KR102529316B1 - Preparation of nano size BNT ceramic powder for MLCC - Google Patents

Preparation of nano size BNT ceramic powder for MLCC Download PDF

Info

Publication number
KR102529316B1
KR102529316B1 KR1020200173075A KR20200173075A KR102529316B1 KR 102529316 B1 KR102529316 B1 KR 102529316B1 KR 1020200173075 A KR1020200173075 A KR 1020200173075A KR 20200173075 A KR20200173075 A KR 20200173075A KR 102529316 B1 KR102529316 B1 KR 102529316B1
Authority
KR
South Korea
Prior art keywords
powder
sodium carbonate
solid
bnt
mixture
Prior art date
Application number
KR1020200173075A
Other languages
Korean (ko)
Other versions
KR20220083145A (en
Inventor
황해진
이은정
정재우
Original Assignee
인하대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인하대학교 산학협력단 filed Critical 인하대학교 산학협력단
Priority to KR1020200173075A priority Critical patent/KR102529316B1/en
Publication of KR20220083145A publication Critical patent/KR20220083145A/en
Application granted granted Critical
Publication of KR102529316B1 publication Critical patent/KR102529316B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62655Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • H01G4/1227Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/781Nanograined materials, i.e. having grain sizes below 100 nm

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

본 발명은 고상 반응의 출발물질 중 탄산나트륨을 무수알코올에 분쇄하는 단계, 분쇄된 탄산나트륨을 건조기를 이용하여 무수알코올을 제거하고 분말상태로 건조하는 단계, 고상 반응의 출발물질로서 상기 분쇄된 탄산나트륨 분말과 비스무스옥사이드 분말 및 티타늄옥사이드 분말의 혼합물을 용매 지르코니아볼과 혼합하는 단계, 상기 혼합물을 밀링 장치를 이용하여 고속으로 혼합하는 단계, 고속 혼합된 분말 혼합물을 건조하는 단계, 건조된 분말 혼합물을 열처리하여 고상 반응시키는 단계, 열처리한 고상 반응물을 유성밀을 이용하여 분쇄하는 단계를 포함하는 MLCC용 BNT계 나노사이즈 분말 제조방법을 제공한다.The present invention includes the steps of pulverizing sodium carbonate in anhydrous alcohol among the starting materials of the solid phase reaction, removing the anhydrous alcohol from the pulverized sodium carbonate using a dryer and drying it in a powder state, the pulverized sodium carbonate powder and Mixing a mixture of bismuth oxide powder and titanium oxide powder with a solvent zirconia ball, mixing the mixture at high speed using a milling device, drying the mixed powder mixture at high speed, heat-treating the dried powder mixture to obtain a solid state It provides a method for producing BNT-based nano-sized powder for MLCC, comprising the steps of reacting and pulverizing the heat-treated solid reactant using a planetary mill.

Description

MLCC용 BNT계 나노사이즈 분말 제조방법 {Preparation of nano size BNT ceramic powder for MLCC}Manufacturing method of BNT-based nano-size powder for MLCC {Preparation of nano-size BNT ceramic powder for MLCC}

본 발명은 나노사이즈 세라믹 분말 제조방법에 관한 것으로서, 상세하게는 MLCC로 활용될 수 있는 새로운 BNT계 세라믹의 나노 분말 합성방법을 제안한다.The present invention relates to a method for manufacturing nano-sized ceramic powder, and more particularly, proposes a new method for synthesizing nano-powder of BNT-based ceramics that can be used for MLCC.

적층형 세라믹 커패시터(Multi-layer Ceramic Capacitor, MLCC)는 휴대폰, 개인용 PC, digital display 등 IT의 전자 회로에서 수동부품의 60%를 차지하고 있는 대표적인 수동소자로 IC 등 능동 소자의 전원 공급 회로에서 noise를 분리하는 decoupling 기능, signal에서 dc 성분을 제거하는 기능, signal의 평탄화 기능 등 그 역할이 대표적인 능동 소자인 반도체에 버금갈 정도로 중요하다.Multi-layer Ceramic Capacitor (MLCC) is a typical passive element that accounts for 60% of passive components in IT electronic circuits such as mobile phones, personal PCs, and digital displays, and isolates noise from power supply circuits of active elements such as ICs. Its roles, such as decoupling function that removes the dc component from the signal and signal flattening function, are as important as semiconductors, which are representative active elements.

최근 전자기기의 다기능화 소형화 추세가 급속히 진행됨에 따라 전자부품의 소형화와 성능향상도 빠르게 진행되고 있으며, 자동차, 네트워크 장비 등 전장품 및 산업용에 대응하는 고신뢰성을 요구하는 전자부품의 요구와 수요가 크게 증가하고 있다. 이와 같은 시장요구에 부응하기 위한 수동부품(Inductor, Capacitor, Resistor)의 기술개발 경쟁이 가속화되고 있으며, 범용 수동부품으로서 그 용도와 사용량이 증가하고 있는 MLCC의 경우에 유전체 층과 내부 전극 층의 박층화에 기반을 둔 초고용량 제품개발로 시장을 선점하기 위한 많은 시도와 노력이 이루어지고 있다. As the trend of miniaturization and multifunctionality of electronic devices is rapidly progressing, miniaturization and performance improvement of electronic components are also progressing rapidly. It is increasing. Competition for technology development of passive components (Inductor, Capacitor, Resistor) to meet such market demands is accelerating, and in the case of MLCC, the use and usage of which is increasing as a general-purpose passive component, the dielectric layer and the thin layer of the internal electrode layer Many attempts and efforts are being made to preoccupy the market with the development of ultra-high-capacity products based on chemical technologies.

특히 전장용 MLCC에서는 인명에 영향을 줄 수 있는 ECU 등의 주요 부분에 사용되는 경우 가혹한 환경에서도 내부단락에 의한 고장이 발생하지 않도록 MLCC 설계단계에서부터 공정, 출하검사까지 강건 설계가 이루어져야만 하며, 극한의 외부환경에 대처할 수 있는 신뢰성 확보가 관건이라고 할 수 있다. 전장용 MLCC로 사용가능한 가장 근접한 제품은 X9R 이며 -55℃ ~ 175℃의 온도 범위에서 사용될 수 있는 소재로서 BT계 소재(BaTiO3)가 제안된 바 있다. In particular, when used in major parts such as ECUs that may affect human life in automotive MLCCs, robust design must be made from the MLCC design stage to process and shipment inspection to prevent failures due to internal shorts even in harsh environments. It can be said that securing reliability that can cope with the external environment is the key. The closest product that can be used as an automotive MLCC is X9R, and a BT-based material (BaTiO 3 ) has been proposed as a material that can be used in a temperature range of -55℃ to 175℃.

MLCC 공정은 BT계 소재에 최적화되어 있어 새로운 조성의 적용을 위해서는 공정기술의 개발이 필수적으로 요구되고 있는데, 신조성 나노입자 형성, 고안정성 슬러리 제조, 고강도 시트 제조를 위한 나노입자 합성 공정 등이 연구되고 있다. 특히 고강도 및 고유전율 강유전체 나노 분말 개발이 핵심 요소기술이 되고 있다. Since the MLCC process is optimized for BT-based materials, the development of process technology is essential for the application of new compositions, such as the formation of new nanoparticles, the manufacture of highly stable slurries, and the synthesis of nanoparticles for the manufacture of high-strength sheets. It is becoming. In particular, the development of high-strength and high-permittivity ferroelectric nanopowder is becoming a key element technology.

나노사이즈 입자는 비표면적이 급증하게 되기 때문에 반응성이 마이크로 단위의 재료와 크게 차이가 나며 이러한 물질의 성질 변화는 미시적인 효과 뿐만 아니라 거시적으로 결과물의 큰 차이를 준다. 이러한 나노사이즈 입자는 전기적, 화학적, 물리적 특성 등을 크게 변화시키기 때문에 전지, 반도체, 적층세라믹콘덴서 (MLCC: Multi Layer Ceramic Capacitor) 등의 산업분야에서 성능 향상에 기인하는 요소로 작용한다. 나노 입자 제조는 상부하향식(Top-down)과 하부상향식(Bottom-up)의 두가지 방법이 있는데, 상부하향식은 크기가 큰 입자를 분쇄하여 작은 사이즈를 만드는 것이며 하부상향식은 용액상태나 증기상태를 이용하여 합성하는 방법이다. Because the specific surface area of nano-sized particles increases rapidly, the reactivity is greatly different from that of micro-scale materials, and the change in the properties of these materials gives a large difference in macroscopic results as well as microscopic effects. Since these nano-sized particles greatly change electrical, chemical, and physical properties, etc., they act as a factor resulting from performance improvement in industrial fields such as batteries, semiconductors, and multi-layer ceramic capacitors (MLCCs). There are two methods of manufacturing nanoparticles: top-down and bottom-up. The top-down method is to grind large particles to make them into smaller sizes, and the bottom-up method uses a solution or vapor state. method to synthesize it.

나노 수준의 MLCC용 세라믹 물질 제조 시 상부하향식 방법으로 분말을 얻기 위해서는 각 단계별 공정 제어 및 균일한 고상 반응 유도, 분쇄 공정의 최적화 등이 요구되는데, 종래 기술에서는 이러한 요소기술의 제안이 부족하였다. In order to obtain powder in a top-down method when manufacturing ceramic materials for nano-level MLCC, process control at each stage, induction of uniform solid-phase reaction, optimization of grinding process, etc. are required. However, in the prior art, there is a lack of proposals for these element technologies.

예를 들어 공개특허 10-2017-0078123에 따르면, 유전체 조성물 및 이를 포함하는 적층 전자부품으로서 BaTiO3를 제1주성분, PbTiO3를 제2 주성분, (Bi0.5Na0.5)TiO3를 제3주성분으로 포함하는 유전체 조성을 제안한 바 있는데, 물질의 조성에만 관심을 두고 나노 입자를 얻는 공정 측면에서는 침묵하고 있다. For example, according to Patent Publication No. 10-2017-0078123, a dielectric composition and a multilayer electronic component including the same include BaTiO3 as a first main component, PbTiO3 as a second main component, and (Bi0.5Na0.5)TiO3 as a third main component. The dielectric composition has been proposed, but the process of obtaining nanoparticles is silent, focusing only on the composition of the material.

또 다른 예로서, 공개특허 10-2020-0072400의 경우 적층 세라믹 콘덴서용 세라믹 원료 분말을 제안하고 있는데, 도너 작용 및 억셉터 작용의 양쪽을 얻을 수 있는 세라믹 원료 분말을 제안하고 있으나 나노 입자를 합성하기 위한 구체적인 공정에 대해서는 제안하고 있지 않다. As another example, in the case of Patent Publication No. 10-2020-0072400, a ceramic raw material powder for a multilayer ceramic capacitor is proposed, and a ceramic raw material powder capable of obtaining both a donor action and an acceptor action is proposed, but it is difficult to synthesize nanoparticles. No specific process is proposed for this.

전장용 MLCC 등 극한 상황에서 사용될 수 있는 세라믹 부품 개발을 위해서는 조성 개발과 더불어 입자 제어 및 공정 제어를 통해 기능성이 확보하는 것이 필요하다. In order to develop ceramic parts that can be used in extreme conditions such as automotive MLCC, it is necessary to secure functionality through particle control and process control in addition to composition development.

본 발명은 전술한 기술적 배경하에서 창안된 것으로, 본 발명의 목적은 나노 사이즈의 세라믹 분말을 합성하는 새로운 방법을 제공하는 것이다. The present invention was conceived under the above technical background, and an object of the present invention is to provide a new method for synthesizing nano-sized ceramic powder.

본 발명의 다른 목적은 고품질, 고기능성 세라믹 제품을 제조할 수 있는 나노 분말 합성 방법을 제공하는 것이다. Another object of the present invention is to provide a nanopowder synthesis method capable of producing high-quality, highly functional ceramic products.

본 발명의 또 다른 목적은 전장 부품 등 극한의 조건을 만족할 수 있는 새로운 MLCC용 BNT계 세라믹 분말의 제조방법을 제공하는 것이다. Another object of the present invention is to provide a new method for manufacturing a BNT-based ceramic powder for MLCC that can satisfy extreme conditions such as electrical components.

기타, 본 발명의 또 다른 목적 및 기술적 특징은 이하의 상세한 설명에서 보다 구체적으로 제시될 것이다.Other objects and technical features of the present invention will be presented in more detail in the following detailed description.

상기 목적을 달성하기 위하여, 본 발명은 고상 반응의 출발물질 중 탄산나트륨(Na2CO3)을 무수알코올에 분쇄하는 단계, 분쇄된 탄산나트륨을 건조기를 이용하여 무수알코올을 제거하고 분말상태로 건조하는 단계, 고상 반응의 출발물질로서 상기 분쇄된 탄산나트륨 분말과 비스무스옥사이드(Bi2O3) 분말 및 티타늄옥사이드(TiO2) 분말의 혼합물을 무수알코올 및 지르코니아볼을 혼합하는 단계, 상기 혼합물을 밀링 장치를 이용하여 고속으로 혼합하는 단계, 고속 혼합된 분말 혼합물을 건조하는 단계, 건조된 분말 혼합물을 열처리하여 고상 반응시키는 단계, 열처리한 고상 반응물을 밀링 장치를 이용하여 분쇄하는 단계를 포함하며, 출발물질 중 탄산나트륨의 분쇄는 고순도 지르코니아 용기에 탄산나트륨, 용매 및 지르코니아볼을 혼합하여 지르코니아 용기에 채우고 250 ~ 400RPM으로 1 ~ 2시간동안 분쇄하는 것을 특징으로 하는 MLCC용 BNT계 나노사이즈 분말 제조방법을 제공한다.In order to achieve the above object, the present invention is a step of pulverizing sodium carbonate (Na 2 CO 3 ) of the starting material of the solid phase reaction in anhydrous alcohol, removing anhydrous alcohol from the pulverized sodium carbonate using a dryer and drying it in a powder state Mixing a mixture of the pulverized sodium carbonate powder, bismuth oxide (Bi 2 O 3 ) powder, and titanium oxide (TiO 2 ) powder with anhydrous alcohol and zirconia balls as a starting material for a solid phase reaction, using a milling device to mix the mixture mixing at high speed, drying the powder mixture mixed at high speed, heat-treating the dried powder mixture to cause a solid phase reaction, and pulverizing the heat-treated solid phase reactant using a milling device, wherein sodium carbonate among the starting materials Grinding provides a method for producing BNT-based nano-sized powder for MLCC, characterized in that sodium carbonate, solvent and zirconia balls are mixed in a high-purity zirconia container, filled in a zirconia container, and pulverized at 250 to 400 RPM for 1 to 2 hours.

본 발명에 있어서, 상기 나노사이즈 분말은 다음의 화학식으로 표시되는 고용체이며, Bi1 - xNaxTiO3, 여기서 0≤x<0.5, 제조된 나노사이즈 분말의 입자사이즈는 평균 300 ~ 500nm 의 범위인 것을 특징으로 한다. In the present invention, the nano-sized powder is a solid solution represented by the following chemical formula, Bi 1 - x Na x TiO 3 , where 0≤x<0.5, and the particle size of the nano-sized powder prepared is in the range of 300 to 500 nm on average. It is characterized by being

또한, 본 발명에 있어서, 상기 분말 혼합물은 건조 후 700 ~ 900℃의 범위에서 열처리하여 고상 반응을 진행하고, 열처리한 고상 반응물은 유성밀 장비로 1 ~ 2mm 지르코니아볼과 무수알코올을 이용하여 고속 밀링하는 것이 바람직하다.In addition, in the present invention, the powder mixture is heat treated in the range of 700 ~ 900 ℃ after drying to proceed with the solid phase reaction, and the heat treated solid reactant is subjected to high-speed milling using planetary mill equipment using 1 ~ 2 mm zirconia balls and anhydrous alcohol. It is desirable to do

본 발명에 따르면, 세라믹 나노입자 제조에 있어서 초기 물질의 입자 사이즈를 제어함으로써 수백 나노급의 세라믹 분말을 합성할 수 있다. According to the present invention, in the manufacture of ceramic nanoparticles, it is possible to synthesize several hundred nanoscale ceramic powders by controlling the particle size of the initial material.

또한, 본 발명에 의하면 다양한 산업분야에 적용 가능한 나노입자를 제조할 수 있으며, 전장용 MLCC 등 고품질, 고기능성 세라믹 제품의 원천기술을 확보하는데 기여할 수 있다. In addition, according to the present invention, nanoparticles applicable to various industrial fields can be manufactured, and it can contribute to securing original technology for high-quality and highly functional ceramic products such as MLCC for electric vehicles.

도 1a 및 1b는 출발 물질의 입도 제어 없이 합성한 BNT계 세라믹 분말의 입자 사이즈
도 2는 본 발명에 따른 BNT계 세라믹 나노 분말 합성 공정의 순서도
도 3은 본 발명으로 얻어진 BNT계 세라믹 나노 분말의 XRD 그래프
도 4a 및 4b는 본 발명의 실시예1 및 실시예2에 따라 얻어진 BNT계 세라믹 나노 분말의 입자사이즈 분포도
도 5는 분쇄 시 지르코니아볼 사이즈에 따른 span 변화 그래프
도 6a 내지 6d는 지르코니아볼 사이즈에 따른 BNT계 세라믹의 미세구조 변화 사진
1a and 1b show the particle size of BNT-based ceramic powder synthesized without controlling the particle size of the starting material.
2 is a flowchart of a BNT-based ceramic nanopowder synthesis process according to the present invention
3 is an XRD graph of the BNT-based ceramic nanopowder obtained by the present invention
4a and 4b are particle size distribution diagrams of BNT-based ceramic nanopowders obtained according to Examples 1 and 2 of the present invention;
5 is a graph of span change according to zirconia ball size during grinding
6a to 6d are photographs of microstructure changes of BNT-based ceramics according to zirconia ball sizes;

본 발명은 출발물질 중 일부 물질의 입자 사이즈를 제어한 후 고상반응을 통해 나노 사이즈 세라믹 분말을 합성하는 새로운 방법을 제안한다.The present invention proposes a new method of synthesizing nano-sized ceramic powder through a solid-state reaction after controlling the particle size of some of the starting materials.

출발물질의 입자 사이즈 제어를 통해 고상 반응을 더욱 촉진시킬 수 있고, 열처리가 완료된 반응물의 분쇄 결과, 최종 나노 분말의 사이즈를 더 미세하게 제어할 수 있다. 이와 같은 상부하향식의 나노입자 합성 방법을 통해 고기능성 MLCC용 BNT계 세라믹 고용체 분말을 얻을 수 있다.The solid phase reaction can be further promoted by controlling the particle size of the starting material, and as a result of pulverization of the heat-treated reactant, the size of the final nanopowder can be more finely controlled. Through such a top-down method of synthesizing nanoparticles, a highly functional BNT-based ceramic solid solution powder for MLCC can be obtained.

본 발명의 나노 사이즈 세라믹 분말 제조 방법은 BNT계 나노 세라믹 분말의 평균 입경(D50)을 500nm 미만 수준으로 제어할 수 있고, 상부하향식 프로세스를 이용한 BNT계 MLCC 제조 공정에 활용될 수 있다. 본 발명은 특히 시작 물질의 밀링 공정을 이용하여 최종 고상 반응물의 나노 사이즈 분쇄 가능성을 확인하였고, 각 제조 단계별로 볼 사이즈, 혼합물의 함량, 용매 등과 같은 공정 조건을 변화하면서 얻어지는 입자의 입도 분포 평가를 통해서 최적의 분쇄 조건을 도출하였다.The nano-sized ceramic powder manufacturing method of the present invention can control the average particle diameter (D50) of the BNT-based nano-ceramic powder to a level of less than 500 nm, and can be used in a BNT-based MLCC manufacturing process using a top-down process. In the present invention, in particular, the possibility of nano-sized grinding of the final solid-state reactant was confirmed using the milling process of the starting material, and the particle size distribution of the particles obtained while changing the process conditions such as ball size, mixture content, solvent, etc. at each manufacturing step was evaluated. Through this, optimal grinding conditions were derived.

본 발명에서 제안하는 출발물질의 입도 제어 공정을 통하여 상부하향식 형태로 세라믹 나노입자를 제조하는 다양한 프로세서를 발전시킬 수 있으며, 적층형세라믹콘덴서 외에도 나노사이즈가 요구되는 다른 세라믹 제품의 제조에 응용될 수 있다.Through the particle size control process of the starting material proposed in the present invention, various processors for manufacturing ceramic nanoparticles in a top-down type can be developed, and other than multilayer ceramic capacitors, it can be applied to the manufacture of other ceramic products requiring nanosize. .

본 발명에 따라 완성되는 세라믹 고용체 분말은 다음의 화학식으로 표시될 수 있고, Bi1 - xNaxTiO3 (0≤x<0.5), 출발물질 입도 제어, 고상 반응을 위한 열처리, 및 고상 반응물의 분쇄를 통해 얻어지는 최종 세라믹 나노입자의 입자사이즈는 평균 크기가 300 ~ 500nm 의 범위로서 고강도, 고기능성 MLCC 재료로 사용될 수 있다. 특히 전장 상황과 같이 극한의 조건에 견딜 수 있는 MLCC 재료에 적합하다. The ceramic solid solution powder completed according to the present invention may be represented by the following chemical formula, Bi 1 - x Na x TiO 3 (0≤x<0.5), starting material particle size control, heat treatment for solid-state reaction, and solid-state reactant The particle size of the final ceramic nanoparticles obtained through grinding has an average size in the range of 300 to 500 nm, and can be used as a high-strength, high-functional MLCC material. In particular, it is suitable for MLCC materials that can withstand extreme conditions such as battlefield conditions.

세라믹 원료를 제조함에 있어 고상반응법은 가장 널리 사용되는 방법으로 고체상태의 시료가 강한 에너지로 부딪힘으로 반응이 시작되기 때문에 초기 재료의 접촉면적에 따라 반응 정도가 다르며 입자간 사이즈를 고르게 하여 균일한 반응을 유도해야 한다. 출발원료의 입자사이즈가 일정할수록 합성시 균일한 사이즈의 물질을 얻을 수 있다. BNT계 세라믹의 초기 출발 물질인 Bi2O3, Na2CO3, TiO2의 입도를 확인한 결과 Bi2O3와 TiO2의 평균입도인 D50은 각각 8.6㎛과 6.0㎛ 이하지만 Na2CO3는 18.6㎛ 이상이며 입자가 균일하지 않았다. 이러한 출발 물질로 BNT 세라믹 분말을 합성하여 입도를 확인한 결과, 밀링 시간에 따라 다소 차이가 있었으나 전체적으로 마이크로 수준의 분말이 얻어졌다(도 1a 및 1b 참조).The solid-state reaction method is the most widely used method in manufacturing ceramic raw materials. Since the reaction starts when a sample in the solid state is hit with strong energy, the degree of reaction varies depending on the contact area of the initial material, and the size between particles is evenly distributed to obtain a uniform It should elicit a reaction. The more constant the particle size of the starting material, the more uniformly sized material can be obtained during synthesis. As a result of checking the particle size of Bi 2 O 3 , Na 2 CO 3 , and TiO 2 , which are the initial starting materials of BNT-based ceramics, the average particle size D50 of Bi 2 O 3 and TiO 2 is less than 8.6㎛ and 6.0㎛, respectively, but Na 2 CO 3 was 18.6 μm or more and the particles were not uniform. As a result of synthesizing the BNT ceramic powder with these starting materials and confirming the particle size, overall micro-level powder was obtained although there was a slight difference depending on the milling time (see FIGS. 1a and 1b).

이에 본 발명에서는 출발 물질 중 탄산나트륨을 일차적으로 분쇄하여 입도를 먼저 제어하고 이후 고상 반응을 균일하게 촉진시키고자 하였다. Na2CO3를 유성밀을 이용하여 300RPM 2시간 동안 분쇄한 결과 평균 입도는 4㎛으로 10㎛ 이하의 입도를 나타내었다. 출발 물질이 모두 10㎛ 이하인 재료를 사용하여 합성을 진행하고 열처리 후 고상반응이 완료된 고용체에 대해 최종 분쇄 시 밀링 조건을 변화시켜 나노 수준의 고품질 세라믹 분말을 완성하였다. 도 2는 본 발명에 따른 BNT계 세라믹 나노 분말 합성 공정의 순서도이다. Therefore, in the present invention, sodium carbonate among the starting materials was primarily pulverized to control the particle size first and then to uniformly promote the solid phase reaction. As a result of grinding Na 2 CO 3 using a planetary mill at 300 RPM for 2 hours, the average particle size was 4 μm, indicating a particle size of 10 μm or less. Synthesis was performed using materials whose starting materials were all 10 μm or less, and high-quality ceramic powder at the nano level was completed by changing the milling conditions during final grinding for the solid solution in which the solid phase reaction was completed after heat treatment. 2 is a flowchart of a BNT-based ceramic nanopowder synthesis process according to the present invention.

고상 반응의 출발물질 중 탄산나트륨(Na2CO3)을 분쇄한다. 탄산나트륨의 분쇄는 고순도 지르코니아 용기에 탄산나트륨, 무수알코올, 및 지르코니아볼을 1 : 1.5 : 2의 부피비로 혼합하고, 지르코니아 용기의 1/3 ~ 1/4 수준으로 채운 상태에서 250 ~ 400RPM으로 1 ~ 2시간동안 분쇄하는 과정을 포함할 수 있다. 분쇄된 탄산나트륨을 건조기를 이용하여 무수알코올을 제거하고 분말상태로 건조한다. Among the starting materials of the solid phase reaction, sodium carbonate (Na 2 CO 3 ) is pulverized. Sodium carbonate is pulverized by mixing sodium carbonate, anhydrous alcohol, and zirconia balls in a volume ratio of 1: 1.5: 2 in a high-purity zirconia container, and filling the zirconia container to 1/3 to 1/4 level, and 1 to 2 at 250 to 400 RPM. It may include a process of crushing for a period of time. Anhydrous alcohol is removed from the pulverized sodium carbonate using a dryer and dried in a powder state.

다음으로, 고상 반응의 출발물질로서 상기 분쇄된 탄산나트륨 분말과 비스무스옥사이드(Bi2O3) 분말 및 티타늄옥사이드(TiO2) 분말을 혼합한다. 출발물질의 혼합물을 무수알코올 및 지르코니아볼과 1 : 1.5 : 2의 부피비로 혼합하고, 상기 혼합물을 유성밀을 이용하여 고속으로 혼합한 후, 건조한다. 고속으로 혼합하는 과정에서 1차 고체상태반응이 일어난다. 고상 반응을 통해 산화물 형태의 출발물질 간의 강한 에너지에 의해 표면 부딪힘이 발생하고 이러한 표면반응이 후속 열처리 과정 및 최종 분쇄 과정에서 보다 미세한 나노 입자를 얻을 수 있게 힌다. Next, the pulverized sodium carbonate powder, bismuth oxide (Bi 2 O 3 ) powder, and titanium oxide (TiO 2 ) powder are mixed as starting materials for the solid phase reaction. A mixture of starting materials is mixed with anhydrous alcohol and zirconia balls in a volume ratio of 1:1.5:2, and the mixture is mixed at high speed using a planetary mill, and then dried. In the process of mixing at high speed, the first solid state reaction occurs. Through the solid phase reaction, surface collision occurs due to strong energy between the starting materials in the form of oxides, and this surface reaction helps to obtain finer nanoparticles in the subsequent heat treatment process and final grinding process.

고속혼합된 분말혼합물을 건조 후 열처리하고 고상반응이 완료된 반응물은 최종적으로 분쇄하여 나노 세라믹입자를 얻는다. 분말 혼합물은 건조 후 700 ~ 900℃의 범위에서 열처리할 수 있다. 열처리한 고상 반응물은 유성밀 장비로 1 ~ 2mm 지르코니아볼과 무수알코올을 이용하여 고속 밀링할 수 있다. The powder mixture mixed at high speed is dried, heat-treated, and the solid-state reaction is finally pulverized to obtain nano ceramic particles. The powder mixture may be heat treated in the range of 700 ~ 900 ℃ after drying. The heat-treated solid reactant can be milled at high speed using planetary mill equipment with 1 to 2 mm zirconia balls and absolute alcohol.

이하에서는 실시예와 비교예를 통해 본 발명에 따른 BNT계 나노 세라믹 분말의 합성 공정 및 그 결과를 보다 상세하게 설명한다. Hereinafter, the synthesis process and results of the BNT-based nano ceramic powder according to the present invention will be described in more detail through Examples and Comparative Examples.

실시예Example 1 One

무연 압전 세라믹스인 Bi1 - xNaxTiO3(BNT) 제조공정의 초기 물질로서 탄산나트륨을 분쇄하는 공정을 먼저 진행하였다. As an initial material for the manufacturing process of lead-free piezoelectric ceramics, Bi 1 - x Na x TiO 3 (BNT), a process of pulverizing sodium carbonate was first performed.

탄산나트륨의 분쇄는 탄산나트륨 분말과 무수알코올과 지르코니아볼을 1 : 1.5 : 2의 부피비로 밀링 용기에 혼합하고, 분쇄시 사용되는 고순도 지르코니아 용기의 1/4 수준으로 채운 후 300rpm으로 2시간 동안 진행하였다. 분쇄된 탄산나트륨은 80℃에서 12시간 가량 순환건조기장치에서 건조를 수행하였다. Sodium carbonate was pulverized by mixing sodium carbonate powder, anhydrous alcohol, and zirconia balls in a volume ratio of 1: 1.5: 2 in a milling container, filling it with 1/4 of the high-purity zirconia container used for grinding, and proceeding at 300 rpm for 2 hours. The pulverized sodium carbonate was dried in a circulation dryer at 80° C. for about 12 hours.

분쇄 및 건조된 탄산나트륨과 비스무스옥사이드 (Bi2O3)과 티타늄옥사이드(TiO2)를 지르코니아 용기에 넣고, 출발물질의 총 부피와 무수알코올 및 지르코니아볼의 부피비가 1 : 1.5 : 2의 비율로 혼합하고, 출발물질과 무수알코올과 지르코니아의 총 부피를 지르코니아 용기의 1/4 이하가 되도록 한 상태에서 혼합하였다. 혼합된 물질은 고속밀링기를 이용하여 300rpm으로 2시간 동안 혼합하였고, 이후 80℃에서 12시간 가량 순환건조기장치에서 건조하였다. The crushed and dried sodium carbonate, bismuth oxide (Bi 2 O 3 ), and titanium oxide (TiO 2 ) were put in a zirconia container, and the total volume of the starting material, anhydrous alcohol, and zirconia balls were mixed at a ratio of 1: 1.5: 2. Then, the total volume of the starting material, anhydrous alcohol, and zirconia were mixed in such a state that the total volume was less than 1/4 of the zirconia container. The mixed materials were mixed for 2 hours at 300 rpm using a high-speed milling machine, and then dried at 80° C. for about 12 hours in a circulation dryer.

건조된 분말은 700℃에서 2시간 동안 열처리하여 고상반응을 완료하였다. 열처리가 완료된 BNT계 세라믹 분말을 무수알코올 및 1mm 지르코니아볼의 부피비가 1 : 1.5 : 2의 비율이 되도록 밀링 용기에 혼합하였고, 고속밀링기를 이용하여 300rpm으로 3시간 동안 최종 분쇄를 수행하였다. 분쇄가 완료된 BNT계 세라믹 분말의 분쇄 시간에 따른 입자 사이즈를 표 1에 나타내었다. 분말의 입자사이즈는 수백나노미터 수준임을 알 수 있다. The dried powder was heat-treated at 700° C. for 2 hours to complete the solid phase reaction. The heat-treated BNT-based ceramic powder was mixed with anhydrous alcohol and 1 mm zirconia balls at a volume ratio of 1:1.5:2 in a milling container, and final grinding was performed at 300 rpm for 3 hours using a high-speed mill. Table 1 shows the particle size according to the grinding time of the BNT-based ceramic powder after grinding. It can be seen that the particle size of the powder is on the order of hundreds of nanometers.

Figure 112020134561512-pat00001
Figure 112020134561512-pat00001

도 3은 본 실시예에 따른 방법으로 BNT계 세라믹 나노 분말의 XRD를 나타낸 그래프이다. 도시된 바와 같이, 본 발명에 따른 세라믹스 분말은 이차상이 거의 없는 상태로 존재하는 것을 확인할 수 있다. 도 4a는 본 실시예에 따라 얻어진 BNT계 세라믹 나노 분말의 입자사이즈 분포 그래프로서, 전체적으로 평균 입자사이즈(D50) 중심으로 입자 사이즈가 균일하게 분포되어 있는 것을 알 수 있으며, 분쇄 시간이 증가할수록 평균 입자사이즈가 줄어든 것을 확인할 수 있다.3 is a graph showing XRD of the BNT-based ceramic nanopowder by the method according to the present embodiment. As shown, it can be confirmed that the ceramic powder according to the present invention exists in a state with almost no secondary phase. FIG. 4a is a particle size distribution graph of the BNT-based ceramic nanopowder obtained according to this embodiment. It can be seen that the particle size is uniformly distributed around the average particle size (D50) as a whole, and as the grinding time increases, the average particle size is uniformly distributed. You can see that the size has decreased.

실시예Example 2 2

실시예 1에서와 동일한 공정으로 BNT계 세라믹 분말을 합성하였으며, 열처리가 완료된 세라믹 분말의 최종 분쇄 공정에서 실시예 1과 달리 2mm 지르코니아볼을 사용하여 분쇄를 진행하였다. 분쇄가 완료된 BNT계 세라믹 분말의 분쇄 시간에 따른 입자 사이즈를 표 2에 나타내었다. 분말의 입자사이즈는 수백나노미터 수준임을 알 수 있다. 도 4b는 본 실시예에 따라 얻어진 BNT계 세라믹 나노 분말의 입자사이즈 분포 그래프로서, 전체적으로 평균 입자사이즈(D50) 중심으로 입자 사이즈가 균일하게 분포되어 있는 것을 알 수 있다. BNT-based ceramic powder was synthesized in the same process as in Example 1, and unlike Example 1, 2 mm zirconia balls were used for grinding in the final grinding process of the heat-treated ceramic powder. Table 2 shows the particle size according to the pulverization time of the pulverized BNT-based ceramic powder. It can be seen that the particle size of the powder is on the order of hundreds of nanometers. 4B is a particle size distribution graph of the BNT-based ceramic nanopowder obtained according to the present embodiment, and it can be seen that the particle size is uniformly distributed around the average particle size (D50) as a whole.

Figure 112020134561512-pat00002
Figure 112020134561512-pat00002

비교예comparative example 1 One

실시예 1에서와 동일한 공정으로 BNT계 세라믹 분말을 합성하였으며, 출발물질 중 탄산나트륨의 초기 입자사이즈 제어를 위한 분쇄 공정은 수행하지 않았다. 분쇄가 완료된 BNT계 세라믹 분말의 분쇄 시간에 따른 입자 사이즈를 표 3에 나타내었다. 얻어진 분말의 입자사이즈는 실시예 1과 비교하여 더 큰 사이즈를 나타내는 것을 알 수 있다. BNT-based ceramic powder was synthesized in the same process as in Example 1, and a grinding process for controlling the initial particle size of sodium carbonate in the starting material was not performed. Table 3 shows the particle size according to the grinding time of the BNT-based ceramic powder after grinding. It can be seen that the particle size of the obtained powder is larger than that of Example 1.

Figure 112020134561512-pat00003
Figure 112020134561512-pat00003

비교예comparative example 2 2

실시예 2에서와 동일한 공정으로 BNT계 세라믹 분말을 합성하였으며, 출발물질 중 탄산나트륨의 초기 입자사이즈 제어를 위한 분쇄 공정은 수행하지 않았다. 분쇄가 완료된 BNT계 세라믹 분말의 분쇄 시간에 따른 입자 사이즈를 표 4에 나타내었다. 얻어진 분말의 입자사이즈는 실시예 2와 비교하여 더 큰 사이즈를 나타내는 것을 알 수 있다. BNT-based ceramic powder was synthesized in the same process as in Example 2, and a grinding process for controlling the initial particle size of sodium carbonate in the starting material was not performed. Table 4 shows the particle size according to the grinding time of the BNT-based ceramic powder after grinding. It can be seen that the particle size of the obtained powder is larger than that of Example 2.

Figure 112020134561512-pat00004
Figure 112020134561512-pat00004

지르코니아볼zirconia ball 사이즈의 영향 size effect

유성밀을 이용한 분쇄에서 볼의 크기는 중요한 요소이며, 볼 사이즈와 회전 속도에 따라서 물질의 입자 사이즈가 영향을 받을 수 있다. 본 실시예에서는 500nm 이하의 BNT를 제조하기 위하여 700℃에서 2시간 동안 열처리한 BNT를 분쇄시 1mm 및 2mm 볼을 이용하여 기존의 5mm를 이용하여 합성할 경우와 비교하였다. 이때 분말: 용매 : 지르코니아볼 부피비는 모두 동일하게 1 : 1.5 : 2 를 유지하였고, 유성밀을 이용하여 300rpm의 속도로 진행하였다. The ball size is an important factor in grinding using a planetary mill, and the particle size of the material can be affected by the ball size and rotation speed. In this example, in order to manufacture BNTs of 500 nm or less, heat treatment at 700 ° C. for 2 hours was compared with the case of synthesizing BNTs using 1 mm and 2 mm balls when pulverizing with conventional 5 mm balls. At this time, the powder: solvent: zirconia ball volume ratio was maintained at the same 1: 1.5: 2, and the process was performed at a speed of 300 rpm using a planetary mill.

입도분포의 10%, 50%, 90%의 입자사이즈를 나타내는 D10, D90, D50 값을 이용하여 Span값을 구한 결과, 1mm 지르코니아 볼을 이용한 경우가 가장 우수한 값을 나타내었다(도 5 참조). Span 값은 입자의 분포가 얼마나 중간지점 사이즈에 가까운지를 나타내며, 이 값이 작을수록 균일한 크기의 입자로 구성되어 있음을 나타낸다. As a result of obtaining the span value using D10, D90, and D50 values representing 10%, 50%, and 90% of the particle size of the particle size distribution, the case using a 1mm zirconia ball showed the best value (see FIG. 5). The span value indicates how close the particle distribution is to the midpoint size, and the smaller this value is, the more uniformly sized the particle is.

Figure 112020134561512-pat00005
Figure 112020134561512-pat00005

작은 볼은 더 낮은 충격 에너지를 제공하지만 분쇄가 진행됨에 따라서 분말과 접촉하는 비표면적이 크기 때문에 더 세밀한 분쇄가 가능하다, 반면 큰 볼은 볼과 볼 사이의 공간에 따른 입자의 응집을 유발하기 때문에 일정 수준의 분쇄가 이루어진 후 오히려 분쇄에 의한 입자사이즈 감소의 효과가 크게 증가하지 않는다. 1mm지르코니아 볼과 2mm 지르코니아볼을 사용시 500nm급의 BNT를 제조할 수 있었으며, 특히 1mm 지르코니아 볼을 사용시 3시간 분쇄한 결과 446nm정도의 입자를 얻을 수 있었다. 반면 5mm 지르코니아 볼을 이용하여 3시간 동안 분쇄한 경우 표5의 결과와 같이 D50이 1.43㎛로서 마이크로 수준의 입자 사이즈에 머무른 것을 확인하였다. Smaller balls provide lower impact energy, but as grinding progresses, finer grinding is possible because the specific surface area in contact with the powder is larger. On the other hand, larger balls cause particle aggregation along the space between balls After a certain level of pulverization is achieved, the effect of reducing the particle size by pulverization does not increase significantly. When 1mm zirconia balls and 2mm zirconia balls were used, 500nm class BNTs could be produced, and in particular, when 1mm zirconia balls were used, particles of about 446nm were obtained as a result of pulverization for 3 hours. On the other hand, when grinding for 3 hours using a 5mm zirconia ball, it was confirmed that the D50 remained at the micro-level particle size as 1.43㎛, as shown in Table 5.

Figure 112020134561512-pat00006
Figure 112020134561512-pat00006

열처리가 완료된 BNT계 고용체의 분쇄 시 지르코니아볼 사이즈에 따른 최종 분말의 미세구조 변화를 확인하였다. 도 6a는 전술한 비교예1과 같이 출발 물질 중 탄산나트륨에 대한 입도 제어 없이 합성한 BNT계 세라믹 분말의 미세구조로서 입자 사이즈가 불균일하고 전체적으로 입자가 큰 것을 알 수 있다. 반면, 도 6b 내지 6d는 탄산나트륨을 분쇄한 후 BNT계 세라믹 분말을 제조한 것이다, 도 6b와 6c는 각각 최종 고상반응물의 분쇄 시 1mm 및 2mm 사이즈의 지르코니아볼을 사용한 것으로 전체적으로 균일하고 작은 고용체 입자들이 분포된 것을 볼 수 있다. 한편, 도 6d는 5mm 사이즈의 지르코니아볼을 사용한 것으로 입자 사이즈가 다소 줄어들긴 하였으나 전체적으로 균일하지 않은 고용체 입자들이 분포된 것을 알 수 있다.When the heat-treated BNT-based solid solution was pulverized, the microstructure change of the final powder according to the size of the zirconia ball was confirmed. FIG. 6a shows the microstructure of the BNT-based ceramic powder synthesized without controlling the particle size of sodium carbonate among the starting materials, as in Comparative Example 1 described above. On the other hand, FIGS. 6b to 6d show that BNT-based ceramic powder was prepared after grinding sodium carbonate. FIGS. 6b and 6c show that 1mm and 2mm zirconia balls were used when grinding the final solid reactant, respectively, and uniform and small solid solution particles were obtained. distribution can be seen. Meanwhile, FIG. 6D shows that zirconia balls having a size of 5 mm are used, and although the particle size is somewhat reduced, it can be seen that the solid solution particles are not uniform throughout.

이와 같은 실시예 및 비교예의 결과로부터, 출발물질의 입도 제어 및 열처리 공정 후 분쇄 시 공정 제어를 통해 BNT계 고품질 나노입자를 제조할 수 있고, 이러한 고품질 나노 사이즈 세라믹 분말은 고밀도의 소결이 가능할 뿐만 아니라 세라믹 성형밀도의 불균일성을 제어할 수 있음을 확인하였다. 본 발명의 세라믹 분말 합성 공정의 기술적 특징을 통해 고강도를 갖는 다층구조 세라믹 강유전 시트를 제조하는데 활용할 수 있어 고신뢰성 MLCC 개발이 가능할 것으로 기대된다. From the results of these Examples and Comparative Examples, BNT-based high-quality nanoparticles can be manufactured through control of the particle size of the starting material and process control during grinding after the heat treatment process, and these high-quality nano-sized ceramic powders can be sintered at high density as well as It was confirmed that the non-uniformity of ceramic molding density can be controlled. Through the technical characteristics of the ceramic powder synthesis process of the present invention, it is expected that it will be possible to develop highly reliable MLCCs because it can be used to manufacture multi-layered ceramic ferroelectric sheets having high strength.

이상에서 바람직한 실시예를 통하여 본 발명을 예시적으로 설명하였으나, 본 발명은 이와 같은 특정 실시예에만 한정되는 것은 아니며 본 발명에서 제시한 기술적 사상, 구체적으로는 특허청구범위에 기재된 범주 내에서 다양한 형태로 수정, 변경, 또는 개선될 수 있을 것이다.Although the present invention has been illustratively described through preferred embodiments above, the present invention is not limited to such specific embodiments, and various forms are provided within the scope of the technical idea presented in the present invention, specifically, the claims. may be modified, changed, or improved.

Claims (3)

고상 반응의 출발물질 중 탄산나트륨(Na2CO3)을 무수알코올에 분쇄하는 단계,
분쇄된 탄산나트륨을 건조기를 이용하여 무수알코올을 제거하고 분말상태로 건조하는 단계,
고상 반응의 출발물질로서 상기 분쇄된 탄산나트륨 분말과 비스무스옥사이드(Bi2O3) 분말 및 티타늄옥사이드(TiO2) 분말의 혼합물을 용매 및 지르코니아볼과 혼합하는 단계,
상기 혼합물을 밀링 장치를 이용하여 고속으로 혼합하는 단계,
고속 혼합된 분말 혼합물을 건조하는 단계,
건조된 분말 혼합물을 열처리하여 고상 반응시키는 단계,
열처리한 고상 반응물을 밀링 장치를 이용하여 분쇄하여 나노사이즈 분말을 제조하는 단계를 포함하며,
출발물질 중 탄산나트륨의 분쇄는 고순도 지르코니아 용기에 탄산나트륨, 용매 및 지르코니아볼을 혼합하여 지르코니아 용기에 채우고 250 ~ 400RPM으로 1 ~ 2시간 동안 분쇄하여 평균입도가 10㎛ 이하가 되도록 분쇄하고,
상기 나노사이즈 분말은 하기 화학식으로 표시되는 고용체이며,
Bi1-xNaxTiO3, 여기서 0≤x<0.5
제조된 나노사이즈 분말의 입자사이즈는 평균 300 ~ 500nm 의 범위인 것을 특징으로 하는
MLCC용 BNT계 나노사이즈 분말 제조방법.
Grinding sodium carbonate (Na 2 CO 3 ) in anhydrous alcohol among the starting materials of the solid phase reaction;
Removing anhydrous alcohol from the pulverized sodium carbonate using a dryer and drying it in a powder state;
Mixing a mixture of the pulverized sodium carbonate powder, bismuth oxide (Bi 2 O 3 ) powder, and titanium oxide (TiO 2 ) powder with a solvent and zirconia balls as a starting material for a solid phase reaction;
Mixing the mixture at high speed using a milling device;
drying the high speed blended powder mixture;
Solid state reaction by heat treatment of the dried powder mixture;
Preparing a nano-sized powder by pulverizing the heat-treated solid reactant using a milling device,
The pulverization of sodium carbonate among the starting materials is performed by mixing sodium carbonate, solvent, and zirconia balls in a high-purity zirconia container, filling the zirconia container, and pulverizing at 250 to 400 RPM for 1 to 2 hours to have an average particle size of 10 μm or less,
The nano-sized powder is a solid solution represented by the following chemical formula,
Bi 1-x Na x TiO 3 , where 0≤x<0.5
Characterized in that the particle size of the prepared nano-sized powder ranges from 300 to 500 nm on average.
Manufacturing method of BNT-based nano-sized powder for MLCC.
삭제delete 제1항에 있어서,
상기 분말 혼합물은 건조 후 700 ~ 900℃의 범위에서 열처리하여 고상 반응을 진행하고, 열처리한 고상 반응물은 1 ~ 2mm 지르코니아볼을 이용하여 고속 밀링하는 것을 특징으로 하는 MLCC용 BNT계 나노사이즈 분말 제조방법.
According to claim 1,
The powder mixture is heat-treated in the range of 700 ~ 900 ℃ after drying to proceed with the solid-phase reaction, and the heat-treated solid-phase reactant is a BNT-based nano-size powder manufacturing method for MLCC, characterized in that high-speed milling using 1-2 mm zirconia balls .
KR1020200173075A 2020-12-11 2020-12-11 Preparation of nano size BNT ceramic powder for MLCC KR102529316B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200173075A KR102529316B1 (en) 2020-12-11 2020-12-11 Preparation of nano size BNT ceramic powder for MLCC

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200173075A KR102529316B1 (en) 2020-12-11 2020-12-11 Preparation of nano size BNT ceramic powder for MLCC

Publications (2)

Publication Number Publication Date
KR20220083145A KR20220083145A (en) 2022-06-20
KR102529316B1 true KR102529316B1 (en) 2023-05-03

Family

ID=82249952

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200173075A KR102529316B1 (en) 2020-12-11 2020-12-11 Preparation of nano size BNT ceramic powder for MLCC

Country Status (1)

Country Link
KR (1) KR102529316B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200273620A1 (en) 2019-02-27 2020-08-27 Aegis Technology Inc. Method For Manufacturing Spherical Ceramic-Glass Nanocomposite Dielectrics For Multilayer Ceramic Capacitor Applications

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090088991A (en) * 2008-02-18 2009-08-21 창원대학교 산학협력단 Pb-free ceramic composite of bi series and fabrication method thereof
KR101029027B1 (en) * 2009-01-13 2011-04-15 충주대학교 산학협력단 Bnbt6 piezoelectric ceramics and method for manufacturing the same
KR20190116690A (en) * 2018-04-05 2019-10-15 울산대학교 산학협력단 Lead-free piezoelectric ceramic composition, and preparation method thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200273620A1 (en) 2019-02-27 2020-08-27 Aegis Technology Inc. Method For Manufacturing Spherical Ceramic-Glass Nanocomposite Dielectrics For Multilayer Ceramic Capacitor Applications

Also Published As

Publication number Publication date
KR20220083145A (en) 2022-06-20

Similar Documents

Publication Publication Date Title
KR100674846B1 (en) Method for manufacturing dielectric ceramic powder, and multilayer ceramic capacitor using the seramic powder
Mao et al. Size-dependences of the dielectric and ferroelectric properties of BaTiO3/polyvinylidene fluoride nanocomposites
KR101104627B1 (en) Barium titanate nano powder and method for fabricating the same
JP4758872B2 (en) Method for producing barium titanate powder
JP2002234769A (en) Method for producing barium titanate powder, barium titanate powder, dielectric ceramic and multilayer ceramic capacitor
JP2002255552A (en) Barium titanate powder and method for producing the same
Liu et al. Realization of temperature insensitive high energy storage performance via introducing NaNbO3 into NBT-KBT system
JP2009161425A (en) Manufacturing method of dysprosium oxide nanoparticles and manufacturing method of dysprosium oxide nanosole
Choi et al. Enhancement of dielectric properties and microstructure control of BaTiO3 by seed-induced solid-state synthesis
Ryu et al. Solid-state synthesis of nano-sized BaTiO 3 powder with high tetragonality
KR20100073704A (en) Methods of manufacturing complex oxide nano particles and complex oxide nano particles manufactured thereby
Jin et al. Enhanced energy storage performance of lead-free BaTiO3-K0. 5Na0. 5NbO3 via grain engineering
Younas et al. Fabrication of La 3+ doped Ba 1− x La x TiO 3 ceramics with improved dielectric and ferroelectric properties using a composite-hydroxide-mediated method
JP5046044B2 (en) Method for producing magnesium oxide nanoparticles and method for producing magnesium oxide nanoparticles
KR102529316B1 (en) Preparation of nano size BNT ceramic powder for MLCC
KR20110074486A (en) Method for manufacturing dielectric ceramic material
CN100392779C (en) Fine crystal ceramic capacitor dielectric material with high dielectric coefficient and process for preparing same
JP5142468B2 (en) Method for producing barium titanate powder
KR102661174B1 (en) Preparation of ceramic nanoparticle
JP2005104782A (en) Slurry, green sheet, stacked electronic component and their manufacturing methods
JP4280184B2 (en) Method for producing scaly base metal powder and conductive paste
CN1139948C (en) Prepn. of nanoemter level laminated ceramic capacitor dielectric material
KR102555686B1 (en) Manufacturing method of barium titanate powder
KR102097331B1 (en) Silica and dispersion method of silica
CN100354996C (en) Process for preparing low frequency fine crystal ceramic capacitor dielectric material

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant