KR102524107B1 - Manufacturing Method of Cylindrical Target - Google Patents

Manufacturing Method of Cylindrical Target Download PDF

Info

Publication number
KR102524107B1
KR102524107B1 KR1020220074621A KR20220074621A KR102524107B1 KR 102524107 B1 KR102524107 B1 KR 102524107B1 KR 1020220074621 A KR1020220074621 A KR 1020220074621A KR 20220074621 A KR20220074621 A KR 20220074621A KR 102524107 B1 KR102524107 B1 KR 102524107B1
Authority
KR
South Korea
Prior art keywords
alloy
bag tube
sintering
target
based material
Prior art date
Application number
KR1020220074621A
Other languages
Korean (ko)
Other versions
KR20220092823A (en
Inventor
박은수
이주호
이병언
Original Assignee
주식회사 이엠엘
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 이엠엘 filed Critical 주식회사 이엠엘
Priority to KR1020220074621A priority Critical patent/KR102524107B1/en
Publication of KR20220092823A publication Critical patent/KR20220092823A/en
Application granted granted Critical
Publication of KR102524107B1 publication Critical patent/KR102524107B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F3/15Hot isostatic pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3414Targets
    • H01J37/3423Shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3488Constructional details of particle beam apparatus not otherwise provided for, e.g. arrangement, mounting, housing, environment; special provisions for cleaning or maintenance of the apparatus
    • H01J37/3491Manufacturing of targets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Analytical Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Physical Vapour Deposition (AREA)
  • Powder Metallurgy (AREA)

Abstract

본 발명의 목적은 고효율의 Zr 합금계 실린더 타겟을 제공하되, 인듐 본딩 없이 소결을 통해 백 튜브에 결합된 Zr 합금계 실린더 타겟을 제공하고자 하는 것이다.
즉, 공정 중 인듐 본딩이 용융되는 문제를 방지하고, Zr계 합금과 백 튜브 사이에 열팽창계수의 차이로 인한 타겟 스트레스 문제를 해결하고자 한다.
상기 목적에 따라 본 발명은, Zr 합금과 열팽창 계수가 비슷한 Ti 계 소재을 백 튜브로 택하고, 스테인레스스틸 캔을 제작하여 상기 백 튜브를 에워싸도록 배치하고, 상기 캔 안에 Zr 합금 분말을 넣고 HIP(Hot Isostatic Pressure) 소결을 실시하여 Ti 계 소재 백 튜브에 Zr 합금 타겟을 결합시키고, 캔을 제거하여 Zr 합금계 실린더 타겟을 제조한다.
An object of the present invention is to provide a high-efficiency Zr alloy-based cylinder target, but to provide a Zr alloy-based cylinder target bonded to a bag tube through sintering without indium bonding.
That is, the problem of melting the indium bonding during the process is prevented, and the problem of target stress due to the difference in thermal expansion coefficient between the Zr-based alloy and the bag tube is to be solved.
In accordance with the above object, the present invention takes a Ti-based material having a similar coefficient of thermal expansion to Zr alloy as a bag tube, manufactures a stainless steel can and arranges it to surround the bag tube, puts Zr alloy powder in the can and HIP ( Hot Isostatic Pressure) sintering is performed to bond the Zr alloy target to the Ti-based material bag tube, and the can is removed to prepare a Zr alloy-based cylinder target.

Description

실린더 타겟의 제조방법{Manufacturing Method of Cylindrical Target}Manufacturing method of cylinder target {Manufacturing Method of Cylindrical Target}

본 발명은 표면처리에 사용되는 스퍼터링용 타겟 제조방법에 관한 것으로, 좀 더 상세하게는 스퍼터링용 고효율 실린더 타켓의 제조에 관한 것이다. The present invention relates to a method for manufacturing a target for sputtering used for surface treatment, and more particularly, to the manufacture of a high-efficiency cylinder target for sputtering.

실린더 타겟은 평판형 타겟에 비해 사용효율이 매우 높다. 평판 타겟이 일정 부분만 집중 침식되어 30~40% 정도의 사용효율을 지니는 반면, 실린더 타겟은 회전되며 침식되기 때문에 80% 수준의 사용효율을 나타낸다. 이와 같은 실린더 타겟은 스퍼터링 공정에 사용되고 있으며, 특히, 고경도, 고온 내성이 필요한 곳에 적용되는 Zr 합금계 코팅의 경우, 코팅재 및 타겟이 고가이기 때문에 더더욱 고효율의 실린더 타겟을 선호하고 있다. Zr 합금계 실린더 타겟은 일반적으로 다음과 같이 제조되고 있다.Cylinder targets have very high usage efficiency compared to flat targets. A flat target has a usage efficiency of about 30 to 40% because only a certain part is intensively eroded, whereas a cylinder target shows a usage efficiency of 80% because it is rotated and eroded. Such a cylinder target is used in a sputtering process, and in particular, in the case of a Zr alloy-based coating applied where high hardness and high temperature resistance are required, a highly efficient cylinder target is preferred because the coating material and target are expensive. Zr alloy-based cylinder targets are generally manufactured as follows.

먼저, 캔 안에 Zr 합금 소재 분말을 넣고 탈가스 한 다음 고온/고압하에서 소결하고 캔을 제거한다. 내식성이 우수한 스테인레스스틸 백 튜브 표면에 소결품과 스테일레스스틸 본딩을 위한 인듐(In)을 코팅하고 특정 온도로 가열하여 본딩을 하게된다. 이와 같이 제조된 Zr계 실린더 타겟은 몇가지 문제를 지닌다.First, the Zr alloy material powder is put into the can, degassed, sintered under high temperature/high pressure, and the can is removed. The surface of the stainless steel bag tube with excellent corrosion resistance is coated with indium (In) for bonding the sintered product and stainless steel, and the bonding is performed by heating to a specific temperature. The Zr-based cylinder target thus produced has several problems.

즉, 백 튜브와 Zr 합금 타겟 사이에 본딩 역할을 하는 인듐이 타겟을 이용하는 표면처리 공정 중 용융되어 타겟이 부분적으로 박리가 일어나 소실된다. That is, indium that serves as a bonding between the bag tube and the Zr alloy target is melted during the surface treatment process using the target, and the target is partially peeled off and lost.

또한, 백 튜브인 스테인레스스틸과 Zr 합금 타겟간의 열팽창 계수의 차이로 인해 스트레스가 발생되어 크랙이 생기거나 박리된다. In addition, stress is generated due to a difference in thermal expansion coefficient between the bag tube stainless steel and the Zr alloy target, resulting in cracks or peeling.

요컨대, 고전력(High power) 인가시 냉각이 이루어지지 않으면 인듐 용융으로 타겟이 백 튜브로부터 분리되고, 스퍼터링 중 열팽창과 수축이 일어나 타겟이 파손된다. In short, if cooling is not performed when high power is applied, the target is separated from the bag tube due to indium melting, and thermal expansion and contraction occur during sputtering to damage the target.

공개특허 10-2017-0128580호는 실린더 타겟의 제작에 대해 기술하며, 여기서도 인듐 본딩을 실시하고 있어 같은 문제가 있을 수 있다. Publication No. 10-2017-0128580 describes the production of a cylinder target, and indium bonding is also performed here, so there may be the same problem.

따라서 본 발명의 목적은 고효율의 Zr 합금계 실린더 타겟을 제공하되, 인듐 본딩 없이 소결을 통해 백 튜브에 결합된 Zr 합금계 실린더 타겟을 제공하고자 하는 것이다. Therefore, an object of the present invention is to provide a high-efficiency Zr alloy-based cylinder target, but to provide a Zr alloy-based cylinder target bonded to a bag tube through sintering without indium bonding.

즉, 공정 중 인듐 본딩이 용융되는 문제를 방지하고, Zr계 합금과 백 튜브 사이에 열팽창계수의 차이로 인한 타겟 스트레스 문제를 해결하고자 한다. That is, the problem of melting the indium bonding during the process is prevented, and the problem of target stress due to the difference in thermal expansion coefficient between the Zr-based alloy and the bag tube is to be solved.

상기 목적에 따라 본 발명은, Zr 합금과 열팽창 계수가 비슷한 Ti 계 소재를 백 튜브 소재로 택하고, 스테인레스스틸 캔을 제작하여 상기 백 튜브를 에워싸도록 배치하고, 상기 캔 안에 Zr 합금 분말을 넣고 HIP(Hot Isostatic Pressure) 소결을 실시하여 Ti 계 소재 백 튜브에 Zr 합금 타겟을 결합시키고, 캔을 제거하여 Zr 합금계 실린더 타겟을 제조한다. According to the above object, the present invention selects a Ti-based material having a similar coefficient of thermal expansion to Zr alloy as a bag tube material, manufactures a stainless steel can, arranges it to surround the bag tube, and puts Zr alloy powder in the can HIP (Hot Isostatic Pressure) sintering is performed to bond the Zr alloy target to the Ti-based material bag tube, and the can is removed to prepare a Zr alloy-based cylinder target.

즉, 본 발명은,That is, the present invention,

Ti 계 소재 백 튜브를 준비하고, Prepare a Ti-based material bag tube,

스테인레스스틸 캔(Can)을 준비하여 상기 Ti 계 소재 백 튜브 주위를 에워싸듯 배치하고,Prepare a stainless steel can and place it around the Ti-based material bag tube,

상기 스테인레스스틸 캔 내부에 Zr 합금 분말을 채우고,Filling the inside of the stainless steel can with Zr alloy powder,

HIP(Hot Isostatic Pressure) 소결을 실시하여 Ti 계 소재 백 튜브에 Zr 합금 실린더 타겟이 일체화되게 하고,HIP (Hot Isostatic Pressure) sintering is performed so that the Zr alloy cylinder target is integrated with the Ti-based material bag tube,

소결이 종료되면, 상기 캔을 제거하고 완성된 백 튜브 일체형 실린더 타겟을 얻는 것을 특징으로 하는 실린더 타겟의 제조방법을 제공한다.When the sintering is completed, the can is removed to provide a method for manufacturing a cylinder target, characterized in that to obtain a completed bag tube integrated cylinder target.

상기에 있어서, Zr 합금 분말을 채운 다음, 진공분위기에서 탈가스(degassing) 과정을 실시하는 것을 특징으로 하는 실린더 타겟의 제조방법을 제공한다.In the above, after filling the Zr alloy powder, it provides a method for manufacturing a cylinder target, characterized in that performing a degassing process in a vacuum atmosphere.

상기에 있어서, HIP(Hot Isostatic Pressure) 소결을 실시할 때, 산화분위기를 제거하기 위해 비활성 가스를 소결 챔버 내에 공급하는 것을 특징으로 하는 실린더 타겟의 제조방법을 제공한다.In the above, when HIP (Hot Isostatic Pressure) sintering is performed, an inert gas is supplied into the sintering chamber to remove an oxidizing atmosphere.

상기에 있어서, Zr 합금은 Zr을 70wt% 이상 포함하는 것을 특징으로 하는 실린더 타겟의 제조방법을 제공한다.In the above, the Zr alloy provides a method for producing a cylinder target, characterized in that it contains 70wt% or more of Zr.

상기에 있어서, Ti 계 소재 백 튜브는, Ti, 또는 Ti 합금소재로서, Ti-grade1, Ti-grade2, 또는 Ti-grade5를 포함하는 것을 특징으로 하는 실린더 타겟의 제조방법을 제공한다.In the above, the Ti-based material bag tube provides a method for manufacturing a cylinder target, characterized in that it includes Ti-grade1, Ti-grade2, or Ti-grade5 as Ti or Ti alloy material.

상기에 있어서, Zr 합금은, ZrCuSi, ZrSi, ZrCoSi, 또는 ZrMoSi을 포함하는 것을 특징으로 하는 실린더 타겟의 제조방법을 제공한다.In the above, the Zr alloy provides a method for producing a cylinder target comprising ZrCuSi, ZrSi, ZrCoSi, or ZrMoSi.

또한, 본 발명은,In addition, the present invention,

Ti 계 소재 백 튜브;Ti-based bag tube;

상기 Ti 계 소재 백 튜브와 일체형으로 형성된 Zr 합금 소재를 포함하여 이루어지는 실린더 타겟으로서, 상기 Ti 계 소재 백 튜브와 상기 Zr 합금 소재 실린더 타겟의 경계면은 Ti 계 소재와 Zr 합금이 서로 확산되어 형성된 확산층을 포함한 것을 특징으로 하는 백 튜브 일체형 실린더 타겟을 제공한다.A cylinder target made of a Zr alloy material formed integrally with the Ti-based material bag tube, wherein the interface between the Ti-based material bag tube and the Zr alloy material cylinder target comprises a diffusion layer formed by diffusion of the Ti-based material and the Zr alloy to each other. It provides a bag tube integrated cylinder target, characterized in that it comprises.

상기에서, Zr 합금은 Zr을 70wt% 이상 포함하는 것을 특징으로 하는 백 튜브 일체형 실린더 타겟을 제공한다.In the above, the Zr alloy provides a bag tube-integrated cylinder target, characterized in that it contains 70wt% or more of Zr.

상기에 있어서, Ti 계 소재 백 튜브는, Ti, 또는 Ti 합금소재로서, Ti-grade1, Ti-grade2, 또는 Ti-grade5를 포함하는 것을 특징으로 하는 실린더 타겟의 제조방법을 제공한다.In the above, the Ti-based material bag tube provides a method for manufacturing a cylinder target, characterized in that it includes Ti-grade1, Ti-grade2, or Ti-grade5 as Ti or Ti alloy material.

상기의 백 튜브 일체형 실린더 타겟은 상기의 실린더 타겟 제조방법으로 제조된 것을 특징으로 하는 백 튜브 일체형 실린더 타겟을 제공한다.The bag tube-integrated cylinder target provides a bag tube-integrated cylinder target, characterized in that manufactured by the above cylinder target manufacturing method.

본 발명에 따르면 인듐 본딩 없이 Ti 계 소재 백 튜브에 직접 Zr계 합금을 일체형으로 소결하여 실린더 타겟을 제조하기 때문에 열이 가해지는 표면처리 공정에 적용되어도 인듐이 녹아 타겟이 박리되는 문제가 발생되지 않는다.According to the present invention, since the cylinder target is manufactured by integrally sintering the Zr-based alloy directly on the Ti-based material bag tube without indium bonding, the problem of indium melting and peeling of the target does not occur even when applied to a surface treatment process in which heat is applied. .

특히, 실린더 타겟의 소결과정에서 Ti 계 소재와 Zr 합금 경계면에서 확산현상이 일어나 확산층이 형성되어 자체적으로 본딩됨으로써 이후 고온 공정에서 매우 안정된 타겟으로 유지된다. In particular, during the sintering process of the cylinder target, a diffusion phenomenon occurs at the interface between the Ti-based material and the Zr alloy, and a diffusion layer is formed and bonded to itself, thereby maintaining a very stable target in a subsequent high-temperature process.

또한, 백 튜브 소재를 Ti 계 소재로 선택함으로써 Zr계 합금과의 열팽창 계수가 비슷하여 공정 중 열팽창 내지 열수축으로 인한 스트레스 발생 문제를 예방한다.In addition, by selecting a Ti-based material for the bag tube material, the thermal expansion coefficient is similar to that of the Zr-based alloy, preventing stress caused by thermal expansion or contraction during the process.

또한, 본 발명에 의해 제조된 Zr계 합금 실린더 타겟은 고밀도 고청정 특성을 나타낸다. In addition, the Zr-based alloy cylinder target manufactured according to the present invention exhibits high-density and high-cleanliness characteristics.

도 1은 종래 기술에 따른 Zr계 합금 실린더 타겟 구조를 보인 단면도이다.
도 2는 종래 기술에 따른 Zr계 합금 실린더 타겟 구조를 보인 측단면도이다.
도 3은 종래 기술에 따른 Zr계 합금 실린더 타겟 제조과정을 보여주는 순서도이다.
도 4는 본 발명에 따른 Zr계 합금 실린더 타겟 구조를 보인 단면도이다.
도 5는 본 발명에 따른 Zr계 합금 실린더 타겟 구조를 보인 측단면도이다.
도 6은 본 발명에 따른 Zr계 합금 실린더 타겟 제조과정을 보여주는 순서도이다.
도 7은 본 발명에 따른 Zr계 합금 실린더 타겟의 단면구조를 보여주는 TEM 사진이다.
도 8은 본 발명에 따른 Zr계 합금 실린더 타겟에 대한 경도 시험 결과를 보여주는 사진들이다.
도 9는 몇몇 소재의 열팽창계수에 대한 표이다.
1 is a cross-sectional view showing a Zr-based alloy cylinder target structure according to the prior art.
Figure 2 is a side cross-sectional view showing a Zr-based alloy cylinder target structure according to the prior art.
Figure 3 is a flow chart showing a Zr-based alloy cylinder target manufacturing process according to the prior art.
4 is a cross-sectional view showing a Zr-based alloy cylinder target structure according to the present invention.
5 is a side cross-sectional view showing a Zr-based alloy cylinder target structure according to the present invention.
Figure 6 is a flow chart showing a Zr-based alloy cylinder target manufacturing process according to the present invention.
7 is a TEM photograph showing the cross-sectional structure of a Zr-based alloy cylinder target according to the present invention.
8 are photographs showing hardness test results for a Zr-based alloy cylinder target according to the present invention.
9 is a table of thermal expansion coefficients of several materials.

이하, 첨부도면을 참조하여 본 발명의 바람직한 실시예에 대해 상세히 설명한다. Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 4는 본 발명에 따른 Zr계 합금 실린더 타겟 구조를 보인 단면도이다. Zr계 합금은 고온에서의 내식성과 고경도 특성이 우수하여 연소엔진 부품의 표면처리에 적합하다. Zr계 합금으로는 ZrCuSi, ZrSi, ZrCoSi, ZrMoSi 등이 있다. 그외에도 다양한 금속이 Zr과 합금될 수 있으며, Zr의 함량은 바람직하게는 70wt% 이상이다. 4 is a cross-sectional view showing a Zr-based alloy cylinder target structure according to the present invention. Zr-based alloys are suitable for surface treatment of combustion engine parts because of their excellent corrosion resistance and high hardness at high temperatures. Zr-based alloys include ZrCuSi, ZrSi, ZrCoSi, ZrMoSi, and the like. In addition, various metals may be alloyed with Zr, and the content of Zr is preferably 70 wt% or more.

도 9에 보인 바와 같이 Zr의 열팽창 계수는 5.7이고 Ti의 열팽창 계수는 8.6으로 스테인레스스틸(STS304)(열팽창 계수 17.3)에 비해 열팽창 계수의 차이가 크지 않다. 따라서 본 발명은 Zr 합금계 실린더 타겟의 백 튜브를 Ti 소재 또는 Ti 합금 소재로 선택하였다. Ti 합금 소재는 Ti-grade1, Ti-grade2, Ti-grade5 등이 있다. 그외에도 다양한 금속이 Ti와 합금될 수 있으며, Ti의 함량은 바람직하게는 70wt% 이상이다. Ti와 합금을 이루는 소재의 종류와 함량은 Zr계 합금 소재와의 열팽창 계수를 고려하여 서로 비슷한 값을 갖도록 조절될 수 있다. As shown in FIG. 9, the thermal expansion coefficient of Zr is 5.7 and the thermal expansion coefficient of Ti is 8.6, and the difference in thermal expansion coefficient is not large compared to stainless steel (STS304) (thermal expansion coefficient 17.3). Therefore, in the present invention, a Ti material or a Ti alloy material was selected for the bag tube of the Zr alloy-based cylinder target. Ti alloy materials include Ti-grade1, Ti-grade2, and Ti-grade5. In addition, various metals may be alloyed with Ti, and the content of Ti is preferably 70 wt% or more. The type and content of the material forming the alloy with Ti may be adjusted to have similar values in consideration of the thermal expansion coefficient with the Zr-based alloy material.

또한, Ti계 소재 백 튜브에는 Zr 합금계에 대해 별도의 인듐 본딩을 요하지 않는 장점이 있다. 이들은 소결 공정을 통해 서로 확산층을 형성하며 본딩되어 일체화 될 수 있기 때문이다. In addition, the Ti-based material bag tube has the advantage of not requiring separate indium bonding with respect to the Zr alloy-based material. This is because they can form a diffusion layer with each other through a sintering process and can be bonded and integrated.

그에 따라 스퍼터링 공정에서 열팽창 계수 차이로 인한 스트레스 문제가 예방되는 것은 물론, 종래 인듐 본딩이 고전력 공정조건 하에서 용융되어 실린더 타겟이 백 튜브로부터 분리되는 문제가 완전히 해결된다. Accordingly, the stress problem due to the difference in thermal expansion coefficient in the sputtering process is prevented, and the problem that the cylinder target is separated from the bag tube due to melting of the conventional indium bonding under high power process conditions is completely solved.

도 5는 본 발명에 따른 Zr계 합금 실린더 타겟 구조를 보인 측단면도이다.5 is a side cross-sectional view showing a Zr-based alloy cylinder target structure according to the present invention.

Ti 계 소재 백 튜브에 Zr 합금계 실린더 타겟이 일체형으로 제작된 것을 보여준다. It shows that the Zr alloy-based cylinder target is integrally fabricated with the Ti-based material bag tube.

상기와 같은 실린더 타겟은 도 6에 도시한 것과 같이 제조된다.The cylinder target as described above is manufactured as shown in FIG. 6 .

도 6은 본 발명에 따른 Zr계 합금 실린더 타겟 제조과정을 보여주는 순서도이다.Figure 6 is a flow chart showing a Zr-based alloy cylinder target manufacturing process according to the present invention.

먼저, Ti계 소재 백 튜브를 준비하고, 스테인레스스틸 캔(Can)을 제작한다. 스테인레스스틸 캔(Can)은 상기 Ti 계 소재 백 튜브 주변을 에워싸듯이 배치된다. First, a Ti-based material bag tube is prepared, and a stainless steel can is manufactured. A stainless steel can is disposed surrounding the Ti-based material bag tube.

다음, 상기 스테인레스스틸 캔 내부에 Zr 합금 분말을 채운다. 고밀도화 및 고청정화를 위해 진공분위기에서 탈가스(degassing) 과정을 실시한다. 탈가스 과정을 통해 산화분위기를 제거함으로써 타겟을 좀 더 고밀도화할 수 있다.Next, the inside of the stainless steel can is filled with Zr alloy powder. A degassing process is performed in a vacuum atmosphere for high density and high cleanliness. By removing the oxidizing atmosphere through the degassing process, the target can be made more dense.

다음, HIP(Hot Isostatic Pressure) 소결을 실시하여 Ti 계 소재 백 튜브에 Zr 합금 실린더 타겟이 일체화되게 한다.Next, hot isostatic pressure (HIP) sintering is performed to integrate the Zr alloy cylinder target into the Ti-based material bag tube.

Zr 합금 실린더 타겟의 고밀도화를 위해 상술한 바와 같이 산소분위기를 제거하며, 이를 위해 소결 시 진공분위기를 만든 다음, Ar과 같은 비활성 가스를 소결 챔버 내에 공급하는 것이 바람직하며 운전압력은 50 내지 120MPa, 바람직하게는 90 내지 120MPa, 더욱 바람직하게는, 100 MPa로 하고, 소결 온도는 800~1050℃로 할 수 있다. As described above, the oxygen atmosphere is removed for densification of the Zr alloy cylinder target, and for this purpose, it is preferable to create a vacuum atmosphere during sintering, and then supply an inert gas such as Ar into the sintering chamber, and the operating pressure is 50 to 120 MPa, preferably Preferably, it is 90 to 120 MPa, more preferably, 100 MPa, and the sintering temperature may be 800 to 1050 ° C.

소결이 종료되면, 캔을 제거하고 완성된 일체형 실린더 타겟을 취출한다.When sintering is finished, the can is removed and the completed integral cylinder target is taken out.

소결 과정을 통해 Ti 계 소재와 Zr 합금과의 경계면에는 확산층이 형성되면서 서로 일체화하게 된다. 이러한 현상은 도 7의 절단면 사진으로 확인된다. 서로 조직이 다른 Ti 계 소재 백 튜브와 Zr 합금의 계면에 약 30 μm 정도 깊이의 확산층이 형성된 것을 볼 수 있다. 이러한 확산층이 별도의 본딩 금속 없이도 서로 일체형으로 된 실린더 타겟을 만들어 준다. 확산층은 고온의 HIP 소결로 형성되었기 때문에 이후 고전력 공정에서 용융되지 않고 안정된 상태를 유지하며, Ti 계 소재 와 Zr 합금 간의 존재하는 열팽창이나 수축 문제에서도 완충현상을 나타낼 수 있다. Through the sintering process, a diffusion layer is formed at the interface between the Ti-based material and the Zr alloy, and they are integrated with each other. This phenomenon is confirmed by the cut surface photograph of FIG. 7 . It can be seen that a diffusion layer with a depth of about 30 μm is formed at the interface between the Ti-based material bag tube and the Zr alloy, which have different structures. This diffusion layer makes the cylinder target integral with each other without a separate bonding metal. Since the diffusion layer was formed by high-temperature HIP sintering, it does not melt and maintains a stable state in the subsequent high-power process, and it can show a buffering phenomenon even in the thermal expansion or contraction problem that exists between Ti-based materials and Zr alloys.

도 8은 본 발명에 따른 Zr계 합금 실린더 타겟에 대한 경도 시험 결과를 보여주는 사진들이다. 8 are photographs showing hardness test results for a Zr-based alloy cylinder target according to the present invention.

상기와 같이 하여 고밀도, 고청정의 Zr 합금 실린더 타겟을 튜브 일체형으로 제작할 수 있다. As described above, a high-density, highly clean Zr alloy cylinder target can be produced in a tube-integrated form.

본 발명의 권리는 위에서 설명된 실시예에 한정되지 않고 청구범위에 기재된 바에 의해 정의되며, 본 발명의 분야에서 통상의 지식을 가진 자가 청구범위에 기재된 권리범위 내에서 다양한 변형과 제작을 할 수 있다는 것은 자명하다.The rights of the present invention are defined by what is described in the claims, not limited to the embodiments described above, and that those skilled in the art can make various modifications and manufactures within the scope of rights described in the claims. It is self-evident.

Claims (2)

Ti 계 소재 백 튜브를 준비하고,
캔(Can)을 준비하여 상기 Ti 계 소재 백 튜브 주위를 에워싸듯 배치하고,
상기 캔 내부에 Zr을 70wt% 이상 포함하는 Zr 합금 분말을 채우고,
Zr 합금 분말을 채운 다음, 진공분위기에서 탈가스(degassing) 과정을 실시하고,
HIP(Hot Isostatic Pressure) 소결을 실시하여 소결 공정을 통해 서로 조직이 다른 Ti 계 소재 백 튜브와 Zr 합금이 경계면에서 서로 확산층을 형성하며 본딩되어 별도의 본딩 금속 없이 Ti 계 소재 백 튜브에 Zr 합금 실린더 타겟이 일체화되게 하며,
Zr 합금은 ZrCuSi, ZrSi, ZrCoSi, 또는 ZrMoSi을 포함하고,
Ti 계 소재 백 튜브는, Ti, 또는 Ti 합금소재로 하며, Ti와 합금을 이루는 소재는 Zr 합금 소재와의 열팽창 계수가 서로 비슷한 값을 갖도록, Ti-grade1, Ti-grade2, 또는 Ti-grade5를 포함하고,
HIP(Hot Isostatic Pressure) 소결을 실시할 때, 산화분위기를 제거하기 위해 비활성 가스를 소결 챔버 내에 공급하여 소결 온도 800~1050℃에서 소결 하고,
소결이 종료되면, 상기 캔을 제거하여 얻어지고,
Ti 계 소재 백 튜브에 대해 확산층에 의해 Zr 합금계 실린더 타겟이 일체화된 것을 특징으로 하는, Ti 계 소재 백 튜브에 대해 본딩 금속 없이 일체화 된 Zr 합금계 실린더 타겟.

























Prepare a Ti-based material bag tube,
Prepare a can and place it around the Ti-based material bag tube,
Filling the inside of the can with Zr alloy powder containing 70 wt% or more of Zr,
After filling the Zr alloy powder, a degassing process is performed in a vacuum atmosphere,
HIP (Hot Isostatic Pressure) sintering is performed, and through the sintering process, the Ti-based material bag tube and the Zr alloy, which have different structures, form a diffusion layer at the interface and are bonded to each other. unify the target,
Zr alloys include ZrCuSi, ZrSi, ZrCoSi, or ZrMoSi;
The Ti-based material bag tube is made of Ti or Ti alloy material, and the material forming the alloy with Ti is Ti-grade1, Ti-grade2, or Ti-grade5 so that the thermal expansion coefficient is similar to that of the Zr alloy material. include,
When HIP (Hot Isostatic Pressure) sintering is performed, an inert gas is supplied into the sintering chamber to remove the oxidizing atmosphere, and sintering is performed at a sintering temperature of 800 to 1050 ° C.
When the sintering is finished, it is obtained by removing the can,
A Zr alloy-based cylinder target integrated without bonding metal with respect to the Ti-based material bag tube, characterized in that the Zr alloy-based cylinder target is integrated with the Ti-based material bag tube by the diffusion layer.

























삭제delete
KR1020220074621A 2020-07-08 2022-06-20 Manufacturing Method of Cylindrical Target KR102524107B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220074621A KR102524107B1 (en) 2020-07-08 2022-06-20 Manufacturing Method of Cylindrical Target

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200083907A KR102412911B1 (en) 2020-07-08 2020-07-08 Manufacturing Method of Cylindrical Target
KR1020220074621A KR102524107B1 (en) 2020-07-08 2022-06-20 Manufacturing Method of Cylindrical Target

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020200083907A Division KR102412911B1 (en) 2020-07-08 2020-07-08 Manufacturing Method of Cylindrical Target

Publications (2)

Publication Number Publication Date
KR20220092823A KR20220092823A (en) 2022-07-04
KR102524107B1 true KR102524107B1 (en) 2023-04-21

Family

ID=80051713

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020200083907A KR102412911B1 (en) 2020-07-08 2020-07-08 Manufacturing Method of Cylindrical Target
KR1020220074621A KR102524107B1 (en) 2020-07-08 2022-06-20 Manufacturing Method of Cylindrical Target

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020200083907A KR102412911B1 (en) 2020-07-08 2020-07-08 Manufacturing Method of Cylindrical Target

Country Status (1)

Country Link
KR (2) KR102412911B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114606470A (en) * 2022-03-09 2022-06-10 涿州钢研昊普科技有限公司 Lithium phosphate tube target and preparation method for integral forming of lithium phosphate tube target

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05230645A (en) * 1991-12-24 1993-09-07 Asahi Glass Co Ltd Ceramic rotary cathode target and its manufacture
CN106232860B (en) * 2014-10-28 2021-07-13 三井金属矿业株式会社 Cylindrical ceramic sputtering target, and apparatus and method for manufacturing the same

Also Published As

Publication number Publication date
KR102412911B1 (en) 2022-06-24
KR20220092823A (en) 2022-07-04
KR20220006218A (en) 2022-01-17

Similar Documents

Publication Publication Date Title
US6214248B1 (en) Method of forming hollow channels within a component
EP0550439B1 (en) Powder metallurgy repair technique
US5126102A (en) Fabricating method of composite material
EP1727643B1 (en) Method of making sputtering target
JP7358034B2 (en) How to make pre-sintered preforms
KR101754092B1 (en) Configuration for joining a ceramic thermal insulating material to a metallic structure
KR102524107B1 (en) Manufacturing Method of Cylindrical Target
JP2014513207A5 (en)
US4104782A (en) Method for consolidating precision shapes
CN111014869B (en) Vacuum welding method of molybdenum-based graphite
WO2015122953A2 (en) Use of spark plasma sintering for manufacturing superalloy compound components
CN109972100A (en) A kind of preparation method of tubulose chromium target
JP2010150610A (en) Cylindrical sputtering target
JP2021046610A (en) Coating source
CN111926211A (en) Preparation method of diamond/metal composite material
KR20190027371A (en) Method for manufacturing a turbine blade
JP2950436B2 (en) Manufacturing method of composite material
KR20210001128U (en) Manufacturing Method of Cylindrical Target
US6582812B1 (en) Article made of a ceramic foam joined to a metallic nonfoam, and its preparation
JP6332078B2 (en) Manufacturing method of cylindrical sputtering target
CN109794608A (en) A kind of hot isostatic pressing near-net-shape control shape control type core and preparation method and application
WO2023285758A1 (en) Improved counter-form for the manufacture of a metal aeronautical part
JP2008169463A (en) Cobalt-tungsten sputter target, and method for manufacturing the same
JP7474182B2 (en) Method for repairing gas turbine components
JP2001240473A (en) Paste resistant molybdenum disilicide type material

Legal Events

Date Code Title Description
A107 Divisional application of patent
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant