의 독립계통에서 HVDC를 통해 전력을 공급할 경우, 신재생 에너지원의 불확실성을 고려한 HVDC 운전량을 도출하여 정류실패 없이 안정적으로 운전할 수 있도록 하는 HVDC 운전 장치를 제공하는 것이다. The present invention has been made to improve the above problems, and an object of the present invention according to one aspect is to supply power through HVDC in an independent system of a receiving area to which a renewable power source is applied, It is to provide an HVDC driving device that enables stable operation without rectification failure by deriving an HVDC operation quantity considering uncertainty.

본 발명의 일 측면에 따른 HVDC 운전 장치는, 수전단 계통의 전력조류 계산데이터를 기반으로 인버터 모선전압과 신재생 발전원 계통접속 모선전압의 전압변동비에 의한 상호영향지수와, 인버터 모선의 단락용량을 연산하는 계통 해석부; 상호영향지수, 인버터 모선의 단락용량, 신재생 발전량 및 인버터 모선에 접속된 AC 필터의 용량을 기반으로 인버터 모선의 유효단락비율을 적용하여 HVDC의 운전 한계량을 계산하는 운전량 계산부; 및 운전 지령값과 운전 한계량을 기반으로 HVDC를 제어하는 HVDC 제어부;를 포함하는 것을 특징으로 한다. HVDC operating device according to an aspect of the present invention, based on the power flow calculation data of the receiving end system, the mutual influence index by the voltage variation ratio of the inverter bus voltage and the grid connection bus voltage of the renewable power generation source, and the short-circuit capacity of the inverter bus A systematic analysis unit that calculates; An operating amount calculation unit that calculates an operating limit of HVDC by applying an effective short-circuit ratio of an inverter bus based on a mutual influence index, a short-circuit capacity of an inverter bus, a renewable generation amount, and a capacity of an AC filter connected to the inverter bus; and an HVDC control unit controlling the HVDC based on the operation command value and the operation threshold.

본 발명에서 수전단 계통의 전력조류 계산데이터는, SCADA/EMS 전력관리 시스템으로부터 제공받는 것을 특징으로 한다. In the present invention, the power flow calculation data of the receiving end system is characterized in that it is provided from the SCADA / EMS power management system.

본 발명에서 계통 해석부는, 계통해석 프로그램을 통해 상호영향지수와 인버터 모선의 단락용량을 연산하는 것을 특징으로 한다. In the present invention, the system analysis unit is characterized in that it calculates the mutual influence index and the short-circuit capacity of the inverter bus through a system analysis program.

본 발명에서 인버터 모선의 유효단락비율은, 아래식 1과 같이 산출되는 것을 특징으로 한다. In the present invention, the effective short-circuit ratio of the inverter bus is characterized in that it is calculated as in Equation 1 below.

[아래식 1][Equation 1 below]

Figure 112021072990802-pat00001
Figure 112021072990802-pat00001

여기서, ESCRi는 인버터 모선의 유효단락비율, SCLi은 인버터 모선의 단락용량, Pdci는 HVDC 운전량, WPIFji는 인버터 모선전압과 신재생 발전원 계통접속 모선전압의 전압변동비에 의한 상호영향지수, PWFj는 신재생 발전량, Qi는 인버터 모선에 접속된 AC 필터의 용량이다. Here, ESCR i is the effective short-circuit ratio of the inverter bus, SCL i is the short-circuit capacity of the inverter bus, Pdc i is the HVDC operation amount, and WPIF ji is the mutual effect of the voltage fluctuation ratio between the inverter bus voltage and the grid connection bus voltage of the renewable power generation source The exponent, P WFj is the amount of renewable generation, and Q i is the capacity of the AC filter connected to the inverter bus.

본 발명에서 운전량 계산부는, 아래식 2와 같이 HVDC의 운전 한계량을 계산하는 것을 특징으로 한다. In the present invention, the operating amount calculation unit is characterized in calculating the operating limit amount of the HVDC as shown in Equation 2 below.

[아래식 2][Formula 2 below]

Figure 112021072990802-pat00002
Figure 112021072990802-pat00002

여기서, Pdcimax는 운전 한계량, SCLi은 인버터 모선의 단락용량, WPIFji는 인버터 모선전압과 신재생 발전원 계통접속 모선전압의 전압변동비에 의한 상호영향지수, PWFj는 신재생 발전량, Qi는 인버터 모선에 접속된 AC 필터의 용량이다. Here, Pdc i max is the operating limit, SCL i is the short-circuit capacity of the inverter bus, WPIF ji is the mutual influence index due to the voltage fluctuation ratio between the inverter bus voltage and the grid connection bus voltage of the renewable generator, P WFj is the amount of renewable generation, Q i is the capacity of the AC filter connected to the inverter bus.

본 발명에서 HVDC 제어부는, 운전 지령값이 운전 한계량 이하인 경우 운전 지령값으로 제어하고, 운전 한계량을 초과하지 못하도록 제한하는 것을 특징으로 한다. In the present invention, the HVDC control unit is characterized in that, when the operation command value is less than or equal to the operation limit value, the operation command value is controlled and the operation limit value is not exceeded.

본 발명의 일 측면에 따른 HVDC 운전 장치는 신재생 발전원이 적용되는 수신지역의 독립계통에서 HVDC를 통해 전력을 공급할 경우, 신재생 에너지원의 불확실성을 고려한 HVDC 운전량을 도출하여 정류실패 없이 안정적으로 운전할 수 있어, 신재생 발전력이 많이 운용되고 있는 전력계통을 안정적으로 운영할 수 있다. An HVDC operating device according to an aspect of the present invention is stable without rectification failure by deriving an HVDC operation quantity considering the uncertainty of a renewable energy source when power is supplied through HVDC in an independent system of a receiving area to which a renewable power source is applied. can be operated, stably operating the power system where a lot of new and renewable power generation is operated.

도 1은 본 발명의 일 실시예에 따른 HVDC 운전 장치를 나타낸 블록 구성도이다.
도 2는 본 발명의 일 실시예에 따른 HVDC 운전 장치의 계통 구성도이다.
1 is a block diagram showing an HVDC driving device according to an embodiment of the present invention.
2 is a system configuration diagram of an HVDC driving device according to an embodiment of the present invention.

이하, 첨부된 도면들을 참조하여 본 발명에 따른 HVDC 운전 장치를 설명한다. 이 과정에서 도면에 도시된 선들의 두께나 구성요소의 크기 등은 설명의 명료성과 편의상 과장되게 도시되어 있을 수 있다. 또한, 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례에 따라 달라질 수 있다. 그러므로 이러한 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.Hereinafter, an HVDC driving device according to the present invention will be described with reference to the accompanying drawings. In this process, the thickness of lines or the size of components shown in the drawings may be exaggerated for clarity and convenience of description. In addition, terms to be described later are terms defined in consideration of functions in the present invention, which may vary according to the intention or custom of a user or operator. Therefore, definitions of these terms will have to be made based on the content throughout this specification.

도 1은 본 발명의 일 실시예에 따른 HVDC 운전 장치를 나타낸 블록 구성도이고, 도 2는 본 발명의 일 실시예에 따른 HVDC 운전 장치의 계통 구성도이다. 1 is a block configuration diagram showing an HVDC driving device according to an embodiment of the present invention, and FIG. 2 is a system configuration diagram of the HVDC driving device according to an embodiment of the present invention.

도 1과 도 2에 도시된 바와 같이 본 발명의 일 실시예에 따른 HVDC 운전 장치는, 계통 해석부(10), 운전량 계산부(20) 및 HVDC 제어부(30)를 포함할 수 있다. As shown in FIGS. 1 and 2 , the HVDC driving device according to an embodiment of the present invention may include a system analysis unit 10 , an operation amount calculation unit 20 and an HVDC control unit 30 .

도 2에 도시된 바와 같이 본 실시예에 따른 HVDC 시스템은 도 2에 도시된 바와 같이 공급계통에서 AC/DC 변환설비인 정류기(60), 수전단 계통에서 DC/AC 변환설비인 인버터(40) 및, 정류기(60)와 인버터(40)에서 필요한 무효전력의 공급 및 고조파 제거를 위한 AC 필터(50)를 포함할 수 있다. 또한, 본 실시예에서는 수전단 계통에 신재생 발전원(70)이 접속될 수 있다. As shown in FIG. 2, the HVDC system according to the present embodiment includes a rectifier 60, which is an AC/DC conversion facility in the supply system, and an inverter 40, which is a DC/AC conversion facility in the receiving end system, as shown in FIG. And, it may include an AC filter 50 for supplying reactive power required by the rectifier 60 and the inverter 40 and removing harmonics. In addition, in this embodiment, the renewable power generation source 70 may be connected to the receiving end system.

따라서 전류형 HVDC 시스템은 정류기(60)와 인버터(40)의 점호각을 조정하여 유효전력, DC 전류, 주파수 등을 제어할 수 있다. Therefore, the current type HVDC system can control active power, DC current, frequency, etc. by adjusting firing angles of the rectifier 60 and the inverter 40 .

본 실시예에서는 풍력발전, 태양광 등 신재생 발전원(70)이 운용중인 전력계통(특히, 섬과 같은 독립계통)에 HVDC로 전력을 공급하는 경우, HVDC가 정류 실패없이 안정적으로 운전하기 위한 것으로, 정류실패가 발생하지 않도록 하기 위해서는 신재생 발전원(70)의 가변성을 고려하여 인버터 모선의 유효단락비율(ESCR ; Effective Short Circuit Ratio)을 설정값인 2.5 이상을 유지하도록 운전할 수 있다. In this embodiment, when HVDC power is supplied to a power system (in particular, an independent system such as an island) in which a renewable power generation source 70 such as wind power generation or solar power is in operation, HVDC is required to operate stably without rectification failure. As such, in order to prevent rectification failure from occurring, considering the variability of the renewable power source 70, the effective short circuit ratio (ESCR) of the inverter bus can be operated to maintain the set value of 2.5 or more.

이를 위해 계통 해석부는 HVDC의 수전단 계통의 전력조류 계산데이터를 기반으로 인버터 모선전압(Vi)과 신재생 발전원 계통접속 모선전압(Vj)의 전압변동비에 의한 상호영향지수(WPIFji)와, 인버터 모선의 단락용량(SCLi)을 연산할 수 있다. To this end, the system analyzer calculates the mutual influence index (WPIF ji ) by the voltage fluctuation ratio of the inverter bus voltage (V i ) and the renewable power source grid connection bus voltage (V j ) based on the power flow calculation data of the HVDC receiving end system. And, the short-circuit capacity (SCL i ) of the inverter bus can be calculated.

이때 전력조류 계산데이터는 SCADA/EMS 전력관리 시스템(80)으로부터 제공받을 수 있다. At this time, the power flow calculation data may be provided from the SCADA/EMS power management system 80.

따라서, 계통 해석부(10)는 먼저, 계통해석 프로그램을 통해 수학식 1과 같이 상호영향지수(WPIFji)와 인버터 모선(i)의 단락용량(SCLi)을 연산한다. Therefore, the system analysis unit 10 first calculates the mutual influence index (WPIF ji ) and the short-circuit capacity (SCL i ) of the inverter bus line (i) as in Equation 1 through a system analysis program.

Figure 112021072990802-pat00003
Figure 112021072990802-pat00003

여기서, IFi는 인버터 모선 i의 3상 고장시 고장전류, Vi는 인버터 모선의 선간전압, WPIFji는 인버터 모선전압(Vi)과 신재생 발전원 계통접속 모선전압(Vj)의 전압변동비에 의한 상호영향지수이다. Here, IF i is the fault current in the event of a three-phase fault of inverter bus i, V i is the line voltage of the inverter bus, and WPIF ji is the voltage between the inverter bus voltage (V i ) and the grid connection bus voltage (V j ) of the renewable power generation source. It is the mutual influence index by variable cost.

운전량 계산부(20)는 상호영향지수, 인버터 모선의 단락용량, 신재생 발전량 및 인버터 모선에 접속된 AC 필터(50)의 용량을 기반으로 인버터 모선의 유효단락비율을 적용하여 HVDC의 운전 한계량을 계산할 수 있다. The operating amount calculation unit 20 applies the effective short-circuit ratio of the inverter bus based on the mutual influence index, the short-circuit capacity of the inverter bus, the amount of renewable generation, and the capacity of the AC filter 50 connected to the inverter bus, so that the HVDC operation limit can be calculated.

인버터 모선의 유효단락비율은, 수학식 2와 같이 산출할 수 있다. The effective short-circuit ratio of the inverter bus can be calculated as shown in Equation 2.

Figure 112021072990802-pat00004
Figure 112021072990802-pat00004

여기서, ESCRi는 인버터 모선의 유효단락비율, SCLi은 인버터 모선의 단락용량, Pdci는 HVDC 운전량, WPIFji는 인버터 모선전압과 신재생 발전원 계통접속 모선전압의 전압변동비에 의한 상호영향지수, PWFj는 신재생 발전량, Qi는 인버터 모선에 접속된 AC 필터의 용량이다. Here, ESCR i is the effective short-circuit ratio of the inverter bus, SCL i is the short-circuit capacity of the inverter bus, Pdci is the HVDC operation amount, and WPIF ji is the mutual influence index by the voltage fluctuation ratio between the inverter bus voltage and the grid connection bus voltage of the renewable power generation source , P WFj is the amount of renewable generation, and Q i is the capacity of the AC filter connected to the inverter bus.

운전량 계산부(20)는 이와 같이 온라인으로 측정되는 신재생 발전량과 인버터 모선의 AC 필터(50)의 용량을 이용하여 수학식 3과 같이 운전 한계량을 계산할 수 있다. The operating amount calculation unit 20 may calculate the operating limit amount as shown in Equation 3 using the new and renewable generation amount measured online and the capacity of the AC filter 50 of the inverter bus.

Figure 112021072990802-pat00005
Figure 112021072990802-pat00005

여기서, Pdcimax는 운전 한계량, SCLi은 인버터 모선의 단락용량, WPIFji는 인버터 모선전압과 신재생 발전원 계통접속 모선전압의 전압변동비에 의한 상호영향지수, PWFj는 신재생 발전량, Qi는 인버터 모선에 접속된 AC 필터의 용량이다. Here, Pdc i max is the operating limit, SCL i is the short-circuit capacity of the inverter bus, WPIF ji is the mutual influence index due to the voltage fluctuation ratio between the inverter bus voltage and the grid connection bus voltage of the renewable generator, P WFj is the amount of renewable generation, Q i is the capacity of the AC filter connected to the inverter bus.

HVDC 제어부(30)는 운전 한계량(Pdcimax)과 운전 지령값(Pdc)을 기반으로 HVDC의 인버터(40)를 제어할 수 있다. The HVDC controller 30 may control the HVDC inverter 40 based on the operating limit value Pdc i max and the operating command value Pdc.

이때 HVDC 제어부(30)는, 운전 지령값이 운전 한계량 이하인 경우 운전 지령값으로 제어하고, 운전 한계량을 초과하지 못하도록 제한할 수 있다. At this time, the HVDC control unit 30 may control the driving command value when the driving command value is equal to or less than the driving limit value, and limit the operation limit value not to be exceeded.

상술한 바와 같이, 본 발명의 실시예에 의한 HVDC 운전 장치에 따르면, 신재생 발전원이 적용되는 수신지역의 독립계통에서 HVDC를 통해 전력을 공급할 경우, 신재생 에너지원의 불확실성을 고려한 HVDC 운전량을 도출하여 정류실패 없이 안정적으로 운전할 수 있어, 신재생 발전력이 많이 운용되고 있는 전력계통을 안정적으로 운영할 수 있다. As described above, according to the HVDC operating device according to an embodiment of the present invention, when power is supplied through HVDC in an independent system of a receiving area to which a renewable power source is applied, the HVDC operation amount considering the uncertainty of the renewable energy source It is possible to operate stably without rectification failure by deriving , so that the power system in which a lot of renewable power generation is operated can be stably operated.

본 명세서에서 설명된 구현은, 예컨대, 방법 또는 프로세스, 장치, 소프트웨어 프로그램, 데이터 스트림 또는 신호로 구현될 수 있다. 단일 형태의 구현의 맥락에서만 논의(예컨대, 방법으로서만 논의)되었더라도, 논의된 특징의 구현은 또한 다른 형태(예컨대, 장치 또는 프로그램)로도 구현될 수 있다. 장치는 적절한 하드웨어, 소프트웨어 및 펌웨어 등으로 구현될 수 있다. 방법은, 예컨대, 컴퓨터, 마이크로프로세서, 집적 회로 또는 프로그래밍 가능한 로직 디바이스 등을 포함하는 프로세싱 디바이스를 일반적으로 지칭하는 프로세서 등과 같은 장치에서 구현될 수 있다. 프로세서는 또한 최종-사용자 사이에 정보의 통신을 용이하게 하는 컴퓨터, 셀 폰, 휴대용/개인용 정보 단말기(personal digital assistant: "PDA") 및 다른 디바이스 등과 같은 통신 디바이스를 포함한다.Implementations described herein may be embodied in, for example, a method or process, an apparatus, a software program, a data stream, or a signal. Even if discussed only in the context of a single form of implementation (eg, discussed only as a method), the implementation of features discussed may also be implemented in other forms (eg, an apparatus or program). The device may be implemented in suitable hardware, software and firmware. The method may be implemented in an apparatus such as a processor, which is generally referred to as a processing device including, for example, a computer, microprocessor, integrated circuit, programmable logic device, or the like. Processors also include communication devices such as computers, cell phones, personal digital assistants ("PDAs") and other devices that facilitate communication of information between end-users.

본 발명은 도면에 도시된 실시예를 참고로 하여 설명되었으나, 이는 예시적인 것에 불과하며, 당해 기술이 속하는 분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. The present invention has been described with reference to the embodiments shown in the drawings, but this is only exemplary, and those skilled in the art can make various modifications and equivalent other embodiments. will understand

따라서 본 발명의 진정한 기술적 보호범위는 아래의 청구범위에 의해서 정하여져야 할 것이다.Therefore, the true technical protection scope of the present invention should be determined by the claims below.

10 : 계통 해석부 20 : 운전량 계산부
30 : HVDC 제어부 40 : 인버터
50 : AC 필터 60 : 정류기
70 : 신재생 발전원 80 : SCADA/EMS
10: system analysis unit 20: operation amount calculation unit
30: HVDC control unit 40: inverter
50: AC filter 60: rectifier
70: renewable power source 80: SCADA/EMS

Claims (6)

수전단 계통의 전력조류 계산데이터를 기반으로 인버터 모선전압과 신재생 발전원 계통접속 모선전압의 전압변동비에 의한 상호영향지수와, 인버터 모선의 단락용량을 연산하는 계통 해석부;
상기 상호영향지수, 상기 인버터 모선의 단락용량, 신재생 발전량 및 인버터 모선에 접속된 AC 필터의 용량을 기반으로 인버터 모선의 유효단락비율을 적용하여 HVDC의 운전 한계량을 계산하는 운전량 계산부; 및
운전 지령값과 상기 운전 한계량을 기반으로 상기 HVDC를 제어하는 HVDC 제어부;를 포함하는 것을 특징으로 하는 HVDC 운전 장치.
A system analysis unit that calculates a mutual influence index and a short-circuit capacity of the inverter bus based on the power flow calculation data of the receiving end system based on the voltage variation ratio of the inverter bus voltage and the grid connection bus voltage of the renewable generation source;
an operating amount calculation unit for calculating an operating limit of HVDC by applying an effective short-circuit ratio of an inverter bus based on the mutual influence index, short-circuit capacity of the inverter bus, renewable generation amount, and capacity of an AC filter connected to the inverter bus; and
and an HVDC control unit controlling the HVDC based on the operation command value and the operation limit amount.
제 1항에 있어서, 상기 수전단 계통의 전력조류 계산데이터는, SCADA/EMS 전력관리 시스템으로부터 제공받는 것을 특징으로 하는 HVDC 운전 장치.
The HVDC operating device according to claim 1, wherein the power flow calculation data of the receiving end system is provided from a SCADA/EMS power management system.
제 1항에 있어서, 상기 계통 해석부는, 계통해석 프로그램을 통해 상기 상호영향지수와 상기 인버터 모선의 단락용량을 연산하는 것을 특징으로 하는 HVDC 운전 장치.
The HVDC operating device according to claim 1, wherein the system analysis unit calculates the mutual influence index and the short-circuit capacity of the inverter bus through a system analysis program.
제 1항에 있어서, 상기 인버터 모선의 유효단락비율은, 아래식 1과 같이 산출되는 것을 특징으로 하는 HVDC 운전 장치.
[아래식 1]
Figure 112021072990802-pat00006

여기서, ESCRi는 인버터 모선의 유효단락비율, SCLi은 인버터 모선의 단락용량, Pdci는 HVDC 운전량, WPIFji는 인버터 모선전압과 신재생 발전원 계통접속 모선전압의 전압변동비에 의한 상호영향지수, PWFj는 신재생 발전량, Qi는 인버터 모선에 접속된 AC 필터의 용량이다.
The HVDC driving device according to claim 1, wherein the effective short-circuit ratio of the inverter bus is calculated as shown in Equation 1 below.
[Equation 1 below]
Figure 112021072990802-pat00006

Here, ESCR i is the effective short-circuit ratio of the inverter bus, SCL i is the short-circuit capacity of the inverter bus, Pdc i is the HVDC operation amount, and WPIF ji is the mutual effect of the voltage fluctuation ratio between the inverter bus voltage and the grid connection bus voltage of the renewable power generation source The exponent, P WFj is the amount of renewable generation, and Q i is the capacity of the AC filter connected to the inverter bus.
제 1항에 있어서, 상기 운전량 계산부는, 아래식 2와 같이 HVDC의 상기 운전 한계량을 계산하는 것을 특징으로 하는 HVDC 운전 장치.
[아래식 2]
Figure 112021072990802-pat00007

여기서, Pdcimax는 운전 한계량, SCLi은 인버터 모선의 단락용량, WPIFji는 인버터 모선전압과 신재생 발전원 계통접속 모선전압의 전압변동비에 의한 상호영향지수, PWFj는 신재생 발전량, Qi는 인버터 모선에 접속된 AC 필터의 용량이다.
The HVDC driving device according to claim 1, wherein the operating amount calculation unit calculates the operating limit amount of HVDC as shown in Equation 2 below.
[Formula 2 below]
Figure 112021072990802-pat00007

Here, Pdc i max is the operating limit, SCL i is the short-circuit capacity of the inverter bus, WPIF ji is the mutual influence index due to the voltage fluctuation ratio between the inverter bus voltage and the grid connection bus voltage of the renewable generator, P WFj is the amount of renewable generation, Q i is the capacity of the AC filter connected to the inverter bus.
제 1항에 있어서, 상기 HVDC 제어부는, 운전 지령값이 상기 운전 한계량 이하인 경우 상기 운전 지령값으로 제어하고, 상기 운전 한계량을 초과하지 못하도록 제한하는 것을 특징으로 하는 HVDC 운전 장치.

The HVDC driving device according to claim 1 , wherein the HVDC controller controls the operation command value when the operation command value is less than or equal to the operation limit value and limits the operation limit value so that the operation limit value is not exceeded.

KR1020210082294A 2021-06-24 2021-06-24 Apparatus for operating hvdc KR102534099B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020210082294A KR102534099B1 (en) 2021-06-24 2021-06-24 Apparatus for operating hvdc
KR1020230062376A KR20230070437A (en) 2021-06-24 2023-05-15 Apparatus for operating hvdc
KR1020230062377A KR20230070438A (en) 2021-06-24 2023-05-15 Apparatus for operating hvdc

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210082294A KR102534099B1 (en) 2021-06-24 2021-06-24 Apparatus for operating hvdc

Related Child Applications (2)

Application Number Title Priority Date Filing Date
KR1020230062377A Division KR20230070438A (en) 2021-06-24 2023-05-15 Apparatus for operating hvdc
KR1020230062376A Division KR20230070437A (en) 2021-06-24 2023-05-15 Apparatus for operating hvdc

Publications (2)

Publication Number Publication Date
KR20230000193A KR20230000193A (en) 2023-01-02
KR102534099B1 true KR102534099B1 (en) 2023-05-26

Family

ID=84925710

Family Applications (3)

Application Number Title Priority Date Filing Date
KR1020210082294A KR102534099B1 (en) 2021-06-24 2021-06-24 Apparatus for operating hvdc
KR1020230062377A KR20230070438A (en) 2021-06-24 2023-05-15 Apparatus for operating hvdc
KR1020230062376A KR20230070437A (en) 2021-06-24 2023-05-15 Apparatus for operating hvdc

Family Applications After (2)

Application Number Title Priority Date Filing Date
KR1020230062377A KR20230070438A (en) 2021-06-24 2023-05-15 Apparatus for operating hvdc
KR1020230062376A KR20230070437A (en) 2021-06-24 2023-05-15 Apparatus for operating hvdc

Country Status (1)

Country Link
KR (3) KR102534099B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120250371A1 (en) 2009-06-18 2012-10-04 Abb Technology Ag Controlling an inverter device of a high voltage dc system for supporting an ac system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101480534B1 (en) * 2012-07-11 2015-01-08 한국전력공사 HVDC Control System for Non-Steady State Power System
KR20150026222A (en) * 2013-09-02 2015-03-11 한국전력공사 Apparatus for controlling frequence of hvdc system and method thereof
KR102645329B1 (en) * 2019-09-19 2024-03-11 한국전력공사 Power system stabilization device through transmission limit control of HVDC system linked to wind power generation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120250371A1 (en) 2009-06-18 2012-10-04 Abb Technology Ag Controlling an inverter device of a high voltage dc system for supporting an ac system

Also Published As

Publication number Publication date
KR20230070438A (en) 2023-05-23
KR20230000193A (en) 2023-01-02
KR20230070437A (en) 2023-05-23

Similar Documents

Publication Publication Date Title
CN110417042B (en) Safety control method and system for inhibiting continuous commutation failure of direct current system
CN102570868B (en) System and method for power conversion
EP2930840B1 (en) Power conversion device
CN103368182B (en) Modularized multi-machine parallel-connection large-power APF (active power filter) control system and realization method
TWI522767B (en) Photovoltaic power generation system
CN103986403A (en) Variable-frequency speed control system and method
KR20120030556A (en) Controlling an inverter device of a high voltage dc system for supporting an ac system
CN103475023A (en) On/off-grid control method for microgrid with a plurality of distributed power supplies
CN107181276B (en) The method and device that Hybrid HVDC system commutation failure restores
CN103618331A (en) Direct-current overvoltage current limiting control method of flexible HVDC convertor station
US9853582B2 (en) Converter interconnected with a wind power generation farm to enable continuous power transmission and operating method thereof
CN108462199A (en) A kind of isolated island current conversion station and its AC fault traversing method
CN102420435A (en) Adaptive island detection method for grid-connected photovoltaic power generation system
KR101951117B1 (en) Control System For Wind Power Generating
CN103311946A (en) Constant arc-extinguishing area control method of direct-current power transmission control system
JP2014192992A (en) Reactive power ratio controller, reactive power ratio control method, and power generation system using the same
KR102534099B1 (en) Apparatus for operating hvdc
CN110854871B (en) High-proportion new energy power grid transient voltage stability optimization control method
CN106998075A (en) Suppress the method and system of the 12 pulsation follow-up commutation failures of inverter of IGCT
CN116581763A (en) Method for selectively switching working modes of photovoltaic inverter system in power distribution network
CN115411771A (en) Photovoltaic power generation system and control method thereof
WO2021043100A1 (en) Distributed direct current energy consumption device, control method therefor, and control module thereof
Mok et al. Distributed grid voltage and utility frequency stabilization via shunt-type electric springs
KR102645329B1 (en) Power system stabilization device through transmission limit control of HVDC system linked to wind power generation
CN109659965B (en) Active power control method and system for flexible direct current transmission system

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
A107 Divisional application of patent
GRNT Written decision to grant