KR102529941B1 - Liquid Electrolytes For Na Secondary Batteries And Na Secondary Batteries Comprising The Same - Google Patents

Liquid Electrolytes For Na Secondary Batteries And Na Secondary Batteries Comprising The Same Download PDF

Info

Publication number
KR102529941B1
KR102529941B1 KR1020150168005A KR20150168005A KR102529941B1 KR 102529941 B1 KR102529941 B1 KR 102529941B1 KR 1020150168005 A KR1020150168005 A KR 1020150168005A KR 20150168005 A KR20150168005 A KR 20150168005A KR 102529941 B1 KR102529941 B1 KR 102529941B1
Authority
KR
South Korea
Prior art keywords
electrolyte
secondary battery
sodium
sodium secondary
fec
Prior art date
Application number
KR1020150168005A
Other languages
Korean (ko)
Other versions
KR20170062657A (en
Inventor
이상민
최남순
최해영
김현수
박금재
진봉수
최정희
Original Assignee
한국전기연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전기연구원 filed Critical 한국전기연구원
Priority to KR1020150168005A priority Critical patent/KR102529941B1/en
Publication of KR20170062657A publication Critical patent/KR20170062657A/en
Application granted granted Critical
Publication of KR102529941B1 publication Critical patent/KR102529941B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

양호한 전기화학적 특성을 갖는 나트륨 2차 전지가 개시된다. 본 발명은 양극, 음극, 전해액 및 상기 양극과 음극 사이를 분리하는 분리막을 구비하는 나트륨 2차전지에 있어서, 상기 전해액은 나트륨염; 환형 카보네이트계 용매; 저점도 및 저융점의 에스테르계 용매를 포함하는 용매; 및 상기 음극에 보호막을 형성하기 위한 첨가제를 포함하는 것을 특징으로 하는 나트륨 2차 전지를 제공한다. 본 발명에 따르면, 낮은 점도를 갖고 높은 이온 전도도를 나타내는 전해액으로 저온에서의 셀 성능이 향상된 나트륨 2차전지를 제공할 수 있게 된다.A sodium secondary battery having good electrochemical properties is disclosed. The present invention is a sodium secondary battery having a positive electrode, a negative electrode, an electrolyte solution, and a separator separating the positive electrode and the negative electrode, wherein the electrolyte solution includes a sodium salt; cyclic carbonate-based solvents; solvents including low-viscosity and low-melting ester-based solvents; and an additive for forming a protective film on the negative electrode. According to the present invention, it is possible to provide a sodium secondary battery with improved cell performance at low temperatures using an electrolyte having low viscosity and high ionic conductivity.

Description

나트륨 2차 전지용 전해액 및 이를 포함하는 나트륨 2차 전지 {Liquid Electrolytes For Na Secondary Batteries And Na Secondary Batteries Comprising The Same}Electrolyte for sodium secondary batteries and sodium secondary batteries containing the same {Liquid Electrolytes For Na Secondary Batteries And Na Secondary Batteries Comprising The Same}

본 발명은 나트륨 2차 전지에 관한 것으로, 보다 상세하게는 양호한 전기화학적 특성을 갖는 나트륨 2차 전지의 전해액에 관한 것이다. The present invention relates to a sodium secondary battery, and more particularly, to an electrolyte solution for a sodium secondary battery having good electrochemical properties.

1990년대 이후 리튬 이차전지가 상용화되어, 소형 IT 기기, 전동공구 등에서 핵심 전원으로서 기능하고, 전기자동차 (EV, HEV, PHEV) 등의 전원으로 범위를 넓히고 있다. Since the 1990s, lithium secondary batteries have been commercialized, functioning as a key power source in small IT devices and power tools, and are expanding their range to power sources such as electric vehicles (EV, HEV, PHEV).

리튬 2차 전지의 주재료인 리튬 자원은 아르헨티나, 볼리비아, 칠레 등 남미대륙에 국한되어 있는데, 리튬 수요가 급증함에 따라 수급 불균형, 원재료 가격 상승, 리튬 보유국의 자원 무기화 등의 문제가 발생하고 있다. Lithium resources, the main material of lithium secondary batteries, are limited to South America, such as Argentina, Bolivia, and Chile. As demand for lithium soars, problems such as imbalance between supply and demand, rising raw material prices, and weaponization of resources in countries with lithium are occurring.

이에 비하여, 나트륨은 매장량이 풍부하고 가격이 저렴해서 원료 수급 측면에서 매우 유리하다. In contrast, sodium is very advantageous in terms of raw material supply and demand because it has abundant reserves and is inexpensive.

나트륨 이온전지도 1970년대부터 연구가 시작되었으나, 리튬 전지가 먼저 상용화되어 관심을 끌지 못하다가 비리튬계 Post-Li 전지에 대한 필요성이 대두되어 나트륨이온전지에 대한 본격적인 연구가 진행되고 있다.Research on sodium ion batteries also began in the 1970s, but lithium batteries were commercialized first and did not attract attention. Then, as the need for non-lithium-based Post-Li batteries emerged, full-scale research on sodium ion batteries was underway.

나트륨 2차 전지는 리튬 2차 전지와 동일한 작동 원리, 유사한 구조로서 2차 전지로서의 가능성은 보였으나, 리튬이차전지의 특성에는 많이 못 미치고 있다. 그러나, 자원 수급이 용이하고, 낮은 코스트 등의 장점을 바탕으로하여 에너지 저장 및 변환 디바이스로서 현재의 리튬 이차전지 시장의 한계를 극복 할 수 있는 혁신적인 대안이 될 수 있다. The sodium secondary battery has the same operating principle and similar structure as the lithium secondary battery, and has shown potential as a secondary battery, but falls short of the characteristics of the lithium secondary battery. However, it can be an innovative alternative that can overcome the limitations of the current lithium secondary battery market as an energy storage and conversion device based on advantages such as easy resource supply and low cost.

나트륨 2차 전지에서 양극 활물질로는 주로 NaCrO2, NaMnO2, NaFePO4 등과 같은 산화물 계열의 물질과 Na3V2(PO4)3, NaFePO4등의 polyanion 계열, NaxTiS2 등의 설파이드 계열, FeF3등의 플루오라이드 계열, NASICON 등의 포스페이트 계열 등으로 나뉘어 연구가 진행되고 있으며, 음극 활물질로는 석유 코크스(petroleum cokes), 카본 블랙(carbon black), 하드 카본(hard carbon) 등의 소재가 알려져 있다. In sodium secondary batteries, the cathode active materials are mainly oxide-based materials such as NaCrO 2 , NaMnO 2 , and NaFePO 4 , polyanion-based materials such as Na 3 V 2 (PO 4 ) 3 and NaFePO 4 , and sulfide-based materials such as Na x TiS 2 , FeF 3 , etc., fluoride series, NASICON, etc., phosphate series, etc., and research is being conducted. As for anode active materials, materials such as petroleum cokes, carbon black, and hard carbon is known

한편 전해액에 있어서, 기존의 리튬이차전지에 성공적으로 도입된 선형 카보네이트 용매는 나트륨 이차전지에서 나트륨 메탈 혹은 나트륨이 삽입된 음극에서 심각한 분해 반응을 일으킨다. 이러한 분해산물은 양극으로 이동하여 추가 분해를 하며 두꺼운 피막을 만들어 셀 성능을 급격하게 열화시킨다. On the other hand, in the electrolyte, the linear carbonate solvent successfully introduced into the existing lithium secondary battery causes a severe decomposition reaction in the sodium metal or sodium-intercalated negative electrode in the sodium secondary battery. These decomposition products migrate to the anode for further decomposition and form a thick film, rapidly deteriorating cell performance.

이에 나트륨이차전지용 전해질 사용은 환형 카보네이트 용매들로 구성된 전해질 조성에 제한되어 있다. 이러한 환형 카보네이트 용매들은 고점도/고융점의 특징을 갖고 있어 전해질의 점도를 높이며, 이온 전도도를 낮춘다. 특히, 이러한 전해질은 저온에서 셀의 저항을 증가시켜 전지의 사용가능 온도범위를 제한한다. Accordingly, the use of an electrolyte for a sodium secondary battery is limited to an electrolyte composition composed of cyclic carbonate solvents. These cyclic carbonate solvents have characteristics of high viscosity/high melting point, thereby increasing the viscosity of the electrolyte and lowering the ionic conductivity. In particular, these electrolytes increase cell resistance at low temperatures, limiting the usable temperature range of the battery.

그러므로, 전지의 사용가능 온도범위를 넓히기 위하여 저점도/고융점을 갖는 용매의 도입이 절실한 실정이다. Therefore, there is an urgent need to introduce a solvent having a low viscosity/high melting point in order to widen the usable temperature range of the battery.

상기한 종래 기술의 문제점을 해결하기 위하여, 본 발명은 저점도, 저융점의 에스테르계 용매를 사용하여 저온에서의 셀 성능을 향상시킬 수 있는 나트륨 2차전지용 전해액을 제공하는 것을 목적으로 한다.In order to solve the problems of the prior art, an object of the present invention is to provide an electrolyte solution for a sodium secondary battery capable of improving cell performance at low temperatures using an ester-based solvent having a low viscosity and a low melting point.

또한, 본 발명은 저점도 저융점의 에스테르계 용매를 포함하면서도 나트륨 메탈 음극과의 분해 반응을 억제하는 나트륨 2차전지용 전해액을 제공하는 것을 목적으로 한다. In addition, an object of the present invention is to provide an electrolyte solution for a sodium secondary battery that suppresses a decomposition reaction with a sodium metal negative electrode while containing an ester-based solvent having a low viscosity and a low melting point.

또한, 본 발명은 나트륨 메탈 음극에 안정한 보호막을 형성하여 음극과의 반응을 효과적으로 억제하고 전해질의 소모를 억제하는 나트륨 2차전지용 전해액을 제공하는 것을 목적으로 한다. In addition, an object of the present invention is to provide an electrolyte solution for a sodium secondary battery that effectively suppresses the reaction with the negative electrode and suppresses consumption of the electrolyte by forming a stable protective film on the sodium metal negative electrode.

또한, 본 발명은 전술한 전해액을 포함하는 나트륨 2차전지를 제공하는 것을 목적으로 한다.In addition, an object of the present invention is to provide a sodium secondary battery including the above-described electrolyte solution.

상기 기술적 과제를 달성하기 위하여 본 발명은, 양극, 음극, 전해액 및 상기 양극과 음극 사이를 분리하는 분리막을 구비하는 나트륨 2차전지에 있어서, 상기 전해액이 나트륨염; 환형 카보네이트계 용매; 저점도 및 저융점의 에스테르계 용매를 포함하는 용매; 및 상기 음극에 보호막을 형성하기 위한 첨가제를 포함하는 것을 특징으로 하는 나트륨 2차 전지를 제공한다. In order to achieve the above technical problem, the present invention provides a sodium secondary battery having a positive electrode, a negative electrode, an electrolyte solution, and a separator separating the positive electrode and the negative electrode, wherein the electrolyte solution is sodium salt; cyclic carbonate-based solvents; solvents including low-viscosity and low-melting ester-based solvents; and an additive for forming a protective film on the negative electrode.

본 발명에서 상기 나트륨 염은 NaClO4, NaPF6, NaBF4, NaFSI, NaTFSI, NaSO3CF3, NaBOB 및 NaFOB로 이루어진 그룹 중에서 선택된 최소한 1종의 염을 포함할 수 있다. 이 때, 상기 나트륨 염의 농도는 0.3~1.0 M일 수 있다. In the present invention, the sodium salt may include at least one salt selected from the group consisting of NaClO 4 , NaPF 6 , NaBF 4 , NaFSI, NaTFSI, NaSO 3 CF 3 , NaBOB, and NaFOB. At this time, the concentration of the sodium salt may be 0.3 ~ 1.0 M.

본 발명의 일실시예에서 상기 에스테르계 용매는 Ethyl acetate(EA), Methyl propionate(MP), Methyl butylate(MB), Propyl butylate(PB) 및 Butyl butyrate(BB)로 이루어진 그룹 중에서 선택된 최소한 1종의 용매를 포함할 수 있다. 이 때, 상기 에스테르계 용매는 상기 용매 총 부피에 대하여 10~30% 포함되는 것이 바람직하다.In one embodiment of the present invention, the ester-based solvent is at least one selected from the group consisting of Ethyl acetate (EA), Methyl propionate (MP), Methyl butylate (MB), Propyl butylate (PB) and Butyl butyrate (BB) A solvent may be included. At this time, the ester-based solvent is preferably included in an amount of 10 to 30% based on the total volume of the solvent.

또한, 본 발명에서 상기 환형 카보네이트 용매는 EC 또는 PC를 포함할 수 있다. In addition, in the present invention, the cyclic carbonate solvent may include EC or PC.

또한 본 발명의 일실시예에서 상기 첨가제는 FEC를 포함하는 것이 바람직하다. 이 때, 상기 FEC는 상기 전해액 총 중량 대비 0.2~10 중량% 포함되는 것이 바람직하다.Also, in one embodiment of the present invention, the additive preferably includes FEC. At this time, the FEC is preferably included in an amount of 0.2 to 10% by weight based on the total weight of the electrolyte.

본 발명의 일실시예에 따르면, 전해핵에 저점도/저융점의 에스테르 용매를 사용하여 낮은 점도를 갖고 높은 이온 전도도를 나타내어 저온에서의 셀 성능이 향상된 나트륨 2차전지를 제공할 수 있게 된다. According to one embodiment of the present invention, it is possible to provide a sodium secondary battery having low viscosity and high ion conductivity by using an ester solvent having a low viscosity/low melting point in an electrolytic core and thus improving cell performance at low temperatures.

또한, 본 발명의 일실시예에 따르면, 나트륨 메탈에 보호막을 형성하여, 나트륨 메탈과 전해질의 반응으로 인한 분해산물이 발생하는 것을 억제하여 그 결과 셀의 전기화학반응의 가역성이 증가하는 효과를 발휘하는 나트륨 2차전지를 제공할 수 있게 된다.In addition, according to an embodiment of the present invention, a protective film is formed on sodium metal to suppress generation of decomposition products due to the reaction between sodium metal and electrolyte, thereby increasing the reversibility of the electrochemical reaction of the cell. It is possible to provide a sodium secondary battery that does.

도 1은 본 발명의 일실시예에 따른 전해액의 점도 및 이온전도도 측정 결과를 나타낸 그래프이다.
도 2는 본 발명의 일실시예에서 제조된 샘플의 LSV 측정 결과를 나타낸 그래프이다.
도 3은 본 발명의 일실시예에 따른 전압-용량 특성 측정 결과를 나타낸 그래프이다.
도 4는 본 발명의 일실시예에서 싸이클에 따른 방전 용량을 측정한 결과를 나타낸 그래프이다.
도 5는 본 발명의 일실시에에서 양극 하프셀의 충방전 특성을 나타낸 그래프이다.
도 6은 본 발명의 일실시예에 따른 양극 하프셀의 충방전 특성을 나타낸 그래프이다.
1 is a graph showing the results of measuring the viscosity and ionic conductivity of an electrolyte solution according to an embodiment of the present invention.
Figure 2 is a graph showing the LSV measurement results of samples prepared in one embodiment of the present invention.
3 is a graph showing measurement results of voltage-capacitance characteristics according to an embodiment of the present invention.
4 is a graph showing the results of measuring the discharge capacity according to the cycle in one embodiment of the present invention.
5 is a graph showing charge and discharge characteristics of a positive half cell in one embodiment of the present invention.
6 is a graph showing charge/discharge characteristics of a positive half cell according to an embodiment of the present invention.

이하 도면을 참조하여 본 발명을 상술한다. The present invention will be described in detail with reference to the following drawings.

본 발명에서 나트륨 2차전지는 양극, 음극, 이온 투과성 분리막 및 이온 전도성 전해액을 포함한다.In the present invention, the sodium secondary battery includes a positive electrode, a negative electrode, an ion permeable separator, and an ion conductive electrolyte.

본 발명에서 나트륨 2차 전지용 전해액은 본 발명은 나트륨이차전지용 전해질을 제공한다. 전해질 용액은 나트륨염, 환형 카보네이트계 용매 및 에스테르계 용매, 그리고 첨가제를 포함할 수 있다.Electrolyte for a sodium secondary battery in the present invention provides an electrolyte for a sodium secondary battery. The electrolyte solution may include a sodium salt, a cyclic carbonate-based solvent and an ester-based solvent, and additives.

본 발명에서 상기 나트륨염은 예컨대 NaClO4, NaPF6, NaBF4, NaFSI, NaTFSI, NaSO3CF3, NaBOB 및 NaFOB와 같은 할로겐화 나트륨염을 포함할 수 있다. 본 발명의 전해액에서 상기 나트륨염의 농도는 0.1~1.5M인 것이 바람직하다.In the present invention, the sodium salt may include halide sodium salts such as NaClO 4 , NaPF 6 , NaBF 4 , NaFSI, NaTFSI, NaSO 3 CF 3 , NaBOB and NaFOB. The concentration of the sodium salt in the electrolyte solution of the present invention is preferably 0.1 ~ 1.5M.

또한, 상기 나트룸염은 전술한 하나 이상의 나트륨염을 최소한 2종 이상의 혼합물일 수 있다. In addition, the sodium salt may be a mixture of at least two or more of the above-mentioned one or more sodium salts.

본 발명에서 상기 환형 카보네이트계 용매로는 다음의 화학식으로 표현되는 EC 또는 PC와 같은 용매가 사용될 수 있다. In the present invention, solvents such as EC or PC represented by the following chemical formula may be used as the cyclic carbonate-based solvent.

(화학식 1)(Formula 1)

Figure 112015116363011-pat00001
Figure 112015116363011-pat00001

Ethylene carbonate (EC)Ethylene carbonate (EC)

(화학식 2)(Formula 2)

Figure 112015116363011-pat00002
Figure 112015116363011-pat00002

Propylene carbonate (PC)Propylene carbonate (PC)

또한, 본 발명에서 상기 에스테르계 용매로는 저융점 저점도의 용매 예컨대 Ethyl propionate (EP) 또는 Ethyl butyrate (EB)가 공용매로 사용된다. In addition, as the ester-based solvent in the present invention, a solvent having a low melting point and a low viscosity, such as ethyl propionate (EP) or ethyl butyrate (EB), is used as a co-solvent.

(화학식 3)(Formula 3)

Figure 112015116363011-pat00003
Figure 112015116363011-pat00003

Ethyl propionate (EP)Ethyl propionate (EP)

(화학식 4)(Formula 4)

Figure 112015116363011-pat00004
Figure 112015116363011-pat00004

Ethyl butyrate (EB)Ethyl butyrate (EB)

또한, 상기 에스테르계 용매로 Ethyl acetate(EA), Methyl propionate(MP), Methyl butylate(MB), Propyl butylate(PB), Butyl butyrate(BB)와 같은 저융점 저점도 용매가 사용될 수 있다. In addition, as the ester-based solvent, a low melting point and low viscosity solvent such as ethyl acetate (EA), methyl propionate (MP), methyl butylate (MB), propyl butylate (PB), and butyl butyrate (BB) may be used.

본 발명에서 상기 에스테르계 용매는 전해액의 용매 총 부피를 기준으로 20~30% 포함되는 것이 바람직하다. 20 vol% 미만의 경우 전해액의 저융점 저점도 특성 발휘가 곤란하며 30 vol% 이상의 경우 소듐 메탈과의 반응으로 과충전 현상이 발생할 수 있다.In the present invention, the ester-based solvent is preferably included in an amount of 20 to 30% based on the total volume of the solvent in the electrolyte solution. If it is less than 20 vol%, it is difficult to exhibit the low melting point and low viscosity characteristics of the electrolyte, and if it is more than 30 vol%, overcharging may occur due to a reaction with sodium metal.

본 발명의 일실시예에서 전해액은 기능성 첨가제로 FEC(Fluoroethylene carbonate)를 포함한다. 본 발명에서 첨가된 FEC는 음극 표면에서 전해액의 분해를 억제하는 피막 예컨대 NaF아 같은 무기물질을 포함하는 밀도가 높은 피막을 형성한다. 형성된 피막은 음극 표면에서 EB, EP와 같은 에스테르계 저융점 용매의 비가역적인 분해 반응을 억제한다. In one embodiment of the present invention, the electrolyte solution includes FEC (Fluoroethylene carbonate) as a functional additive. The FEC added in the present invention forms a high-density film containing an inorganic material such as NaF for example, which inhibits the decomposition of the electrolyte on the surface of the anode. The formed film inhibits the irreversible decomposition reaction of ester-based low melting point solvents such as EB and EP on the surface of the anode.

이에 따라, 후술하는 본 발명의 실시예에서 알 수 있는 바와 같이 첨가된 FEC에 의해 형성된 피막은 싸이클링시 전기적 스트레스를 부여하지 않는 표면 피막을 헝성한다. 또한 첨가된 FEC는 양극표면에도 보호막을 형성한다.Accordingly, as can be seen from examples of the present invention described later, the film formed by the added FEC forms a surface film that does not apply electrical stress during cycling. Also, the added FEC forms a protective film on the surface of the anode.

본 발명에서 상기 FEC는 전해액 총 중량 대비 0.2 ~ 10 중량% 포함되는 것이 바람직하다. FEC 첨가량이 0.2 중량% 미만인 경우 소듐 메탈 피막에 보호막을 형성하여 전해액과의 반응을 억제하기가 어렵고, 과량의 FEC가 첨가된 경우에는 전지 내에 저항으로 작용하여 소듐 이온 반응의 가역성을 감소시킨다.In the present invention, the FEC is preferably included in an amount of 0.2 to 10% by weight based on the total weight of the electrolyte. When the amount of FEC added is less than 0.2% by weight, it is difficult to suppress the reaction with the electrolyte by forming a protective film on the sodium metal film, and when an excessive amount of FEC is added, it acts as resistance in the battery and reduces the reversibility of the sodium ion reaction.

이하 본 발명의 바람직한 실시예를 설명한다.Hereinafter, preferred embodiments of the present invention will be described.

<전해액 특성 평가><Evaluation of Electrolyte Characteristics>

EC(ethylene carbonate) 및 PC(Propylene carbonate) 용매에 공용매로 EP 및 EB의 첨가에 따른 점도 및 상온 이온전도도를 평가하였다. 본 발명에 따라 제조된 전해액에 대한 상온 이온전도도를 평가하였다. 점도는 브룩픽드사의 LVDV-II+P을 이용하여 측정하였고, 상온 이온전도도는 Oakton 사의 CON 11 conductivity meter을 이용하여 측정하였다. 아래 표 1과 같이 상이한 조성의 용매에 NaClO4를 용해하여 0.5M NaClO4 용액을 제조하였다. 비교를 위하여 공용매가 첨가되지 않은 EC/PC 용매의 이온전도도도 함께 측정하였다. The viscosity and room temperature ionic conductivity were evaluated according to the addition of EP and EB as co-solvents to EC (ethylene carbonate) and PC (propylene carbonate) solvents. Room temperature ionic conductivity of the electrolyte solution prepared according to the present invention was evaluated. Viscosity was measured using Brookpick's LVDV-II+P, and room temperature ionic conductivity was measured using Oakton's CON 11 conductivity meter. As shown in Table 1 below, NaClO 4 was dissolved in solvents having different compositions to prepare 0.5M NaClO 4 solutions. For comparison, the ionic conductivity of the EC/PC solvent to which no co-solvent was added was also measured.

구분division 용매 조성(부피비)Solvent composition (volume ratio) 실험예1Experimental example 1 EC:PC:EP (5:3:2)EC:PC:EP (5:3:2) 실험예2Experimental Example 2 EC:PC:EB (5:3:2)EC:PC:EB (5:3:2) 기준 전해액reference electrolyte EC:PC (5:5)EC:PC (5:5)

도 1은 본 실험예의 측정 결과를 나타낸 그래프이다. 1 is a graph showing the measurement results of this experimental example.

도 1에 나타난 바와 같이, 기준 전해액(Ref)에 비해 EP 첨가 전해액(EP-added) 및 EB 첨가 전해액(EB-added)의 경우 낮은 점도의 전해액을 얻을 수 있음을 알 수 있다. As shown in FIG. 1 , it can be seen that an electrolyte having a low viscosity can be obtained in the case of the EP-added electrolyte (EP-added) and the EB-added electrolyte (EB-added) compared to the reference electrolyte (Ref).

또한, 기준 전해액(Ref)의 경우 5.85 mS/cm의 이온전도도를 나타내었는데, EP 첨가 전해액(EP-added), EP 첨가 전해액(EB-added)은 기준 전해질보다 더 높은 6.22 mS/cm, 6.17mS/cm의 상온 이온전도도를 나타냄을 알 수 있다.In addition, the reference electrolyte (Ref) showed an ion conductivity of 5.85 mS/cm, and the EP-added electrolyte (EP-added) and the EP-added electrolyte (EB-added) showed higher ionic conductivity than the reference electrolyte, 6.22 mS/cm and 6.17 mS. It can be seen that / cm represents the room temperature ionic conductivity.

<전해질의 산화 안정성 평가> <Evaluation of oxidative stability of electrolyte>

기준 전극으로 나트륨 금속을 사용하고 작동 전극으로 스테인레스 스틸을 사용하여 하프셀 형태의 2032 코인셀을 제조하였다. 제조된 코일셀로 선형주사전위법(Linear sweep voltammetry; LSV)을 통하여 전해질의 산화 안정성을 분석하였다. Ivium Technologies사의 Iviumstat 장비를 이용하였고 전압 구간은 2.0V~6.5V 범위로 하였고, 1 mVs-1의 스캔 속도로 측정하였다. A half-cell type 2032 coin cell was fabricated using sodium metal as a reference electrode and stainless steel as a working electrode. Oxidative stability of the electrolyte was analyzed using the prepared coil cell through linear sweep voltammetry (LSV). An Iviumstat device from Ivium Technologies was used and the voltage range was in the range of 2.0V to 6.5V, and was measured at a scan rate of 1 mVs -1 .

실험에 사용된 전해액의 조성은 아래 표 2와 같다.The composition of the electrolyte solution used in the experiment is shown in Table 2 below.

구분division 전해액 조성(부피비)Electrolyte composition (volume ratio) 실험예3Experimental Example 3 0.5M NaClO4 in EC/PC/EP (5/3/2)0.5 M NaClO 4 in EC/PC/EP (5/3/2) 실험예4Experimental Example 4 0.5M NaClO4 in EC/PC/EP (5/3/2) + 5wt% FEC0.5M NaClO 4 in EC/PC/EP (5/3/2) + 5wt% FEC 실험예5Experimental Example 5 0.5M NaClO4 in EC/PC/EB (5/3/2)0.5 M NaClO 4 in EC/PC/EB (5/3/2) 실험예6Experimental Example 6 0.5M NaClO4 in EC/PC/EB (5/3/2) +5wt% FEC0.5 M NaClO 4 in EC/PC/EB (5/3/2) +5wt% FEC 기준 전해액reference electrolyte 0.5M NaClO4 in EC/PC (5/5)0.5 M NaClO 4 in EC/PC (5/5)

도 2는 본 실험예에서 제조된 샘플의 LSV 측정 결과를 나타낸 그래프이다. 2 is a graph showing the LSV measurement results of samples prepared in this experimental example.

도 2를 참조하면, 기준 전해액(Ref)은 4.8 V (vs Na+/Na)에서 산화 분해를 시작하였음을 알 수 있다. Referring to FIG. 2 , it can be seen that the reference electrolyte (Ref) started oxidative decomposition at 4.8 V (vs Na + /Na).

기준 전해액에 EP 첨가 전해액(EP-added) 및 EB 첨가 전해액(EB-added)의 경우 기준 전해액에 비해 산화안정성이 감소함을 알 수 있다. 특히, EB의 경우 4.2V에서 저전류가 발생하여 4.6V에서 산화 분해를 시작한다(도 2의 (b)). 그러나, 전해액에 FEC를 첨가하게 되면 저전류 분해 피크가 사라지며 산화 안정성이 증가함을 알 수 있다. It can be seen that the oxidation stability of the reference electrolyte is reduced compared to the reference electrolyte in the case of the EP-added electrolyte (EP-added) and the EB-added electrolyte (EB-added). In particular, in the case of EB, a low current occurs at 4.2V and oxidative decomposition starts at 4.6V (Fig. 2(b)). However, it can be seen that when FEC is added to the electrolyte, the low current decomposition peak disappears and the oxidation stability increases.

<양극 하프셀의 화성충방전 평가><Evaluation of chemical charge and discharge of positive half cell>

양극 활물질로 Na4Fe3(PO4)2(P2O7) 양극재, 도전재로 카본 블랙 (Super P), 바인더로 poly(vinylidene fluoride) (PVDF)를 중량비로 70/20/10으로 배합한 슬러리를 알루미늄(Al) 집전체에 도포하여 양극을 제조하였다. 상대 전극 및 기준 전극으로 소듐 메탈 사용하여 2032 코인셀 구조의 양극 하프셀을 제조하였다. Na 4 Fe 3 (PO 4 ) 2 (P 2 O 7 ) cathode material as cathode active material, carbon black (Super P) as conductive material, and poly(vinylidene fluoride) (PVDF) as binder at a weight ratio of 70/20/10 A positive electrode was prepared by applying the blended slurry to an aluminum (Al) current collector. An anode half cell having a 2032 coin cell structure was manufactured using sodium metal as a counter electrode and a reference electrode.

하프셀 조립 후 상온에서 5 시간 동안 에이징한 후 화성 충방전 특성을 평가하였다. 측정 장비로는 WonAtech사의 WBCS 3000를 사용하였고, 충방전 조건은 C/20 정전류 조건으로 충전(4.2V)-방전(1.7V) (30℃)로 하였다. After assembling the half cell, aging at room temperature for 5 hours, the chemical charge/discharge characteristics were evaluated. WBCS 3000 from WonAtech was used as a measuring device, and charging and discharging conditions were charge (4.2V)-discharge (1.7V) (30 ° C) under C/20 constant current conditions.

실험에 사용된 전해액의 조성은 아래 표 3과 같다.The composition of the electrolyte solution used in the experiment is shown in Table 3 below.

구분division 전해액 조성(부피비)Electrolyte composition (volume ratio) 실험예7Experimental Example 7 0.5M NaClO4 in EC/PC (5/5) + 5wt% FEC0.5 M NaClO 4 in EC/PC (5/5) + 5wt% FEC 실험예8Experimental Example 8 0.5M NaClO4 in EC/PC/EP (5/3/2)0.5 M NaClO 4 in EC/PC/EP (5/3/2) 실험예9Experimental Example 9 0.5M NaClO4 in EC/PC/EP (5/3/2) + 5wt% FEC0.5M NaClO 4 in EC/PC/EP (5/3/2) + 5wt% FEC 실험예10Experimental Example 10 0.5M NaClO4 in EC/PC/EB (5/3/2)0.5 M NaClO 4 in EC/PC/EB (5/3/2) 실험예11Experimental Example 11 0.5M NaClO4 in EC/PC/EB (5/3/2) +5wt% FEC0.5 M NaClO 4 in EC/PC/EB (5/3/2) +5wt% FEC 기준 전해액reference electrolyte 0.5M NaClO4 in EC/PC (5/5)0.5 M NaClO 4 in EC/PC (5/5)

도 3은 본 실험예에 따른 전압-용량 특성 측정 결과를 나타낸 그래프이다. 3 is a graph showing measurement results of voltage-capacitance characteristics according to the present experimental example.

도 3의 (a)에 나타난 바와 같이, EP나 EB를 포함한 전해액(EP-added, EB-added)의 경우 충전 중의 전해질의 산화분해로 인해 과충전 현상이 발생함을 알 수 있다. 이것은 반응성이 큰 나트륨 메탈이 EP 및 EB와 반응하여 분해 부산물을 만들어 양극에서 산화분해 반응이 발생하는 것에 기인하는 것으로 판단된다. As shown in (a) of FIG. 3 , it can be seen that in the case of an electrolyte containing EP or EB (EP-added, EB-added), an overcharge phenomenon occurs due to oxidative decomposition of the electrolyte during charging. It is believed that this is due to the fact that the highly reactive sodium metal reacts with EP and EB to produce decomposition by-products, resulting in an oxidative decomposition reaction at the anode.

그러나, 도 3의 (b)에 나타난 바와 같이, EP 및 EB에 FEC를 첨가한 전해액(EP+FEC-added, EB+FEC-added)의 경우 과충전 현상이 완화됨을 알 수 있다. 이것은 EP와 EB 용매에 의한 산화 분해로 인하여 양극의 충전이 완료되지 못하게 하는 과충전 현상이 FEC 첨가제에 의해 억제됨을 의미한다. 즉, FEC 첨가제는 나트륨 메탈 전극에 안정한 피막을 현성하여 나트륨 메탈과 EB, EP 용매간의 원하지 않는 부반응을 억제함을 알 수 있다. However, as shown in (b) of FIG. 3 , it can be seen that the overcharging phenomenon is alleviated in the case of the electrolyte solution in which FEC is added to EP and EB (EP+FEC-added, EB+FEC-added). This means that the overcharge phenomenon, which prevents the completion of charging of the positive electrode due to oxidative decomposition by the EP and EB solvents, is suppressed by the FEC additive. That is, it can be seen that the FEC additive forms a stable film on the sodium metal electrode and suppresses unwanted side reactions between the sodium metal and the EB and EP solvents.

<실시예 1> <Example 1>

양극 활물질로 Na4Fe3(PO4)2(P2O7) 양극재, 도전재로 카본 블랙 (Super P), 바인더로 poly(vinylidene fluoride) (PVDF)를 중량비로 70/20/10으로 배합한 슬러리를 Al 집전체에 도포하여 양극을 제조하였다. 상대 전극 및 기준 전극으로으로 소듐 메탈 사용하여 2032 코인셀 구조의 양극 하프셀을 제조하였다.Na 4 Fe 3 (PO 4 ) 2 (P 2 O 7 ) cathode material as cathode active material, carbon black (Super P) as conductive material, and poly(vinylidene fluoride) (PVDF) as binder at a weight ratio of 70/20/10 The blended slurry was applied to an Al current collector to prepare a positive electrode. An anode half cell having a 2032 coin cell structure was manufactured using sodium metal as a counter electrode and a reference electrode.

전해액으로는 0.5M NaClO4 in EC/PC(5/5) + 5wt% FEC를 기준 전해액(Ref+FEC-added)으로 하고, 0.5M NaClO4 in EC/PC/EB(부피비 5/3/2) + 5wt% FEC 전해액(EB+FEC-added)를 대비하였다. As the electrolyte, 0.5M NaClO 4 in EC/PC(5/5) + 5wt% FEC was used as the standard electrolyte (Ref+FEC-added), and 0.5M NaClO 4 in EC/PC/EB (volume ratio 5/3/2 ) + 5wt% FEC electrolyte (EB + FEC-added) was prepared.

조립된 코인 셀을 상온에서 5시간 에이징한 후, 충방전 특성을 평가하였다. 측정 장비로는 WonAtech사의 WBCS 3000를 사용하였고, 충방전 조건은 다음과 같다. After aging the assembled coin cells at room temperature for 5 hours, charge/discharge characteristics were evaluated. WonAtech's WBCS 3000 was used as the measuring equipment, and the charging and discharging conditions were as follows.

- 상온 화성 충방전: C/20 정전류 조건으로 충전(4.2V)-방전(1.7V)-충전(4.2V) (30℃) - Room temperature chemical charge/discharge: charge (4.2V)-discharge (1.7V)-charge (4.2V) (30℃) under C/20 constant current conditions

- 상온 싸이클 : C/2 정전류 조건으로 방전(1.7V)-충전(4.2V)-방전(1.7V) (30℃)- Room temperature cycle: Discharge (1.7V) - Charge (4.2V) - Discharge (1.7V) (30℃) under C/2 constant current conditions

도 4는 싸이클에 따른 상온 방전 용량을 측정한 결과를 나타낸 그래프이다. 4 is a graph showing the results of measuring room temperature discharge capacity according to cycles.

도 4를 참조하면, EB 전해액 하프셀 샘플(EB+FEC-added)은 기준 전해액 하프셀 샘플과 실질적으로 동일한 방전 용량을 유지하고 있음을 알 수 있다. 그러나, EB 전해액 하프셀 샘플(EB+FEC-added)은 기준 전해액 하프셀 샘플 보다 향상된 쿨롱효율을 나타낸다. 이것은 본 실시예의 EB 전해액이 양극의 가역적인 반응에 보다 유리하다는 것을 의미한다. Referring to FIG. 4 , it can be seen that the EB electrolyte half-cell sample (EB+FEC-added) maintains substantially the same discharge capacity as the reference electrolyte half-cell sample. However, the EB electrolyte half-cell sample (EB+FEC-added) exhibits improved coulombic efficiency than the reference electrolyte half-cell sample. This means that the EB electrolyte of this embodiment is more advantageous for the reversible reaction of the anode.

<실시예 2><Example 2>

실시예 1과 마찬가지로 하프셀을 제조하였다. 실시예 1과 마찬가지로, 전해액으로는 0.5M NaClO4 in EC/PC(5/5) + 5wt% FEC를 기준 전해액(FEC-added)으로 하고, 0.5M NaClO4 in EC/PC/EB(부피비 5/3/2) + 5wt% FEC 전해액(EB+FEC-added)를 사용하였다. 다만 본 실시예에서는 저온에서 충방전을 실시하였으며 충방전 조건은 다음과 같다.A half cell was prepared in the same manner as in Example 1. As in Example 1, 0.5M NaClO 4 in EC/PC (5/5) + 5wt% FEC was used as the reference electrolyte (FEC-added) as the electrolyte, and 0.5M NaClO 4 in EC/PC/EB (volume ratio 5 /3/2) + 5 wt% FEC electrolyte (EB + FEC-added) was used. However, in this embodiment, charging and discharging was performed at a low temperature, and the charging and discharging conditions are as follows.

-상온 화성 충방전 후 상온 충전 : C/20 정전류 조건으로 충전(4.2V)-방전(1.7V)-충전(4.2V) (30℃) - Room temperature charge after normal temperature charge/discharge: Charge (4.2V) - Discharge (1.7V) - Charge (4.2V) (30℃) under C/20 constant current condition

-저온 방전 후 저온 싸이클 : C/20 정전류 조건으로 방전(1.7V)-충전(4.2V)-방전(1.7V) (-10℃)-Low temperature cycle after low temperature discharge: Discharge (1.7V) - Charge (4.2V) - Discharge (1.7V) under C/20 constant current condition (-10℃)

도 5는 양극 하프셀의 충방전 특성을 나타낸 그래프이다. 도 5의 (a)는 첫 번째 싸이클에서의 충방전 특성을 나타낸 그래프이고, 도 5의 (b)는 두 번째 싸이클에서의 충방전 특성을 나타낸 그래프이다. 5 is a graph showing charge/discharge characteristics of a positive half cell. 5(a) is a graph showing charge/discharge characteristics in a first cycle, and FIG. 5(b) is a graph showing charge/discharge characteristics in a second cycle.

도 5의 (a)에서 알 수 있는 바와 같이, EB+FEC-added 전해액의 -10℃에서 첫 번째 싸이클 충방전 전압 곡선은 FEC-added 전해액과 동일함을 알 수 있다. As can be seen in (a) of FIG. 5, it can be seen that the first cycle charge/discharge voltage curve of the EB+FEC-added electrolyte solution at -10 ° C is the same as that of the FEC-added electrolyte solution.

그러나, 도 5의 (b)에 도시된 바와 같이, -10℃에서의 두 번째 싸이클부터 FEC-added의 경우 방전 플래토(plateau)의 큰 전압강하 현상이 발생하는데 이것은 고점도/고융점의 특성을 지닌 환형 카보네이트 용매로만 이루어진 FEC-added 전해액은 저온에서 셀 내의 저항을 야기하기 때문이다. 그러나, EB+FEC-added 전해질의 경우 방전 플래토의 전압강하 현상이 완화된다. 즉, 저점도/저융점의 EB를 공용매로 도입하면 -10℃에서 양극 하프셀의 polarization에 의한 IR drop (Ohmic resitance)현상이 감소함을 알 수 있다.However, as shown in (b) of FIG. 5, in the case of FEC-added from the second cycle at -10 ° C, a large voltage drop phenomenon of discharge plateau occurs, which has high viscosity / high melting point characteristics. This is because the FEC-added electrolyte, which consists of only cyclic carbonate solvents, causes resistance in the cell at low temperatures. However, in the case of EB+FEC-added electrolyte, the voltage drop phenomenon of the discharge plateau is mitigated. That is, it can be seen that the introduction of low viscosity/low melting point EB as a co-solvent reduces the IR drop (Ohmic resistance) phenomenon caused by the polarization of the positive half cell at -10 ° C.

<실시예 3><Example 3>

전해액의 조성을 달리하고, -20℃에서 충방전을 실시하였다. 전해액으로는 0.5M NaClO4 in EC/PC/EB(부피비 3/4/3) + 5wt% FEC 전해액(EB/PC/EB)를 사용하여, 0.5M NaClO4 in EC/PC(5/5) + 5wt% FEC 전해액(EC/PC) 전해액과 대비하였다. 충방전 조건은 다음과 같다.The composition of the electrolyte solution was changed, and charging and discharging was performed at -20 ° C. As the electrolyte, 0.5M NaClO 4 in EC/PC/EB (volume ratio 3/4/3) + 5wt% FEC electrolyte (EB/PC/EB) was used, and 0.5M NaClO 4 in EC/PC (5/5) + 5wt% FEC electrolyte (EC/PC) compared to the electrolyte. The charging and discharging conditions are as follows.

-상온 화성 충방전 후 상온 충전 : C/20 정전류 조건으로 충전(4.2V)-방전(1.7V)-충전(4.2V) (30℃) - Room temperature charge after normal temperature charge/discharge: Charge (4.2V) - Discharge (1.7V) - Charge (4.2V) (30℃) under C/20 constant current condition

-저온 방전 후 저온 싸이클 : C/20 정전류 조건으로 방전(1.7V)-충전(4.2V)-방전(1.7V) (-20℃)-Low temperature cycle after low temperature discharge: Discharge (1.7V) - Charge (4.2V) - Discharge (1.7V) under C/20 constant current condition (-20℃)

도 6은 본 실시예에 따른 양극 하프셀의 충방전 특성을 나타낸 그래프이다.6 is a graph showing charge/discharge characteristics of the positive half cell according to the present embodiment.

도 6을 참조하면, EB가 첨가된 전해액에서 높은 충방전 용량이 구현됨을 알 수 있다.Referring to FIG. 6 , it can be seen that a high charge/discharge capacity is realized in the electrolyte solution to which EB is added.

Claims (8)

양극, 음극, 전해액 및 상기 양극과 음극 사이를 분리하는 분리막을 구비하는 나트륨 2차전지에 있어서,
상기 전해액은,
나트륨염;
환형 카보네이트계 용매;
저점도 및 저융점의 에스테르계 용매; 및
상기 음극에 보호막을 형성하기 위한 첨가제를 포함하고,
상기 에스테르계 용매는 용매 총 부피에 대하여 20~30% 포함되는 것을 특징으로 하는 나트륨 2차 전지.
In a sodium secondary battery having a positive electrode, a negative electrode, an electrolyte solution, and a separator separating the positive electrode and the negative electrode,
The electrolyte is
sodium salt;
cyclic carbonate-based solvents;
low-viscosity and low-melting ester-based solvents; and
Including an additive for forming a protective film on the negative electrode,
The ester-based solvent is a sodium secondary battery, characterized in that contained 20 to 30% with respect to the total volume of the solvent.
제1항에 있어서,
상기 나트륨 염은 NaClO4, NaPF6, NaBF4, NaFSI, NaTFSI, NaSO3CF3, NaBOB 및 NaFOB로 이루어진 그룹 중에서 선택된 최소한 1종의 염을 포함하는 것을 특징으로 하는 나트륨 2차 전지.
According to claim 1,
The sodium salt comprises at least one salt selected from the group consisting of NaClO 4 , NaPF 6 , NaBF 4 , NaFSI, NaTFSI, NaSO 3 CF 3 , NaBOB and NaFOB Sodium secondary battery.
제1항에 있어서,
제2항에 있어서,
상기 나트륨 염의 농도는 0.1~1.5 M인 것을 특징으로 하는 나트륨 2차 전지.
According to claim 1,
According to claim 2,
Sodium secondary battery, characterized in that the concentration of the sodium salt is 0.1 ~ 1.5 M.
제1항에 있어서,
상기 에스테르계 용매는 Ethyl acetate(EA), Methyl propionate(MP), Methyl butylate(MB), Propyl butylate(PB) 및 Butyl butyrate(BB)로 이루어진 그룹 중에서 선택된 최소한 1종의 용매를 포함하는 것을 특징으로 하는 나트륨 2차 전지.
According to claim 1,
The ester-based solvent includes at least one solvent selected from the group consisting of Ethyl acetate (EA), Methyl propionate (MP), Methyl butylate (MB), Propyl butylate (PB), and Butyl butyrate (BB). sodium secondary battery.
삭제delete 제1항에 있어서,
상기 환형 카보네이트 용매는 EC 또는 PC를 포함하는 것을 특징으로 하는 나트륨 2차 전지.
According to claim 1,
The sodium secondary battery, characterized in that the cyclic carbonate solvent comprises EC or PC.
제1항에 있어서,
상기 첨가제는 FEC를 포함하는 것을 특징으로 하는 나트륨 2차 전지.
According to claim 1,
The sodium secondary battery, characterized in that the additive comprises FEC.
제6항에 있어서,
상기 FEC는 상기 전해액 총 중량 대비 0.2~10 중량% 포함되는 것을 특징으로 하는 나트륨 2차 전지.
According to claim 6,
The FEC is a sodium secondary battery, characterized in that contained in 0.2 to 10% by weight relative to the total weight of the electrolyte.
KR1020150168005A 2015-11-27 2015-11-27 Liquid Electrolytes For Na Secondary Batteries And Na Secondary Batteries Comprising The Same KR102529941B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020150168005A KR102529941B1 (en) 2015-11-27 2015-11-27 Liquid Electrolytes For Na Secondary Batteries And Na Secondary Batteries Comprising The Same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150168005A KR102529941B1 (en) 2015-11-27 2015-11-27 Liquid Electrolytes For Na Secondary Batteries And Na Secondary Batteries Comprising The Same

Publications (2)

Publication Number Publication Date
KR20170062657A KR20170062657A (en) 2017-06-08
KR102529941B1 true KR102529941B1 (en) 2023-05-10

Family

ID=59221190

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150168005A KR102529941B1 (en) 2015-11-27 2015-11-27 Liquid Electrolytes For Na Secondary Batteries And Na Secondary Batteries Comprising The Same

Country Status (1)

Country Link
KR (1) KR102529941B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101911520B1 (en) * 2017-08-25 2018-10-25 한국전기연구원 Liquid Electrolytes For Na Secondary Batteries And Na Secondary Batteries Comprising The Same
CN115799645B (en) * 2023-02-06 2023-10-27 宁德时代新能源科技股份有限公司 Electrolyte for sodium secondary battery, sodium secondary battery and electricity utilization device
CN117276674A (en) * 2023-11-22 2023-12-22 山东玉皇新能源科技有限公司 Sodium ion battery electrolyte and sodium ion battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013062241A (en) * 2011-08-24 2013-04-04 Sumitomo Chemical Co Ltd Sodium secondary battery
JP2015179659A (en) 2013-12-04 2015-10-08 パナソニックIpマネジメント株式会社 sodium secondary battery

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015080492A1 (en) * 2013-11-27 2015-06-04 국립대학법인 울산과학기술대학교 산학협력단 Secondary battery and secondary battery system
JP6260266B2 (en) * 2013-12-26 2018-01-17 三菱自動車工業株式会社 Secondary battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013062241A (en) * 2011-08-24 2013-04-04 Sumitomo Chemical Co Ltd Sodium secondary battery
JP2015179659A (en) 2013-12-04 2015-10-08 パナソニックIpマネジメント株式会社 sodium secondary battery

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPWO2015125840 A1

Also Published As

Publication number Publication date
KR20170062657A (en) 2017-06-08

Similar Documents

Publication Publication Date Title
Gallus et al. New insights into the structure-property relationship of high-voltage electrolyte components for lithium-ion batteries using the pKa value
Wei et al. TEMPO‐based catholyte for high‐energy density nonaqueous redox flow batteries
EP3699997B1 (en) Lithium secondary battery electrolyte and lithium secondary battery comprising the same
US10347942B2 (en) Electrolyte for lithium based energy accumulators
US10505219B2 (en) Artificial SEI transplantation
JP3060107B2 (en) Flame retardant non-aqueous electrolyte and secondary battery using the same
JP2014056847A (en) Lithium secondary battery
Matsui et al. Design of an electrolyte composition for stable and rapid charging–discharging of a graphite negative electrode in a bis (fluorosulfonyl) imide-based ionic liquid
KR102541104B1 (en) Lithium salt mixture and its use as battery electrolyte
JP2018073819A (en) Aqueous electrolyte having carbonate and battery arranged by use thereof
KR102529941B1 (en) Liquid Electrolytes For Na Secondary Batteries And Na Secondary Batteries Comprising The Same
KR101800930B1 (en) Additive for non-aqueous lithium secondary battery and non-aqueous electrolyte, electrode and non-aqueous lithium secondary battery comprising the same
KR102137665B1 (en) Electrolyte solution for secondary battery and additive therefor
KR20230088729A (en) Electrolyte for Na-ion battery
US10490853B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising same
KR101911520B1 (en) Liquid Electrolytes For Na Secondary Batteries And Na Secondary Batteries Comprising The Same
US20130130126A1 (en) Electrochemical cell for high-voltage operation and electrode coatings for use in the same
Yang et al. Formulation of a new type of electrolytes for LiNi1/3Co1/3Mn1/3O2 cathodes working in an ultra-low temperature range
CN104993144B (en) Lithium bromide-containing electrolyte and battery thereof
Luo et al. Lithium secondary batteries using an asymmetric sulfonium-based room temperature ionic liquid as a potential electrolyte
US11335959B2 (en) Ionic liquids for artificial SEI transplantation
JPH11273734A (en) Flame resistant nonaqueous electrolytic solution and secondary battery using it
JP2010232118A (en) Lithium secondary battery
US20210151801A1 (en) Electrolyte for an alkali-sulfur battery, alkali-sulfur battery containing the electrolyte, and uses of the electrolyte
EP4078711B1 (en) Electrolyte for li secondary batteries

Legal Events

Date Code Title Description
N231 Notification of change of applicant
N231 Notification of change of applicant
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant