KR102524061B1 - 영상 코딩 시스템에서 cclm 예측 기반 영상 디코딩 방법 및 그 장치 - Google Patents

영상 코딩 시스템에서 cclm 예측 기반 영상 디코딩 방법 및 그 장치 Download PDF

Info

Publication number
KR102524061B1
KR102524061B1 KR1020227021927A KR20227021927A KR102524061B1 KR 102524061 B1 KR102524061 B1 KR 102524061B1 KR 1020227021927 A KR1020227021927 A KR 1020227021927A KR 20227021927 A KR20227021927 A KR 20227021927A KR 102524061 B1 KR102524061 B1 KR 102524061B1
Authority
KR
South Korea
Prior art keywords
samples
cclm
chroma block
block
current
Prior art date
Application number
KR1020227021927A
Other languages
English (en)
Other versions
KR20220098266A (ko
Inventor
최장원
허진
김승환
유선미
이령
최정아
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to KR1020237013084A priority Critical patent/KR102637084B1/ko
Publication of KR20220098266A publication Critical patent/KR20220098266A/ko
Application granted granted Critical
Publication of KR102524061B1 publication Critical patent/KR102524061B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/11Selection of coding mode or of prediction mode among a plurality of spatial predictive coding modes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/105Selection of the reference unit for prediction within a chosen coding or prediction mode, e.g. adaptive choice of position and number of pixels used for prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/132Sampling, masking or truncation of coding units, e.g. adaptive resampling, frame skipping, frame interpolation or high-frequency transform coefficient masking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/136Incoming video signal characteristics or properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/182Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a pixel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/186Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a colour or a chrominance component
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/59Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving spatial sub-sampling or interpolation, e.g. alteration of picture size or resolution
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/593Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving spatial prediction techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/70Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by syntax aspects related to video coding, e.g. related to compression standards

Abstract

본 문서에 따른 디코딩 장치에 의하여 수행되는 영상 디코딩 방법은 예측 모드 정보를 기반으로 복수의 CCLM 예측 모드들 중 하나를 현재 크로마 블록의 CCLM(cross-component linear model) 예측 모드로 도출하는 단계, 상기 현재 크로마 블록의 상기 CCLM 예측 모드, 상기 현재 크로마 블록의 사이즈 및 특정값을 기반으로 상기 현재 크로마 블록의 주변 크로마 샘플들의 샘플 개수를 도출하는 단계, 상기 샘플 개수의 상기 주변 크로마 샘플들을 도출하는 단계, 상기 주변 크로마 샘플들 및 다운 샘플링된 주변 루마 샘플들을 기반으로 CCLM 파라미터들을 계산하는 단계, 상기 CCLM 파라미터들 및 상기 다운 샘플링된 루마 샘플들을 기반으로 상기 현재 크로마 블록에 대한 예측 샘플들을 도출하는 단계를 포함하되, 상기 특정값은 2로 도출되는 것을 특징으로 한다.

Description

영상 코딩 시스템에서 CCLM 예측 기반 영상 디코딩 방법 및 그 장치{METHOD FOR DECODING IMAGE ON BASIS OF CCLM PREDICTION IN IMAGE CODING SYSTEM, AND DEVICE THEREFOR}
본 문서는 영상 코딩 기술에 관한 것으로서 보다 상세하게는 영상 코딩 시스템에서 CCLM 예측을 사용하는 영상 디코딩 방법 및 그 장치에 관한 것이다.
최근 HD(High Definition) 영상 및 UHD(Ultra High Definition) 영상과 같은 고해상도, 고품질의 영상에 대한 수요가 다양한 분야에서 증가하고 있다. 영상 데이터가 고해상도, 고품질이 될수록 기존의 영상 데이터에 비해 상대적으로 전송되는 정보량 또는 비트량이 증가하기 때문에 기존의 유무선 광대역 회선과 같은 매체를 이용하여 영상 데이터를 전송하거나 기존의 저장 매체를 이용해 영상 데이터를 저장하는 경우, 전송 비용과 저장 비용이 증가된다.
이에 따라, 고해상도, 고품질 영상의 정보를 효과적으로 전송하거나 저장하고, 재생하기 위해 고효율의 영상 압축 기술이 요구된다.
본 문서의 기술적 과제는 영상 코딩 효율을 높이는 방법 및 장치를 제공함에 있다.
본 문서의 다른 기술적 과제는 인트라 예측의 효율을 높이는 방법 및 장치를 제공함에 있다.
본 문서의 또 다른 기술적 과제는 CCLM(Cross Component Linear Model)을 기반으로 하는 인트라 예측의 효율을 높이는 방법 및 장치를 제공함에 있다.
본 문서의 또 다른 기술적 과제는 복수의 CCLM 예측 모드들 포함하는 CCLM 예측의 효율적인 부호화 및 복호화 방법, 그리고 상기 부호화 및 복호화 방법을 수행하기 위한 장치를 제공함에 있다.
본 문서의 또 다른 기술적 과제는 수의 CCLM 예측 모드들에 대한 선형 모델 파라미터(linear model parameter)를 도출하기 위한 주변 샘플을 선택하는 방법 및 장치를 제공함에 있다.
본 문서의 일 실시예에 따르면, 디코딩 장치에 의하여 수행되는 영상 디코딩 방법이 제공된다. 상기 방법은 현재 크로마 블록에 대한 예측 모드 정보를 포함하는 영상 정보를 획득하는 단계, 상기 예측 모드 정보를 기반으로 복수의 CCLM 예측 모드들 중 하나를 상기 현재 크로마 블록의 CCLM(cross-component linear model) 예측 모드로 도출하는 단계, 상기 현재 크로마 블록의 상기 CCLM 예측 모드, 상기 현재 크로마 블록의 사이즈 및 특정값을 기반으로 상기 현재 크로마 블록의 주변 크로마 샘플들의 샘플 개수를 도출하는 단계, 상기 샘플 개수의 상기 주변 크로마 샘플들을 도출하는 단계, 현재 루마 블록의 다운 샘플링된 주변 루마 샘플들 및 다운 샘플링된 루마 샘플들을 도출하되, 상기 주변 루마 샘플들은 상기 주변 크로마 샘플들과 대응하는 단계, 상기 주변 크로마 샘플들, 및 상기 다운 샘플링된 주변 루마 샘플들을 기반으로 CCLM 파라미터들을 계산하는 단계, 상기 CCLM 파라미터들 및 상기 다운 샘플링된 루마 샘플들을 기반으로 상기 현재 크로마 블록에 대한 예측 샘플들을 도출하는 단계, 및 상기 예측 샘플들을 기반으로 상기 현재 크로마 블록에 대한 복원 샘플들을 생성하는 단계를 포함하되, 상기 특정값은 2로 도출되는 것을 특징으로 한다.
본 문서의 다른 일 실시예에 따르면, 영상 디코딩을 수행하는 디코딩 장치가 제공된다. 상기 디코딩 장치는 현재 크로마 블록에 대한 예측 모드 정보를 포함하는 영상 정보를 획득하는 엔트로피 디코딩부, 상기 예측 모드 정보를 기반으로 복수의 CCLM 예측 모드들 중 하나를 상기 현재 크로마 블록의 CCLM(cross-component linear model) 예측 모드로 도출하고, 상기 현재 크로마 블록의 상기 CCLM 예측 모드, 상기 현재 크로마 블록의 사이즈 및 특정값을 기반으로 상기 현재 크로마 블록의 주변 크로마 샘플들의 샘플 개수를 도출하고, 상기 샘플 개수의 상기 주변 크로마 샘플들을 도출하고, 현재 루마 블록의 다운 샘플링된 주변 루마 샘플들 및 다운 샘플링된 루마 샘플들을 도출하되, 상기 주변 루마 샘플들은 상기 주변 크로마 샘플들과 대응하고, 상기 주변 크로마 샘플들, 및 상기 다운 샘플링된 주변 루마 샘플들을 기반으로 CCLM 파라미터들을 계산하고, 상기 CCLM 파라미터들 및 상기 다운 샘플링된 루마 샘플들을 기반으로 상기 현재 크로마 블록에 대한 예측 샘플들을 도출하는 예측부 및 상기 예측 샘플들을 기반으로 상기 현재 크로마 블록에 대한 복원 샘플들을 생성하는 가산부를 포함하되, 상기 특정값은 2로 도출되는 것을 특징으로 한다.
본 문서의 또 다른 일 실시예에 따르면, 인코딩 장치에 의하여 수행되는 비디오 인코딩 방법을 제공한다. 상기 방법은 복수의 CCLM(cross-component linear model) 예측 모드들 중 현재 크로마 블록의 CCLM 예측 모드를 결정하는 단계, 상기 현재 크로마 블록의 상기 CCLM 예측 모드, 상기 현재 크로마 블록의 사이즈 및 특정값을 기반으로 상기 현재 크로마 블록의 주변 크로마 샘플들의 샘플 개수를 도출하는 단계, 상기 샘플 개수의 상기 주변 크로마 샘플들을 도출하는 단계, 현재 루마 블록의 다운 샘플링된 주변 루마 샘플들 및 다운 샘플링된 루마 샘플들을 도출하되, 상기 주변 루마 샘플들은 상기 주변 크로마 샘플들과 대응하는 단계, 상기 주변 크로마 샘플들 및 상기 다운 샘플링된 주변 루마 샘플들을 기반으로 CCLM 파라미터들을 도출하는 단계, 상기 CCLM 파라미터들 및 상기 다운 샘플링된 루마 샘플들을 기반으로 상기 현재 크로마 블록에 대한 예측 샘플들을 도출하는 단계, 및 상기 현재 크로마 블록에 대한 예측 모드 정보를 포함하는 영상 정보를 인코딩하는 단계를 포함하되, 상기 특정값은 2로 도출되는 것을 특징으로 한다.
본 문서의 또 다른 일 실시예에 따르면, 비디오 인코딩 장치를 제공한다. 상기 인코딩 장치는 복수의 CCLM(cross-component linear model) 예측 모드들 중 현재 크로마 블록의 CCLM 예측 모드를 결정하고, 상기 현재 크로마 블록의 상기 CCLM 예측 모드, 상기 현재 크로마 블록의 사이즈 및 특정값을 기반으로 상기 현재 크로마 블록의 주변 크로마 샘플들의 샘플 개수를 도출하고, 상기 샘플 개수의 상기 주변 크로마 샘플들을 도출하고, 현재 루마 블록의 다운 샘플링된 주변 루마 샘플들 및 다운 샘플링된 루마 샘플들을 도출하되, 상기 주변 루마 샘플들은 상기 주변 크로마 샘플들과 대응하고, 상기 주변 크로마 샘플들 및 상기 다운 샘플링된 주변 루마 샘플들을 기반으로 CCLM 파라미터들을 도출하고, 상기 CCLM 파라미터들 및 상기 다운 샘플링된 루마 샘플들을 기반으로 상기 현재 크로마 블록에 대한 예측 샘플들을 도출하는 예측부 및 상기 현재 크로마 블록에 대한 예측 모드 정보를 포함하는 영상 정보를 인코딩하는 엔트로피 인코딩부를 포함하되, 상기 특정값은 2로 도출되는 것을 특징으로 한다.
본 문서에 따르면 전반적인 영상/비디오 압축 효율을 높일 수 있다.
본 문서에 따르면 인트라 예측의 효율을 높일 수 있다.
본 문서에 따르면 CCLM을 기반으로 인트라 예측을 수행하여 영상 코딩 효율을 높일 수 있다.
본 문서에 따르면 복수의 LM 모드들, 즉, MDLM(multi-directional Linear Model)을 포함하는 CCLM을 기반으로 하는 인트라 예측의 효율을 높일 수 있다.
본 문서에 따르면 사이즈가 큰 크로마 블록에서 수행되는 MDLM(multi-directional Linear Model)을 위한 선형 모델 파라미터를 도출하기 위하여 선택되는 주변 샘플의 개수를 특정 개수로 제한함으로써 인트라 예측의 복잡도를 줄일 수 있다.
도 1은 본 문서의 실시예들이 적용될 수 있는 비디오/영상 코딩 시스템의 예를 개략적으로 나타낸다.
도 2는 본 문서의 실시예들이 적용될 수 있는 비디오/영상 인코딩 장치의 구성을 개략적으로 설명하는 도면이다.
도 3은 본 문서의 실시예들이 적용될 수 있는 비디오/영상 디코딩 장치의 구성을 개략적으로 설명하는 도면이다.
도 4는 65개의 예측 방향의 인트라 방향성 모드들을 예시적으로 나타낸다.
도 5는 일 실시예에 따른 현재 크로마 블록의 인트라 예측 모드를 도출하는 과정을 설명하기 위한 도면이다.
도 6은 상술한 CCLM 예측에 대한 파라미터 계산을 위한 2N개의 참조 샘플들을 나타낸다.
도 7은 LM_A(Linear Model_Above, LM_A) 모드 및 LM_L(Linear Model_Left, LM_L) 모드를 예시적으로 나타낸다.
도 8a 내지 도 8b는 일 실시예에 따라서 현재 크로마 블록에 대한 CCLM 예측을 수행하는 과정을 설명하기 위한 도면이다.
도 9a 내지 도 9b는 일 실시예에 따라서 현재 크로마 블록에 대한 CCLM 예측을 수행하는 과정을 설명하기 위한 도면이다.
도 10a 내지 도 10b는 상술한 실시예의 방법 1에 따라서 도출된 현재 크로마 블록의 CCLM 파라미터들을 기반으로 CCLM 예측을 수행하는 과정을 설명하기 위한 도면이다.
도 11a 내지 도 11b는 상술한 실시예의 방법 2에 따라서 도출된 현재 크로마 블록의 CCLM 파라미터들을 기반으로 CCLM 예측을 수행하는 과정을 설명하기 위한 도면이다.
도 12a 내지 도 12b는 상술한 실시예의 방법 3에 따라서 도출된 현재 크로마 블록의 CCLM 파라미터들을 기반으로 CCLM 예측을 수행하는 과정을 설명하기 위한 도면이다.
도 13a 내지 도 13b는 상술한 실시예의 방법 4에 따라서 도출된 현재 크로마 블록의 CCLM 파라미터들을 기반으로 CCLM 예측을 수행하는 과정을 설명하기 위한 도면이다.
도 14a 내지 도 14b는 상술한 실시예의 방법 1에 따라서 도출된 현재 크로마 블록의 CCLM 파라미터들을 기반으로 CCLM 예측을 수행하는 과정을 설명하기 위한 도면이다.
도 15a 내지 도 15b는 상술한 실시예의 방법 2에 따라서 도출된 현재 크로마 블록의 CCLM 파라미터들을 기반으로 CCLM 예측을 수행하는 과정을 설명하기 위한 도면이다.
도 16a 내지 도 16b는 상술한 실시예의 방법 3에 따라서 도출된 현재 크로마 블록의 CCLM 파라미터들을 기반으로 CCLM 예측을 수행하는 과정을 설명하기 위한 도면이다.
도 17은 크로마 블록의 주변 참조 샘플을 선택하는 일 예를 나타낸다.
도 18a 내지 도 18c는 기존 서브 샘플링을 통하여 도출된 주변 참조 샘플들 및 본 실시예에 따른 서브 샘플링을 통하여 도출된 주변 참조 샘플들을 예시적으로 나타낸다.
도 19는 상술한 수학식 6을 사용한 서브 샘플링을 이용하여 CCLM 예측을 수행하는 일 예를 나타낸다.
도 20a 내지 도 20b는 상술한 실시예의 방법 1에 따라서 도출된 현재 크로마 블록의 CCLM 파라미터들을 기반으로 CCLM 예측을 수행하는 과정을 설명하기 위한 도면이다.
도 21a 내지 도 21b는 상술한 실시예의 방법 2에 따라서 도출된 현재 크로마 블록의 CCLM 파라미터들을 기반으로 CCLM 예측을 수행하는 과정을 설명하기 위한 도면이다.
도 22a 내지 도 22b는 상술한 실시예의 방법 3에 따라서 도출된 현재 크로마 블록의 CCLM 파라미터들을 기반으로 CCLM 예측을 수행하는 과정을 설명하기 위한 도면이다.
도 23은 상술한 실시예의 방법 4에 따라서 도출된 현재 크로마 블록의 CCLM 파라미터들을 기반으로 CCLM 예측을 수행하는 과정을 설명하기 위한 도면이다.
도 24는 본 문서에 따른 인코딩 장치에 의한 영상 인코딩 방법을 개략적으로 나타낸다.
도 25는 본 문서에 따른 영상 인코딩 방법을 수행하는 인코딩 장치를 개략적으로 나타낸다.
도 26은 본 문서에 따른 디코딩 장치에 의한 영상 디코딩 방법을 개략적으로 나타낸다.
도 27은 본 문서에 따른 영상 디코딩 방법을 수행하는 디코딩 장치를 개략적으로 나타낸다.
도 28은 본 문서의 실시예들이 적용되는 컨텐츠 스트리밍 시스템 구조도를 예시적으로 나타낸다.
본 문서는 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세하게 설명하고자 한다. 그러나, 이는 본 문서의 실시예들을 특정 실시예에 한정하려고 하는 것이 아니다. 본 명세서에서 상용하는 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 문서의 기술적 사상을 한정하려는 의도로 사용되는 것은 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서 "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성 요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성 요소, 부품 도는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
한편, 본 문서에서 설명되는 도면상의 각 구성들은 서로 다른 특징적인 기능들에 관한 설명의 편의를 위해 독립적으로 도시된 것으로서, 각 구성들이 서로 별개의 하드웨어나 별개의 소프트웨어로 구현된다는 것을 의미하지는 않는다. 예컨대, 각 구성 중 두 개 이상의 구성이 합쳐져 하나의 구성을 이룰 수도 있고, 하나의 구성이 복수의 구성으로 나뉘어질 수도 있다. 각 구성이 통합 및/또는 분리된 실시예도 본 문서의 본질에서 벗어나지 않는 한 본 문서의 권리범위에 포함된다.
이하, 첨부한 도면들을 참조하여, 본 문서의 바람직한 실시예를 보다 상세하게 설명하고자 한다. 이하, 도면상의 동일한 구성 요소에 대해서는 동일한 참조 부호를 사용하고 동일한 구성 요소에 대해서 중복된 설명은 생략될 수 있다.
도 1은 본 문서의 실시예들이 적용될 수 있는 비디오/영상 코딩 시스템의 예를 개략적으로 나타낸다.
도 1을 참조하면, 비디오/영상 코딩 시스템은 제1 장치(소스 디바이스) 및 제2 장치(수신 디바이스)를 포함할 수 있다. 소스 디바이스는 인코딩된 비디오(video)/영상(image) 정보 또는 데이터를 파일 또는 스트리밍 형태로 디지털 저장매체 또는 네트워크를 통하여 수신 디바이스로 전달할 수 있다.
상기 소스 디바이스는 비디오 소스, 인코딩 장치, 전송부를 포함할 수 있다. 상기 수신 디바이스는 수신부, 디코딩 장치 및 렌더러를 포함할 수 있다. 상기 인코딩 장치는 비디오/영상 인코딩 장치라고 불릴 수 있고, 상기 디코딩 장치는 비디오/영상 디코딩 장치라고 불릴 수 있다. 송신기는 인코딩 장치에 포함될 수 있다. 수신기는 디코딩 장치에 포함될 수 있다. 렌더러는 디스플레이부를 포함할 수도 있고, 디스플레이부는 별개의 디바이스 또는 외부 컴포넌트로 구성될 수도 있다.
비디오 소스는 비디오/영상의 캡쳐, 합성 또는 생성 과정 등을 통하여 비디오/영상을 획득할 수 있다. 비디오 소스는 비디오/영상 캡쳐 디바이스 및/또는 비디오/영상 생성 디바이스를 포함할 수 있다. 비디오/영상 캡쳐 디바이스는 예를 들어, 하나 이상의 카메라, 이전에 캡쳐된 비디오/영상을 포함하는 비디오/영상 아카이브 등을 포함할 수 있다. 비디오/영상 생성 디바이스는 예를 들어 컴퓨터, 타블렛 및 스마트폰 등을 포함할 수 있으며 (전자적으로) 비디오/영상을 생성할 수 있다. 예를 들어, 컴퓨터 등을 통하여 가상의 비디오/영상이 생성될 수 있으며, 이 경우 관련 데이터가 생성되는 과정으로 비디오/영상 캡쳐 과정이 갈음될 수 있다.
인코딩 장치는 입력 비디오/영상을 인코딩할 수 있다. 인코딩 장치는 압축 및 코딩 효율을 위하여 예측, 변환, 양자화 등 일련의 절차를 수행할 수 있다. 인코딩된 데이터(인코딩된 비디오/영상 정보)는 비트스트림(bitstream) 형태로 출력될 수 있다.
전송부는 비트스트림 형태로 출력된 인코딩된 비디오/영상 정보 또는 데이터를 파일 또는 스트리밍 형태로 디지털 저장매체 또는 네트워크를 통하여 수신 디바이스의 수신부로 전달할 수 있다. 디지털 저장 매체는 USB, SD, CD, DVD, 블루레이, HDD, SSD 등 다양한 저장 매체를 포함할 수 있다. 전송부는 미리 정해진 파일 포멧을 통하여 미디어 파일을 생성하기 위한 엘리먼트를 포함할 수 있고, 방송/통신 네트워크를 통한 전송을 위한 엘리먼트를 포함할 수 있다. 수신부는 상기 비트스트림을 수신/추출하여 디코딩 장치로 전달할 수 있다.
디코딩 장치는 인코딩 장치의 동작에 대응하는 역양자화, 역변환, 예측 등 일련의 절차를 수행하여 비디오/영상을 디코딩할 수 있다.
렌더러는 디코딩된 비디오/영상을 렌더링할 수 있다. 렌더링된 비디오/영상은 디스플레이부를 통하여 디스플레이될 수 있다.
이 문서는 비디오/영상 코딩에 관한 것이다. 예를 들어 이 문서에서 개시된 방법/실시예는 VVC (versatile video coding) 표준, EVC (essential video coding) 표준, AV1 (AOMedia Video 1) 표준, AVS2 (2nd generation of audio video coding standard) 또는 차세대 비디오/영상 코딩 표준(ex. H.267 or H.268 등)에 개시되는 방법에 적용될 수 있다.
이 문서에서는 비디오/영상 코딩에 관한 다양한 실시예들을 제시하며, 다른 언급이 없는 한 상기 실시예들은 서로 조합되어 수행될 수도 있다.
이 문서에서 비디오(video)는 시간의 흐름에 따른 일련의 영상(image)들의 집합을 의미할 수 있다. 픽처(picture)는 일반적으로 특정 시간대의 하나의 영상을 나타내는 단위를 의미하며, 슬라이스(slice)/타일(tile)는 코딩에 있어서 픽처의 일부를 구성하는 단위이다. 슬라이스/타일은 하나 이상의 CTU(coding tree unit)을 포함할 수 있다. 하나의 픽처는 하나 이상의 슬라이스/타일로 구성될 수 있다. 하나의 픽처는 하나 이상의 타일 그룹으로 구성될 수 있다. 하나의 타일 그룹은 하나 이상의 타일들을 포함할 수 있다. 브릭은 픽처 내 타일 이내의 CTU 행들의 사각 영역을 나타낼 수 있다(a brick may represent a rectangular region of CTU rows within a tile in a picture). 타일은 다수의 브릭들로 파티셔닝될 수 있고, 각 브릭은 상기 타일 내 하나 이상의 CTU 행들로 구성될 수 있다(A tile may be partitioned into multiple bricks, each of which consisting of one or more CTU rows within the tile). 다수의 브릭들로 파티셔닝되지 않은 타일은 또한 브릭으로 불릴 수 있다(A tile that is not partitioned into multiple bricks may be also referred to as a brick). 브릭 스캔은 픽처를 파티셔닝하는 CTU들의 특정한 순차적 오더링을 나타낼 수 있으며, 상기 CTU들은 브릭 내에서 CTU 래스터 스캔으로 정렬될 수 있고, 타일 내 브릭들은 상기 타일의 상기 브릭들의 래스터 스캔으로 연속적으로 정렬될 수 있고, 그리고 픽처 내 타일들은 상기 픽처의 상기 타일들의 래스터 스캔으로 연속적으로 정렬될 수 있다(A brick scan is a specific sequential ordering of CTUs partitioning a picture in which the CTUs are ordered consecutively in CTU raster scan in a brick, bricks within a tile are ordered consecutively in a raster scan of the bricks of the tile, and tiles in a picture are ordered consecutively in a raster scan of the tiles of the picture). 타일은 특정 타일 열 및 특정 타일 열 이내의 CTU들의 사각 영역이다(A tile is a rectangular region of CTUs within a particular tile column and a particular tile row in a picture). 상기 타일 열은 CTU들의 사각 영역이고, 상기 사각 영역은 상기 픽처의 높이와 동일한 높이를 갖고, 너비는 픽처 파라미터 세트 내의 신택스 요소들에 의하여 명시될 수 있다(The tile column is a rectangular region of CTUs having a height equal to the height of the picture and a width specified by syntax elements in the picture parameter set). 상기 타일 행은 CTU들의 사각 영역이고, 상기 사각 영역은 픽처 파라미터 세트 내의 신택스 요소들에 의하여 명시되는 너비를 갖고, 높이는 상기 픽처의 높이와 동일할 수 있다(The tile row is a rectangular region of CTUs having a height specified by syntax elements in the picture parameter set and a width equal to the width of the picture). 타일 스캔은 픽처를 파티셔닝하는 CTU들의 특정 순차적 오더링을 나타낼 수 있고, 상기 CTU들은 타일 내 CTU 래스터 스캔으로 연속적으로 정렬될 수 있고, 픽처 내 타일들은 상기 픽처의 상기 타일들의 래스터 스캔으로 연속적으로 정렬될 수 있다(A tile scan is a specific sequential ordering of CTUs partitioning a picture in which the CTUs are ordered consecutively in CTU raster scan in a tile whereas tiles in a picture are ordered consecutively in a raster scan of the tiles of the picture). 슬라이스는 픽처의 정수개의 브릭들을 포함할 수 있고, 상기 정수개의 브릭들은 하나의 NAL 유닛에 포함될 수 있다(A slice includes an integer number of bricks of a picture that may be exclusively contained in a single NAL unit). 슬라이스는 다수의 완전한 타일들로 구성될 수 있고, 또는 하나의 타일의 완전한 브릭들의 연속적인 시퀀스일 수도 있다(A slice may consists of either a number of complete tiles or only a consecutive sequence of complete bricks of one tile). 이 문서에서 타일 그룹과 슬라이스는 혼용될 수 있다. 예를 들어 본 문서에서 tile group/tile group header는 slice/slice header로 불리 수 있다.
픽셀(pixel) 또는 펠(pel)은 하나의 픽처(또는 영상)을 구성하는 최소의 단위를 의미할 수 있다. 또한, 픽셀에 대응하는 용어로서 '샘플(sample)'이 사용될 수 있다. 샘플은 일반적으로 픽셀 또는 픽셀의 값을 나타낼 수 있으며, 루마(luma) 성분의 픽셀/픽셀값만을 나타낼 수도 있고, 크로마(chroma) 성분의 픽셀/픽셀 값만을 나타낼 수도 있다.
유닛(unit)은 영상 처리의 기본 단위를 나타낼 수 있다. 유닛은 픽처의 특정 영역 및 해당 영역에 관련된 정보 중 적어도 하나를 포함할 수 있다. 하나의 유닛은 하나의 루마 블록 및 두개의 크로마(ex. cb, cr) 블록을 포함할 수 있다. 유닛은 경우에 따라서 블록(block) 또는 영역(area) 등의 용어와 혼용하여 사용될 수 있다. 일반적인 경우, MxN 블록은 M개의 열과 N개의 행으로 이루어진 샘플들(또는 샘플 어레이) 또는 변환 계수(transform coefficient)들의 집합(또는 어레이)을 포함할 수 있다.
이 문서에서 "/"와 ","는 "및/또는"으로 해석된다. 예를 들어, "A/B"는 "A 및/또는 B"로 해석되고, "A, B"는 "A 및/또는 B"로 해석된다. 추가적으로, "A/B/C"는 "A, B 및/또는 C 중 적어도 하나"를 의미한다. 또한, "A, B, C"도 "A, B 및/또는 C 중 적어도 하나"를 의미한다. (In this document, the term "/" and "," should be interpreted to indicate "and/or." For instance, the expression "A/B" may mean "A and/or B." Further, "A, B" may mean "A and/or B." Further, "A/B/C" may mean "at least one of A, B, and/or C." Also, "A/B/C" may mean "at least one of A, B, and/or C.")
추가적으로, 본 문서에서 "또는"는 "및/또는"으로 해석된다. 예를 들어, "A 또는 B"은, 1) "A" 만을 의미하고, 2) "B" 만을 의미하거나, 3) "A 및 B"를 의미할 수 있다. 달리 표현하면, 본 문서의 "또는"은 "추가적으로 또는 대체적으로(additionally or alternatively)"를 의미할 수 있다. (Further, in the document, the term "or" should be interpreted to indicate "and/or." For instance, the expression "A or B" may comprise 1) only A, 2) only B, and/or 3) both A and B. In other words, the term "or" in this document should be interpreted to indicate "additionally or alternatively.")
도 2는 본 문서의 실시예들이 적용될 수 있는 비디오/영상 인코딩 장치의 구성을 개략적으로 설명하는 도면이다. 이하 비디오 인코딩 장치라 함은 영상 인코딩 장치를 포함할 수 있다.
도 2를 참조하면, 인코딩 장치(200)는 영상 분할부(image partitioner, 210), 예측부(predictor, 220), 레지듀얼 처리부(residual processor, 230), 엔트로피 인코딩부(entropy encoder, 240), 가산부(adder, 250), 필터링부(filter, 260) 및 메모리(memory, 270)를 포함하여 구성될 수 있다. 예측부(220)는 인터 예측부(221) 및 인트라 예측부(222)를 포함할 수 있다. 레지듀얼 처리부(230)는 변환부(transformer, 232), 양자화부(quantizer 233), 역양자화부(dequantizer 234), 역변환부(inverse transformer, 235)를 포함할 수 있다. 레지듀얼 처리부(230)은 감산부(subtractor, 231)를 더 포함할 수 있다. 가산부(250)는 복원부(reconstructor) 또는 복원 블록 생성부(recontructged block generator)로 불릴 수 있다. 상술한 영상 분할부(210), 예측부(220), 레지듀얼 처리부(230), 엔트로피 인코딩부(240), 가산부(250) 및 필터링부(260)는 실시예에 따라 하나 이상의 하드웨어 컴포넌트(예를 들어 인코더 칩셋 또는 프로세서)에 의하여 구성될 수 있다. 또한 메모리(270)는 DPB(decoded picture buffer)를 포함할 수 있고, 디지털 저장 매체에 의하여 구성될 수도 있다. 상기 하드웨어 컴포넌트는 메모리(270)을 내/외부 컴포넌트로 더 포함할 수도 있다.
영상 분할부(210)는 인코딩 장치(200)에 입력된 입력 영상(또는, 픽쳐, 프레임)를 하나 이상의 처리 유닛(processing unit)으로 분할할 수 있다. 일 예로, 상기 처리 유닛은 코딩 유닛(coding unit, CU)이라고 불릴 수 있다. 이 경우 코딩 유닛은 코딩 트리 유닛(coding tree unit, CTU) 또는 최대 코딩 유닛(largest coding unit, LCU)으로부터 QTBTTT (Quad-tree binary-tree ternary-tree) 구조에 따라 재귀적으로(recursively) 분할될 수 있다. 예를 들어, 하나의 코딩 유닛은 쿼드 트리 구조, 바이너리 트리 구조, 및/또는 터너리 구조를 기반으로 하위(deeper) 뎁스의 복수의 코딩 유닛들로 분할될 수 있다. 이 경우 예를 들어 쿼드 트리 구조가 먼저 적용되고 바이너리 트리 구조 및/또는 터너리 구조가 나중에 적용될 수 있다. 또는 바이너리 트리 구조가 먼저 적용될 수도 있다. 더 이상 분할되지 않는 최종 코딩 유닛을 기반으로 본 문서에 따른 코딩 절차가 수행될 수 있다. 이 경우 영상 특성에 따른 코딩 효율 등을 기반으로, 최대 코딩 유닛이 바로 최종 코딩 유닛으로 사용될 수 있고, 또는 필요에 따라 코딩 유닛은 재귀적으로(recursively) 보다 하위 뎁스의 코딩 유닛들로 분할되어 최적의 사이즈의 코딩 유닛이 최종 코딩 유닛으로 사용될 수 있다. 여기서 코딩 절차라 함은 후술하는 예측, 변환, 및 복원 등의 절차를 포함할 수 있다. 다른 예로, 상기 처리 유닛은 예측 유닛(PU: Prediction Unit) 또는 변환 유닛(TU: Transform Unit)을 더 포함할 수 있다. 이 경우 상기 예측 유닛 및 상기 변환 유닛은 각각 상술한 최종 코딩 유닛으로부터 분할 또는 파티셔닝될 수 있다. 상기 예측 유닛은 샘플 예측의 단위일 수 있고, 상기 변환 유닛은 변환 계수를 유도하는 단위 및/또는 변환 계수로부터 레지듀얼 신호(residual signal)를 유도하는 단위일 수 있다.
유닛은 경우에 따라서 블록(block) 또는 영역(area) 등의 용어와 혼용하여 사용될 수 있다. 일반적인 경우, MxN 블록은 M개의 열과 N개의 행으로 이루어진 샘플들 또는 변환 계수(transform coefficient)들의 집합을 나타낼 수 있다. 샘플은 일반적으로 픽셀 또는 픽셀의 값을 나타낼 수 있으며, 휘도(luma) 성분의 픽셀/픽셀값만을 나타낼 수도 있고, 채도(chroma) 성분의 픽셀/픽셀 값만을 나타낼 수도 있다. 샘플은 하나의 픽처(또는 영상)을 픽셀(pixel) 또는 펠(pel)에 대응하는 용어로서 사용될 수 있다.
인코딩 장치(200)는 입력 영상 신호(원본 블록, 원본 샘플 어레이)에서 인터 예측부(221) 또는 인트라 예측부(222)로부터 출력된 예측 신호(예측된 블록, 예측 샘플 어레이)를 감산하여 레지듀얼 신호(residual signal, 잔여 블록, 잔여 샘플 어레이)를 생성할 수 있고, 생성된 레지듀얼 신호는 변환부(232)로 전송된다. 이 경우 도시된 바와 같이 인코더(200) 내에서 입력 영상 신호(원본 블록, 원본 샘플 어레이)에서 예측 신호(예측 블록, 예측 샘플 어레이)를 감산하는 유닛은 감산부(231)라고 불릴 수 있다. 예측부는 처리 대상 블록(이하, 현재 블록이라 함)에 대한 예측을 수행하고, 상기 현재 블록에 대한 예측 샘플들을 포함하는 예측된 블록(predicted block)을 생성할 수 있다. 예측부는 현재 블록 또는 CU 단위로 인트라 예측이 적용되는지 또는 인터 예측이 적용되는지 결정할 수 있다. 예측부는 각 예측모드에 대한 설명에서 후술하는 바와 같이 예측 모드 정보 등 예측에 관한 다양한 정보를 생성하여 엔트로피 인코딩부(240)로 전달할 수 있다. 예측에 관한 정보는 엔트로피 인코딩부(240)에서 인코딩되어 비트스트림 형태로 출력될 수 있다.
인트라 예측부(222)는 현재 픽처 내의 샘플들을 참조하여 현재 블록을 예측할 수 있다. 상기 참조되는 샘플들은 예측 모드에 따라 상기 현재 블록의 주변(neighbor)에 위치할 수 있고, 또는 떨어져서 위치할 수도 있다. 인트라 예측에서 예측 모드들은 복수의 비방향성 모드와 복수의 방향성 모드를 포함할 수 있다. 비방향성 모드는 예를 들어 DC 모드 및 플래너 모드(Planar 모드)를 포함할 수 있다. 방향성 모드는 예측 방향의 세밀한 정도에 따라 예를 들어 33개의 방향성 예측 모드 또는 65개의 방향성 예측 모드를 포함할 수 있다. 다만, 이는 예시로서 설정에 따라 그 이상 또는 그 이하의 개수의 방향성 예측 모드들이 사용될 수 있다. 인트라 예측부(222)는 주변 블록에 적용된 예측 모드를 이용하여, 현재 블록에 적용되는 예측 모드를 결정할 수도 있다.
인터 예측부(221)는 참조 픽처 상에서 움직임 벡터에 의해 특정되는 참조 블록(참조 샘플 어레이)을 기반으로, 현재 블록에 대한 예측된 블록을 유도할 수 있다. 이때, 인터 예측 모드에서 전송되는 움직임 정보의 양을 줄이기 위해 주변 블록과 현재 블록 간의 움직임 정보의 상관성에 기초하여 움직임 정보를 블록, 서브블록 또는 샘플 단위로 예측할 수 있다. 상기 움직임 정보는 움직임 벡터 및 참조 픽처 인덱스를 포함할 수 있다. 상기 움직임 정보는 인터 예측 방향(L0 예측, L1 예측, Bi 예측 등) 정보를 더 포함할 수 있다. 인터 예측의 경우에, 주변 블록은 현재 픽처 내에 존재하는 공간적 주변 블록(spatial neighboring block)과 참조 픽처에 존재하는 시간적 주변 블록(temporal neighboring block)을 포함할 수 있다. 상기 참조 블록을 포함하는 참조 픽처와 상기 시간적 주변 블록을 포함하는 참조 픽처는 동일할 수도 있고, 다를 수도 있다. 상기 시간적 주변 블록은 동일 위치 참조 블록(collocated reference block), 동일 위치 CU(colCU) 등의 이름으로 불릴 수 있으며, 상기 시간적 주변 블록을 포함하는 참조 픽처는 동일 위치 픽처(collocated picture, colPic)라고 불릴 수도 있다. 예를 들어, 인터 예측부(221)는 주변 블록들을 기반으로 움직임 정보 후보 리스트를 구성하고, 상기 현재 블록의 움직임 벡터 및/또는 참조 픽처 인덱스를 도출하기 위하여 어떤 후보가 사용되는지를 지시하는 정보를 생성할 수 있다. 다양한 예측 모드를 기반으로 인터 예측이 수행될 수 있으며, 예를 들어 스킵 모드와 머지 모드의 경우에, 인터 예측부(221)는 주변 블록의 움직임 정보를 현재 블록의 움직임 정보로 이용할 수 있다. 스킵 모드의 경우, 머지 모드와 달리 레지듀얼 신호가 전송되지 않을 수 있다. 움직임 정보 예측(motion vector prediction, MVP) 모드의 경우, 주변 블록의 움직임 벡터를 움직임 벡터 예측자(motion vector predictor)로 이용하고, 움직임 벡터 차분(motion vector difference)을 시그널링함으로써 현재 블록의 움직임 벡터를 지시할 수 있다.
예측부(220)는 후술하는 다양한 예측 방법을 기반으로 예측 신호를 생성할 수 있다. 예를 들어, 예측부는 하나의 블록에 대한 예측을 위하여 인트라 예측 또는 인터 예측을 적용할 수 있을 뿐 아니라, 인트라 예측과 인터 예측을 동시에 적용할 수 있다. 이는 combined inter and intra prediction (CIIP)라고 불릴 수 있다. 또한, 예측부는 블록에 대한 예측을 위하여 인트라 블록 카피(intra block copy, IBC) 예측 모드에 기반할 수도 있고 또는 팔레트 모드(palette mode)에 기반할 수도 있다. 상기 IBC 예측 모드 또는 팔레트 모드는 예를 들어 SCC(screen content coding) 등과 같이 게임 등의 컨텐츠 영상/동영상 코딩을 위하여 사용될 수 있다. IBC는 기본적으로 현재 픽처 내에서 예측을 수행하나 현재 픽처 내에서 참조 블록을 도출하는 점에서 인터 예측과 유사하게 수행될 수 있다. 즉, IBC는 본 문서에서 설명되는 인터 예측 기법들 중 적어도 하나를 이용할 수 있다. 팔레트 모드는 인트라 코딩 또는 인트라 예측의 일 예로 볼 수 있다. 팔레트 모드가 적용되는 경우 팔레트 테이블 및 팔레트 인덱스에 관한 정보를 기반으로 픽처 내 샘플 값을 시그널링할 수 있다.
상기 예측부 (인터 예측부(221) 및/또는 상기 인트라 예측부(222) 포함)를 통해 생성된 예측 신호는 복원 신호를 생성하기 위해 이용되거나 레지듀얼 신호를 생성하기 위해 이용될 수 있다. 변환부(232)는 레지듀얼 신호에 변환 기법을 적용하여 변환 계수들(transform coefficients)를 생성할 수 있다. 예를 들어, 변환 기법은 DCT(Discrete Cosine Transform), DST(Discrete Sine Transform), KLT(Karhunen-Loeve Transform), GBT(Graph-Based Transform), 또는 CNT(Conditionally Non-linear Transform) 중 적어도 하나를 포함할 수 있다. 여기서, GBT는 픽셀 간의 관계 정보를 그래프로 표현한다고 할 때 이 그래프로부터 얻어진 변환을 의미한다. CNT는 이전에 복원된 모든 픽셀(all previously reconstructed pixel)를 이용하여 예측 신호를 생성하고 그에 기초하여 획득되는 변환을 의미한다. 또한, 변환 과정은 정사각형의 동일한 크기를 갖는 픽셀 블록에 적용될 수도 있고, 정사각형이 아닌 가변 크기의 블록에도 적용될 수 있다.
양자화부(233)는 변환 계수들을 양자화하여 엔트로피 인코딩부(240)로 전송되고, 엔트로피 인코딩부(240)는 양자화된 신호(양자화된 변환 계수들에 관한 정보)를 인코딩하여 비트스트림으로 출력할 수 있다. 상기 양자화된 변환 계수들에 관한 정보는 레지듀얼 정보라고 불릴 수 있다. 양자화부(233)는 계수 스캔 순서(scan order)를 기반으로 블록 형태의 양자화된 변환 계수들을 1차원 벡터 형태로 재정렬할 수 있고, 상기 1차원 벡터 형태의 양자화된 변환 계수들을 기반으로 상기 양자화된 변환 계수들에 관한 정보를 생성할 수도 있다. 엔트로피 인코딩부(240)는 예를 들어 지수 골롬(exponential Golomb), CAVLC(context-adaptive variable length coding), CABAC(context-adaptive binary arithmetic coding) 등과 같은 다양한 인코딩 방법을 수행할 수 있다. 엔트로피 인코딩부(240)는 양자화된 변환 계수들 외 비디오/이미지 복원에 필요한 정보들(예컨대 신택스 요소들(syntax elements)의 값 등)을 함께 또는 별도로 인코딩할 수도 있다. 인코딩된 정보(ex. 인코딩된 비디오/영상 정보)는 비트스트림 형태로 NAL(network abstraction layer) 유닛 단위로 전송 또는 저장될 수 있다. 상기 비디오/영상 정보는 어댑테이션 파라미터 세트(APS), 픽처 파라미터 세트(PPS), 시퀀스 파라미터 세트(SPS) 또는 비디오 파라미터 세트(VPS) 등 다양한 파라미터 세트에 관한 정보를 더 포함할 수 있다. 또한 상기 비디오/영상 정보는 일반 제한 정보(general constraint information)을 더 포함할 수 있다. 본 문서에서 인코딩 장치에서 디코딩 장치로 전달/시그널링되는 정보 및/또는 신택스 요소들은 비디오/영상 정보에 포함될 수 있다. 상기 비디오/영상 정보는 상술한 인코딩 절차를 통하여 인코딩되어 상기 비트스트림에 포함될 수 있다. 상기 비트스트림은 네트워크를 통하여 전송될 수 있고, 또는 디지털 저장매체에 저장될 수 있다. 여기서 네트워크는 방송망 및/또는 통신망 등을 포함할 수 있고, 디지털 저장매체는 USB, SD, CD, DVD, 블루레이, HDD, SSD 등 다양한 저장매체를 포함할 수 있다. 엔트로피 인코딩부(240)로부터 출력된 신호는 전송하는 전송부(미도시) 및/또는 저장하는 저장부(미도시)가 인코딩 장치(200)의 내/외부 엘리먼트로서 구성될 수 있고, 또는 전송부는 엔트로피 인코딩부(240)에 포함될 수도 있다.
양자화부(233)로부터 출력된 양자화된 변환 계수들은 예측 신호를 생성하기 위해 이용될 수 있다. 예를 들어, 양자화된 변환 계수들에 역양자화부(234) 및 역변환부(235)를 통해 역양자화 및 역변환을 적용함으로써 레지듀얼 신호(레지듀얼 블록 or 레지듀얼 샘플들)를 복원할 수 있다. 가산부(155)는 복원된 레지듀얼 신호를 인터 예측부(221) 또는 인트라 예측부(222)로부터 출력된 예측 신호에 더함으로써 복원(reconstructed) 신호(복원 픽처, 복원 블록, 복원 샘플 어레이)가 생성될 수 있다. 스킵 모드가 적용된 경우와 같이 처리 대상 블록에 대한 레지듀얼이 없는 경우, 예측된 블록이 복원 블록으로 사용될 수 있다. 가산부(250)는 복원부 또는 복원 블록 생성부라고 불릴 수 있다. 생성된 복원 신호는 현재 픽처 내 다음 처리 대상 블록의 인트라 예측을 위하여 사용될 수 있고, 후술하는 바와 같이 필터링을 거쳐서 다음 픽처의 인터 예측을 위하여 사용될 수도 있다.
한편 픽처 인코딩 및/또는 복원 과정에서 LMCS (luma mapping with chroma scaling)가 적용될 수도 있다.
필터링부(260)는 복원 신호에 필터링을 적용하여 주관적/객관적 화질을 향상시킬 수 있다. 예를 들어 필터링부(260)은 복원 픽처에 다양한 필터링 방법을 적용하여 수정된(modified) 복원 픽처를 생성할 수 있고, 상기 수정된 복원 픽처를 메모리(270), 구체적으로 메모리(270)의 DPB에 저장할 수 있다. 상기 다양한 필터링 방법은 예를 들어, 디블록킹 필터링, 샘플 적응적 오프셋(sample adaptive offset), 적응적 루프 필터(adaptive loop filter), 양방향 필터(bilateral filter) 등을 포함할 수 있다. 필터링부(260)은 각 필터링 방법에 대한 설명에서 후술하는 바와 같이 필터링에 관한 다양한 정보를 생성하여 엔트로피 인코딩부(240)로 전달할 수 있다. 필터링 관한 정보는 엔트로피 인코딩부(240)에서 인코딩되어 비트스트림 형태로 출력될 수 있다.
메모리(270)에 전송된 수정된 복원 픽처는 인터 예측부(221)에서 참조 픽처로 사용될 수 있다. 인코딩 장치는 이를 통하여 인터 예측이 적용되는 경우, 인코딩 장치(100)와 디코딩 장치에서의 예측 미스매치를 피할 수 있고, 부호화 효율도 향상시킬 수 있다.
메모리(270) DPB는 수정된 복원 픽처를 인터 예측부(221)에서의 참조 픽처로 사용하기 위해 저장할 수 있다. 메모리(270)는 현재 픽처 내 움직임 정보가 도출된(또는 인코딩된) 블록의 움직임 정보 및/또는 이미 복원된 픽처 내 블록들의 움직임 정보를 저장할 수 있다. 상기 저장된 움직임 정보는 공간적 주변 블록의 움직임 정보 또는 시간적 주변 블록의 움직임 정보로 활용하기 위하여 인터 예측부(221)에 전달할 수 있다. 메모리(270)는 현재 픽처 내 복원된 블록들의 복원 샘플들을 저장할 수 있고, 인트라 예측부(222)에 전달할 수 있다.
도 3은 본 문서의 실시예들이 적용될 수 있는 비디오/영상 디코딩 장치의 구성을 개략적으로 설명하는 도면이다.
도 3을 참조하면, 디코딩 장치(300)는 엔트로피 디코딩부(entropy decoder, 310), 레지듀얼 처리부(residual processor, 320), 예측부(predictor, 330), 가산부(adder, 340), 필터링부(filter, 350) 및 메모리(memoery, 360)를 포함하여 구성될 수 있다. 예측부(330)는 인터 예측부(331) 및 인트라 예측부(332)를 포함할 수 있다. 레지듀얼 처리부(320)는 역양자화부(dequantizer, 321) 및 역변환부(inverse transformer, 321)를 포함할 수 있다. 상술한 엔트로피 디코딩부(310), 레지듀얼 처리부(320), 예측부(330), 가산부(340) 및 필터링부(350)는 실시예에 따라 하나의 하드웨어 컴포넌트(예를 들어 디코더 칩셋 또는 프로세서)에 의하여 구성될 수 있다. 또한 메모리(360)는 DPB(decoded picture buffer)를 포함할 수 있고, 디지털 저장 매체에 의하여 구성될 수도 있다. 상기 하드웨어 컴포넌트는 메모리(360)을 내/외부 컴포넌트로 더 포함할 수도 있다.
비디오/영상 정보를 포함하는 비트스트림이 입력되면, 디코딩 장치(300)는 도 0.2-1의 인코딩 장치에서 비디오/영상 정보가 처리된 프로세스에 대응하여 영상을 복원할 수 있다. 예를 들어, 디코딩 장치(300)는 상기 비트스트림으로부터 획득한 블록 분할 관련 정보를 기반으로 유닛들/블록들을 도출할 수 있다. 디코딩 장치(300)는 인코딩 장치에서 적용된 처리 유닛을 이용하여 디코딩을 수행할 수 있다. 따라서 디코딩의 처리 유닛은 예를 들어 코딩 유닛일 수 있고, 코딩 유닛은 코딩 트리 유닛 또는 최대 코딩 유닛으로부터 쿼드 트리 구조, 바이너리 트리 구조 및/또는 터너리 트리 구조를 따라서 분할될 수 있다. 코딩 유닛으로부터 하나 이상의 변환 유닛이 도출될 수 있다. 그리고, 디코딩 장치(300)를 통해 디코딩 및 출력된 복원 영상 신호는 재생 장치를 통해 재생될 수 있다.
디코딩 장치(300)는 도 0.2-1의 인코딩 장치로부터 출력된 신호를 비트스트림 형태로 수신할 수 있고, 수신된 신호는 엔트로피 디코딩부(310)를 통해 디코딩될 수 있다. 예를 들어, 엔트로피 디코딩부(310)는 상기 비트스트림을 파싱하여 영상 복원(또는 픽처 복원)에 필요한 정보(ex. 비디오/영상 정보)를 도출할 수 있다. 상기 비디오/영상 정보는 어댑테이션 파라미터 세트(APS), 픽처 파라미터 세트(PPS), 시퀀스 파라미터 세트(SPS) 또는 비디오 파라미터 세트(VPS) 등 다양한 파라미터 세트에 관한 정보를 더 포함할 수 있다. 또한 상기 비디오/영상 정보는 일반 제한 정보(general constraint information)을 더 포함할 수 있다. 디코딩 장치는 상기 파라미터 세트에 관한 정보 및/또는 상기 일반 제한 정보를 더 기반으로 픽처를 디코딩할 수 있다. 본 문서에서 후술되는 시그널링/수신되는 정보 및/또는 신택스 요소들은 상기 디코딩 절차를 통하여 디코딩되어 상기 비트스트림으로부터 획득될 수 있다. 예컨대, 엔트로피 디코딩부(310)는 지수 골롬 부호화, CAVLC 또는 CABAC 등의 코딩 방법을 기초로 비트스트림 내 정보를 디코딩하고, 영상 복원에 필요한 신택스 엘리먼트의 값, 레지듀얼에 관한 변환 계수의 양자화된 값 들을 출력할 수 있다. 보다 상세하게, CABAC 엔트로피 디코딩 방법은, 비트스트림에서 각 구문 요소에 해당하는 빈을 수신하고, 디코딩 대상 구문 요소 정보와 주변 및 디코딩 대상 블록의 디코딩 정보 혹은 이전 단계에서 디코딩된 심볼/빈의 정보를 이용하여 문맥(context) 모델을 결정하고, 결정된 문맥 모델에 따라 빈(bin)의 발생 확률을 예측하여 빈의 산술 디코딩(arithmetic decoding)를 수행하여 각 구문 요소의 값에 해당하는 심볼을 생성할 수 있다. 이때, CABAC 엔트로피 디코딩 방법은 문맥 모델 결정 후 다음 심볼/빈의 문맥 모델을 위해 디코딩된 심볼/빈의 정보를 이용하여 문맥 모델을 업데이트할 수 있다. 엔트로피 디코딩부(310)에서 디코딩된 정보 중 예측에 관한 정보는 예측부(인터 예측부(332) 및 인트라 예측부(331))로 제공되고, 엔트로피 디코딩부(310)에서 엔트로피 디코딩이 수행된 레지듀얼 값, 즉 양자화된 변환 계수들 및 관련 파라미터 정보는 레지듀얼 처리부(320)로 입력될 수 있다. 레지듀얼 처리부(320)는 레지듀얼 신호(레지듀얼 블록, 레지듀얼 샘플들, 레지듀얼 샘플 어레이)를 도출할 수 있다. 또한, 엔트로피 디코딩부(310)에서 디코딩된 정보 중 필터링에 관한 정보는 필터링부(350)으로 제공될 수 있다. 한편, 인코딩 장치로부터 출력된 신호를 수신하는 수신부(미도시)가 디코딩 장치(300)의 내/외부 엘리먼트로서 더 구성될 수 있고, 또는 수신부는 엔트로피 디코딩부(310)의 구성요소일 수도 있다. 한편, 본 문서에 따른 디코딩 장치는 비디오/영상/픽처 디코딩 장치라고 불릴 수 있고, 상기 디코딩 장치는 정보 디코더(비디오/영상/픽처 정보 디코더) 및 샘플 디코더(비디오/영상/픽처 샘플 디코더)로 구분할 수도 있다. 상기 정보 디코더는 상기 엔트로피 디코딩부(310)를 포함할 수 있고, 상기 샘플 디코더는 상기 역양자화부(321), 역변환부(322), 가산부(340), 필터링부(350), 메모리(360), 인터 예측부(332) 및 인트라 예측부(331) 중 적어도 하나를 포함할 수 있다.
역양자화부(321)에서는 양자화된 변환 계수들을 역양자화하여 변환 계수들을 출력할 수 있다. 역양자화부(321)는 양자화된 변환 계수들을 2차원의 블록 형태로 재정렬할 수 있다. 이 경우 상기 재정렬은 인코딩 장치에서 수행된 계수 스캔 순서를 기반하여 재정렬을 수행할 수 있다. 역양자화부(321)는 양자화 파라미터(예를 들어 양자화 스텝 사이즈 정보)를 이용하여 양자화된 변환 계수들에 대한 역양자화를 수행하고, 변환 계수들(transform coefficient)를 획득할 수 있다.
역변환부(322)에서는 변환 계수들를 역변환하여 레지듀얼 신호(레지듀얼 블록, 레지듀얼 샘플 어레이)를 획득하게 된다.
예측부는 현재 블록에 대한 예측을 수행하고, 상기 현재 블록에 대한 예측 샘플들을 포함하는 예측된 블록(predicted block)을 생성할 수 있다. 예측부는 엔트로피 디코딩부(310)로부터 출력된 상기 예측에 관한 정보를 기반으로 상기 현재 블록에 인트라 예측이 적용되는지 또는 인터 예측이 적용되는지 결정할 수 있고, 구체적인 인트라/인터 예측 모드를 결정할 수 있다.
예측부(320)는 후술하는 다양한 예측 방법을 기반으로 예측 신호를 생성할 수 있다. 예를 들어, 예측부는 하나의 블록에 대한 예측을 위하여 인트라 예측 또는 인터 예측을 적용할 수 있을 뿐 아니라, 인트라 예측과 인터 예측을 동시에 적용할 수 있다. 이는 combined inter and intra prediction (CIIP)라고 불릴 수 있다. 또한, 예측부는 블록에 대한 예측을 위하여 인트라 블록 카피(intra block copy, IBC) 예측 모드에 기반할 수도 있고 또는 팔레트 모드(palette mode)에 기반할 수도 있다. 상기 IBC 예측 모드 또는 팔레트 모드는 예를 들어 SCC(screen content coding) 등과 같이 게임 등의 컨텐츠 영상/동영상 코딩을 위하여 사용될 수 있다. IBC는 기본적으로 현재 픽처 내에서 예측을 수행하나 현재 픽처 내에서 참조 블록을 도출하는 점에서 인터 예측과 유사하게 수행될 수 있다. 즉, IBC는 본 문서에서 설명되는 인터 예측 기법들 중 적어도 하나를 이용할 수 있다. 팔레트 모드는 인트라 코딩 또는 인트라 예측의 일 예로 볼 수 있다. 팔레트 모드가 적용되는 경우 팔레트 테이블 및 팔레트 인덱스에 관한 정보가 상기 비디오/영상 정보에 포함되어 시그널링될 수 있다.
인트라 예측부(331)는 현재 픽처 내의 샘플들을 참조하여 현재 블록을 예측할 수 있다. 상기 참조되는 샘플들은 예측 모드에 따라 상기 현재 블록의 주변(neighbor)에 위치할 수 있고, 또는 떨어져서 위치할 수도 있다. 인트라 예측에서 예측 모드들은 복수의 비방향성 모드와 복수의 방향성 모드를 포함할 수 있다. 인트라 예측부(331)는 주변 블록에 적용된 예측 모드를 이용하여, 현재 블록에 적용되는 예측 모드를 결정할 수도 있다.
인터 예측부(332)는 참조 픽처 상에서 움직임 벡터에 의해 특정되는 참조 블록(참조 샘플 어레이)을 기반으로, 현재 블록에 대한 예측된 블록을 유도할 수 있다. 이때, 인터 예측 모드에서 전송되는 움직임 정보의 양을 줄이기 위해 주변 블록과 현재 블록 간의 움직임 정보의 상관성에 기초하여 움직임 정보를 블록, 서브블록 또는 샘플 단위로 예측할 수 있다. 상기 움직임 정보는 움직임 벡터 및 참조 픽처 인덱스를 포함할 수 있다. 상기 움직임 정보는 인터 예측 방향(L0 예측, L1 예측, Bi 예측 등) 정보를 더 포함할 수 있다. 인터 예측의 경우에, 주변 블록은 현재 픽처 내에 존재하는 공간적 주변 블록(spatial neighboring block)과 참조 픽처에 존재하는 시간적 주변 블록(temporal neighboring block)을 포함할 수 있다. 예를 들어, 인터 예측부(332)는 주변 블록들을 기반으로 움직임 정보 후보 리스트를 구성하고, 수신한 후보 선택 정보를 기반으로 상기 현재 블록의 움직임 벡터 및/또는 참조 픽처 인덱스를 도출할 수 있다. 다양한 예측 모드를 기반으로 인터 예측이 수행될 수 있으며, 상기 예측에 관한 정보는 상기 현재 블록에 대한 인터 예측의 모드를 지시하는 정보를 포함할 수 있다.
가산부(340)는 획득된 레지듀얼 신호를 예측부(인터 예측부(332) 및/또는 인트라 예측부(331) 포함)로부터 출력된 예측 신호(예측된 블록, 예측 샘플 어레이)에 더함으로써 복원 신호(복원 픽처, 복원 블록, 복원 샘플 어레이)를 생성할 수 있다. 스킵 모드가 적용된 경우와 같이 처리 대상 블록에 대한 레지듀얼이 없는 경우, 예측된 블록이 복원 블록으로 사용될 수 있다.
가산부(340)는 복원부 또는 복원 블록 생성부라고 불릴 수 있다. 생성된 복원 신호는 현재 픽처 내 다음 처리 대상 블록의 인트라 예측을 위하여 사용될 수 있고, 후술하는 바와 같이 필터링을 거쳐서 출력될 수도 있고 또는 다음 픽처의 인터 예측을 위하여 사용될 수도 있다.
한편, 픽처 디코딩 과정에서 LMCS (luma mapping with chroma scaling)가 적용될 수도 있다.
필터링부(350)는 복원 신호에 필터링을 적용하여 주관적/객관적 화질을 향상시킬 수 있다. 예를 들어 필터링부(350)는 복원 픽처에 다양한 필터링 방법을 적용하여 수정된(modified) 복원 픽처를 생성할 수 있고, 상기 수정된 복원 픽처를 메모리(360), 구체적으로 메모리(360)의 DPB에 전송할 수 있다. 상기 다양한 필터링 방법은 예를 들어, 디블록킹 필터링, 샘플 적응적 오프셋(sample adaptive offset), 적응적 루프 필터(adaptive loop filter), 양방향 필터(bilateral filter) 등을 포함할 수 있다.
메모리(360)의 DPB에 저장된 (수정된) 복원 픽처는 인터 예측부(332)에서 참조 픽쳐로 사용될 수 있다. 메모리(360)는 현재 픽처 내 움직임 정보가 도출된(또는 디코딩된) 블록의 움직임 정보 및/또는 이미 복원된 픽처 내 블록들의 움직임 정보를 저장할 수 있다. 상기 저장된 움직임 정보는 공간적 주변 블록의 움직임 정보 또는 시간적 주변 블록의 움직임 정보로 활용하기 위하여 인터 예측부(260)에 전달할 수 있다. 메모리(360)는 현재 픽처 내 복원된 블록들의 복원 샘플들을 저장할 수 있고, 인트라 예측부(331)에 전달할 수 있다.
본 명세서에서, 인코딩 장치(100)의 필터링부(260), 인터 예측부(221) 및 인트라 예측부(222)에서 설명된 실시예들은 각각 디코딩 장치(300)의 필터링부(350), 인터 예측부(332) 및 인트라 예측부(331)에도 동일 또는 대응되도록 적용될 수 있다.
한편, 상술한 바와 같이 비디오 코딩을 수행함에 있어 압축 효율을 높이기 위하여 예측을 수행한다. 이를 통하여 코딩 대상 블록인 현재 블록에 대한 예측 샘플들을 포함하는 예측된 블록을 생성할 수 있다. 여기서 상기 예측된 블록은 공간 도메인(또는 픽셀 도메인)에서의 예측 샘플들을 포함한다. 상기 예측된 블록은 인코딩 장치 및 디코딩 장치에서 동일하게 도출되며, 상기 인코딩 장치는 원본 블록의 원본 샘플 값 자체가 아닌 상기 원본 블록과 상기 예측된 블록 간의 레지듀얼에 대한 정보(레지듀얼 정보)를 디코딩 장치로 시그널링함으로써 영상 코딩 효율을 높일 수 있다. 디코딩 장치는 상기 레지듀얼 정보를 기반으로 레지듀얼 샘플들을 포함하는 레지듀얼 블록을 도출하고, 상기 레지듀얼 블록과 상기 예측된 블록을 합하여 복원 샘플들을 포함하는 복원 블록을 생성할 수 있고, 복원 블록들을 포함하는 복원 픽처를 생성할 수 있다.
상기 레지듀얼 정보는 변환 및 양자화 절차를 통하여 생성될 수 있다. 예를 들어, 인코딩 장치는 상기 원본 블록과 상기 예측된 블록 간의 레지듀얼 블록을 도출하고, 상기 레지듀얼 블록에 포함된 레지듀얼 샘플들(레지듀얼 샘플 어레이)에 변환 절차를 수행하여 변환 계수들을 도출하고, 상기 변환 계수들에 양자화 절차를 수행하여 양자화된 변환 계수들을 도출하여 관련된 레지듀얼 정보를 (비트스트림을 통하여) 디코딩 장치로 시그널링할 수 있다. 여기서 상기 레지듀얼 정보는 상기 양자화된 변환 계수들의 값 정보, 위치 정보, 변환 기법, 변환 커널, 양자화 파라미터 등의 정보를 포함할 수 있다. 디코딩 장치는 상기 레지듀얼 정보를 기반으로 역양자화/역변환 절차를 수행하고 레지듀얼 샘플들(또는 레지듀얼 블록)을 도출할 수 있다. 디코딩 장치는 예측된 블록과 상기 레지듀얼 블록을 기반으로 복원 픽처를 생성할 수 있다. 인코딩 장치는 또한 이후 픽처의 인터 예측을 위한 참조를 위하여 양자화된 변환 계수들을 역양자화/역변환하여 레지듀얼 블록을 도출하고, 이를 기반으로 복원 픽처를 생성할 수 있다.
도 4는 65개의 예측 방향의 인트라 방향성 모드들을 예시적으로 나타낸다.
도 4를 참조하면, 좌상향 대각 예측 방향을 갖는 34번 인트라 예측 모드를 중심으로 수평 방향성(horizontal directionality)을 갖는 인트라 예측 모드와 수직 방향성(vertical directionality)을 갖는 인트라 예측 모드를 구분할 수 있다. 도 3의 H와 V는 각각 수평 방향성과 수직 방향성을 의미하며, -32 ~ 32의 숫자는 샘플 그리드 포지션(sample grid position) 상에서 1/32 단위의 변위를 나타낸다. 2번 내지 33번 인트라 예측 모드는 수평 방향성, 34번 내지 66번 인트라 예측 모드는 수직 방향성을 갖는다. 18번 인트라 예측 모드와 50번 인트라 예측 모드는 각각 수평 인트라 예측 모드(horizontal intra prediction mode)(또는 수평 모드), 수직 인트라 예측 모드(vertical intra prediction mode)(또는 수직 모드)를 나타내며, 2번 인트라 예측 모드는 좌하향 대각 인트라 예측 모드, 34번 인트라 예측 모드는 좌상향 대각 인트라 예측 모드, 66번 인트라 예측 모드는 우상향 대각 인트라 예측 모드라고 불릴 수 있다.
도 5는 일 실시예에 따른 현재 크로마 블록의 인트라 예측 모드를 도출하는 과정을 설명하기 위한 도면이다.
본 명세서에서 "크로마(chroma) 블록", "크로마 영상" 등은 색차 블록, 색차 영상 등과 동일한 의미를 나타낼 수 있으므로, 크로마와 색차는 혼용되어 사용될 수 있다. 마찬가지로, "루마(luma) 블록", "루마 영상" 등은 휘도 블록, 휘도 영상 등과 동일한 의미를 나타낼 수 있으므로, 루마와 휘도는 혼용되어 사용될 수 있다.
본 명세서에서 "현재 크로마 블록"은 현재의 코딩 단위인 현재 블록의 크로마 성분 블록을 의미할 수 있고, "현재 루마 블록"은 현재의 코딩 단위인 현재 블록의 루마 성분 블록을 의미할 수 있다. 따라서 현재 루마 블록과 현재 크로마 블록은 상호 대응된다. 다만 현재 루마 블록과 현재 크로마 블록의 블록 형태 및 블록 개수가 항상 상호 동일한 것은 아니고, 경우에 따라서 상이할 수 있다. 일부의 경우에 현재 크로마 블록은 현재 루마 영역과 대응될 수 있고, 이때 현재 루마 영역은 적어도 하나의 루마 블록으로 구성될 수 있다.
본 명세서에서 "참조 샘플 템플릿"은 현재 크로마 블록을 예측하기 위한 현재 크로마 블록 주변의 참조 샘플들의 집합을 의미할 수 있다. 참조 샘플 템플릿은 기 정의될 수 있고, 참조 샘플 템플릿에 관한 정보가 인코딩 장치(200)에서 디코딩 장치(300)로 시그널링될 수도 있다.
도 5를 참조하면, 현재 크로마 블록인 4x4 블록의 주변에 1 라인으로 음영 표시된 샘플들의 집합은 참조 샘플 템플릿을 나타낸다. 참조 샘플 템플릿이 1 라인의 참조 샘플로 구성된 반면, 참조 샘플 템플릿과 대응되는 루마 영역 내 참조 샘플 영역은 2 라인으로 구성된 것을 도 5에서 확인할 수 있다.
일 실시예에서, JVET(Joint Video Exploration Team)에서 사용되는 JEM(Joint Explolation TEST Model)에서 크로마 영상의 화면 내 부호화를 수행할 시, CCLM(Cross Component Linear Model)을 이용할 수 있다. CCLM은 크로마 영상의 화소값을 복원된 휘도 영상의 화소값에서 예측하는 방법으로, 휘도 영상과 크로마 영상 간의 상관도(correlation)이 높은 특성에 기반한 것이다.
Cb 및 Cr 크로마 영상의 CCLM 예측은 아래의 수학식을 기반으로 할 수 있다.
Figure 112022066941543-pat00001
여기서, predc (i,j)는 예측될 Cb 혹은 Cr 크로마 영상을, RecL'(i,j)은 크로마 블록 사이즈로 조절된 복원된 휘도 영상을, (i,j)는 화소의 좌표를 의미한다. 4:2:0 컬러 포맷(color format)에서는 휘도 영상의 크기가 색채 영상의 2배이기 때문에 다운샘플링(downsampling)을 통해 색차 블록 크기의 RecL'을 생성해아 하며, 따라서 색차 영상 predc (i,j)에 사용될 휘도 영상의 화소는 RecL(2i,2j) 외에 주변 화소까지 모두 고려하여 사용할 수 있다. 상기 RecL'(i,j)는 다운샘플링된 루마 샘플이라고 나타낼 수 있다. 또한, α 및 β는 선형 모델 또는 CCLM 파라미터라고 불릴 수 있다. 구체적으로, 상기 α는 스케일링 펙터, 상기 β는 오프셋이라고 불릴 수 있다. 상기 현재 블록에 CCLM 예측이 적용되는지 여부를 지시하는 예측 모드 정보는 인코딩 장치에서 생성되어 디코딩 장치로 전송될 수 있으며, 상기 CCLM 파라미터는 주변 복원 샘플(또는 템플릿)을 기반으로 인코딩 장치와 디코딩 장치에서 동일하게 계산될 수 있다.
한편, 예를 들어, 상기 RecL'(i,j)은 다음의 수학식과 같이 6개의 주변 화소들을 이용하여 도출될 수 있다.
Figure 112022066941543-pat00002
또한, α, β는 도 3의 음영 표시된 영역과 같이 Cb 혹은 Cr 크로마 블록 주변 템플릿과 휘도 블록 주변 템플릿 간의 cross-correlation 및 평균값의 차이를 나타내는 α, β는, 예를 들어 아래의 수학식 2와 같다.
Figure 112022066941543-pat00003
여기서 tL은 현재 크로마 영상에 대응하는 루마 블록의 주변 참조 샘플을, tC는 현재 부호화가 적용되는 현재 크로마 블록의 주변 참조 샘플을 의미하며, (i,j)는 화소 위치를 의미한다. 또한 M(A)는 A 화소들의 평균을 의미한다.
한편, 상술한 CCLM 예측에 대한 파라미터 계산(즉, 예를 들어, 상기 α, β)을 위한 샘플들은 다음과 같이 선택될 수 있다.
- 현재 크로마 블록이 NxN 사이즈의 크로마 블록인 경우, 총 2N개(가로 N개, 세로 N개)의 상기 현재 크로마 블록의 주변 참조 샘플 페어(pair, 휘도 및 색차)가 선택될 수 있다.
- 현재 크로마 블록이 NxM 사이즈 또는 MxN 사이즈의 크로마 블록인 경우(여기서, N <= M), 총 2N개(가로 N개, 세로 N개) 의 상기 현재 크로마 블록의 주변 참조 샘플 페어(pair)가 선택될 수 있다. 한편, M이 N보다 크기 때문에(예를 들어, M = 2N 또는 3N 등) M개의 샘플들 중 서브샘플링(subsampling)을 통하여 N개의 샘플 페어가 선택될 수 있다.
또는, 복수의 CCLM 모드들을 기반으로 CCLM 예측이 수행되는 경우, 즉, MDLM(multi-directional Linear Model)이 적용되는 경우에는 파라미터 계산을 위한 샘플들이 다음과 같이 선택될 수 있다.
- 현재 크로마 블록이 기존 CCLM 예측, 즉, LM_LT(Linear Model_Left Top, LM_LT) 모드가 적용되는 NxN 사이즈의 크로마 블록인 경우, 총 2N개(가로 N개, 세로 N개)의 상기 현재 크로마 블록의 주변 참조 샘플 페어(pair, 휘도 및 색차)가 선택될 수 있다. 여기서, 상기 LM_LT 모드는 LM_LA(Linear Model_Left Above, LM_LA) 모드라고 불릴 수도 있다.
- 현재 크로마 블록이 상기 LM_LT 모드가 적용되는 NxM 사이즈 또는 MxN 사이즈의 크로마 블록인 경우(여기서, N <= M), 총 2N개(가로 N개, 세로 N개) 의 상기 현재 크로마 블록의 주변 참조 샘플 페어(pair)가 선택될 수 있다. 한편, M이 N보다 크기 때문에(예를 들어, M = 2N 또는 3N 등) M개의 샘플들 중 서브샘플링(subsampling)을 통하여 N개의 샘플 페어가 선택될 수 있다.
- 현재 크로마 블록이 MDLM, 즉, 상기 LM_LT 모드이외의 CCLM 예측 모드가 적용되는 NxM 사이즈의 크로마 블록인 경우, 상기 현재 크로마 블록에 LM_T(Linear Model_Top, LM_T) 모드가 적용될 수 있고, 총 2N개의 상측 주변 참조 샘플 페어가 선택될 수 있다. 여기서, 상기 LM_T 모드는 LM_A(Linear Model_Above, LM_A) 모드라고 불릴 수도 있다.
- 현재 크로마 블록이 MDLM, 즉, 상기 LM_LT 모드이외의 CCLM 예측 모드가 적용되는 MxN 사이즈의 크로마 블록인 경우, 상기 현재 크로마 블록에 LM_L(Linear Model_Left, LM_L) 모드가 적용될 수 있고, 총 2N개의 좌측 주변 참조 샘플 페어가 선택될 수 있다.
한편, 상기 MDLM 은 복수의 CCLM 예측 모드들 중 선택된 CCLM 예측 모드를 기반으로 수행되는 CCLM 예측을 나타낼 수 있다. 상기 복수의 CCLM 예측 모드들은 상기 LM_L 모드, 상기 LM_T 모드 및 상기 LM_LT 모드를 포함할 수 있다. 상기 LM_T 모드는 현재 블록의 상측 참조 샘플만을 이용하여 CCLM을 수행하는 CCLM 예측 모드를 나타낼 수 있고, LM_L 모드는 상기 현재 블록의 좌측 참조 샘플만을 이용하여 CCLM을 수행하는 CCLM 예측 모드를 나타낼 수 있다. 또한, LM_LT 모드는 기존 CCLM 예측과 같이 상기 현재 블록의 상측 참조 샘플 및 좌측 참조 샘플을 이용하여 CCLM을 수행하는 CCLM 예측 모드를 나타낼 수 있다. 상기 MDLM 에 대한 구체적인 설명은 후술한다.
도 6은 상술한 CCLM 예측에 대한 파라미터 계산을 위한 2N개의 참조 샘플들을 나타낸다. 도 6을 참조하면 상기 CCLM 예측에 대한 파라미터 계산을 위하여 도출되는 2N개의 참조 샘플 페어를 나타낼 수 있다. 상기 2N개의 참조 샘플 페어는 상기 현재 크로마 블록에 인접한 2N개의 참조 샘플들 및 상기 현재 루마 블록에 인접한 2N개의 참조 샘플들을 포함할 수 있다.
상술한 내용과 같이 2N개의 샘플 페어들이 도출될 수 있고, 상기 샘플 페어를 이용한 상술한 수학식 3을 통해 CCLM 파라미터 α, β가 계산되는 경우, 다음의 표 1과 같은 수의 연산이 요구될 수 있다.
Figure 112022066941543-pat00004
상기 표 1을 참조하면, 예를 들어, 4x4 사이즈의 크로마 블록의 경우, CCLM 파라미터 계산을 위해 곱셈 연산 21번, 덧셈 연산 31번이 필요할 수 있고, 32x32 사이즈의 크로마 블록의 경우, 곱셈 연산 133번, 덧셈 연산이 255번 요구될 수 있다. 즉, 크로마 블록의 사이즈가 커질수록 CCLM 파라미터 계산을 위해 요구되는 연산량이 급증하게 되며, 이는 하드웨어 구현 시의 딜레이(delay) 문제로 직결될 수 있다. 특히, 상기 CCLM 파라미터는 디코딩 장치에서도 계산을 통해 도출되어야 하기 때문에 디코딩 장치 하드웨어 구현시의 딜레이 문제 및 구현 코스트(cost) 증가로 이어질 수 있다.
한편, VTM 3.0에서는 α 및 β 계산시의 곱셈 및 덧셈 연산을 줄이기 위해 2개의 루마 및 크로마 샘플 페어의 변화 기울기를 이용하여 CCLM 파라미터가 계산될 수 있다. 예를 들어, 상기 CCLM 파라미터는 다음의 수학식과 같이 계산될 수 있다.
Figure 112022066941543-pat00005
여기서 (xA, yA) 는 CCLM 파라미터 계산을 위한 현재 블록의 주변 참조 샘플들 중 루마 값이 가장 작은 루마 샘플 (yA) 및 상기 루마 샘플의 페어인 크로마 샘플 (yA) 의 샘플 값을 나타낼 수 있고, (xB, yB) 는 CCLM 파라미터 계산을 위한 현재 블록의 주변 참조 샘플들 중 루마 값이 가장 큰 루마 샘플 (yB) 및 상기 루마 샘플의 페어인 크로마 샘플 (yB) 의 샘플 값을 나타낼 수 있다. 즉, 다시 말해, yA 는 현재 블록의 주변 참조 샘플들 중 루마 값이 가장 작은 루마 샘플을 나타낼 수 있고, xA 는 상기 루마 샘플 yA 의 페어인 크로마 샘플을 나타낼 수 있고, yB 는 현재 블록의 주변 참조 샘플들 중 루마 값이 가장 큰 루마 샘플을 나타낼 수 있고, xB 는 상기 루마 샘플 yB 의 페어인 크로마 샘플을 나타낼 수 있다.
Figure 112022066941543-pat00006
상기 표 2는 간소화된 계산 방법으로 도출되는 CCLM 파라미터을 예시적으로 나타낸다.
상술한 수학식을 이용하여 CCLM 파라미터가 계산되면 기존의 방법에 비해 곱셈 및 덧셈 연산을 크게 줄일 수 있는 장점이 있으나, 현재 블록의 주변 루마 샘플들 중 최소값 및 최대값을 결정해야 하기 때문에 비교(comparison) 연산이 추가된다. 즉, 2N개의 주변 샘플들에서 샘플 최소값 및 최대값을 결정하기 위하여 4N번의 비교 연산이 필요하며, 상기 비교 연산의 추가는 하드웨어 구현 시의 딜레이(delay)를 초래할 수 있다.
또한, CCLM 예측을 수행함에 있어서, VTM3.0에서 채택된 MDLM(multi-directional LM)이 수행될 수 있다.
도 7은 LM_A(Linear Model_Above, LM_A) 모드 및 LM_L(Linear Model_Left, LM_L) 모드를 예시적으로 나타낸다. 인코딩 장치 및 디코딩 장치는 상기 LM_A 모드 및 상기 LM_L 모드가 추가된 CCLM 예측을 수행할 수 있다. 상기 LM_A 모드는 현재 블록의 상측 참조 샘플만을 이용하여 CCLM을 수행하는 CCLM 예측 모드를 나타낼 수 있다. 이 경우, 도 7에 도시된 것과 같이 기존 CCLM 예측에서의 상측 참조 샘플들을 오른쪽으로 2배 확장한 상측 참조 샘플들을 기반으로 CCLM 예측이 수행될 수 있다. 상기 LM_A 모드는 LM_T(Linear Model_Top, LM_T) 모드라고 불릴 수도 있다. 또한, LM_L 모드는 상기 현재 블록의 좌측 참조 샘플만을 이용하여 CCLM을 수행하는 CCLM 예측 모드를 나타낼 수 있다. 이 경우, 도 7에 도시된 것과 같이 기존 CCLM 예측에서의 좌측 참조 샘플들을 아래쪽으로 2배 확장한 좌측 참조 샘플들을 기반으로 CCLM 예측이 수행될 수 있다. 한편, 기존 CCLM 예측, 즉, 현재 블록의 상측 참조 샘플들 및 좌측 참조 샘플들을 기반으로 CCLM 예측을 수행하는 모드는 LM_LA 모드 또는 LM_LT 모드라고 나타낼 수 있다. 복수의 CCLM 예측 모드를 포함하는 MDLM에서의 파라미터 α, β는 상술한 2개의 루마 및 크로마 샘플 페어의 변화 기울기를 이용하여 계산될 수 있고, 따라서 MDLM 에 대한 파라미터 계산시에도 많은 비교 연산이 필요하며, 상기 비교 연산의 추가는 하드웨어 구현 시의 딜레이(delay)를 초래할 수 있다. 구체적으로, 상술한 내용과 같이 2N개의 샘플 페어를 이용하는 상술한 수학식 4를 통해 CCLM 파라미터 α, β가 계산되는 경우, 4N번의 비교 연산이 요구된다. 즉, 4x4 크로마 블록의 경우, CCLM 파라미터 계산을 위해 비교 연산 16번이 필요하며, 32x32 크로마 블록의 경우에는 128번의 비교 연산이 요구된다. 즉, 크로마 블록 사이즈가 커질수록 CCLM 파라미터 계산을 위해 요구되는 연산량이 급증하게 되며, 이는 하드웨어 구현 시의 딜레이 문제로 직결된다. 특히 CCLM 파라미터는 디코딩 장치에서도 계산을 통해 구해야 하고, 따라서 상기 비교 연산의 추가는 디코딩 장치 하드웨어 구현시의 딜레이 문제 및 구현 코스트(cost) 증가로 이어진다.
따라서, 상기 딜레이를 줄이는 방법이 필요하고, 이에 본 문서는 CCLM 파라미터 도출을 위한 연산 복잡도를 줄이고, 이를 통하여 디코딩 장치의 하드웨어 비용 및 디코딩 과정의 복잡도 및 시간을 줄이는 실시예들을 제안한다.
본 실시예는 상기 CCLM 파라미터 도출을 위한 연산 복잡도를 줄이고, 이를 통하여 디코딩 장치의 하드웨어 비용 및 디코딩 과정의 복잡도 및 시간을 줄일 수 있다.
일 예로, 상술한 크로마 블록 사이즈 증가에 따른 CCLM 파라미터 연산량 증가 문제를 해결하기 위해 주변 샘플 선택 상한선 Nth 를 설정한 후, 후술한 바와 같이 크로마 블록 주변 화소를 선택하여 CCLM 파라미터를 계산하는 실시예가 제안될 수 있다. 상기 Nth 는 최대 주변 샘플 수라고 나타낼 수도 있다. 예를 들어, Nth = 2, 4, 8 또는 16으로 설정될 수 있다.
본 실시예에 따른 상기 CCLM 파라미터 계산 과정은 다음과 같을 수 있다.
- 현재 크로마 블록이 NxN 사이즈의 크로마 블록이고 상기 Nth >= N 인 경우, 총 2N개(가로 N개, 세로 N개)의 상기 현재 크로마 블록의 주변 참조 샘플 페어(pair)가 선택될 수 있다.
- 현재 크로마 블록이 NxN 사이즈의 크로마 블록이고 상기 Nth < N 인 경우, 총 2*Nth개(가로 Nth개, 세로 Nth개)의 상기 현재 크로마 블록의 주변 참조 샘플 페어(pair)가 선택될 수 있다.
- 현재 크로마 블록이 NxM 사이즈 또는 MxN 사이즈(여기서, N <= M)의 크로마 블록이고, Nth >= N 인 경우, 총 2N개(가로 N개, 세로 N개)의 상기 현재 크로마 블록의 주변 참조 샘플 페어(pair)가 선택될 수 있다. 상기 M이 상기 N보다 크기 때문에(예를 들어, M = 2N 또는 3N 등) M개의 샘플들 중 서브샘플링(subsampling)을 통하여 N개의 샘플이 선택될 수 있다.
- 현재 크로마 블록이 NxM 사이즈 또는 MxN 사이즈(여기서, N <= M)의 크로마 블록이고, Nth < N 인 경우, 총 2*Nth개(가로 Nth개, 세로 Nth개)의 상기 현재 크로마 블록의 주변 참조 샘플 페어(pair)가 선택될 수 있다. 상기 M이 상기 N보다 크기 때문에(예를 들어, M = 2N 또는 3N 등) M개의 샘플들 중 서브샘플링(subsampling)을 통하여 Nth개의 샘플이 선택될 수 있다.
상술한 내용과 같이 본 실시예는 선택되는 주변 샘플 개수의 최대값인 Nth 를 설정함으로써 CCLM 파라미터 계산을 위한 주변 참조 샘플 개수를 제한할 수 있으며, 이를 통해 사이즈가 큰 크로마 블록에서도 비교적 적은 계산을 통해 CCLM 파라미터를 계산할 수 있다.
또한, 상기 Nth 를 적절하게 작은 수(예를 들어, 4 또는 8)로 설정하는 경우, CCLM 파라미터 계산의 하드웨어 구현 시, 워스트 케이스(worst case) 연산(예를 들어, 32x32 사이즈의 크로마 블록)을 피할 수 있고, 따라서 상기 워스트 케이스에 대비하여 요구되는 하드웨어 게이트(gate) 수를 줄일 수 있으며, 이를 통해 하드웨어 구현 코스트 감소 효과도 얻을 수 있다.
예를 들어, 상기 Nth 가 2,4 및 8인 경우에 크로마 블록 사이즈에 따른 CCLM 파라미터 계산 연산량은 다음의 표와 같이 나타낼 수 있다.
Figure 112022066941543-pat00007
한편, 상기 Nth 는 상기 Nth 를 나타내는 추가 정보를 전송할 필요없이 인코딩 장치 및 디코딩 장치에서 기설정된 값으로 도출될 수 있다. 또는, 상기 Nth 를 나타내는 추가 정보가 CU(Coding Unit), 슬라이스(slice), 픽처(picture) 또는 시퀀스(sequence) 단위로 전송될 수 있고, 상기 Nth 는 상기 Nth 를 나타내는 추가 정보를 기반으로 도출될 수 있다. 상기 Nth 를 나타내는 추가 정보는 상기 Nth 의 값을 나타낼 수 있다. 상기 Nth 를 나타내는 추가 정보는 인코딩 장치에서 생성 및 인코딩될 수 있고, 디코딩 장치로 전송 또는 시그널링될 수 있다. 이후, Nth 값을 전송 또는 시그널링한다 함은 Nth 값에 대한 정보를 인코딩 장치에서 디코딩 장치로 전송 또는 시그널링함을 나타낼 수 있다.
예를 들어, CU 단위로 Nth 를 나타내는 추가 정보가 전송되는 경우, 현재 크로마 블록의 인트라 예측 모드가 CCLM 모드이면 후술하는 내용과 같이 신텍스 요소(syntax element) cclm_reduced_sample_flag 를 파싱하고 CCLM 파라미터 계산 과정을 수행하는 방안이 제안될 수 있다. 상기 cclm_reduced_sample_flag는 CCLM 리듀스드 샘플 플래그(CCLM reduced sample flag)의 신텍스 요소를 나타낼 수 있다.
- 상기 cclm_reduced_sample_flag가 0(false)인 경우, 기존 CCLM 주변 샘플 선택 방안을 통한 CCLM 파라미터 계산 수행
- 상기 cclm_reduced_sample_flag가 1(true)인 경우, 상기 Nth = 2로 설정하고, 상술한 실시예에서 제안하는 주변 샘플 선택 방안을 통해 CCLM 파라미터 계산 수행
또는, 슬라이스, 픽처 또는 시퀀스 단위로 Nth 를 나타내는 추가 정보가 전송되는 경우, 후술하는 것과 같이 HLS(high level syntax) 통하여 전송되는 상기 추가 정보를 기반으로 Nth 값이 디코딩될 수 있다. 상기 Nth 를 나타내는 추가 정보는 인코딩 장치에서 인코딩되어 비트스트림에 포함될 수 있고, 전송될 수 있다.
예를 들어, 슬라이스 헤더를 통하여 시그널링되는 상기 추가 정보는 다음의 표와 같이 나타낼 수 있다.
Figure 112022066941543-pat00008
cclm_reduced_sample_num 는 상기 Nth 를 나타내는 추가 정보의 신텍스 요소를 나타낼 수 있다.
또는, 예를 들어, PPS(Picture Parameter Set, PPS)를 통하여 시그널링되는 상기 추가 정보는 다음의 표와 같이 나타낼 수 있다.
Figure 112022066941543-pat00009
또는, 예를 들어, SPS(Sequence Parameter Set, SPS)를 통하여 시그널링되는 상기 추가 정보는 다음의 표와 같이 나타낼 수 있다.
Figure 112022066941543-pat00010
상기 슬라이스 헤더, 상기 PPS 또는 상기 SPS를 통하여 전송된 cclm_reduced_sample_num 값(즉, cclm_reduced_sample_num 을 디코딩하여 도출된 값)을 기반으로 도출된 Nth 값은 다음의 표와 같이 도출될 수 있다.
Figure 112022066941543-pat00011
예를 들어, 상기 표 7을 참조하면 상기 cclm_reduced_sample_num를 기반으로 상기 Nth 가 도출될 수 있다. 상기 cclm_reduced_sample_num의 값이 0인 경우, 상기 Nth 는 2로 도출될 수 있고, 상기 cclm_reduced_sample_num의 값이 1인 경우, 상기 Nth 는 4로 도출될 수 있고, 상기 cclm_reduced_sample_num의 값이 2인 경우, 상기 Nth 는 8로 도출될 수 있고, 상기 cclm_reduced_sample_num의 값이 3인 경우, 상기 Nth 는 16으로 도출될 수 있다.
한편, CU, 슬라이스, 픽처 또는 시퀀스 단위로 Nth 를 나타내는 추가 정보가 전송되는 경우, 인코딩 장치는 다음과 같이 상기 Nth 값을 결정할 수 있고 디코딩 장치로 상기 Nth 값을 나타내는 상기 Nth 에 대한 상기 추가 정보를 전송할 수 있다.
- CU 단위로 Nth 값을 나타내는 상기 추가 정보가 전송되는 경우, 인코딩 장치는 상기 현재 크로마 블록의 인트라 예측 모드가 CCLM 모드이면 아래의 두 경우 중 인코딩 효율이 좋은 쪽을 RDO를 통해 결정할 수 있고, 결정된 방법에 대한 정보를 디코딩 장치로 전송할 수 있다.
1) 기존 CCLM 참조 샘플 선택 방안을 통해 CCLM 파라미터 계산을 수행하는 것이 인코딩 효율이 좋은 경우, 값이 0(false)인 cclm_reduced_sample_flag 를 전송
2) Nth = 2로 설정되고, 본 실시예에서 제안하는 CCLM 참조 샘플 방안을 통해 CCLM 파라미터 계산을 수행하는 것이 인코딩 효율이 좋은 경우, 값이 1(true)인 cclm_reduced_sample_flag 를 전송
- 또는, 슬라이스, 픽처 또는 시퀀스 단위로 Nth 값을 나타내는 상기 추가 정보가 전송되는 경우, 인코딩 장치는 상술한 표 4, 표 5 또는 표 6과 같이 HLS(high level syntax)를 추가하여 Nth 값을 나타내는 추가 정보를 전송할 수 있다. 인코딩 장치는 상기 Nth 값을 입력 영상의 크기를 고려하거나 또는 인코딩 타겟 비트레이트(target bitrate)에 맞게 설정할 수 있다.
1) 예를 들어, 입력 영상이 HD 이상인 경우, 인코딩 장치는 Nth = 8 로 설정할 수 있고, 그 이하인 경우, Nth = 4 로 설정할 수 있다.
2) 높은 품질의 영상 인코딩이 필요한 경우, 인코딩 장치는 Nth = 8 로 설정할 수 있고, 보통 품질의 영상 인코딩이 필요한 경우, Nth = 4 로 설정, 낮은 품질의 영상 인코딩이 필요한 경우, Nth = 2 로 설정할 수 있다.
한편, 상술한 표 3에서 도시된 바와 같이, 본 실시예에서 제안하는 방법이 사용되는 경우, 블록 사이즈가 커짐에도 CCLM 파라미터 계산을 위해 요구되는 연산량은 증가하지 않는 것을 볼 수 있다. 한 예로, 현재 크로마 블록의 사이즈가 32x32인 경우에 본 실시예에서 제안하는 방법을 통해 (예를 들어, 상기 Nth =4 로 설정) CCLM 파라미터 계산을 위한 연산량을 86% 줄일 수 있다.
다음의 표는 상기 Nth 가 2인 경우의 실험 결과 데이터를 나타낼 수 있다.
Figure 112022066941543-pat00012
또한, 다음의 표는 상기 Nth 가 4인 경우의 실험 결과 데이터를 나타낼 수 있다.
Figure 112022066941543-pat00013
또한, 다음의 표는 상기 Nth 가 8인 경우의 실험 결과 데이터를 나타낼 수 있다.
Figure 112022066941543-pat00014
또한, 다음의 표는 상기 Nth 가 16인 경우의 실험 결과 데이터를 나타낼 수 있다.
Figure 112022066941543-pat00015
상기 표 8 내지 표 11은 상기 Nth 가 2, 4, 8, 16인 경우의 코딩 효율 및 연산 복잡도를 나타낼 수 있다.
상기 표 8 내지 표 11을 참조하면, CCLM 파라미터 계산 연산량을 줄임에도 인코딩 효율은 거의 변화가 없음을 볼 수 있다. 예를 들어, 상기 표 9를 참조하면 상기 Nth가 4로 설정되는 경우(Nth = 4), 각 성분에 대한 인코딩 효율은 Y 0.04%, Cb 0.12%, Cr 0.07% 로 상기 Nth를 설정하지 않는 경우와 거의 변화가 없고, 인코딩 및 디코딩 복잡도는 97% 및 95%로 감소함을 확인할 수 있다.
또한 표 10 및 표 11을 참조하면 CCLM 파라미터 계산 연산량을 줄이는 경우(즉, Nth = 8 또는 16), 인코딩 효율은 오히려 좋아지고, 인코딩 및 디코딩 복잡도는 감소하는 것을 볼 수 있다.
본 실시예에서 제안하는 방법은 크로마 성분에 대한 인트라 예측 모드인 CCLM 모드에 사용될 수 있고, 상기 CCLM 모드를 통해 예측된 크로마 블록은 인코딩 장치에서 원본 영상과의 차분을 통해 레지듀얼 영상을 도출하는데 사용되거나, 디코딩 장치에서 레지듀얼 신호와의 합을 통해 복원된 영상을 도출하는데 사용될 수 있다.
도 8a 내지 도 8b는 일 실시예에 따라서 현재 크로마 블록에 대한 CCLM 예측을 수행하는 과정을 설명하기 위한 도면이다.
도 8a를 참조하면 인코딩 장치/디코딩 장치는 상기 현재 블록에 대한 CCLM 파라미터를 계산할 수 있다(S800). 예를 들어, 상기 CCLM 파라미터는 도 8b에 도시된 실시예와 같이 계산될 수 있다.
도 8b는 CCLM 파라미터를 계산하는 구체적인 실시예를 예시적으로 나타낼 수 있다. 예를 들어, 도 8b를 참조하면 인코딩 장치/디코딩 장치는 현재 크로마 블록에 대한 Nth 를 설정할 수 있다(S805). 상기 Nth 는 기설정된 값일 수 있고, 또는 시그널링되는 상기 Nth 에 대한 추가 정보를 기반으로 도출될 수 있다. 상기 Nth 는 2, 4, 8, 또는 16으로 설정될 수 있다.
이후, 인코딩 장치/디코딩 장치는 상기 현재 크로마 블록이 정사각형 크로마 블록(square chroma block)인지 판단할 수 있다(S810).
상기 현재 크로마 블록이 상기 정사각형 크로마 블록인 경우, 인코딩 장치/디코딩 장치는 상기 현재 블록의 폭인 N이 상기 Nth 보다 큰지 판단할 수 있다(S815).
상기 N이 상기 Nth 보다 큰 경우, 인코딩 장치/디코딩 장치는 상기 CCLM 파라미터 계산을 위한 참조 샘플로 상기 현재 블록에 인접한 참조 라인(reference line) 내 2Nth 개의 주변 샘플들을 선택할 수 있다(S820).
인코딩 장치/디코딩 장치는 상기 선택된 참조 샘플들을 기반으로 상기 CCLM 예측에 대한 파라미터 α, β를 도출할 수 있다(S825).
또한, 상기 N이 상기 Nth 보다 크지 않은 경우, 인코딩 장치/디코딩 장치는 상기 CCLM 파라미터 계산을 위한 참조 샘플로 상기 현재 블록에 인접한 참조 라인(reference line) 내 2N 개의 주변 샘플들을 선택할 수 있다(S830). 이후, 인코딩 장치/디코딩 장치는 상기 선택된 참조 샘플들을 기반으로 상기 CCLM 예측에 대한 파라미터 α, β를 도출할 수 있다(S825).
한편, 상기 현재 크로마 블록이 상기 정사각형 크로마 블록이 아닌 경우, 상기 현재 크로마 블록의 사이즈는 MxN 사이즈 또는 NxM 사이즈로 도출될 수 있다(S835). 여기서, 상기 M은 상기 N보다 큰 값을 나타낼 수 있다(N<M).
이후, 인코딩 장치/디코딩 장치는 상기 N이 상기 Nth 보다 큰지 판단할 수 있다(S840).
상기 N이 상기 Nth 보다 큰 경우, 인코딩 장치/디코딩 장치는 상기 CCLM 파라미터 계산을 위한 참조 샘플로 상기 현재 블록에 인접한 참조 라인(reference line) 내 2Nth 개의 주변 샘플들을 선택할 수 있다(S845).
인코딩 장치/디코딩 장치는 상기 선택된 참조 샘플들을 기반으로 상기 CCLM 예측에 대한 파라미터 α, β를 도출할 수 있다(S825).
또한, 상기 N이 상기 Nth 보다 크지 않은 경우, 인코딩 장치/디코딩 장치는 상기 CCLM 파라미터 계산을 위한 참조 샘플로 상기 현재 블록에 인접한 참조 라인(reference line) 내 2N 개의 주변 샘플들을 선택할 수 있다(S850). 이후, 인코딩 장치/디코딩 장치는 상기 선택된 참조 샘플들을 기반으로 상기 CCLM 예측에 대한 파라미터 α, β를 도출할 수 있다(S825).
다시 도 8a를 참조하면, 상기 현재 크로마 블록에 대한 CCLM 예측에 대한 상기 파라미터들이 계산된 경우, 인코딩 장치/디코딩 장치는 상기 파라미터들을 기반으로 CCLM 예측을 수행하여 상기 현재 크로마 블록에 대한 예측 샘플을 생성할 수 있다(S860). 예를 들어, 인코딩 장치/디코딩 장치는 상기 계산된 파라미터들 및 상기 현재 크로마 블록에 대한 현재 루마 블록의 복원 샘플들이 사용되는 상술한 수학식 1을 기반으로 상기 현재 크로마 블록에 대한 예측 샘플을 생성할 수 있다.
한편, 본 문서에서는 상기 CCLM 파라미터 도출에 있어서 CCLM 파라미터 도출을 위한 연산 복잡도를 줄이는 상술한 실시예와 다른 실시예가 제안될 수 있다.
일 예로, 상술한 크로마 블록 사이즈 증가에 따른 CCLM 파라미터 연산량 증가 문제를 해결하기 위해 주변 샘플 선택 상한선 Nth 를 현재 크로마 블록의 블록 사이즈에 적응적으로 설정하고, 상기 설정된 Nth 를 기반으로 상기 현재 크로마 블록의 주변 화소를 선택하여 CCLM 파라미터를 계산하는 실시예가 제안될 수 있다. 상기 Nth 는 최대 주변 샘플 수라고 나타낼 수도 있다.
예를 들어, 다음과 같이 현재 크로마 블록의 블록 사이즈에 적응적으로 상기 Nth 가 설정될 수 있다.
- NxM 사이즈 또는 MxN 사이즈(여기서, N <= M)의 현재 크로마 블록에서 N <= TH 인 경우, Nth = 2 로 설정
- NxM 사이즈 또는 MxN 사이즈(여기서, N <= M)의 현재 크로마 블록에서 N > TH 인 경우, Nth = 4 로 설정
이 경우, 예를 들어, 임계값 TH에 따라서 CCLM 파라미터를 계산하는데 사용되는 참조 샘플은 다음과 같이 선택될 수 있다.
예를 들어, 상기 TH 가 4인 경우(TH = 4), 상기 현재 크로마 블록의 상기 N이 2 혹은 4인 경우에는 블록 한 변에 대한 2개의 샘플 페어가 이용되어 상기 CCLM 파라미터가 계산될 수 있고, 상기 N이 8, 16, 혹은 32인 경우에는 블록 한 변에 대한 4개의 샘플 페어가 이용되어 상기 CCLM 파라미터가 계산될 수 있다.
또한, 예를 들어, 상기 TH 가 8인 경우(TH = 8), 상기 현재 크로마 블록의 상기 N이 2, 4 혹은 8인 경우에는 블록 한 변에 대한 2개의 샘플 페어가 이용되어 상기 CCLM 파라미터가 계산될 수 있고, 상기 N이 16, 혹은 32인 경우에는 블록 한 변에 대한 4개의 샘플 페어가 이용되어 상기 CCLM 파라미터가 계산될 수 있다.
상술한 내용과 같이 본 실시예는 현재 크로마 블록의 블록 사이즈에 적응적으로 상기 Nth 를 설정함으로써 블록 사이즈에 최적화된 샘플 개수가 선택될 수 있다.
예를 들어, 기존 CCLM 참조 샘플 선택 방안 및 본 실시예에 따른 CCLM 파라미터 계산 연산량은 다음의 표와 같이 나타낼 수 있다.
Figure 112022066941543-pat00016
여기서, 상기 N 은 상기 현재 블록의 폭 및 높이 중 작은 값을 나타낼 수 있다. 상기 표 12를 참조하면, 본 실시예에서 제안하는 CCLM 참조 샘플 선택 방안이 사용되는 경우, 블록 사이즈가 커짐에도 CCLM 파라미터 계산을 위해 요구되는 연산량은 증가하지 않을 수 있다.
한편, 상기 TH 는 상기 TH 를 나타내는 추가 정보를 전송할 필요없이 인코딩 장치 및 디코딩 장치에서 기설정된 값으로 도출될 수 있다. 또는, 상기 TH 를 나타내는 추가 정보가 CU(Coding Unit), 슬라이스(slice), 픽처(picture) 또는 시퀀스(sequence) 단위로 전송될 수 있고, 상기 TH 는 상기 TH 를 나타내는 추가 정보를 기반으로 도출될 수 있다. 상기 TH 를 나타내는 추가 정보는 상기 TH 의 값을 나타낼 수 있다.
예를 들어, CU 단위로 TH 를 나타내는 추가 정보가 전송되는 경우, 현재 크로마 블록의 인트라 예측 모드가 CCLM 모드이면 후술하는 내용과 같이 신텍스 요소(syntax element) cclm_reduced_sample_flag 를 파싱하고 CCLM 파라미터 계산 과정을 수행하는 방안이 제안될 수 있다. 상기 cclm_reduced_sample_flag는 CCLM 리듀스드 샘플 플래그(CCLM reduced sample flag)의 신텍스 요소를 나타낼 수 있다.
- 상기 cclm_reduced_sample_flag가 0(false)인 경우, 모든 블록에 대하여 상기 Nth = 4로 설정하고, 상술한 도 8에서 제안된 실시예의 주변 샘플 선택 방안을 통해 CCLM 파라미터 계산 수행
- 상기 cclm_reduced_sample_flag가 1(true)인 경우, 상기 TH = 4로 설정하고, 상술한 실시예에서 제안하는 주변 샘플 선택 방안을 통해 CCLM 파라미터 계산 수행
또는, 슬라이스, 픽처 또는 시퀀스 단위로 TH 를 나타내는 추가 정보가 전송되는 경우, 후술하는 것과 같이 HLS(high level syntax) 통하여 전송되는 상기 추가 정보를 기반으로 TH 값이 디코딩될 수 있다.
예를 들어, 슬라이스 헤더를 통하여 시그널링되는 상기 추가 정보는 다음의 표와 같이 나타낼 수 있다.
Figure 112022066941543-pat00017
cclm_reduced_sample_threshold 는 상기 TH 를 나타내는 추가 정보의 신텍스 요소를 나타낼 수 있다.
또는, 예를 들어, PPS(Picture Parameter Set, PPS)를 통하여 시그널링되는 상기 추가 정보는 다음의 표와 같이 나타낼 수 있다.
Figure 112022066941543-pat00018
또는, 예를 들어, SPS(Sequence Parameter Set, SPS)를 통하여 시그널링되는 상기 추가 정보는 다음의 표와 같이 나타낼 수 있다.
Figure 112022066941543-pat00019
상기 슬라이스 헤더, 상기 PPS 또는 상기 SPS를 통하여 전송된 cclm_reduced_sample_threshold 값(즉, cclm_reduced_sample_threshold을 디코딩하여 도출된 값)을 기반으로 도출된 TH 값은 다음의 표와 같이 도출될 수 있다.
Figure 112022066941543-pat00020
예를 들어, 상기 표 16을 참조하면 상기 cclm_reduced_sample_threshold를 기반으로 상기 TH가 도출될 수 있다. 상기 cclm_reduced_sample_threshold의 값이 0인 경우, 상기 TH 는 4로 도출될 수 있고, 상기 cclm_reduced_sample_threshold의 값이 1인 경우, 상기 TH 는 8로 도출될 수 있다.
한편, 상기 TH가 별도의 추가 정보 전송없이 인코딩 장치 및 디코딩 장치에서 기설정된 값으로 도출되는 경우, 인코딩 장치는 상기 기설정된 TH 값을 기반으로 상술한 실시예와 같은 상기 CCLM 예측을 위한 CCLM 파라미터 계산을 수행할 수 있다.
또는, 인코딩 장치는 상기 임계값 TH 의 사용 여부를 결정할 수 있고, 상기 TH 의 사용 여부를 나타내는 정보 및 상기 TH 값을 나타내는 추가 정보를 다음과 같이 디코딩 장치로 전송할 수 있다.
- CU 단위로 TH 의 사용 여부를 나타내는 정보가 전송되는 경우, 현재 크로마 블록의 인트라 예측 모드가 CCLM 모드이면(즉, 상기 현재 크로마 블록에 CCLM 예측이 적용되는 경우), 아래의 두 경우 중 인코딩 효율이 좋은 쪽을 RDO를 통해 결정할 수 있고, 결정된 방법에 대한 정보를 디코딩 장치로 전송할 수 있다.
1) 모든 블록에 대하여 상기 Nth = 4로 설정하고, 상술한 도 8에서 제안된 실시예의 주변 샘플 선택 방안을 통해 CCLM 파라미터 계산하는 것이 인코딩 효율이 좋은 경우, 값이 0(false)인 cclm_reduced_sample_flag 를 전송
2) 상기 TH = 4로 설정하고, 상술한 실시예에서 제안하는 주변 샘플 선택 방안을 통해 CCLM 파라미터 계산하는 것이 인코딩 효율이 좋은 경우, 값이 1(true)인 cclm_reduced_sample_flag 를 전송
- 또는, 슬라이스, 픽처 또는 시퀀스 단위로 TH 의 사용 여부를 나타내는 정보가 전송되는 경우, 인코딩 장치는 상술한 표 13, 표 14 또는 표 15와 같이 HLS(high level syntax)를 추가하여 TH의 사용 여부를 나타내는 정보를 전송할 수 있다. 인코딩 장치는 상기 TH의 사용 여부를 입력 영상의 크기를 고려하거나 또는 인코딩 타겟 비트레이트(target bitrate)에 맞게 설정할 수 있다.
1) 예를 들어, 입력 영상이 HD 이상인 경우, 인코딩 장치는 TH = 8 로 설정할 수 있고, 그 이하인 경우, TH = 4 로 설정할 수 있다.
2) 높은 품질의 영상 인코딩이 필요한 경우, 인코딩 장치는 TH = 8 로 설정할 수 있고, 낮은 품질의 영상 인코딩이 필요한 경우, TH = 4 로 설정할 수 있다.
본 실시예에서 제안하는 방법은 크로마 성분에 대한 인트라 예측 모드인 CCLM 모드에 사용될 수 있고, 상기 CCLM 모드를 통해 예측된 크로마 블록은 인코딩 장치에서 원본 영상과의 차분을 통해 레지듀얼 영상을 도출하는데 사용되거나, 디코딩 장치에서 레지듀얼 신호와의 합을 통해 복원된 영상을 도출하는데 사용될 수 있다.
도 9a 내지 도 9b는 일 실시예에 따라서 현재 크로마 블록에 대한 CCLM 예측을 수행하는 과정을 설명하기 위한 도면이다.
도 9a를 참조하면 인코딩 장치/디코딩 장치는 상기 현재 블록에 대한 CCLM 파라미터를 계산할 수 있다(S900). 예를 들어, 상기 CCLM 파라미터는 도 9b에 도시된 실시예와 같이 계산될 수 있다.
도 9b는 CCLM 파라미터를 계산하는 구체적인 실시예를 예시적으로 나타낼 수 있다. 예를 들어, 도 9b를 참조하면 인코딩 장치/디코딩 장치는 현재 크로마 블록에 대한 TH 를 설정할 수 있다(S905). 상기 TH 는 기설정된 값일 수 있고, 또는 시그널링되는 상기 TH 에 대한 추가 정보를 기반으로 도출될 수 있다. 상기 TH 는 4 또는 8로 설정될 수 있다.
이후, 인코딩 장치/디코딩 장치는 상기 현재 크로마 블록이 정사각형 크로마 블록(square chroma block)인지 판단할 수 있다(S910).
상기 현재 크로마 블록이 상기 정사각형 크로마 블록인 경우, 인코딩 장치/디코딩 장치는 상기 현재 블록의 폭인 N이 상기 TH 보다 큰지 판단할 수 있다(S915).
상기 N이 상기 TH보다 큰 경우, 인코딩 장치/디코딩 장치는 상기 CCLM 파라미터 계산을 위한 참조 샘플로 상기 현재 블록에 인접한 참조 라인(reference line) 내 2Nth 개의 주변 샘플들을 선택할 수 있다(S920). 여기서, 상기 Nth 는 4일 수 있다. 즉, 상기 N이 상기 TH보다 큰 경우, 상기 Nth 는 4일 수 있다.
인코딩 장치/디코딩 장치는 상기 선택된 참조 샘플들을 기반으로 상기 CCLM 예측에 대한 파라미터 α, β를 도출할 수 있다(S925).
또한, 상기 N이 상기 TH보다 크지 않은 경우, 인코딩 장치/디코딩 장치는 상기 CCLM 파라미터 계산을 위한 참조 샘플로 상기 현재 블록에 인접한 참조 라인(reference line) 내 2Nth 개의 주변 샘플들을 선택할 수 있다(S930). 여기서, 상기 Nth 는 2일 수 있다. 즉, 상기 N이 상기 TH보다 큰 경우, 상기 Nth 는 2일 수 있다. 이후, 인코딩 장치/디코딩 장치는 상기 선택된 참조 샘플들을 기반으로 상기 CCLM 예측에 대한 파라미터 α, β를 도출할 수 있다(S925).
한편, 상기 현재 크로마 블록이 상기 정사각형 크로마 블록이 아닌 경우, 상기 현재 크로마 블록의 사이즈는 MxN 사이즈 또는 NxM 사이즈로 도출될 수 있다(S935). 여기서, 상기 M은 상기 N보다 큰 값을 나타낼 수 있다(N<M).
이후, 인코딩 장치/디코딩 장치는 상기 N이 상기 TH보다 큰지 판단할 수 있다(S940).
상기 N이 상기 TH 보다 큰 경우, 인코딩 장치/디코딩 장치는 상기 CCLM 파라미터 계산을 위한 참조 샘플로 상기 현재 블록에 인접한 참조 라인(reference line) 내 2Nth 개의 주변 샘플들을 선택할 수 있다(S945). 여기서, 상기 Nth 는 4일 수 있다. 즉, 상기 N이 상기 TH보다 큰 경우, 상기 Nth 는 4일 수 있다.
인코딩 장치/디코딩 장치는 상기 선택된 참조 샘플들을 기반으로 상기 CCLM 예측에 대한 파라미터 α, β를 도출할 수 있다(S925).
또한, 상기 N이 상기 TH보다 크지 않은 경우, 인코딩 장치/디코딩 장치는 상기 CCLM 파라미터 계산을 위한 참조 샘플로 상기 현재 블록에 인접한 참조 라인(reference line) 내 2Nth 개의 주변 샘플들을 선택할 수 있다(S950). 여기서, 상기 Nth 는 2일 수 있다. 즉, 상기 N이 상기 TH보다 큰 경우, 상기 Nth 는 2일 수 있다. 이후, 인코딩 장치/디코딩 장치는 상기 선택된 참조 샘플들을 기반으로 상기 CCLM 예측에 대한 파라미터 α, β를 도출할 수 있다(S925).
다시 도 9a를 참조하면, 상기 현재 크로마 블록에 대한 CCLM 예측에 대한 상기 파라미터들이 계산된 경우, 인코딩 장치/디코딩 장치는 상기 파라미터들을 기반으로 CCLM 예측을 수행하여 상기 현재 크로마 블록에 대한 예측 샘플을 생성할 수 있다(S960). 예를 들어, 인코딩 장치/디코딩 장치는 상기 계산된 파라미터들 및 상기 현재 크로마 블록에 대한 현재 루마 블록의 복원 샘플들이 사용되는 상술한 수학식 1을 기반으로 상기 현재 크로마 블록에 대한 예측 샘플을 생성할 수 있다.
한편, 본 문서에서는 상기 CCLM 파라미터 도출에 있어서 CCLM 파라미터 도출을 위한 연산 복잡도를 줄이는 상술한 실시예와 다른 실시예가 제안될 수 있다.
구체적으로, 본 실시예는 크로마 블록의 블록 사이즈 증가에 따른 CCLM 파라미터 연산량 증가 문제를 해결하기 위해 화소 선택 상한선 Nth를 적응적으로 설정하는 방안을 제안한다. 또한, 본 실시예는 N=2(여기서, 상기 N은 크로마 블록의 폭 및 높이 중 작은 값)인 경우, 즉 2x2 사이즈의 크로마 블록에 대한 CCLM 예측시 발생하는 워스트 케이스(worst case) 연산(CTU 내의 모든 크로마 블록들이 2x2 사이즈로 분할된 후, 모든 크로마 블록들에서 CCLM 예측이 수행되는 케이스)을 방지하기 위해, 적응적으로 Nth 를 설정하는 방안이 제안될 수 있고, 이를 통하여 상기 워스트 케이스에서의 CCLM 파라미터 계산을 위한 연산량을 약 40% 줄일 수 있다.
예를 들어, 본 실시예 따르면, 다음과 같이 블록 사이즈에 적응적으로 상기 Nth 가 설정될 수 있다.
- 본 실시예의 방법 1 (proposed method 1)
- NxM 사이즈 또는 MxN 사이즈(여기서, 예를 들어, N <= M)의 현재 크로마 블록에서 N <= 2 인 경우, Nth 는 1로 설정(Nth = 1)
- NxM 사이즈 또는 MxN 사이즈(여기서, 예를 들어, N <= M)의 현재 크로마 블록에서 N = 4 인 경우, Nth 는 2로 설정(Nth = 2)
- NxM 사이즈 또는 MxN 사이즈(여기서, 예를 들어, N <= M)의 현재 크로마 블록에서 N > 4 인 경우, Nth 는 4로 설정(Nth = 4)
또는, 예를 들어, 본 실시예 따르면, 다음과 같이 블록 사이즈에 적응적으로 상기 Nth 가 설정될 수 있다.
- 본 실시예의 방법 2 (proposed method 2)
- NxM 사이즈 또는 MxN 사이즈(여기서, 예를 들어, N <= M)의 현재 크로마 블록에서 N <= 2 인 경우, Nth 는 1로 설정(Nth = 1)
- NxM 사이즈 또는 MxN 사이즈(여기서, 예를 들어, N <= M)의 현재 크로마 블록에서 N = 4 인 경우, Nth 는 2로 설정(Nth = 2)
- NxM 사이즈 또는 MxN 사이즈(여기서, 예를 들어, N <= M)의 현재 크로마 블록에서 N = 8 인 경우, Nth 는 4로 설정(Nth = 4)
- NxM 사이즈 또는 MxN 사이즈(여기서, 예를 들어, N <= M)의 현재 크로마 블록에서 N > 8 인 경우, Nth 는 8로 설정(Nth = 8)
또는, 예를 들어, 본 실시예 따르면, 다음과 같이 블록 사이즈에 적응적으로 상기 Nth 가 설정될 수 있다.
- 본 실시예의 방법 3 (proposed method 3)
- NxM 사이즈 또는 MxN 사이즈(여기서, 예를 들어, N <= M)의 현재 크로마 블록에서 N <= 2 인 경우, Nth 는 1로 설정(Nth = 1)
- NxM 사이즈 또는 MxN 사이즈(여기서, 예를 들어, N <= M)의 현재 크로마 블록에서 N > 2 인 경우, Nth 는 2로 설정(Nth = 2)
또는, 예를 들어, 본 실시예 따르면, 다음과 같이 블록 사이즈에 적응적으로 상기 Nth 가 설정될 수 있다.
- 본 실시예의 방법 4 (proposed method 4)
- NxM 사이즈 또는 MxN 사이즈(여기서, 예를 들어, N <= M)의 현재 크로마 블록에서 N <= 2 인 경우, Nth 는 1로 설정(Nth = 1)
- NxM 사이즈 또는 MxN 사이즈(여기서, 예를 들어, N <= M)의 현재 크로마 블록에서 N > 2 인 경우, Nth 는 4로 설정(Nth = 4)
본 실시예의 상술한 방법 1 내지 방법 4는 N = 2인 경우의 워스트 케이스 복잡도를 40% 정도 줄일 수 있으며, 각 크로마 블록 사이즈에 적응적으로 Nth 를 적용할 수 있기 때문에 인코딩 손실을 최소화할 수 있다. 또한, 예를 들어, 상기 방법 2는 Nth 를 8까지 가변적으로 적용할 수 있기 때문에 고화질 인코딩에 적합할 수 있고, 상기 방법 3 및 상기 방법 4는 Nth 를 4 혹은 2로 줄일 수 있기 때문에 CCLM 복잡도를 크게 감소시킬 수 있는바, 저화질 혹은 중간 화질 인코딩에 적합할 수 있다.
상술한 방법 1 내지 방법 4와 같이 본 실시예에 따르면 블록 사이즈에 적응적으로 Nth 를 설정할 수 있고, 이를 통하여 블록 사이즈에 최적화된 CCLM 파라미터 도출을 위한 참조 샘플 개수가 선택될 수 있다.
인코딩 장치/디코딩 장치는 상기 주변 샘플 선택 상한선 Nth 를 설정한 후, 상술한 바와 같이 크로마 블록 주변 샘플을 선택하여 CCLM 파라미터를 계산할 수 있다.
상술한 실시예가 적용되는 경우의 크로마 블록 사이즈에 따른 CCLM 파라미터 계산 연산량은 다음의 표와 같이 나타낼 수 있다.
Figure 112022066941543-pat00021
상술한 표 17에 도시된 바와 같이, 본 실시예에서 제안하는 방법들이 사용되는 경우, 블록 사이즈가 커짐에도 CCLM 파라미터 계산을 위해 요구되는 연산량은 증가하지 않는 것을 볼 수 있다.
한편, 본 실시예는 추가 정보를 전송할 필요 없이 인코딩 장치 및 디코딩 장치에서 약속된 값이 사용될 수 있으며, 혹은 CU, 슬라이스, 픽처 및 시퀀스 단위로 제안된 방법의 사용 여부 및 상기 Nth 의 값을 나타내는 정보가 전송될 수 있다.
예를 들어, CU 단위로 제안된 방법의 사용 여부를 나타내는 정보가 전송되는 경우, 현재 크로마 블록의 인트라 예측 모드가 CCLM 모드이면(즉, 상기 현재 크로마 블록에 CCLM 예측이 적용되는 경우), 다음과 같이 cclm_reduced_sample_flag가 파싱되어 상술한 실시예가 수행될 수 있다.
- 상기 cclm_reduced_sample_flag의 값이 0(false)인 경우, 모든 블록에 대하여 상기 Nth = 4로 설정하고, 상술한 도 8에서 제안된 실시예의 주변 샘플 선택 방안을 통해 CCLM 파라미터 계산 수행
- 상기 cclm_reduced_sample_flag의 값이 1(true)인 경우, 상술한 본 실시예의 방법 3을 통해 CCLM 파라미터 계산 수행
또는, 슬라이스, 픽처 또는 시퀀스 단위로 적용되는 방법을 나타내는 정보가 전송되는 경우, 후술하는 것과 같이 HLS(high level syntax) 통하여 전송되는 상기 정보를 기반으로 상술한 방법 1 내지 방법 4 중 적용되는 방법이 선택될 수 있고, 선택된 방법을 기반으로 상기 CCLM 파라미터가 계산될 수 있다.
예를 들어, 슬라이스 헤더를 통하여 시그널링되는 상기 적용되는 방법을 나타내는 정보는 다음의 표와 같이 나타낼 수 있다.
Figure 112022066941543-pat00022
cclm_reduced_sample_threshold 는 상기 적용되는 방법을 나타내는 정보의 신텍스 요소를 나타낼 수 있다.
또는, 예를 들어, PPS(Picture Parameter Set, PPS)를 통하여 시그널링되는 상기 적용되는 방법을 나타내는 정보는 다음의 표와 같이 나타낼 수 있다.
Figure 112022066941543-pat00023
또는, 예를 들어, SPS(Sequence Parameter Set, SPS)를 통하여 시그널링되는 상기 적용되는 방법을 나타내는 정보는 다음의 표와 같이 나타낼 수 있다.
Figure 112022066941543-pat00024
상기 슬라이스 헤더, 상기 PPS 또는 상기 SPS를 통하여 전송된 cclm_reduced_sample_threshold 값(즉, cclm_reduced_sample_threshold을 디코딩하여 도출된 값)을 기반으로 선택된 방법은 다음의 표와 같이 도출될 수 있다.
Figure 112022066941543-pat00025
표 21을 참조하면 상기 cclm_reduced_sample_threshold의 값이 0 인 경우, 상기 현재 크로마 블록에 적용되는 방법은 상기 방법 1로 선택될 수 있고, 상기 cclm_reduced_sample_threshold의 값이 1 인 경우, 상기 현재 크로마 블록에 적용되는 방법은 상기 방법 2로 선택될 수 있고, 상기 cclm_reduced_sample_threshold의 값이 2 인 경우, 상기 현재 크로마 블록에 적용되는 방법은 상기 방법 3으로 선택될 수 있고, 상기 cclm_reduced_sample_threshold의 값이 3 인 경우, 상기 현재 크로마 블록에 적용되는 방법은 상기 방법 4로 선택될 수 있다.
본 실시예에서 제안하는 방법은 크로마 성분에 대한 인트라 예측 모드인 CCLM 모드에 사용될 수 있고, 상기 CCLM 모드를 통해 예측된 크로마 블록은 인코딩 장치에서 원본 영상과의 차분을 통해 레지듀얼 영상을 도출하는데 사용되거나, 디코딩 장치에서 레지듀얼 신호와의 합을 통해 복원된 영상을 도출하는데 사용될 수 있다.
한편, CU, 슬라이스, 픽처 및 시퀀스 단위로 상기 방법들 중 하나를 나타내는 정보가 전송되는 경우, 인코딩 장치는 상기 방법 1 내지 상기 방법 4 중 하나의 방법을 결정한 후, 상기 정보를 디코딩 장치로 다음과 같이 전송할 수 있다.
- CU 단위로 상술한 실시예의 방법이 적용되는지 여부를 나타내는 정보가 전송되는 경우, 현재 크로마 블록의 인트라 예측 모드가 CCLM 모드이면(즉, 상기 현재 크로마 블록에 CCLM 예측이 적용되는 경우), 아래의 두 경우 중 인코딩 효율이 좋은 쪽을 RDO를 통해 결정할 수 있고, 결정된 방법에 대한 정보를 디코딩 장치로 전송할 수 있다.
1) 모든 블록에 대하여 상기 Nth = 4로 설정하고, 상술한 도 8에서 제안된 실시예의 주변 샘플 선택 방안을 통해 CCLM 파라미터 계산하는 것이 인코딩 효율이 좋은 경우, 값이 0(false)인 cclm_reduced_sample_flag 를 전송
2) 상기 방법 3이 적용되는 것으로 설정하고, 상술한 실시예에서 제안하는 주변 샘플 선택 방안을 통해 CCLM 파라미터 계산하는 것이 인코딩 효율이 좋은 경우, 값이 1(true)인 cclm_reduced_sample_flag 를 전송
- 또는, 슬라이스, 픽처 또는 시퀀스 단위로 상술한 실시예의 방법이 적용되는지 여부를 나타내는 정보가 전송되는 경우, 인코딩 장치는 상술한 표 18, 표 19 또는 표 20과 같이 HLS(high level syntax)를 추가하여 상기 방법들 중 하나의 방법을 나타내는 정보를 전송할 수 있다. 인코딩 장치는 상기 방법들 중 적용되는 방법을 입력 영상의 크기를 고려하거나 또는 인코딩 타겟 비트레이트(target bitrate)에 맞게 설정할 수 있다.
1) 예를 들어, 입력 영상이 HD 이상인 경우, 인코딩 장치는 상기 방법 2(Nth = 1,2,4 or 8)를 적용할 수 있고, 그 이하인 경우, 상기 방법 1(Nth = 1,2 or 4)를 적용할 수 있다.
2) 높은 품질의 영상 인코딩이 필요한 경우, 인코딩 장치는 상기 방법 2(Nth = 1,2,4 or 8)를 적용할 수 있고, 낮은 품질의 영상 인코딩이 필요한 경우, 상기 방법 3(Nth = 1 or 2) 또는 상기 방법 4(Nth = 1 or 4)를 적용할 수 있다.
본 실시예에서 제안하는 방법은 크로마 성분에 대한 인트라 예측 모드인 CCLM 모드에 사용될 수 있고, 상기 CCLM 모드를 통해 예측된 크로마 블록은 인코딩 장치에서 원본 영상과의 차분을 통해 레지듀얼 영상을 도출하는데 사용되거나, 디코딩 장치에서 레지듀얼 신호와의 합을 통해 복원된 영상을 도출하는데 사용될 수 있다.
도 10a 내지 도 10b는 상술한 실시예의 방법 1에 따라서 도출된 현재 크로마 블록의 CCLM 파라미터들을 기반으로 CCLM 예측을 수행하는 과정을 설명하기 위한 도면이다.
도 10a를 참조하면 인코딩 장치/디코딩 장치는 상기 현재 블록에 대한 CCLM 파라미터를 계산할 수 있다(S1000). 예를 들어, 상기 CCLM 파라미터는 도 10b에 도시된 실시예와 같이 계산될 수 있다.
도 10b는 CCLM 파라미터를 계산하는 구체적인 실시예를 예시적으로 나타낼 수 있다. 예를 들어, 도 10b를 참조하면 인코딩 장치/디코딩 장치는 상기 현재 크로마 블록이 정사각형 크로마 블록(square chroma block)인지 판단할 수 있다(S1005).
상기 현재 크로마 블록이 상기 정사각형 크로마 블록인 경우, 인코딩 장치/디코딩 장치는 상기 현재 블록의 폭 또는 높이를 N으로 설정할 수 있고(S1010), 상기 N이 2보다 작은지(N < 2) 판단할 수 있다(S1015).
또는, 상기 현재 크로마 블록이 상기 정사각형 크로마 블록이 아닌 경우, 상기 현재 크로마 블록의 사이즈는 MxN 사이즈 또는 NxM 사이즈로 도출될 수 있고(S1020), 인코딩 장치/디코딩 장치는 상기 N이 2보다 작은지 판단할 수 있다(S1015). 여기서, 상기 M은 상기 N보다 큰 값을 나타낼 수 있다(N<M).
상기 N이 2보다 작은 경우, 인코딩 장치/디코딩 장치는 상기 CCLM 파라미터 계산을 위한 참조 샘플로 상기 현재 블록에 인접한 참조 라인(reference line) 내 2Nth 개의 주변 샘플들을 선택할 수 있다(S1025). 여기서, 상기 Nth 는 1일 수 있다(Nth =1).
인코딩 장치/디코딩 장치는 상기 선택된 참조 샘플들을 기반으로 상기 CCLM 예측에 대한 파라미터 α, β를 도출할 수 있다(S1030).
한편, 상기 N이 2보다 작지 않은 경우, 인코딩 장치/디코딩 장치는 상기 N이 4 이하(N <= 4)인지 판단할 수 있다(S1035).
상기 N이 4 이하인 경우, 인코딩 장치/디코딩 장치는 상기 CCLM 파라미터 계산을 위한 참조 샘플로 상기 현재 블록에 인접한 참조 라인(reference line) 내 2Nth 개의 주변 샘플들을 선택할 수 있다(S1040). 여기서, 상기 Nth 는 2일 수 있다(Nth =2). 이후, 인코딩 장치/디코딩 장치는 상기 선택된 참조 샘플들을 기반으로 상기 CCLM 예측에 대한 파라미터 α, β를 도출할 수 있다(S1030).
또는, 상기 N이 4보다 큰 경우, 인코딩 장치/디코딩 장치는 상기 CCLM 파라미터 계산을 위한 참조 샘플로 상기 현재 블록에 인접한 참조 라인(reference line) 내 2Nth 개의 주변 샘플들을 선택할 수 있다(S1045). 여기서, 상기 Nth 는 4일 수 있다(Nth =4). 이후, 인코딩 장치/디코딩 장치는 상기 선택된 참조 샘플들을 기반으로 상기 CCLM 예측에 대한 파라미터 α, β를 도출할 수 있다(S1030).
다시 도 10a를 참조하면, 상기 현재 크로마 블록에 대한 CCLM 예측에 대한 상기 파라미터들이 계산된 경우, 인코딩 장치/디코딩 장치는 상기 파라미터들을 기반으로 CCLM 예측을 수행하여 상기 현재 크로마 블록에 대한 예측 샘플을 생성할 수 있다(S1050). 예를 들어, 인코딩 장치/디코딩 장치는 상기 계산된 파라미터들 및 상기 현재 크로마 블록에 대한 현재 루마 블록의 복원 샘플들이 사용되는 상술한 수학식 1을 기반으로 상기 현재 크로마 블록에 대한 예측 샘플을 생성할 수 있다.
도 11a 내지 도 11b는 상술한 실시예의 방법 2에 따라서 도출된 현재 크로마 블록의 CCLM 파라미터들을 기반으로 CCLM 예측을 수행하는 과정을 설명하기 위한 도면이다.
도 11a를 참조하면 인코딩 장치/디코딩 장치는 상기 현재 블록에 대한 CCLM 파라미터를 계산할 수 있다(S1100). 예를 들어, 상기 CCLM 파라미터는 도 11b에 도시된 실시예와 같이 계산될 수 있다.
도 11b는 CCLM 파라미터를 계산하는 구체적인 실시예를 예시적으로 나타낼 수 있다. 예를 들어, 도 11b를 참조하면 인코딩 장치/디코딩 장치는 상기 현재 크로마 블록이 정사각형 크로마 블록(square chroma block)인지 판단할 수 있다(S1105).
상기 현재 크로마 블록이 상기 정사각형 크로마 블록인 경우, 인코딩 장치/디코딩 장치는 상기 현재 블록의 폭 또는 높이를 N으로 설정할 수 있고(S1110), 상기 N이 2보다 작은지(N < 2) 판단할 수 있다(S1115).
또는, 상기 현재 크로마 블록이 상기 정사각형 크로마 블록이 아닌 경우, 상기 현재 크로마 블록의 사이즈는 MxN 사이즈 또는 NxM 사이즈로 도출될 수 있고(S1120), 인코딩 장치/디코딩 장치는 상기 N이 2보다 작은지 판단할 수 있다(S1115). 여기서, 상기 M은 상기 N보다 큰 값을 나타낼 수 있다(N<M).
상기 N이 2보다 작은 경우, 인코딩 장치/디코딩 장치는 상기 CCLM 파라미터 계산을 위한 참조 샘플로 상기 현재 블록에 인접한 참조 라인(reference line) 내 2Nth 개의 주변 샘플들을 선택할 수 있다(S1125). 여기서, 상기 Nth 는 1일 수 있다(Nth =1).
인코딩 장치/디코딩 장치는 상기 선택된 참조 샘플들을 기반으로 상기 CCLM 예측에 대한 파라미터 α, β를 도출할 수 있다(S1130).
한편, 상기 N이 2보다 작지 않은 경우, 인코딩 장치/디코딩 장치는 상기 N이 4 이하(N <= 4)인지 판단할 수 있다(S1135).
상기 N이 4 이하인 경우, 인코딩 장치/디코딩 장치는 상기 CCLM 파라미터 계산을 위한 참조 샘플로 상기 현재 블록에 인접한 참조 라인(reference line) 내 2Nth 개의 주변 샘플들을 선택할 수 있다(S1140). 여기서, 상기 Nth 는 2일 수 있다(Nth =2). 이후, 인코딩 장치/디코딩 장치는 상기 선택된 참조 샘플들을 기반으로 상기 CCLM 예측에 대한 파라미터 α, β를 도출할 수 있다(S1130).
한편, 상기 N이 4보다 큰 경우, 인코딩 장치/디코딩 장치는 상기 N이 8 이하(N <= 8)인지 판단할 수 있다(S1145).
상기 N이 8 이하인 경우, 인코딩 장치/디코딩 장치는 상기 CCLM 파라미터 계산을 위한 참조 샘플로 상기 현재 블록에 인접한 참조 라인(reference line) 내 2Nth 개의 주변 샘플들을 선택할 수 있다(S1150). 여기서, 상기 Nth 는 4일 수 있다(Nth =4). 이후, 인코딩 장치/디코딩 장치는 상기 선택된 참조 샘플들을 기반으로 상기 CCLM 예측에 대한 파라미터 α, β를 도출할 수 있다(S1130).
또는, 상기 N이 8보다 큰 경우, 인코딩 장치/디코딩 장치는 상기 CCLM 파라미터 계산을 위한 참조 샘플로 상기 현재 블록에 인접한 참조 라인(reference line) 내 2Nth 개의 주변 샘플들을 선택할 수 있다(S1155). 여기서, 상기 Nth 는 8일 수 있다(Nth =8). 이후, 인코딩 장치/디코딩 장치는 상기 선택된 참조 샘플들을 기반으로 상기 CCLM 예측에 대한 파라미터 α, β를 도출할 수 있다(S1130).
다시 도 11a를 참조하면, 상기 현재 크로마 블록에 대한 CCLM 예측에 대한 상기 파라미터들이 계산된 경우, 인코딩 장치/디코딩 장치는 상기 파라미터들을 기반으로 CCLM 예측을 수행하여 상기 현재 크로마 블록에 대한 예측 샘플을 생성할 수 있다(S1160). 예를 들어, 인코딩 장치/디코딩 장치는 상기 계산된 파라미터들 및 상기 현재 크로마 블록에 대한 현재 루마 블록의 복원 샘플들이 사용되는 상술한 수학식 1을 기반으로 상기 현재 크로마 블록에 대한 예측 샘플을 생성할 수 있다.
도 12a 내지 도 12b는 상술한 실시예의 방법 3에 따라서 도출된 현재 크로마 블록의 CCLM 파라미터들을 기반으로 CCLM 예측을 수행하는 과정을 설명하기 위한 도면이다.
도 12a를 참조하면 인코딩 장치/디코딩 장치는 상기 현재 블록에 대한 CCLM 파라미터를 계산할 수 있다(S1200). 예를 들어, 상기 CCLM 파라미터는 도 12b에 도시된 실시예와 같이 계산될 수 있다.
도 12b는 CCLM 파라미터를 계산하는 구체적인 실시예를 예시적으로 나타낼 수 있다. 예를 들어, 도 12b를 참조하면 인코딩 장치/디코딩 장치는 상기 현재 크로마 블록이 정사각형 크로마 블록(square chroma block)인지 판단할 수 있다(S1205).
상기 현재 크로마 블록이 상기 정사각형 크로마 블록인 경우, 인코딩 장치/디코딩 장치는 상기 현재 블록의 폭 또는 높이를 N으로 설정할 수 있고(S1210), 상기 N이 2보다 작은지(N < 2) 판단할 수 있다(S1215).
또는, 상기 현재 크로마 블록이 상기 정사각형 크로마 블록이 아닌 경우, 상기 현재 크로마 블록의 사이즈는 MxN 사이즈 또는 NxM 사이즈로 도출될 수 있고(S1220), 인코딩 장치/디코딩 장치는 상기 N이 2보다 작은지 판단할 수 있다(S1215). 여기서, 상기 M은 상기 N보다 큰 값을 나타낼 수 있다(N<M).
상기 N이 2보다 작은 경우, 인코딩 장치/디코딩 장치는 상기 CCLM 파라미터 계산을 위한 참조 샘플로 상기 현재 블록에 인접한 참조 라인(reference line) 내 2Nth 개의 주변 샘플들을 선택할 수 있다(S1225). 여기서, 상기 Nth 는 1일 수 있다(Nth =1).
인코딩 장치/디코딩 장치는 상기 선택된 참조 샘플들을 기반으로 상기 CCLM 예측에 대한 파라미터 α, β를 도출할 수 있다(S1230).
한편, 상기 N이 2보다 작지 않은 경우, 인코딩 장치/디코딩 장치는 상기 CCLM 파라미터 계산을 위한 참조 샘플로 상기 현재 블록에 인접한 참조 라인(reference line) 내 2Nth 개의 주변 샘플들을 선택할 수 있다(S1235). 여기서, 상기 Nth 는 2일 수 있다(Nth =2). 이후, 인코딩 장치/디코딩 장치는 상기 선택된 참조 샘플들을 기반으로 상기 CCLM 예측에 대한 파라미터 α, β를 도출할 수 있다(S1230).
다시 도 12a를 참조하면, 상기 현재 크로마 블록에 대한 CCLM 예측에 대한 상기 파라미터들이 계산된 경우, 인코딩 장치/디코딩 장치는 상기 파라미터들을 기반으로 CCLM 예측을 수행하여 상기 현재 크로마 블록에 대한 예측 샘플을 생성할 수 있다(S1240). 예를 들어, 인코딩 장치/디코딩 장치는 상기 계산된 파라미터들 및 상기 현재 크로마 블록에 대한 현재 루마 블록의 복원 샘플들이 사용되는 상술한 수학식 1을 기반으로 상기 현재 크로마 블록에 대한 예측 샘플을 생성할 수 있다.
도 13a 내지 도 13b는 상술한 실시예의 방법 4에 따라서 도출된 현재 크로마 블록의 CCLM 파라미터들을 기반으로 CCLM 예측을 수행하는 과정을 설명하기 위한 도면이다.
도 13a를 참조하면 인코딩 장치/디코딩 장치는 상기 현재 블록에 대한 CCLM 파라미터를 계산할 수 있다(S1300). 예를 들어, 상기 CCLM 파라미터는 도 13b에 도시된 실시예와 같이 계산될 수 있다.
도 13b는 CCLM 파라미터를 계산하는 구체적인 실시예를 예시적으로 나타낼 수 있다. 예를 들어, 도 13b를 참조하면 인코딩 장치/디코딩 장치는 상기 현재 크로마 블록이 정사각형 크로마 블록(square chroma block)인지 판단할 수 있다(S1305).
상기 현재 크로마 블록이 상기 정사각형 크로마 블록인 경우, 인코딩 장치/디코딩 장치는 상기 현재 블록의 폭 또는 높이를 N으로 설정할 수 있고(S1310), 상기 N이 2보다 작은지(N < 2) 판단할 수 있다(S1315).
또는, 상기 현재 크로마 블록이 상기 정사각형 크로마 블록이 아닌 경우, 상기 현재 크로마 블록의 사이즈는 MxN 사이즈 또는 NxM 사이즈로 도출될 수 있고(S1320), 인코딩 장치/디코딩 장치는 상기 N이 2보다 작은지 판단할 수 있다(S1315). 여기서, 상기 M은 상기 N보다 큰 값을 나타낼 수 있다(N<M).
상기 N이 2보다 작은 경우, 인코딩 장치/디코딩 장치는 상기 CCLM 파라미터 계산을 위한 참조 샘플로 상기 현재 블록에 인접한 참조 라인(reference line) 내 2Nth 개의 주변 샘플들을 선택할 수 있다(S1325). 여기서, 상기 Nth 는 1일 수 있다(Nth =1).
인코딩 장치/디코딩 장치는 상기 선택된 참조 샘플들을 기반으로 상기 CCLM 예측에 대한 파라미터 α, β를 도출할 수 있다(S1330).
한편, 상기 N이 2보다 작지 않은 경우, 인코딩 장치/디코딩 장치는 상기 CCLM 파라미터 계산을 위한 참조 샘플로 상기 현재 블록에 인접한 참조 라인(reference line) 내 2Nth 개의 주변 샘플들을 선택할 수 있다(S1335). 여기서, 상기 Nth 는 4일 수 있다(Nth =4). 이후, 인코딩 장치/디코딩 장치는 상기 선택된 참조 샘플들을 기반으로 상기 CCLM 예측에 대한 파라미터 α, β를 도출할 수 있다(S1330).
다시 도 13a를 참조하면, 상기 현재 크로마 블록에 대한 CCLM 예측에 대한 상기 파라미터들이 계산된 경우, 인코딩 장치/디코딩 장치는 상기 파라미터들을 기반으로 CCLM 예측을 수행하여 상기 현재 크로마 블록에 대한 예측 샘플을 생성할 수 있다(S1340). 예를 들어, 인코딩 장치/디코딩 장치는 상기 계산된 파라미터들 및 상기 현재 크로마 블록에 대한 현재 루마 블록의 복원 샘플들이 사용되는 상술한 수학식 1을 기반으로 상기 현재 크로마 블록에 대한 예측 샘플을 생성할 수 있다.
한편, 본 문서에서는 상기 CCLM 파라미터 도출에 있어서 CCLM 파라미터 도출을 위한 연산 복잡도를 줄이는 상술한 실시예와 다른 실시예가 제안될 수 있다.
구체적으로, 본 실시예는 크로마 블록의 블록 사이즈 증가에 따른 CCLM 파라미터 연산량 증가 문제를 해결하기 위해 화소 선택 상한선 Nth를 적응적으로 설정하는 방안을 제안한다.
예를 들어, 본 실시예 따르면, 다음과 같이 블록 사이즈에 적응적으로 상기 Nth 가 설정될 수 있다.
- 본 실시예의 방법 1 (proposed method 1)
- 현재 크로마 블록이 2x2 사이즈의 크로마 블록인 경우, Nth 는 1로 설정(Nth = 1)
- NxM 사이즈 또는 MxN 사이즈(여기서, 예를 들어, N < M)의 현재 크로마 블록에서 N = 2 인 경우, Nth 는 2로 설정(Nth = 2)
- NxM 사이즈 또는 MxN 사이즈(여기서, 예를 들어, N <= M)의 현재 크로마 블록에서 N > 2 인 경우, Nth 는 4로 설정(Nth = 4)
또는, 예를 들어, 본 실시예 따르면, 다음과 같이 블록 사이즈에 적응적으로 상기 Nth 가 설정될 수 있다.
- 본 실시예의 방법 2 (proposed method 2)
- 현재 크로마 블록이 2x2 사이즈의 크로마 블록인 경우, Nth 는 1로 설정(Nth = 1)
- NxM 사이즈 또는 MxN 사이즈(여기서, 예를 들어, N < M)의 현재 크로마 블록에서 N = 2 인 경우, Nth 는 2로 설정(Nth = 2)
- NxM 사이즈 또는 MxN 사이즈(여기서, 예를 들어, N <= M)의 현재 크로마 블록에서 N = 4 인 경우, Nth 는 2로 설정(Nth = 2)
- NxM 사이즈 또는 MxN 사이즈(여기서, 예를 들어, N <= M)의 현재 크로마 블록에서 N > 4 인 경우, Nth 는 4로 설정(Nth = 4)
또는, 예를 들어, 본 실시예 따르면, 다음과 같이 블록 사이즈에 적응적으로 상기 Nth 가 설정될 수 있다.
- 본 실시예의 방법 3 (proposed method 3)
- 현재 크로마 블록이 2x2 사이즈의 크로마 블록인 경우, Nth 는 1로 설정(Nth = 1)
- NxM 사이즈 또는 MxN 사이즈(여기서, 예를 들어, N < M)의 현재 크로마 블록에서 N = 2 인 경우, Nth 는 2로 설정(Nth = 2)
- NxM 사이즈 또는 MxN 사이즈(여기서, 예를 들어, N <= M)의 현재 크로마 블록에서 N = 4 인 경우, Nth 는 4로 설정(Nth = 4)
- NxM 사이즈 또는 MxN 사이즈(여기서, 예를 들어, N <= M)의 현재 크로마 블록에서 N > 4 인 경우, Nth 는 8로 설정(Nth = 8)
본 실시예의 상술한 방법 1 내지 방법 3은 상기 현재 크로마 블록이 2x2 사이즈의 블록인 경우의 워스트 케이스 복잡도를 40% 정도 줄일 수 있으며, 각 크로마 블록 사이즈에 적응적으로 Nth 를 적용할 수 있기 때문에 인코딩 손실을 최소화할 수 있다. 또한, 예를 들어, 상기 방법 1 및 방법 3은 N>2인 경우에 Nth 를 4로 적용할 수 있기 때문에 고화질 인코딩에 적합할 수 있고, 상기 방법 2는 N=4 인 경우에도 Nth 를 2로 줄일 수 있기 때문에 CCLM 복잡도를 크게 감소시킬 수 있는바, 저화질 혹은 중간 화질 인코딩에 적합할 수 있다.
상술한 방법 1 내지 방법 3과 같이 본 실시예에 따르면 블록 사이즈에 적응적으로 Nth 를 설정할 수 있고, 이를 통하여 블록 사이즈에 최적화된 CCLM 파라미터 도출을 위한 참조 샘플 개수가 선택될 수 있다.
인코딩 장치/디코딩 장치는 상기 주변 샘플 선택 상한선 Nth 를 설정한 후, 상술한 바와 같이 크로마 블록 주변 샘플을 선택하여 CCLM 파라미터를 계산할 수 있다.
상술한 실시예가 적용되는 경우의 크로마 블록 사이즈에 따른 CCLM 파라미터 계산 연산량은 다음의 표와 같이 나타낼 수 있다.
Figure 112022066941543-pat00026
상술한 표 22에 도시된 바와 같이, 본 실시예에서 제안하는 방법들이 사용되는 경우, 블록 사이즈가 커짐에도 CCLM 파라미터 계산을 위해 요구되는 연산량은 증가하지 않는 것을 볼 수 있다.
한편, 본 실시예는 추가 정보를 전송할 필요 없이 인코딩 장치 및 디코딩 장치에서 약속된 값이 사용될 수 있으며, 혹은 CU, 슬라이스, 픽처 및 시퀀스 단위로 제안된 방법의 사용 여부 및 상기 Nth 의 값을 나타내는 정보가 전송될 수 있다.
예를 들어, CU 단위로 제안된 방법의 사용 여부를 나타내는 정보가 전송되는 경우, 현재 크로마 블록의 인트라 예측 모드가 CCLM 모드이면(즉, 상기 현재 크로마 블록에 CCLM 예측이 적용되는 경우), 다음과 같이 cclm_reduced_sample_flag가 파싱되어 상술한 실시예가 수행될 수 있다.
- 상기 cclm_reduced_sample_flag의 값이 0(false)인 경우, 모든 블록에 대하여 상기 Nth = 2로 설정하고, 상술한 도 8에서 제안된 실시예의 주변 샘플 선택 방안을 통해 CCLM 파라미터 계산 수행
- 상기 cclm_reduced_sample_flag의 값이 1(true)인 경우, 상술한 본 실시예의 방법 1을 통해 CCLM 파라미터 계산 수행
또는, 슬라이스, 픽처 또는 시퀀스 단위로 적용되는 방법을 나타내는 정보가 전송되는 경우, 후술하는 것과 같이 HLS(high level syntax) 통하여 전송되는 상기 정보를 기반으로 상술한 방법 1 내지 방법 3 중 적용되는 방법이 선택될 수 있고, 선택된 방법을 기반으로 상기 CCLM 파라미터가 계산될 수 있다.
예를 들어, 슬라이스 헤더를 통하여 시그널링되는 상기 적용되는 방법을 나타내는 정보는 다음의 표와 같이 나타낼 수 있다.
Figure 112022066941543-pat00027
cclm_reduced_sample_threshold 는 상기 적용되는 방법을 나타내는 정보의 신텍스 요소를 나타낼 수 있다.
또는, 예를 들어, PPS(Picture Parameter Set, PPS)를 통하여 시그널링되는 상기 적용되는 방법을 나타내는 정보는 다음의 표와 같이 나타낼 수 있다.
Figure 112022066941543-pat00028
또는, 예를 들어, SPS(Sequence Parameter Set, SPS)를 통하여 시그널링되는 상기 적용되는 방법을 나타내는 정보는 다음의 표와 같이 나타낼 수 있다.
Figure 112022066941543-pat00029
상기 슬라이스 헤더, 상기 PPS 또는 상기 SPS를 통하여 전송된 cclm_reduced_sample_threshold 값(즉, cclm_reduced_sample_threshold을 디코딩하여 도출된 값)을 기반으로 선택된 방법은 다음의 표와 같이 도출될 수 있다.
Figure 112022066941543-pat00030
표 26을 참조하면 상기 cclm_reduced_sample_threshold의 값이 0 인 경우, 상기 현재 크로마 블록에 상술한 실시예의 방법들이 적용되지 않을 수 있고, 상기 cclm_reduced_sample_threshold의 값이 1 인 경우, 상기 현재 크로마 블록에 적용되는 방법은 상기 방법 1로 선택될 수 있고, 상기 cclm_reduced_sample_threshold의 값이 2 인 경우, 상기 현재 크로마 블록에 적용되는 방법은 상기 방법 2로 선택될 수 있고, 상기 cclm_reduced_sample_threshold의 값이 3 인 경우, 상기 현재 크로마 블록에 적용되는 방법은 상기 방법 3으로 선택될 수 있다.
본 실시예에서 제안하는 방법은 크로마 성분에 대한 인트라 예측 모드인 CCLM 모드에 사용될 수 있고, 상기 CCLM 모드를 통해 예측된 크로마 블록은 인코딩 장치에서 원본 영상과의 차분을 통해 레지듀얼 영상을 도출하는데 사용되거나, 디코딩 장치에서 레지듀얼 신호와의 합을 통해 복원된 영상을 도출하는데 사용될 수 있다.
한편, CU, 슬라이스, 픽처 및 시퀀스 단위로 상기 방법들 중 하나를 나타내는 정보가 전송되는 경우, 인코딩 장치는 상기 방법 1 내지 상기 방법 3 중 하나의 방법을 결정한 후, 상기 정보를 디코딩 장치로 다음과 같이 전송할 수 있다.
- CU 단위로 상술한 실시예의 방법이 적용되는지 여부를 나타내는 정보가 전송되는 경우, 현재 크로마 블록의 인트라 예측 모드가 CCLM 모드이면(즉, 상기 현재 크로마 블록에 CCLM 예측이 적용되는 경우), 아래의 두 경우 중 인코딩 효율이 좋은 쪽을 RDO를 통해 결정할 수 있고, 결정된 방법에 대한 정보를 디코딩 장치로 전송할 수 있다.
1) 모든 블록에 대하여 상기 Nth = 2로 설정하고, 상술한 도 8에서 제안된 실시예의 주변 샘플 선택 방안을 통해 CCLM 파라미터 계산하는 것이 인코딩 효율이 좋은 경우, 값이 0(false)인 cclm_reduced_sample_flag 를 전송
2) 상기 방법 1이 적용되는 것으로 설정하고, 상술한 실시예에서 제안하는 주변 샘플 선택 방안을 통해 CCLM 파라미터 계산하는 것이 인코딩 효율이 좋은 경우, 값이 1(true)인 cclm_reduced_sample_flag 를 전송
- 또는, 슬라이스, 픽처 또는 시퀀스 단위로 상술한 실시예의 방법이 적용되는지 여부를 나타내는 정보가 전송되는 경우, 인코딩 장치는 상술한 표 23, 표 24 또는 표 25와 같이 HLS(high level syntax)를 추가하여 상기 방법들 중 하나의 방법을 나타내는 정보를 전송할 수 있다. 인코딩 장치는 상기 방법들 중 적용되는 방법을 입력 영상의 크기를 고려하거나 또는 인코딩 타겟 비트레이트(target bitrate)에 맞게 설정할 수 있다.
1) 예를 들어, 입력 영상이 HD 이상인 경우, 인코딩 장치는 상기 방법 3(Nth = 1,2,4 or 8)를 적용할 수 있고, 그 이하인 경우, 상기 방법 1(Nth = 1,2 or 4)를 적용할 수 있다.
2) 높은 품질의 영상 인코딩이 필요한 경우, 인코딩 장치는 상기 방법 3(Nth = 1,2,4 or 8)를 적용할 수 있고, 낮은 품질의 영상 인코딩이 필요한 경우, 상기 방법 2(Nth = 1,2,2 or 4) 또는 상기 방법 1(Nth = 1,2 or 4)를 적용할 수 있다.
본 실시예에서 제안하는 방법은 크로마 성분에 대한 인트라 예측 모드인 CCLM 모드에 사용될 수 있고, 상기 CCLM 모드를 통해 예측된 크로마 블록은 인코딩 장치에서 원본 영상과의 차분을 통해 레지듀얼 영상을 도출하는데 사용되거나, 디코딩 장치에서 레지듀얼 신호와의 합을 통해 복원된 영상을 도출하는데 사용될 수 있다.
도 14a 내지 도 14b는 상술한 실시예의 방법 1에 따라서 도출된 현재 크로마 블록의 CCLM 파라미터들을 기반으로 CCLM 예측을 수행하는 과정을 설명하기 위한 도면이다.
도 14a를 참조하면 인코딩 장치/디코딩 장치는 상기 현재 블록에 대한 CCLM 파라미터를 계산할 수 있다(S1400). 예를 들어, 상기 CCLM 파라미터는 도 14b에 도시된 실시예와 같이 계산될 수 있다.
도 14b는 CCLM 파라미터를 계산하는 구체적인 실시예를 예시적으로 나타낼 수 있다. 예를 들어, 도 14b를 참조하면 인코딩 장치/디코딩 장치는 상기 현재 크로마 블록이 정사각형 크로마 블록(square chroma block)인지 판단할 수 있다(S1405).
상기 현재 크로마 블록이 상기 정사각형 크로마 블록인 경우, 인코딩 장치/디코딩 장치는 상기 현재 블록의 폭 또는 높이를 N으로 설정할 수 있고(S1410), 상기 현재 크로마 블록의 사이즈가 2x2 사이즈인지 판단할 수 있다(S1415).
또는, 상기 현재 크로마 블록이 상기 정사각형 크로마 블록이 아닌 경우, 상기 현재 크로마 블록의 사이즈는 MxN 사이즈 또는 NxM 사이즈로 도출될 수 있고(S1420), 인코딩 장치/디코딩 장치는 상기 현재 크로마 블록의 사이즈가 2x2 사이즈인지 판단할 수 있다(S1415). 여기서, 상기 M은 상기 N보다 큰 값을 나타낼 수 있다(N<M).
상기 현재 크로마 블록의 사이즈가 2x2 사이즈인 경우, 인코딩 장치/디코딩 장치는 상기 CCLM 파라미터 계산을 위한 참조 샘플로 상기 현재 블록에 인접한 참조 라인(reference line) 내 2Nth 개의 주변 샘플들을 선택할 수 있다(S1425). 여기서, 상기 Nth 는 1일 수 있다(Nth =1).
인코딩 장치/디코딩 장치는 상기 선택된 참조 샘플들을 기반으로 상기 CCLM 예측에 대한 파라미터 α, β를 도출할 수 있다(S1430).
한편, 상기 현재 크로마 블록의 사이즈가 2x2 사이즈가 아닌 경우, 인코딩 장치/디코딩 장치는 상기 N이 2인지(N == 2) 판단할 수 있다(S1435).
상기 N이 2인 경우, 인코딩 장치/디코딩 장치는 상기 CCLM 파라미터 계산을 위한 참조 샘플로 상기 현재 블록에 인접한 참조 라인(reference line) 내 2Nth 개의 주변 샘플들을 선택할 수 있다(S1440). 여기서, 상기 Nth 는 2일 수 있다(Nth =2). 이후, 인코딩 장치/디코딩 장치는 상기 선택된 참조 샘플들을 기반으로 상기 CCLM 예측에 대한 파라미터 α, β를 도출할 수 있다(S1430).
또는, 상기 N이 2가 아닌 경우, 인코딩 장치/디코딩 장치는 상기 CCLM 파라미터 계산을 위한 참조 샘플로 상기 현재 블록에 인접한 참조 라인(reference line) 내 2Nth 개의 주변 샘플들을 선택할 수 있다(S1445). 여기서, 상기 Nth 는 4일 수 있다(Nth =4). 이후, 인코딩 장치/디코딩 장치는 상기 선택된 참조 샘플들을 기반으로 상기 CCLM 예측에 대한 파라미터 α, β를 도출할 수 있다(S1430).
다시 도 14a를 참조하면, 상기 현재 크로마 블록에 대한 CCLM 예측에 대한 상기 파라미터들이 계산된 경우, 인코딩 장치/디코딩 장치는 상기 파라미터들을 기반으로 CCLM 예측을 수행하여 상기 현재 크로마 블록에 대한 예측 샘플을 생성할 수 있다(S1450). 예를 들어, 인코딩 장치/디코딩 장치는 상기 계산된 파라미터들 및 상기 현재 크로마 블록에 대한 현재 루마 블록의 복원 샘플들이 사용되는 상술한 수학식 1을 기반으로 상기 현재 크로마 블록에 대한 예측 샘플을 생성할 수 있다.
도 15a 내지 도 15b는 상술한 실시예의 방법 2에 따라서 도출된 현재 크로마 블록의 CCLM 파라미터들을 기반으로 CCLM 예측을 수행하는 과정을 설명하기 위한 도면이다.
도 15a를 참조하면 인코딩 장치/디코딩 장치는 상기 현재 블록에 대한 CCLM 파라미터를 계산할 수 있다(S1500). 예를 들어, 상기 CCLM 파라미터는 도 15b에 도시된 실시예와 같이 계산될 수 있다.
도 15b는 CCLM 파라미터를 계산하는 구체적인 실시예를 예시적으로 나타낼 수 있다. 예를 들어, 도 15b를 참조하면 인코딩 장치/디코딩 장치는 상기 현재 크로마 블록이 정사각형 크로마 블록(square chroma block)인지 판단할 수 있다(S1505).
상기 현재 크로마 블록이 상기 정사각형 크로마 블록인 경우, 인코딩 장치/디코딩 장치는 상기 현재 블록의 폭 또는 높이를 N으로 설정할 수 있고(S1510), 상기 현재 크로마 블록의 사이즈가 2x2 사이즈인지 판단할 수 있다(S1515).
또는, 상기 현재 크로마 블록이 상기 정사각형 크로마 블록이 아닌 경우, 상기 현재 크로마 블록의 사이즈는 MxN 사이즈 또는 NxM 사이즈로 도출될 수 있고(S1520), 인코딩 장치/디코딩 장치는 상기 현재 크로마 블록의 사이즈가 2x2 사이즈인지 판단할 수 있다(S1515). 여기서, 상기 M은 상기 N보다 큰 값을 나타낼 수 있다(N<M).
상기 현재 크로마 블록의 사이즈가 2x2 사이즈인 경우, 인코딩 장치/디코딩 장치는 상기 CCLM 파라미터 계산을 위한 참조 샘플로 상기 현재 블록에 인접한 참조 라인(reference line) 내 2Nth 개의 주변 샘플들을 선택할 수 있다(S1525). 여기서, 상기 Nth 는 1일 수 있다(Nth =1).
인코딩 장치/디코딩 장치는 상기 선택된 참조 샘플들을 기반으로 상기 CCLM 예측에 대한 파라미터 α, β를 도출할 수 있다(S1530).
한편, 상기 현재 크로마 블록의 사이즈가 2x2 사이즈가 아닌 경우, 인코딩 장치/디코딩 장치는 상기 N이 2인지(N == 2)인지 판단할 수 있다(S1535).
상기 N이 2인 경우, 인코딩 장치/디코딩 장치는 상기 CCLM 파라미터 계산을 위한 참조 샘플로 상기 현재 블록에 인접한 참조 라인(reference line) 내 2Nth 개의 주변 샘플들을 선택할 수 있다(S1540). 여기서, 상기 Nth 는 2일 수 있다(Nth =2). 이후, 인코딩 장치/디코딩 장치는 상기 선택된 참조 샘플들을 기반으로 상기 CCLM 예측에 대한 파라미터 α, β를 도출할 수 있다(S1530).
한편, 상기 N이 2가 아닌 경우, 인코딩 장치/디코딩 장치는 상기 N이 4인지(N == 4) 판단할 수 있다(S1545).
상기 N이 4인 경우, 인코딩 장치/디코딩 장치는 상기 CCLM 파라미터 계산을 위한 참조 샘플로 상기 현재 블록에 인접한 참조 라인(reference line) 내 2Nth 개의 주변 샘플들을 선택할 수 있다(S1550). 여기서, 상기 Nth 는 2일 수 있다(Nth =2). 이후, 인코딩 장치/디코딩 장치는 상기 선택된 참조 샘플들을 기반으로 상기 CCLM 예측에 대한 파라미터 α, β를 도출할 수 있다(S1530).
또는, 상기 N이 4가 아닌 경우, 인코딩 장치/디코딩 장치는 상기 CCLM 파라미터 계산을 위한 참조 샘플로 상기 현재 블록에 인접한 참조 라인(reference line) 내 2Nth 개의 주변 샘플들을 선택할 수 있다(S1555). 여기서, 상기 Nth 는 4일 수 있다(Nth =4). 이후, 인코딩 장치/디코딩 장치는 상기 선택된 참조 샘플들을 기반으로 상기 CCLM 예측에 대한 파라미터 α, β를 도출할 수 있다(S1530).
다시 도 15a를 참조하면, 상기 현재 크로마 블록에 대한 CCLM 예측에 대한 상기 파라미터들이 계산된 경우, 인코딩 장치/디코딩 장치는 상기 파라미터들을 기반으로 CCLM 예측을 수행하여 상기 현재 크로마 블록에 대한 예측 샘플을 생성할 수 있다(S1560). 예를 들어, 인코딩 장치/디코딩 장치는 상기 계산된 파라미터들 및 상기 현재 크로마 블록에 대한 현재 루마 블록의 복원 샘플들이 사용되는 상술한 수학식 1을 기반으로 상기 현재 크로마 블록에 대한 예측 샘플을 생성할 수 있다.
도 16a 내지 도 16b는 상술한 실시예의 방법 3에 따라서 도출된 현재 크로마 블록의 CCLM 파라미터들을 기반으로 CCLM 예측을 수행하는 과정을 설명하기 위한 도면이다.
도 16a를 참조하면 인코딩 장치/디코딩 장치는 상기 현재 블록에 대한 CCLM 파라미터를 계산할 수 있다(S1600). 예를 들어, 상기 CCLM 파라미터는 도 16b에 도시된 실시예와 같이 계산될 수 있다.
도 16b는 CCLM 파라미터를 계산하는 구체적인 실시예를 예시적으로 나타낼 수 있다. 예를 들어, 도 16b를 참조하면 인코딩 장치/디코딩 장치는 상기 현재 크로마 블록이 정사각형 크로마 블록(square chroma block)인지 판단할 수 있다(S1605).
상기 현재 크로마 블록이 상기 정사각형 크로마 블록인 경우, 인코딩 장치/디코딩 장치는 상기 현재 블록의 폭 또는 높이를 N으로 설정할 수 있고(S1610), 상기 현재 크로마 블록의 사이즈가 2x2 사이즈인지 판단할 수 있다(S1615).
또는, 상기 현재 크로마 블록이 상기 정사각형 크로마 블록이 아닌 경우, 상기 현재 크로마 블록의 사이즈는 MxN 사이즈 또는 NxM 사이즈로 도출될 수 있고(S1620), 인코딩 장치/디코딩 장치는 상기 현재 크로마 블록의 사이즈가 2x2 사이즈인지 판단할 수 있다(S1615). 여기서, 상기 M은 상기 N보다 큰 값을 나타낼 수 있다(N<M).
상기 현재 크로마 블록의 사이즈가 2x2 사이즈인 경우, 인코딩 장치/디코딩 장치는 상기 CCLM 파라미터 계산을 위한 참조 샘플로 상기 현재 블록에 인접한 참조 라인(reference line) 내 2Nth 개의 주변 샘플들을 선택할 수 있다(S1625). 여기서, 상기 Nth 는 1일 수 있다(Nth =1).
인코딩 장치/디코딩 장치는 상기 선택된 참조 샘플들을 기반으로 상기 CCLM 예측에 대한 파라미터 α, β를 도출할 수 있다(S1630).
한편, 상기 현재 크로마 블록의 사이즈가 2x2 사이즈가 아닌 경우, 인코딩 장치/디코딩 장치는 상기 N이 2인지(N == 2)인지 판단할 수 있다(S1635).
상기 N이 2인 경우, 인코딩 장치/디코딩 장치는 상기 CCLM 파라미터 계산을 위한 참조 샘플로 상기 현재 블록에 인접한 참조 라인(reference line) 내 2Nth 개의 주변 샘플들을 선택할 수 있다(S1640). 여기서, 상기 Nth 는 2일 수 있다(Nth =2). 이후, 인코딩 장치/디코딩 장치는 상기 선택된 참조 샘플들을 기반으로 상기 CCLM 예측에 대한 파라미터 α, β를 도출할 수 있다(S1630).
한편, 상기 N이 2가 아닌 경우, 인코딩 장치/디코딩 장치는 상기 N이 4인지(N == 4) 판단할 수 있다(S1645).
상기 N이 4인 경우, 인코딩 장치/디코딩 장치는 상기 CCLM 파라미터 계산을 위한 참조 샘플로 상기 현재 블록에 인접한 참조 라인(reference line) 내 2Nth 개의 주변 샘플들을 선택할 수 있다(S1650). 여기서, 상기 Nth 는 4일 수 있다(Nth =4). 이후, 인코딩 장치/디코딩 장치는 상기 선택된 참조 샘플들을 기반으로 상기 CCLM 예측에 대한 파라미터 α, β를 도출할 수 있다(S1630).
또는, 상기 N이 4가 아닌 경우, 인코딩 장치/디코딩 장치는 상기 CCLM 파라미터 계산을 위한 참조 샘플로 상기 현재 블록에 인접한 참조 라인(reference line) 내 2Nth 개의 주변 샘플들을 선택할 수 있다(S1655). 여기서, 상기 Nth 는 8일 수 있다(Nth =8). 이후, 인코딩 장치/디코딩 장치는 상기 선택된 참조 샘플들을 기반으로 상기 CCLM 예측에 대한 파라미터 α, β를 도출할 수 있다(S1630).
다시 도 16a를 참조하면, 상기 현재 크로마 블록에 대한 CCLM 예측에 대한 상기 파라미터들이 계산된 경우, 인코딩 장치/디코딩 장치는 상기 파라미터들을 기반으로 CCLM 예측을 수행하여 상기 현재 크로마 블록에 대한 예측 샘플을 생성할 수 있다(S1660). 예를 들어, 인코딩 장치/디코딩 장치는 상기 계산된 파라미터들 및 상기 현재 크로마 블록에 대한 현재 루마 블록의 복원 샘플들이 사용되는 상술한 수학식 1을 기반으로 상기 현재 크로마 블록에 대한 예측 샘플을 생성할 수 있다.
한편, 본 문서에서는 CCLM 파라미터 계산을 위한 주변 참조 샘플 도출에 있어서 서브 샘플링(sub sampling)이 필요한 경우, 보다 효율적으로 서브 샘플링 샘플을 선택하는 실시예를 제안한다.
도 17은 크로마 블록의 주변 참조 샘플을 선택하는 일 예를 나타낸다.
도 17의 (a)를 참조하면 2x2 사이즈인 크로마 블록(N=2)에서는 4개의 주변 참조 샘플들을 기반으로 상기 크로마 블록에 대한 CCLM 파라미터들 α, β가 계산될 수 있다. 상기 주변 참조 샘플들은 상기 루마 블록의 4개의 주변 참조 샘플들 및 상기 크로마 블록의 4개의 주변 참조 샘플들을 포함할 수 있다. 또한, 상술한 실시예들과 같이 2x2 사이즈의 크로마 블록에 대한 Nth가 1로 설정되는 경우(Nth=1), 도 17의 (b)를 참조하면 2개의 주변 참조 샘플들을 기반으로 상기 크로마 블록에 대한 CCLM 파라미터들 α, β가 계산될 수 있다. 하지만, 도 17에 도시된 것과 같이 절반으로 서브 샘플링된 주변 참조 샘플들을 이용하는 경우, 상기 주변 참조 샘플들이 현재 크로마 블록의 좌상측에 몰려있기 때문에 CCLM 파라미터 계산시 주변 참조 샘플의 다양성을 고려하지 못하는 문제점이 발생하며, 이는 CCLM 파라미터 정확도 저하의 원인이 될 수 있다.
도 18a 내지 도 18c는 기존 서브 샘플링을 통하여 도출된 주변 참조 샘플들 및 본 실시예에 따른 서브 샘플링을 통하여 도출된 주변 참조 샘플들을 예시적으로 나타낸다.
도 18a 및 도 18b에 도시된 것과 같이, 본 실시예에 따른 서브 샘플링을 통하여 상기 현재 크로마 블록의 좌상측에서 먼 주변 샘플을 우선적으로 선택함으로써, CCLM 파라미터 계산시 보다 다양한 샘플 값이 선택될 수 있다.
또한, 본 실시예는 도 18c에 도시된 것과 같이 nx2 사이즈 및 2xn 사이즈와 같이 논 스퀘어(non-square) 크로마 블록에 대해서도 좌상측에서 먼 쪽부터 선택하는 서브 샘플링을 제안한다. 이를 통하여, CCLM 파라미터 계산시 보다 다양한 샘플 값을 선택할 수 있고, 이를 통하여 CCLM 파라미터 계산 정확도를 향상시킬 수 있다.
한편, 기존 서브 샘플링은 다음과 같은 수학식을 기반으로 수행될 수 있다.
Figure 112022066941543-pat00031
여기서, Idx_w 는 서브 샘플링을 통하여 도출된 상기 현재 크로마 블록의 상측에 인접한 주변 참조 샘플(또는 주변 참조 샘플의 위치)을 나타낼 수 있고, Idx_h 는 서브 샘플링을 통하여 도출된 상기 현재 크로마 블록의 좌측에 인접한 주변 참조 샘플(또는 주변 참조 샘플의 위치)을 나타낼 수 있다. 또한, width 는 상기 현재 크로마 블록의 폭을 나타낼 수 있고, height 는 상기 현재 크로마 블록의 높이를 나타낼 수 있다. 또한, subsample_num는 서브 샘플링을 통하여 도출된 주변 참조 샘플 개수(한 변에 인접한 주변 참조 샘플 개수)를 나타낼 수 있다.
예를 들어, 상기 수학식 5를 기반으로 수행되는 서브 샘플링은 다음과 같이 수행될 수 있다.
상기 수학식 5의 x는 변수로서, 0에서 서브 샘플링 후의 상기 현재 크로마 블록의 상측 주변 참조 샘플들의 참조 샘플 개수까지 증가될 수 있다. 일 예로, 폭이 16인 현재 크로마 블록에서 2개의 상측 주변 참조 샘플들이 선택되는 경우, 상기 수학식 5의 width는 16이며 x는 0부터 1까지 변화할 수 있다. 또한, 상기 Subsample_num는 2이기 때문에 Idx_w 값은 0 및 8이 선택될 수 있다. 따라서, 상기 현재 크로마 블록의 좌상단 샘플 포지션의 x성분 및 y 성분이 0인 경우, 상기 서브 샘플링을 통하여 상기 상측 주변 참조 샘플들 중 x좌표가 0인 상측 주변 참조 샘플 및 x좌표가 8인 상측 주변 참조 샘플이 선택될 수 있다.
또한, 상기 수학식 5의 y는 변수로서, 0에서 서브 샘플링 후의 상기 현재 크로마 블록의 좌측 주변 참조 샘플들의 참조 샘플 개수까지 증가될 수 있다. 일 예로, 높이가 32인 현재 크로마 블록에서 4개의 좌측 주변 참조 샘플들이 선택되는 경우, 상기 수학식 5의 height는 32이며 y는 0부터 3까지 변화할 수 있다. 또한, 상기 Subsample_num는 4이기 때문에 Idx_h 값은 0, 8, 16 및 24가 선택될 수 있다. 따라서, 상기 현재 크로마 블록의 좌상단 샘플 포지션의 x성분 및 y 성분이 0인 경우, 상기 서브 샘플링을 통하여 상기 좌측 주변 참조 샘플들 중 y좌표가 0인 좌측 주변 참조 샘플, y좌표가 8인 좌측 주변 참조 샘플, y좌표가 16인 좌측 주변 참조 샘플 및 y좌표가 24인 좌측 주변 참조 샘플이 선택될 수 있다.
상기 수학식 5를 참조하면 서브 샘플링을 통하여 상기 현재 크로마 블록의 좌상측에 가까운 샘플들만이 선택될 수 있다.
이에, 본 실시예는 상기 수학식 5와 다른 수학식을 기반으로 서브 샘플링이 수행될 수 있다. 예를 들어, 본 실시예에서 제안된 서브 샘플링은 다음과 같은 수학식을 기반으로 수행될 수 있다.
Figure 112022066941543-pat00032
여기서, subsample_num_width는 서브 샘플링을 통하여 도출된 상측 주변 참조 샘플 개수를 나타낼 수 있고, subsample_num_height는 서브 샘플링을 통하여 도출된 좌측 주변 참조 샘플 개수를 나타낼 수 있다.
또한, x는 변수로서, 0에서 서브 샘플링 후의 상기 현재 크로마 블록의 상측 주변 참조 샘플들의 참조 샘플 개수까지 증가될 수 있다. 또한, y는 변수로서, 0에서 서브 샘플링 후의 상기 현재 크로마 블록의 좌측 주변 참조 샘플들의 참조 샘플 개수까지 증가될 수 있다.
예를 들어, 상기 수학식 6을 참조하면 폭이 16인 현재 크로마 블록에서 2개의 상측 주변 참조 샘플들이 선택되는 경우, 상기 수학식 6의 width는 16이며 x는 0부터 1까지 변화할 수 있다. 또한, 상기 subsample_num_width는 2이기 때문에 Idx_w 값은 15 및 7이 선택될 수 있다. 따라서, 상기 현재 크로마 블록의 좌상단 샘플 포지션의 x성분 및 y 성분이 0인 경우, 상기 서브 샘플링을 통하여 상기 상측 주변 참조 샘플들 중 x좌표가 15인 상측 주변 참조 샘플 및 x좌표가 7인 상측 주변 참조 샘플이 선택될 수 있다. 즉, 상기 현재 크로마 블록의 상측 주변 샘플들 중 상기 현재 크로마 블록의 좌상측과 먼 상측 주변 참조 샘플이 선택될 수 있다.
또한, 예를 들어, 상기 수학식 6을 참조하면 높이가 32인 현재 크로마 블록에서 4개의 좌측 주변 참조 샘플들이 선택되는 경우, 상기 수학식 6의 height는 32이며 y는 0부터 3까지 변화할 수 있다. 또한, 상기 subsample_num_height는 4이기 때문에 Idx_h 값은 31, 23, 15 및 7이 선택될 수 있다. 따라서, 상기 현재 크로마 블록의 좌상단 샘플 포지션의 x성분 및 y 성분이 0인 경우, 상기 서브 샘플링을 통하여 상기 좌측 주변 참조 샘플들 중 y좌표가 31인 좌측 주변 참조 샘플, y좌표가 23인 좌측 주변 참조 샘플, y좌표가 15인 좌측 주변 참조 샘플 및 y좌표가 7인 좌측 주변 참조 샘플이 선택될 수 있다.
한편, 상기 수학식 6의 상기 subsample_num_width 및 상기 subsample_num_height는 현재 크로마 블록의 사이즈를 기반으로 도출될 수 있다. 예를 들어, 상기 subsample_num_width 및 상기 subsample_num_height는 다음의 표와 같이 도출될 수 있다.
Figure 112022066941543-pat00033
표 27을 참조하면 상기 현재 크로마 블록의 폭 및 높이 중 짧은 쪽에 맞춰 긴 쪽에 인접한 주변 참조 샘플들에 대하여 서브 샘플링이 수행될 수 있다. 즉, 긴 쪽에 인접한 주변 참조 샘플들 중 선택되는 주변 참조 샘플의 개수는 상기 현재 크로마 블록의 폭 및 높이 중 작은 값으로 도출될 수 있다. 예를 들어, subsample_num_width = subsample_num_height = min(width, height) 로 도출될 수 있다.
또는, 예를 들어, 상기 Nth 가 도출되는 경우, 상기 Nth 를 기반으로 subsample_num_width 및 subsample_num_height 가 도출될 수 있다. 예를 들어, 상기 subsample_num_width 및 subsample_num_height 는 상기 Nth 를 기반으로 다음의 표와 같이 도출될 수 있다.
Figure 112022066941543-pat00034
여기서, min(A,B)는 A,B 중 작은 값을 나타낼 수 있다.
또는, 예를 들어, 미리 정해진 LUT(look-up table)를 기반으로 상기 현재 크로마 블록의 모양에 맞는 최적의 개수의 주변 참조 샘플을 도출하는 서브샘플링이 수행될 수 있다. 예를 들어, 상기 LUT 는 다음의 표와 같이 도출될 수 있다.
Figure 112022066941543-pat00035
상기 표 29를 참조하면 상술한 서브샘플링보다 선택되는 주변 참조 샘플 수를 증가시킬 수 있고, 이를 통하여 보다 높은 정확도로 CCLM 파라미터가 계산될 수 있다. 상술한 예의 6개의 주변 참조 샘플들을 도출하는 서브샘플링에서는 8개의 주변 참조 샘플들을 도출하는 서브샘플링 중 먼저 나오는 6개의 위치(idx_w 또는 idx_h)가 선택될 수 있고, 12 혹은 14개의 주변 참조 샘플들을 도출하는 서브샘플링에서는 16개의 주변 참조 샘플들을 도출하는 서브샘플링 중 먼저 나오는 12 혹은 14개의 위치가 선택될 수 있다. 또한, 24 혹은 28개의 주변 참조 샘플들을 도출하는 서브샘플링에서는 32개의 주변 참조 샘플들을 도출하는 서브샘플링 중 먼저 나오는 24 혹은 28개의 위치가 선택될 수 있다.
또는, 하드웨어 복잡도 증가를 방지하기 위해서 간소화된 개수의 주변 참조 샘플을 도출하는 서브샘플링이 수행될 수 있다. 이 경우, 예를 들어, 상기 LUT 는 다음의 표와 같이 도출될 수 있다.
Figure 112022066941543-pat00036
상기 표 30을 참조하면 상기 subsample_num_width 및 상기 subsample_num_height의 합의 최대값이 8로 설정될 수 있다. 이를 통하여, 하드웨어 복잡도 증가를 줄이는 동시에 효율적으로 CCLM 파라미터가 계산될 수 있다.
상술한 예의 6개의 주변 참조 샘플들을 도출하는 서브샘플링에서는 8개의 주변 참조 샘플들을 도출하는 서브샘플링 중 먼저 나오는 6개의 위치(idx_w 또는 idx_h)가 선택될 수 있다.
제안하는 방법은 추가 정보를 전송할 필요 없이 인코더 및 디코더에서 약속된 값을 사용할 수 있으며, 혹은 CU, slice, picture 및 sequence 단위로 제안하는 방법 사용 여부 및 값을 전송할 수 있다.
상술한 표 29 및 30과 같은 LUT를 사용하는 서브샘플링이 수행되는 경우, 인코딩 장치 및 디코딩 장치는 표(즉, LUT)에 정해진 subsample_num_width 및 subsample_num_height 수를 이용할 수 있고, 상기 Nth 가 이용되는 경우, 상기 Nth 값을 기반으로 상기 subsample_num_width 및 상기 subsample_num_height를 결정할 수 있다. 또한, 그 외의 경우에는 표 28로 도출되는 값이 디폴트(default) subsample_num_width 및 디폴트 subsample_num_height 수로 이용될 수 있다.
한편, CU 단위로 제안하는 방법, 즉, 상술한 수학식 6을 사용하는 서브 샘플링의 적용 유무를 나타내는 정보가 전송되는 경우, 디코딩 장치는 현재 크로마 블록의 인트라 예측 모드가 CCLM 모드이면 다음과 같이 cclm_subsample_flag를 파싱하여 CCLM 예측을 수행하는 방법이 제안될 수 있다.
- 상기 cclm_subsample_flag가 0(false)인 경우, 기존 서브 샘플링 방법(상술한 수학식 5를 기반으로 서브 샘플링)을 통해 주변 참조 샘플 선택 및 CCLM 파라미터 계산 수행
- 상기 cclm_subsample_flag가 1(true)인 경우, 제안된 서브 샘플링 방법(상술한 수학식 6을 기반으로 서브 샘플링)을 통해 주변 참조 샘플 선택 및 CCLM 파라미터 계산 수행
슬라이스, 픽처 및 시퀀스 단위로 제안하는 방법의 적용 유무를 나타내는 정보가 전송되는 경우, 다음과 같이 HLS(high level syntax) 통해 상기 정보를 전송할 수 있다. 디코딩 장치는 상기 정보를 기반으로 수행되는 서브 샘플링 방법을 선택할 수 있다.
예를 들어, 슬라이스 헤더를 통하여 시그널링되는 상기 제안하는 방법의 적용 유무를 나타내는 정보는 다음의 표와 같이 나타낼 수 있다.
Figure 112022066941543-pat00037
cclm_subsample_flag 는 상기 제안하는 방법의 적용 유무를 나타내는 정보의 신텍스 요소를 나타낼 수 있다.
또는, 예를 들어, PPS(Picture Parameter Set, PPS)를 통하여 시그널링되는 상기 제안하는 방법의 적용 유무를 나타내는 정보는 다음의 표와 같이 나타낼 수 있다.
Figure 112022066941543-pat00038
또는, 예를 들어, SPS(Sequence Parameter Set, SPS)를 통하여 시그널링되는 상기 제안하는 방법의 적용 유무를 나타내는 정보는 다음의 표와 같이 나타낼 수 있다.
Figure 112022066941543-pat00039
상기 슬라이스 헤더, 상기 PPS 또는 상기 SPS를 통하여 전송된 cclm_subsample_flag 값(즉, cclm_subsample_flag 을 디코딩하여 도출된 값)을 기반으로 선택된 방법은 다음의 표와 같이 도출될 수 있다.
Figure 112022066941543-pat00040
표 34를 참조하면 상기 cclm_subsample_flag 의 값이 0 인 경우, 상기 수학식 5를 사용하는 서브 샘플링이 수행될 수 있고, 상기 cclm_subsample_flag 의 값이 1 인 경우, 수학식 6을 사용하는 서브 샘플링이 수행될 수 있다.
한편, 추가 정보의 전송 없이 인코딩 장치 및 디코딩 장치에서 기설정된 값이 사용되는 경우, 인코딩 장치는 디코딩 장치와 동일하게 상술한 실시예를 수행할 수 있고, 선택된 주변 참조 샘플들을 기반으로 계산된 CCLM 파라미터 계산을 수행할 수 있다.
또는, CU, 슬라이스, 픽처 및 시퀀스 단위로 제안된 서브 샘플링 방법의 적용 여부를 나타내는 정보가 전송되는 경우, 인코딩 장치는 다음과 같이 상기 제안된 서브 샘플링 방법의 적용 여부를 결정한 후, 디코딩 장치로 상기 정보를 전송할 수 있다.
- CU 단위로 제안된 서브 샘플링 방법의 적용 여부를 나타내는 정보가 전송되는 경우, 현재 크로마 블록의 인트라 예측 모드가 CCLM 모드이면 아래의 두 경우 중 인코딩 효율이 좋은 쪽을 RDO를 통해 결정한 후, 해당하는 경우를 나타내는 값의 상기 정보를 디코딩 장치로 전송할 수 있다.
1) 기존 참조 샘플 서브 샘플링(상술한 수학식 5를 사용하는 서브 샘플링)을 통한 CCLM 파라미터 계산 수행이 인코딩 효율이 좋은 경우, 값이 0(false)인 cclm_subsample_flag 전송
2) 제안된 서브 샘플링(상술한 수학식 6을 사용하는 서브 샘플링)을 통한 CCLM 파라미터 계산 수행이 인코딩 효율이 좋은 경우, 값이 1(true)인 cclm_subsample_flag 전송
- 슬라이스, 픽처 및 시퀀스 단위로 제안된 서브 샘플링 방법의 적용 여부를 나타내는 정보가 전송되는 경우, 상술한 표 31, 표 32 및 표 33과 같이 HLS(high level syntax)를 추가하여 상기 정보가 전송될 수 있다.
도 19는 상술한 수학식 6을 사용한 서브 샘플링을 이용하여 CCLM 예측을 수행하는 일 예를 나타낸다.
도 19를 참조하면 인코딩 장치/디코딩 장치는 상기 현재 블록에 대한 CCLM 파라미터를 계산할 수 있다(S1900).
구체적으로, 인코딩 장치/디코딩 장치는 상기 현재 크로마 블록의 주변 샘플들에 대한 서브 샘플링이 필요한지 판단할 수 있다(S1905).
예를 들어, 상기 현재 크로마 블록에 대한 CCLM 파라미터들을 도출하기 위하여 상기 현재 크로마 블록의 폭보다 작은 개수의 상측 주변 샘플들이 선택되는 경우, 상기 현재 크로마 블록의 상측 주변 샘플들에 대한 상기 서브샘플링이 수행될 필요가 있다. 또한, 예를 들어, 상기 현재 크로마 블록에 대한 CCLM 파라미터들을 도출하기 위하여 상기 현재 크로마 블록의 높이보다 작은 개수의 좌측 주변 샘플들이 선택되는 경우, 상기 현재 크로마 블록의 좌측 주변 샘플들에 대한 상기 서브샘플링이 수행될 필요가 있다.
상기 서브 샘플링이 필요한 경우, 인코딩 장치/디코딩 장치는 주변 샘플들에 대하여 상기 수학식 6을 사용한 서브 샘플링을 수행하여 특정 개수의 주변 샘플들을 선택할 수 있다(S1910). 이후, 인코딩 장치/디코딩 장치는 선택된 주변 샘플들을 기반으로 상기 현재 크로마 블록에 대한 CCLM 파라미터들을 계산할 수 있다(S1915).
한편, 상기 서브 샘플링이 필요하지 않는 경우, 인코딩 장치/디코딩 장치는 상기 서브 샘플링을 수행하지 않고, 상기 현재 크로마 블록의 주변 샘플들을 선택할 수 있다(S1920). 이후, 인코딩 장치/디코딩 장치는 선택된 주변 샘플들을 기반으로 상기 현재 크로마 블록에 대한 CCLM 파라미터들을 계산할 수 있다(S1915).
상기 CCLM 파라미터들이 도출된 경우, 인코딩 장치/디코딩 장치는 상기 CCLM 파라미터들을 기반으로 상기 현재 크로마 블록에 대한 CCLM 예측을 수행하여 상기 현재 크로마 블록의 예측 샘플을 생성할 수 있다(S1925).
한편, 본 문서에서는 상기 CCLM 파라미터 도출에 있어서 CCLM 파라미터 도출을 위한 연산 복잡도를 줄이는 상술한 실시예와 다른 실시예가 제안될 수 있다.
본 실시예는 상술한 크로마 블록 사이즈 증가에 따른 CCLM 파라미터 연산량 증가 문제를 해결하기 위하여 샘플 선택 상한선 Nth 를 적응적으로 설정하는 방법을 제안한다. 상기 Nth 는 최대 주변 샘플 수라고 나타낼 수도 있다.
또한, 본 실시예는 N=2(여기서, 상기 N은 크로마 블록의 폭 및 높이 중 작은 값)인 경우, 즉 2x2 사이즈의 크로마 블록에 대한 CCLM 예측시 발생하는 워스트 케이스(worst case) 연산(CTU 내의 모든 크로마 블록들이 2x2 사이즈로 분할된 후, 모든 크로마 블록들에서 CCLM 예측이 수행되는 케이스)을 방지하기 위해, 적응적으로 Nth 를 설정하는 방안이 제안될 수 있고, 이를 통하여 상기 워스트 케이스에서의 CCLM 파라미터 계산을 위한 비교 연산의 연산량을 약 50% 줄일 수 있다.
예를 들어, 본 실시예 따르면, 다음과 같이 블록 사이즈에 적응적으로 상기 Nth 가 설정될 수 있다.
- 본 실시예의 방법 1 (proposed method 1)
- NxM 사이즈 또는 MxN 사이즈의 현재 크로마 블록에서 N = 2 인 경우, Nth 는 1로 설정(Nth = 1)
- NxM 사이즈 또는 MxN 사이즈의 현재 크로마 블록에서 N = 4 인 경우, Nth 는 2로 설정(Nth = 2)
- NxM 사이즈 또는 MxN 사이즈의 현재 크로마 블록에서 N > 4 인 경우, Nth 는 4로 설정(Nth = 4)
또는, 예를 들어, 본 실시예 따르면, 다음과 같이 블록 사이즈에 적응적으로 상기 Nth 가 설정될 수 있다.
- 본 실시예의 방법 2 (proposed method 2)
- NxM 사이즈 또는 MxN 사이즈의 현재 크로마 블록에서 N = 2 인 경우, Nth 는 1로 설정(Nth = 1)
- NxM 사이즈 또는 MxN 사이즈의 현재 크로마 블록에서 N = 4 인 경우, Nth 는 2로 설정(Nth = 2)
또는, 예를 들어, 본 실시예 따르면, 다음과 같이 블록 사이즈에 적응적으로 상기 Nth 가 설정될 수 있다.
- 본 실시예의 방법 3 (proposed method 3)
- NxM 사이즈 또는 MxN 사이즈의 현재 크로마 블록에서 N > 4 인 경우, Nth 는 4로 설정(Nth = 4)
또는, 예를 들어, 본 실시예 따르면, 다음과 같이 블록 사이즈에 적응적으로 상기 Nth 가 설정될 수 있다.
- 본 실시예의 방법 4 (proposed method 4)
- NxM 사이즈 또는 MxN 사이즈의 현재 크로마 블록에서 N > 2 인 경우, Nth 는 2로 설정(Nth = 2)
본 실시예에서 N = 2 인 경우는 CCLM 파라미터 계산을 위한 주변 샘플 개수가 4개(즉, 2N)인 경우를 나타낼 수 있고, Nth = 1 이라는 것은 CCLM 파라미터 계산을 위하여 2(즉, 2Nth)개의 주변 샘플들만을 사용한다는 것을 나타낼 수 있다. 또한, N = 4 인 경우는 CCLM 파라미터 계산을 위한 주변 샘플 개수가 8개(즉, 2N)인 경우를 나타낼 수 있고, Nth = 2 이라는 것은 CCLM 파라미터 계산을 위하여 4(즉, 2Nth)개의 주변 샘플들만을 사용한다는 것을 나타낼 수 있다.
따라서, 상기 방법 1에 따르면, CCLM 예측을 위하여 4개의 주변 샘플들이 사용될 수 있는 경우(예를 들어, 2xN 사이즈 또는 Nx2 사이즈의 크로마 블록에 기존 CCLM 예측 모드(즉, LM_LA 모드)가 적용되는 경우, 2xN 사이즈의 크로마 블록에 LM_A 모드가 적용되는 경우 및 Nx2 사이즈의 크로마 블록에 LM_L 모드가 적용되는 경우)에 절반의 주변 샘플들만을 사용하여 CCLM 파라미터를 계산함으로써 워스트 케이스(worst case)에서의 비교 연산을 절반으로 줄일 수 있다. 또한, CCLM 예측을 위하여 8개의 주변 샘플들이 사용될 수 있는 경우 (예를 들어, 4xN 사이즈 또는 Nx4 사이즈의 크로마 블록에 기존 CCLM 예측 모드(즉, LM_LA 모드)가 적용되는 경우, 4xN 사이즈의 크로마 블록에 LM_A 모드가 적용되는 경우 및 Nx4 사이즈의 크로마 블록에 LM_L 모드가 적용되는 경우)에도 절반의 주변 샘플들만을 사용하여 CCLM 파라미터를 계산함으로써 비교 연산량을 크게 줄일 수 있으며, 그 이상 사용하는 경우에도 최대 8개의 주변 샘플들만을 사용하여 CCLM 파라미터 연산이 수행될 수 있다.
또한, 상기 방법 2에 따르면, CCLM 예측을 위하여 4개의 주변 샘플들이 사용될 수 있는 경우(예를 들어, 2xN 사이즈 또는 Nx2 사이즈의 크로마 블록에 기존 CCLM 예측 모드(즉, LM_LA 모드)가 적용되는 경우, 2xN 사이즈의 크로마 블록에 LM_A 모드가 적용되는 경우 및 Nx2 사이즈의 크로마 블록에 LM_L 모드가 적용되는 경우)에 절반의 주변 샘플들만을 사용하여 CCLM 파라미터를 계산함으로써 워스트 케이스(worst case)에서의 비교 연산을 절반으로 줄일 수 있다. 또한, 그 이상 사용하는 경우에도 최대 4개의 주변 샘플들만을 사용하여 CCLM 파라미터 연산이 수행될 수 있다.
또한, 상기 방법 3에 따르면, 최대 8개의 주변 샘플들만을 사용하여 CCLM 파라미터 연산이 수행될 수 있으며, 방법 4에 따르면 최대 4개의 주변 샘플들만을 사용하여 CCLM 파라미터 연산이 수행될 수 있다. 즉, 방법 4에 따르면 모든 크로마 블록에서 4개의 주변 샘플들을 이용하여 CCLM 파라미터가 계산될 수 있다.
상술한 예시와 같이 방법 1 내지 4에 따르면, N = 2인 경우의 워스트 케이스 비교 연산량을 50% 줄일 수 있으며, 각 크로마 블록 사이즈에 적응적으로 Nth 를 적용할 수 있어 인코딩 손실을 최소화할 수 있다.
상술한 방법 1 내지 방법 4와 같이 본 실시예에 따르면 블록 사이즈에 적응적으로 Nth 를 설정할 수 있고, 이를 통하여 블록 사이즈에 최적화된 CCLM 파라미터 도출을 위한 참조 샘플 개수가 선택될 수 있다.
인코딩 장치/디코딩 장치는 상기 주변 샘플 선택 상한선 Nth 를 설정한 후, 상술한 바와 같이 크로마 블록 주변 샘플을 선택하여 CCLM 파라미터를 계산할 수 있다.
*상술한 실시예가 적용되는 경우의 크로마 블록 사이즈에 따른 CCLM 파라미터 계산 연산량은 다음의 표와 같이 나타낼 수 있다.
Figure 112022066941543-pat00041
상술한 표 35에 도시된 바와 같이, 본 실시예에서 제안하는 방법들이 사용되는 경우, 블록 사이즈가 커짐에도 CCLM 파라미터 계산을 위해 요구되는 연산량은 증가하지 않는 것을 볼 수 있다.
한편, 본 실시예는 추가 정보를 전송할 필요 없이 인코딩 장치 및 디코딩 장치에서 약속된 값이 사용될 수 있으며, 혹은 CU, 슬라이스, 픽처 및 시퀀스 단위로 제안된 방법의 사용 여부 및 상기 Nth 의 값을 나타내는 정보가 전송될 수 있다.
예를 들어, CU 단위로 제안된 방법의 사용 여부를 나타내는 정보가 전송되는 경우, 현재 크로마 블록의 인트라 예측 모드가 CCLM 모드이면(즉, 상기 현재 크로마 블록에 CCLM 예측이 적용되는 경우), 다음과 같이 cclm_reduced_sample_flag가 파싱되어 상술한 실시예가 수행될 수 있다.
- 상기 cclm_reduced_sample_flag의 값이 0(false)인 경우, 모든 블록에 대하여 상기 Nth = 4로 설정하고, 상술한 도 8에서 제안된 실시예의 주변 샘플 선택 방안을 통해 CCLM 파라미터 계산 수행
- 상기 cclm_reduced_sample_flag의 값이 1(true)인 경우, 상술한 본 실시예의 방법 2를 통해 CCLM 파라미터 계산 수행
또는, 슬라이스, 픽처 또는 시퀀스 단위로 적용되는 방법을 나타내는 정보가 전송되는 경우, 후술하는 것과 같이 HLS(high level syntax) 통하여 전송되는 상기 정보를 기반으로 상술한 방법 1 내지 방법 4 중 적용되는 방법이 선택될 수 있고, 선택된 방법을 기반으로 상기 CCLM 파라미터가 계산될 수 있다.
예를 들어, 슬라이스 헤더를 통하여 시그널링되는 상기 적용되는 방법을 나타내는 정보는 다음의 표와 같이 나타낼 수 있다.
Figure 112022066941543-pat00042
cclm_reduced_sample_threshold 는 상기 적용되는 방법을 나타내는 정보의 신텍스 요소를 나타낼 수 있다.
또는, 예를 들어, PPS(Picture Parameter Set, PPS)를 통하여 시그널링되는 상기 적용되는 방법을 나타내는 정보는 다음의 표와 같이 나타낼 수 있다.
Figure 112022066941543-pat00043
또는, 예를 들어, SPS(Sequence Parameter Set, SPS)를 통하여 시그널링되는 상기 적용되는 방법을 나타내는 정보는 다음의 표와 같이 나타낼 수 있다.
Figure 112022066941543-pat00044
상기 슬라이스 헤더, 상기 PPS 또는 상기 SPS를 통하여 전송된 cclm_reduced_sample_threshold 값(즉, cclm_reduced_sample_threshold을 디코딩하여 도출된 값)을 기반으로 선택된 방법은 다음의 표와 같이 도출될 수 있다.
Figure 112022066941543-pat00045
표 39를 참조하면 상기 cclm_reduced_sample_threshold의 값이 0 인 경우, 상기 현재 크로마 블록에 적용되는 방법은 상기 방법 1로 선택될 수 있고, 상기 cclm_reduced_sample_threshold의 값이 1 인 경우, 상기 현재 크로마 블록에 적용되는 방법은 상기 방법 2로 선택될 수 있고, 상기 cclm_reduced_sample_threshold의 값이 2 인 경우, 상기 현재 크로마 블록에 적용되는 방법은 상기 방법 3으로 선택될 수 있고, 상기 cclm_reduced_sample_threshold의 값이 3 인 경우, 상기 현재 크로마 블록에 적용되는 방법은 상기 방법 4로 선택될 수 있다.
본 실시예에서 제안하는 방법은 크로마 성분에 대한 인트라 예측 모드인 CCLM 모드(LM_T 모드, LM_T 모드 또는 LM_LT 모드)에 사용될 수 있고, 상기 CCLM 모드를 통해 예측된 크로마 블록은 인코딩 장치에서 원본 영상과의 차분을 통해 레지듀얼 영상을 도출하는데 사용되거나, 디코딩 장치에서 레지듀얼 신호와의 합을 통해 복원된 영상을 도출하는데 사용될 수 있다.
한편, 상술한 실시예에서 제안하는 방법 1 및 방법 2의 실험 결과 데이터는 다음과 같을 수 있다.
다음의 표는 상기 방법 1의 실험 결과 데이터를 나타낼 수 있다.
Figure 112022066941543-pat00046
또한, 다음의 표는 상기 방법 2의 실험 결과 데이터를 나타낼 수 있다.
Figure 112022066941543-pat00047
상기 표 40 내지 표 41은 상기 방법 1 및 방법 2가 적용되는 경우의 코딩 효율 및 연산 복잡도를 나타낼 수 있다. 본 실험에서 앵커(anchor)는 VTM3.0rc1이며, 올 인트라(All intra) 실험 결과이다.
표 40을 참조하면 상기 방법 1이 적용되면 CCLM 파라미터 계산 연산량을 줄임에도 (Nth = 1,2,4) 인코딩 손해는 없으며, 오히려 약간의 성능 이득을 얻을 수 있다. (예를 들어, Y 0.02%, Cb 0.12%, Cr 0.17% 성능 이득) 또한, 표 40을 참조하면 인코딩 및 디코딩 복잡도는 99% 및 96%로 감소함을 확인할 수 있다.
또한 표 41을 참조하면 상기 방법 2가 적용되면 CCLM 파라미터 계산 연산량을 크게 줄일 경우에도 (Nth = 1,2) 인코딩 효율은 거의 기존 CCLM 예측과 차이가 없으며, 인코딩 및 디코딩 복잡도도 99% 및 96%로 감소하는 것을 확인할 수 있다.
한편, CU, 슬라이스, 픽처 및 시퀀스 단위로 상기 방법들 중 하나를 나타내는 정보가 전송되는 경우, 인코딩 장치는 상기 방법 1 내지 상기 방법 4 중 하나의 방법을 결정한 후, 상기 정보를 디코딩 장치로 다음과 같이 전송할 수 있다.
- CU 단위로 상술한 실시예의 방법이 적용되는지 여부를 나타내는 정보가 전송되는 경우, 현재 크로마 블록의 인트라 예측 모드가 CCLM 모드이면(즉, 상기 현재 크로마 블록에 CCLM 예측(LM_T 모드, LM_T 모드 또는 LM_LT 모드)이 적용되는 경우), 아래의 두 경우 중 인코딩 효율이 좋은 쪽을 RDO를 통해 결정할 수 있고, 결정된 방법에 대한 정보를 디코딩 장치로 전송할 수 있다.
1) 모든 블록에 대하여 상기 Nth = 4로 설정하고, 상술한 도 8에서 제안된 실시예의 주변 샘플 선택 방안을 통해 CCLM 파라미터 계산하는 것이 인코딩 효율이 좋은 경우, 값이 0(false)인 cclm_reduced_sample_flag 를 전송
2) 상기 방법 2가 적용되는 것으로 설정하고, 상술한 실시예에서 제안하는 주변 샘플 선택 방안을 통해 CCLM 파라미터 계산하는 것이 인코딩 효율이 좋은 경우, 값이 1(true)인 cclm_reduced_sample_flag 를 전송
- 또는, 슬라이스, 픽처 또는 시퀀스 단위로 상술한 실시예의 방법이 적용되는지 여부를 나타내는 정보가 전송되는 경우, 인코딩 장치는 상술한 표 36, 표 37 또는 표 38과 같이 HLS(high level syntax)를 추가하여 상기 방법들 중 하나의 방법을 나타내는 정보를 전송할 수 있다. 인코딩 장치는 상기 방법들 중 적용되는 방법을 입력 영상의 크기를 고려하거나 또는 인코딩 타겟 비트레이트(target bitrate)에 맞게 설정할 수 있다.
1) 예를 들어, 입력 영상이 HD 이상인 경우, 인코딩 장치는 상기 방법 1(Nth = 1,2 또는 4)를 적용할 수 있고, 그 이하인 경우, 상기 방법 2(Nth = 1 또는 2)를 적용할 수 있다.
2) 높은 품질의 영상 인코딩이 필요한 경우, 인코딩 장치는 상기 방법 3(Nth = 4)를 적용할 수 있고, 낮은 품질의 영상 인코딩이 필요한 경우, 상기 방법 4(Nth = 2) 를 적용할 수 있다.
본 실시예에서 제안하는 방법은 크로마 성분에 대한 인트라 예측 모드인 CCLM 모드(LM_T 모드, LM_T 모드 또는 LM_LT 모드)에 사용될 수 있고, 상기 CCLM 모드를 통해 예측된 크로마 블록은 인코딩 장치에서 원본 영상과의 차분을 통해 레지듀얼 영상을 도출하는데 사용되거나, 디코딩 장치에서 레지듀얼 신호와의 합을 통해 복원된 영상을 도출하는데 사용될 수 있다.
도 20a 내지 도 20b는 상술한 실시예의 방법 1에 따라서 도출된 현재 크로마 블록의 CCLM 파라미터들을 기반으로 CCLM 예측을 수행하는 과정을 설명하기 위한 도면이다. 상기 CCLM 예측은 기존 CCLM 예측, 즉, 상기 LM_LT 모드를 기반으로 수행되는 CCLM 예측 또는 상기 LM_L 모드 또는 상기 LM_T 모드를 기반으로 수행되는 CCLM 예측을 나타낼 수 있다.
도 20a를 참조하면 인코딩 장치/디코딩 장치는 상기 현재 블록에 대한 CCLM 파라미터를 계산할 수 있다(S2000). 예를 들어, 상기 CCLM 파라미터는 도 20b에 도시된 실시예와 같이 계산될 수 있다.
도 20b는 CCLM 파라미터를 계산하는 구체적인 실시예를 예시적으로 나타낼 수 있다. 예를 들어, 도 20b를 참조하면 인코딩 장치/디코딩 장치는 상기 현재 크로마 블록의 모양(shape) 및 상기 현재 크로마 블록의 CCLM 예측 모드를 기반으로 N을 설정할 수 있다(S2005). 예를 들어, 상기 현재 크로마 블록에 상기 LM_LT 모드가 적용되는 경우, 상기 현재 크로마 블록의 폭 및 높이 중 작은 값이 N으로 설정될 수 있다. 또한, 예를 들어, 상기 현재 크로마 블록이 폭이 높이보다 더 큰 비정방형 블록이고, 상기 현재 크로마 블록에 상기 LM_T 모드가 적용되는 경우, 상기 현재 크로마 블록의 폭이 N으로 설정될 수 있다. 또한, 예를 들어, 상기 현재 크로마 블록이 높이가 폭보다 더 큰 비정방형 블록이고, 상기 현재 크로마 블록에 상기 LM_L 모드가 적용되는 경우, 상기 현재 크로마 블록의 높이가 N으로 설정될 수 있다.
이후, 인코딩 장치/디코딩 장치는 상기 N이 2인지(N = 2) 판단할 수 있다(S2010).
상기 N이 2인 경우, 인코딩 장치/디코딩 장치는 상기 CCLM 파라미터 계산을 위한 참조 샘플로 상기 현재 블록에 인접한 참조 라인(reference line) 내 2개(즉, 2Nth)의 주변 샘플들을 선택할 수 있다(S2015). 여기서, 상기 Nth 는 1일 수 있다(Nth =1).
인코딩 장치/디코딩 장치는 상기 선택된 참조 샘플들을 기반으로 상기 CCLM 예측에 대한 파라미터 α, β를 도출할 수 있다(S2020).
한편, 상기 N이 2가 아닌 경우, 인코딩 장치/디코딩 장치는 상기 N이 4 인지(N = 4) 판단할 수 있다(S2025).
상기 N이 4 인 경우, 인코딩 장치/디코딩 장치는 상기 CCLM 파라미터 계산을 위한 참조 샘플로 상기 현재 블록에 인접한 참조 라인(reference line) 내 4개(즉, 2Nth)의 주변 샘플들을 선택할 수 있다(S2030). 여기서, 상기 Nth 는 2일 수 있다(Nth =2). 이후, 인코딩 장치/디코딩 장치는 상기 선택된 참조 샘플들을 기반으로 상기 CCLM 예측에 대한 파라미터 α, β를 도출할 수 있다(S2020).
또는, 상기 N이 4가 아닌 경우, 인코딩 장치/디코딩 장치는 상기 CCLM 파라미터 계산을 위한 참조 샘플로 상기 현재 블록에 인접한 참조 라인(reference line) 내 8개(즉, 2Nth)의 주변 샘플들을 선택할 수 있다(S2035). 여기서, 상기 Nth 는 4일 수 있다(Nth =4). 이후, 인코딩 장치/디코딩 장치는 상기 선택된 참조 샘플들을 기반으로 상기 CCLM 예측에 대한 파라미터 α, β를 도출할 수 있다(S2020).
다시 도 20a를 참조하면, 상기 현재 크로마 블록에 대한 CCLM 예측에 대한 상기 파라미터들이 계산된 경우, 인코딩 장치/디코딩 장치는 상기 파라미터들을 기반으로 CCLM 예측을 수행하여 상기 현재 크로마 블록에 대한 예측 샘플을 생성할 수 있다(S2040). 예를 들어, 인코딩 장치/디코딩 장치는 상기 계산된 파라미터들 및 상기 현재 크로마 블록에 대한 현재 루마 블록의 복원 샘플들이 사용되는 상술한 수학식 1을 기반으로 상기 현재 크로마 블록에 대한 예측 샘플을 생성할 수 있다.
도 21a 내지 도 21b는 상술한 실시예의 방법 2에 따라서 도출된 현재 크로마 블록의 CCLM 파라미터들을 기반으로 CCLM 예측을 수행하는 과정을 설명하기 위한 도면이다. 상기 CCLM 예측은 기존 CCLM 예측, 즉, 상기 LM_LT 모드를 기반으로 수행되는 CCLM 예측 또는 상기 LM_L 모드 또는 상기 LM_T 모드를 기반으로 수행되는 CCLM 예측을 나타낼 수 있다.
도 21a를 참조하면 인코딩 장치/디코딩 장치는 상기 현재 블록에 대한 CCLM 파라미터를 계산할 수 있다(S2100). 예를 들어, 상기 CCLM 파라미터는 도 21b에 도시된 실시예와 같이 계산될 수 있다.
도 21b는 CCLM 파라미터를 계산하는 구체적인 실시예를 예시적으로 나타낼 수 있다. 예를 들어, 도 21b를 참조하면 인코딩 장치/디코딩 장치는 상기 현재 크로마 블록의 모양(shape) 및 상기 현재 크로마 블록의 CCLM 예측 모드를 기반으로 N을 설정할 수 있다(S2105). 예를 들어, 상기 현재 크로마 블록에 상기 LM_LT 모드가 적용되는 경우, 상기 현재 크로마 블록의 폭 및 높이 중 작은 값이 N으로 설정될 수 있다. 또한, 예를 들어, 상기 현재 크로마 블록이 폭이 높이보다 더 큰 비정방형 블록이고, 상기 현재 크로마 블록에 상기 LM_T 모드가 적용되는 경우, 상기 현재 크로마 블록의 폭이 N으로 설정될 수 있다. 또한, 예를 들어, 상기 현재 크로마 블록이 높이가 폭보다 더 큰 비정방형 블록이고, 상기 현재 크로마 블록에 상기 LM_L 모드가 적용되는 경우, 상기 현재 크로마 블록의 높이가 N으로 설정될 수 있다.
이후, 인코딩 장치/디코딩 장치는 상기 N이 2인지(N = 2) 판단할 수 있다(S2110).
상기 N이 2인 경우, 인코딩 장치/디코딩 장치는 상기 CCLM 파라미터 계산을 위한 참조 샘플로 상기 현재 블록에 인접한 참조 라인(reference line) 내 2개(즉, 2Nth)의 주변 샘플들을 선택할 수 있다(S2115). 여기서, 상기 Nth 는 1일 수 있다(Nth =1).
인코딩 장치/디코딩 장치는 상기 선택된 참조 샘플들을 기반으로 상기 CCLM 예측에 대한 파라미터 α, β를 도출할 수 있다(S2120).
한편, 상기 N이 2가 아닌 경우, 인코딩 장치/디코딩 장치는 상기 CCLM 파라미터 계산을 위한 참조 샘플로 상기 현재 블록에 인접한 참조 라인(reference line) 내 4개(즉, 2Nth)의 주변 샘플들을 선택할 수 있다(S2125). 여기서, 상기 Nth 는 2일 수 있다(Nth =2). 이후, 인코딩 장치/디코딩 장치는 상기 선택된 참조 샘플들을 기반으로 상기 CCLM 예측에 대한 파라미터 α, β를 도출할 수 있다(S2120).
다시 도 21a를 참조하면, 상기 현재 크로마 블록에 대한 CCLM 예측에 대한 상기 파라미터들이 계산된 경우, 인코딩 장치/디코딩 장치는 상기 파라미터들을 기반으로 CCLM 예측을 수행하여 상기 현재 크로마 블록에 대한 예측 샘플을 생성할 수 있다(S2130). 예를 들어, 인코딩 장치/디코딩 장치는 상기 계산된 파라미터들 및 상기 현재 크로마 블록에 대한 현재 루마 블록의 복원 샘플들이 사용되는 상술한 수학식 1을 기반으로 상기 현재 크로마 블록에 대한 예측 샘플을 생성할 수 있다.
도 22a 내지 도 22b는 상술한 실시예의 방법 3에 따라서 도출된 현재 크로마 블록의 CCLM 파라미터들을 기반으로 CCLM 예측을 수행하는 과정을 설명하기 위한 도면이다. 상기 CCLM 예측은 기존 CCLM 예측, 즉, 상기 LM_LT 모드를 기반으로 수행되는 CCLM 예측 또는 상기 LM_L 모드 또는 상기 LM_T 모드를 기반으로 수행되는 CCLM 예측을 나타낼 수 있다.
도 22a를 참조하면 인코딩 장치/디코딩 장치는 상기 현재 블록에 대한 CCLM 파라미터를 계산할 수 있다(S2200). 예를 들어, 상기 CCLM 파라미터는 도 21b에 도시된 실시예와 같이 계산될 수 있다.
도 22b는 CCLM 파라미터를 계산하는 구체적인 실시예를 예시적으로 나타낼 수 있다. 예를 들어, 도 22b를 참조하면 인코딩 장치/디코딩 장치는 상기 현재 크로마 블록의 모양(shape) 및 상기 현재 크로마 블록의 CCLM 예측 모드를 기반으로 N을 설정할 수 있다(S2205). 예를 들어, 상기 현재 크로마 블록에 상기 LM_LT 모드가 적용되는 경우, 상기 현재 크로마 블록의 폭 및 높이 중 작은 값이 N으로 설정될 수 있다. 또한, 예를 들어, 상기 현재 크로마 블록이 폭이 높이보다 더 큰 비정방형 블록이고, 상기 현재 크로마 블록에 상기 LM_T 모드가 적용되는 경우, 상기 현재 크로마 블록의 폭이 N으로 설정될 수 있다. 또한, 예를 들어, 상기 현재 크로마 블록이 높이가 폭보다 더 큰 비정방형 블록이고, 상기 현재 크로마 블록에 상기 LM_L 모드가 적용되는 경우, 상기 현재 크로마 블록의 높이가 N으로 설정될 수 있다.
이후, 인코딩 장치/디코딩 장치는 상기 N이 2인지(N = 2) 판단할 수 있다(S2210).
상기 N이 2인 경우, 인코딩 장치/디코딩 장치는 상기 CCLM 파라미터 계산을 위한 참조 샘플로 상기 현재 블록에 인접한 참조 라인(reference line) 내 4개의 주변 샘플들을 선택할 수 있다(S2215). 즉, 참조 라인 내 참조 샘플들을 상기 CCLM 파라미터가 계산될 수 있다.
인코딩 장치/디코딩 장치는 상기 선택된 참조 샘플들을 기반으로 상기 CCLM 예측에 대한 파라미터 α, β를 도출할 수 있다(S2220).
한편, 상기 N이 2가 아닌 경우, 인코딩 장치/디코딩 장치는 상기 CCLM 파라미터 계산을 위한 참조 샘플로 상기 현재 블록에 인접한 참조 라인(reference line) 내 8개(즉, 2Nth)의 주변 샘플들을 선택할 수 있다(S2225). 여기서, 상기 Nth 는 4일 수 있다(Nth =4). 이후, 인코딩 장치/디코딩 장치는 상기 선택된 참조 샘플들을 기반으로 상기 CCLM 예측에 대한 파라미터 α, β를 도출할 수 있다(S2220).
다시 도 22a를 참조하면, 상기 현재 크로마 블록에 대한 CCLM 예측에 대한 상기 파라미터들이 계산된 경우, 인코딩 장치/디코딩 장치는 상기 파라미터들을 기반으로 CCLM 예측을 수행하여 상기 현재 크로마 블록에 대한 예측 샘플을 생성할 수 있다(S2230). 예를 들어, 인코딩 장치/디코딩 장치는 상기 계산된 파라미터들 및 상기 현재 크로마 블록에 대한 현재 루마 블록의 복원 샘플들이 사용되는 상술한 수학식 1을 기반으로 상기 현재 크로마 블록에 대한 예측 샘플을 생성할 수 있다.
도 23은 상술한 실시예의 방법 4에 따라서 도출된 현재 크로마 블록의 CCLM 파라미터들을 기반으로 CCLM 예측을 수행하는 과정을 설명하기 위한 도면이다. 상기 CCLM 예측은 기존 CCLM 예측, 즉, 상기 LM_LT 모드를 기반으로 수행되는 CCLM 예측 또는 상기 LM_L 모드 또는 상기 LM_T 모드를 기반으로 수행되는 CCLM 예측을 나타낼 수 있다.
도 23을 참조하면 인코딩 장치/디코딩 장치는 상기 현재 블록에 대한 CCLM 파라미터를 계산할 수 있다(S2300).
예를 들어, 인코딩 장치/디코딩 장치는 상기 CCLM 파라미터 계산을 위한 참조 샘플로 상기 현재 블록에 인접한 참조 라인(reference line) 내 4개(즉, 2Nth)의 주변 샘플들을 선택할 수 있다(S2305). 여기서, 상기 Nth 는 2일 수 있다(Nth = 2). 또는 상기 Nth 는 4일 수 있다(Nth = 4). 이후, 인코딩 장치/디코딩 장치는 상기 선택된 참조 샘플들을 기반으로 상기 CCLM 예측에 대한 파라미터 α, β를 도출할 수 있다(S2310).
상기 현재 크로마 블록에 대한 CCLM 예측에 대한 상기 파라미터들이 계산된 경우, 인코딩 장치/디코딩 장치는 상기 파라미터들을 기반으로 CCLM 예측을 수행하여 상기 현재 크로마 블록에 대한 예측 샘플을 생성할 수 있다(S2320). 예를 들어, 인코딩 장치/디코딩 장치는 상기 계산된 파라미터들 및 상기 현재 크로마 블록에 대한 현재 루마 블록의 복원 샘플들이 사용되는 상술한 수학식 1을 기반으로 상기 현재 크로마 블록에 대한 예측 샘플을 생성할 수 있다.
도 24는 본 문서에 따른 인코딩 장치에 의한 영상 인코딩 방법을 개략적으로 나타낸다. 도 24에서 개시된 방법은 도 2에서 개시된 인코딩 장치에 의하여 수행될 수 있다. 구체적으로 예를 들어, 도 24의 S2400 내지 S2460은 상기 인코딩 장치의 예측부에 의하여 수행될 수 있고, S2470은 상기 인코딩 장치의 엔트로피 인코딩부에 의하여 수행될 수 있다. 또한, 비록 도시되지는 않았으나 상기 현재 크로마 블록에 대한 원본 샘플과 예측 샘플을 기반으로 상기 현재 크로마 블록에 대한 레지듀얼 샘플을 도출하는 과정은 상기 인코딩 장치의 감산부에 의하여 수행될 수 있고, 상기 현재 크로마 블록에 대한 레지듀얼 샘플들과 예측 샘플들을 기반으로 상기 현재 크로마 블록에 대한 복원 샘플들을 도출하는 과정은 상기 인코딩 장치의 가산부에 의하여 수행될 수 있고, 상기 레지듀얼 샘플을 기반으로 상기 현재 크로마 블록에 대한 레지듀얼에 관한 정보를 생성하는 과정은 상기 인코딩 장치의 변환부에 의하여 수행될 수 있고, 상기 레지듀얼에 관한 정보를 인코딩하는 과정은 상기 인코딩 장치의 엔트로피 인코딩부에 의하여 수행될 수 있다.
인코딩 장치는 복수의 CCLM(cross-component linear model) 예측 모드들 중 현재 크로마 블록의 CCLM 예측 모드를 결정한다(S2400). 예를 들어, 인코딩 장치는 RD 코스트(Rate-distortion cost)(또는 RDO)를 기반으로 상기 현재 크로마 블록의 인트라 예측 모드를 결정할 수 있다. 여기서, 상기 RD 코스트는 SAD(Sum of Absolute Difference)를 기반으로 도출될 수 있다. 인코딩 장치는 RD 코스트를 기반으로 상기 CCLM 예측 모드들 중 하나를 상기 현재 크로마 블록의 인트라 예측 모드로 결정할 수 있다. 즉, 인코딩 장치는 RD 코스트를 기반으로 상기 CCLM 예측 모드들 중 상기 현재 크로마 블록의 CCLM 예측 모드를 결정할 수 있다.
또한, 인코딩 장치는 상기 현재 크로마 블록의 인트라 예측 모드를 나타내는 예측 모드 정보를 인코딩할 수 있고, 비트스트림을 통하여 상기 예측 모드 정보는 시그널링될 수 있다. 상기 현재 크로마 블록에 대한 상기 예측 모드 정보를 나타내는 신텍스 요소(syntax element)는 intra_chroma_pred_mode 일 수 있다. 영상 정보는 상기 예측 모드 정보를 포함할 수 있다.
또한, 인코딩 장치는 상기 현재 크로마 블록의 상기 CCLM 예측 모드를 가리키는 인덱스 정보를 인코딩할 수 있고, 비트스트림을 통하여 상기 인덱스 정보를 시그널링할 수 있다. 상기 예측 모드 정보는 CCLM(cross-component linear model) 예측 모드들 중 상기 현재 크로마 블록의 상기 CCLM 예측 모드를 가리키는 인덱스 정보를 포함할 수 있다. 여기서, 상기 CCLM 예측 모드들은 레프트탑(lefttop) LM 모드, 탑(top) LM 모드 및 레프트(left) LM 모드를 포함할 수 있다. 상기 레프트탑 LM 모드는 상술한 LM_LT 모드를 나타낼 수 있고, 상기 레프트 LM 모드는 상술한 LM_L 모드를 나타낼 수 있고, 상기 탑 LM 모드는 상술한 LM_T 모드를 나타낼 수 있다. 또한, 인코딩 장치는 상기 현재 크로마 블록에 CCLM 예측이 적용되는지 여부를 나타내는 플래그를 인코딩할 수 있고, 비트스트림을 통하여 상기 플래그를 시그널링할 수 있다. 상기 예측 모드 정보는 상기 현재 크로마 블록에 CCLM 예측이 적용되는지 여부를 나타내는 상기 플래그를 포함할 수 있다. 예를 들어, 상기 현재 크로마 블록에 CCLM 예측이 적용되는 경우, 상기 인덱스 정보가 가리키는 CCLM 예측 모드가 상기 현재 크로마 블록에 대한 CCLM 예측 모드로 도출될 수 있다.
인코딩 장치는 상기 현재 크로마 블록의 상기 CCLM 예측 모드, 상기 현재 크로마 블록의 사이즈 및 특정값을 기반으로 상기 현재 크로마 블록의 주변 크로마 샘플들의 샘플 개수를 도출한다(S2410).
여기서, 상기 현재 크로마 블록의 상기 CCLM 예측 모드가 상기 레프트 LM 모드인 경우, 상기 주변 크로마 샘플들은 상기 현재 크로마 블록의 좌측 주변 크로마 샘플들만을 포함할 수 있다. 또한, 상기 현재 크로마 블록의 상기 CCLM 예측 모드가 상기 탑 LM 모드인 경우, 상기 주변 크로마 샘플들은 상기 현재 크로마 블록의 상측 주변 크로마 샘플들만을 포함할 수 있다. 또한, 상기 현재 크로마 블록의 상기 CCLM 예측 모드가 상기 레프트탑 LM 모드인 경우, 상기 주변 크로마 샘플들은 상기 현재 크로마 블록의 상기 좌측 주변 크로마 샘플들 및 상기 상측 주변 크로마 샘플들을 포함할 수 있다.
예를 들어, 상기 현재 크로마 블록의 상기 CCLM 예측 모드가 상기 레프트 LM 모드인 경우, 인코딩 장치는 상기 현재 크로마 블록의 높이와 상기 특정값을 기반으로 상기 샘플 개수를 도출할 수 있다.
일 예로, 인코딩 장치는 상기 높이의 2배수와 상기 특정값의 2배수를 비교하여 상기 주변 크로마 샘플들의 상기 샘플 개수를 도출할 수 있다. 예를 들어, 상기 현재 크로마 블록의 상기 높이의 2배수와 상기 특정값의 2배수보다 큰 경우, 상기 샘플 개수는 상기 특정값의 2배수로 도출될 수 있다. 또한, 예를 들어, 상기 현재 크로마 블록의 상기 높이의 2배수가 상기 특정값의 2배수 이하인 경우, 상기 샘플 개수는 상기 높이의 2배수로 도출될 수 있다.
또한, 예를 들어, 상기 현재 크로마 블록의 상기 CCLM 예측 모드가 상기 탑 LM 모드인 경우, 인코딩 장치는 상기 현재 크로마 블록의 폭과 상기 특정값을 기반으로 상기 샘플 개수를 도출할 수 있다.
일 예로, 인코딩 장치는 상기 폭의 2배수와 상기 특정값의 2배수를 비교하여 상기 주변 크로마 샘플들의 상기 샘플 개수를 도출할 수 있다. 예를 들어, 상기 현재 크로마 블록의 상기 폭의 2배수와 상기 특정값의 2배수보다 큰 경우, 상기 샘플 개수는 상기 특정값의 2배수로 도출될 수 있다. 또한, 예를 들어, 상기 현재 크로마 블록의 상기 폭의 2배수가 상기 특정값의 2배수 이하인 경우, 상기 샘플 개수는 상기 폭의 2배수로 도출될 수 있다.
또한, 예를 들어, 상기 현재 크로마 블록의 상기 CCLM 예측 모드가 상기 레프트탑 LM 모드인 경우, 인코딩 장치는 상기 폭 및 상기 높이와 상기 특정값을 비교하여 상기 상측 주변 크로마 샘플들 및 상기 좌측 주변 크로마 샘플들의 상기 샘플 개수를 도출할 수 있다.
예를 들어, 상기 현재 크로마 블록의 상기 폭 및 상기 높이가 상기 특정값보다 큰 경우, 상기 샘플 개수는 상기 특정값으로 도출될 수 있다.
또한, 예를 들어, 상기 현재 크로마 블록의 상기 폭 및 상기 높이가 상기 특정값 이하인 경우, 상기 샘플 개수는 상기 샘플 개수는 상기 폭 및 상기 높이 중 하나의 값으로 도출될 수 있다. 일 예로, 상기 폭 및 상기 높이 중 작은 값으로 도출될 수 있다.
한편, 상기 특정값은 상기 현재 크로마 블록의 CCLM 파라미터들을 도출하기 위하여 도출될 수 있다. 여기서, 상기 특정값은 주변 샘플 개수 상한선 또는 최대 주변 샘플 개수라고 나타낼 수도 있다. 일 예로, 상기 특정값은 2로 도출될 수 있다. 또는, 상기 특정값은 4, 8 또는 16 으로 도출될 수 있다.
또한, 예를 들어, 상기 특정값은 기설정된 값으로 도출될 수 있다. 즉, 상기 특정값은 인코딩 장치 및 디코딩 장치 간에 약속된 값으로 도출될 수 있다. 다시 말해, 상기 특정값은 상기 CCLM 모드가 적용되는 상기 현재 크로마 블록에 대하여 기설정된 값으로 도출될 수 있다.
또는, 예를 들어, 인코딩 장치는 상기 특정값을 나타내는 정보를 인코딩할 수 있고, 비트스트림을 통하여 상기 특정값을 나타내는 정보를 시그널링할 수 있다. 상기 영상 정보는 상기 특정값을 나타내는 정보를 포함할 수 있다. 상기 특정값을 나타내는 정보는 CU(coding unit) 단위로 시그널링될 수 있다. 또는, 상기 특정값을 나타내는 정보는 슬라이스 헤더(slice header), PPS(Picture Parameter Set), SPS(Sequence Parameter Set) 단위로 시그널링될 수 있다. 즉, 상기 특정값을 나타내는 정보는 슬라이스 헤더(slice header), PPS(Picture Parameter Set), SPS(Sequence Parameter Set) 로 시그널링될 수 있다.
또는, 예를 들어, 인코딩 장치는 상기 특정값을 기반으로 주변 참조 샘플의 개수를 도출하는지 여부를 나타내는 플래그 정보를 인코딩할 수 있고, 비트스트림을 통하여 상기 플래그 정보를 시그널링할 수 있다. 상기 영상 정보는 상기 특정값을 기반으로 주변 참조 샘플의 개수를 도출하는지 여부를 나타내는 플래그 정보를 포함할 수 있다. 상기 플래그 정보의 값이 1인 경우, 상기 플래그 정보는 상기 특정값을 기반으로 주변 참조 샘플의 개수를 도출함을 나타낼 수 있고, 상기 플래그 정보의 값이 0인 경우, 상기 플래그 정보는 상기 특정값을 기반으로 주변 참조 샘플의 개수를 도출하지 않음을 나타낼 수 있다. 상기 플래그 정보의 값이 1인 경우, 상기 예측 관련 정보는 상기 특정값을 나타내는 정보를 포함할 수 있고, 상기 특정값은 상기 특정값을 나타내는 정보를 기반으로 도출될 수 있다. 상기 플래그 정보 및/또는 상기 특정값을 나타내는 정보는 CU(coding unit) 단위로 시그널링될 수 있다. 또는, 상기 플래그 정보 및/또는 상기 특정값을 나타내는 정보는 슬라이스 헤더(slice header), PPS(Picture Parameter Set), 또는 SPS(Sequence Parameter Set) 단위로 시그널링될 수 있다. 즉, 상기 플래그 정보 및/또는 상기 특정값을 나타내는 정보는 슬라이스 헤더, PPS, 또는 SPS 로 시그널링될 수 있다.
또는, 예를 들어, 상기 특정값은 상기 현재 크로마 블록의 사이즈를 기반으로 도출될 수 있다.
일 예로, 상기 현재 크로마 블록의 상기 폭 및 상기 높이 중 작은 값이 2 이하인 경우, 상기 특정값은 1로 도출될 수 있고, 상기 현재 크로마 블록의 상기 폭 및 상기 높이 중 작은 값이 4인 경우, 상기 특정값은 2로 도출될 수 있고, 상기 현재 크로마 블록의 상기 폭 및 상기 높이 중 작은 값이 4보다 큰 경우, 상기 특정값은 4로 도출될 수 있다.
또한, 일 예로, 상기 현재 크로마 블록의 상기 폭 및 상기 높이 중 작은 값이 2 이하인 경우, 상기 특정값은 1로 도출될 수 있고, 상기 현재 크로마 블록의 상기 폭 및 상기 높이 중 작은 값이 4인 경우, 상기 특정값은 2로 도출될 수 있고, 상기 현재 크로마 블록의 상기 폭 및 상기 높이 중 작은 값이 8인 경우, 상기 특정값은 4로 도출될 수 있고, 상기 현재 크로마 블록의 상기 폭 및 상기 높이 중 작은 값이 8보다 큰 경우, 상기 특정값은 8로 도출될 수 있다.
또한, 일 예로, 상기 현재 크로마 블록의 상기 폭 및 상기 높이 중 작은 값이 2 이하인 경우, 상기 특정값은 1로 도출될 수 있고, 상기 현재 크로마 블록의 상기 폭 및 상기 높이 중 작은 값이 2보다 큰 경우, 상기 특정값은 2로 도출될 수 있다.
또한, 일 예로, 상기 현재 크로마 블록의 상기 폭 및 상기 높이 중 작은 값이 2 이하인 경우, 상기 특정값은 1로 도출될 수 있고, 상기 현재 크로마 블록의 상기 폭 및 상기 높이 중 작은 값이 2보다 큰 경우, 상기 특정값은 4로 도출될 수 있다.
또한, 일 예로, 상기 현재 크로마 블록의 사이즈가 2x2 인 경우, 상기 특정값은 1로 도출될 수 있고, 상기 현재 크로마 블록의 상기 폭 및 상기 높이 중 작은 값이 2인 경우, 상기 특정값은 2로 도출될 수 있고, 상기 현재 크로마 블록의 상기 폭 및 상기 높이 중 작은 값이 2보다 큰 경우, 상기 특정값은 4로 도출될 수 있다.
또한, 일 예로, 상기 현재 크로마 블록의 사이즈가 2x2 인 경우, 상기 특정값은 1로 도출될 수 있고, 상기 현재 크로마 블록의 상기 폭 및 상기 높이 중 작은 값이 2인 경우, 상기 특정값은 2로 도출될 수 있고, 상기 현재 크로마 블록의 상기 폭 및 상기 높이 중 작은 값이 4인 경우, 상기 특정값은 2로 도출될 수 있고, 상기 현재 크로마 블록의 상기 폭 및 상기 높이 중 작은 값이 4보다 큰 경우, 상기 특정값은 4로 도출될 수 있다.
또한, 일 예로, 상기 현재 크로마 블록의 사이즈가 2x2 인 경우, 상기 특정값은 1로 도출될 수 있고, 상기 현재 크로마 블록의 상기 폭 및 상기 높이 중 작은 값이 2인 경우, 상기 특정값은 2로 도출될 수 있고, 상기 현재 크로마 블록의 상기 폭 및 상기 높이 중 작은 값이 4인 경우, 상기 특정값은 4로 도출될 수 있고, 상기 현재 크로마 블록의 상기 폭 및 상기 높이 중 작은 값이 4보다 큰 경우, 상기 특정값은 8로 도출될 수 있다.
또한, 일 예로, 상기 현재 크로마 블록의 상기 폭 및 상기 높이 중 작은 값이 2인 경우, 상기 특정값은 1로 도출될 수 있고, 상기 현재 크로마 블록의 상기 폭 및 상기 높이 중 작은 값이 4인 경우, 상기 특정값은 2로 도출될 수 있고, 상기 현재 크로마 블록의 상기 폭 및 상기 높이 중 작은 값이 4보다 큰 경우, 상기 특정값은 4로 도출될 수 있다.
또한, 일 예로, 상기 현재 크로마 블록의 상기 폭 및 상기 높이 중 작은 값이 2인 경우, 상기 특정값은 1로 도출될 수 있고, 상기 현재 크로마 블록의 상기 폭 및 상기 높이 중 작은 값이 4인 경우, 상기 특정값은 2로 도출될 수 있다.
또한, 일 예로, 상기 현재 크로마 블록의 상기 폭 및 상기 높이 중 작은 값이 4보다 큰 경우, 상기 특정값은 4로 도출될 수 있다.
또한, 일 예로, 상기 현재 크로마 블록의 상기 폭 및 상기 높이 중 작은 값이 2보다 큰 경우, 상기 특정값은 2로 도출될 수 있다.
또한, 일 예로, 상기 특정값은 상기 현재 블록의 폭 및 높이 중 작은 값이 특정 임계값보다 큰지 여부를 기반으로 도출될 수 있다. 예를 들어, 상기 현재 블록의 폭 및 높이 중 작은 값이 특정 임계값보다 큰 경우, 상기 특정값은 4로 도출될 수 있고, 상기 현재 블록의 폭 및 높이 중 작은 값이 특정 임계값 이하인 경우, 상기 특정값은 2로 도출될 수 있다. 상기 특정 임계값은 기설정된 값으로 도출될 수 있다. 즉, 상기 특정 임계값은 인코딩 장치 및 디코딩 장치 간에 약속된 값으로 도출될 수 있다. 또는, 예를 들어, 인코딩 장치는 예측 관련 정보를 포함하는 영상 정보를 인코딩할 수 있고, 상기 예측 관련 정보는 상기 특정 임계값을 나타내는 정보를 포함할 수 있다. 이 경우, 상기 특정 임계값은 상기 특정 임계값을 나타내는 정보를 기반으로 도출될 수 있다. 예를 들어, 상기 도출된 특정 임계값은 4 또는 8일 수 있다.
인코딩 장치는 상기 샘플 개수의 상기 주변 크로마 샘플들을 도출한다(S2420). 인코딩 장치는 상기 샘플 개수의 상기 주변 크로마 샘플들을 도출할 수 있다.
예를 들어, 상기 현재 크로마 블록의 상기 CCLM 예측 모드가 상기 레프트탑 LM 모드인 경우, 인코딩 장치는 상기 샘플 개수의 좌측 주변 크로마 샘플들 및 상기 샘플 개수의 상측 주변 크로마 샘플들을 도출할 수 있다. 구체적으로, 상기 현재 크로마 블록의 사이즈가 NxM 인 경우, 인코딩 장치는 N개의 상측 주변 크로마 샘플들에서 상기 샘플 개수의 상측 주변 크로마 샘플들을 도출할 수 있고, N개의 좌측 주변 크로마 샘플들에서 상기 샘플 개수의 좌측 주변 크로마 샘플들을 도출할 수 있다. 여기서, N 은 M 보다 작거나 같을 수 있다.
또한, 예를 들어, 상기 현재 크로마 블록의 상기 CCLM 예측 모드가 상기 탑 LM 모드인 경우, 인코딩 장치는 상기 샘플 개수의 상측 주변 크로마 샘플들을 도출할 수 있다. 구체적으로, 상기 현재 크로마 블록의 사이즈가 NxM 인 경우, 인코딩 장치는 2N개의 상측 주변 크로마 샘플들에서 상기 샘플 개수의 상측 주변 크로마 샘플들을 도출할 수 있다. 여기서, N 은 M 보다 작거나 같을 수 있다.
또한, 예를 들어, 상기 현재 크로마 블록의 상기 CCLM 예측 모드가 상기 레프트 LM 모드인 경우, 인코딩 장치는 상기 샘플 개수의 좌측 주변 크로마 샘플들을 도출할 수 있다. 구체적으로, 상기 현재 크로마 블록의 사이즈가 MxN 인 경우, 인코딩 장치는 2N개의 좌측 주변 크로마 샘플들에서 상기 샘플 개수의 좌측 주변 크로마 샘플들을 도출할 수 있다. 여기서, N 은 M 보다 작거나 같을 수 있다.
인코딩 장치는 현재 루마 블록의 다운 샘플링된 주변 루마 샘플들 및 다운 샘플링된 루마 샘플들을 도출한다(S2430). 여기서, 상기 주변 루마 샘플들은 상기 주변 크로마 샘플들과 대응할 수 있다. 예를 들어, 상기 다운 샘플링된 주변 루마 샘플들은 상기 상측 주변 크로마 샘플들과 대응하는 상기 현재 루마 블록의 다운 샘플링된 상측 주변 루마 샘플들 및 상기 좌측 주변 크로마 샘플들과 대응하는 상기 현재 루마 블록의 다운 샘플링된 좌측 주변 루마 샘플들을 포함할 수 있다.
즉, 예를 들어, 상기 주변 루마 샘플들은 상기 상측 주변 크로마 샘플들과 대응하는 상기 샘플 개수의 다운 샘플링된 상측 주변 루마 샘플들 및 상기 좌측 주변 크로마 샘플들과 대응하는 상기 샘플 개수의 다운 샘플링된 좌측 주변 루마 샘플들을 포함할 수 있다.
또는, 예를 들어, 상기 다운 샘플링된 주변 루마 샘플들은 상기 상측 주변 크로마 샘플들과 대응하는 상기 현재 루마 블록의 다운 샘플링된 상측 주변 루마 샘플들을 포함할 수 있다. 즉, 예를 들어, 상기 주변 루마 샘플들은 상기 상측 주변 크로마 샘플들과 대응하는 상기 샘플 개수의 다운 샘플링된 상측 주변 루마 샘플들을 포함할 수 있다.
또는, 예를 들어, 상기 다운 샘플링된 주변 루마 샘플들은 상기 좌측 주변 크로마 샘플들과 대응하는 상기 현재 루마 블록의 다운 샘플링된 좌측 주변 루마 샘플들을 포함할 수 있다. 즉, 예를 들어, 상기 주변 루마 샘플들은 상기 좌측 주변 크로마 샘플들과 대응하는 상기 샘플 개수의 다운 샘플링된 좌측 주변 루마 샘플들을 포함할 수 있다.
인코딩 장치는 상기 주변 크로마 샘플들 및 상기 다운 샘플링된 주변 루마 샘플들을 기반으로 CCLM 파라미터들을 도출한다(S2440). 인코딩 장치는 상기 주변 크로마 샘플들 및 상기 다운 샘플링된 주변 루마 샘플들을 기반으로 CCLM 파라미터들을 도출할 수 있다. 예를 들어, 상기 CCLM 파라미터들은 상술한 수학식 3을 기반으로 도출될 수 있다. 또는, 예를 들어, 상기 CCLM 파라미터들은 상술한 수학식 4를 기반으로 도출될 수 있다.
인코딩 장치는 상기 CCLM 파라미터들 및 상기 다운 샘플링된 루마 샘플들을 기반으로 상기 현재 크로마 블록에 대한 예측 샘플들을 도출한다(S2450). 인코딩 장치는 상기 CCLM 파라미터들 및 상기 다운 샘플링된 루마 샘플들을 기반으로 상기 현재 크로마 블록에 대한 예측 샘플들을 도출할 수 있다. 인코딩 장치는 상기 CCLM 파라미터들로 도출되는 CCLM을 상기 다운 샘플링된 루마 샘플들에 적용하여 상기 현재 크로마 블록에 대한 예측 샘플들을 생성할 수 있다. 즉, 인코딩 장치는 상기 CCLM 파라미터들을 기반으로 CCLM 예측을 수행하여 상기 현재 크로마 블록에 대한 예측 샘플들을 생성할 수 있다. 예를 들어, 상기 예측 샘플들은 상술한 수학식 1을 기반으로 도출될 수 있다.
인코딩 장치는 상기 현재 크로마 블록에 대한 예측 모드 정보를 포함하는 영상 정보를 인코딩한다(S2460). 인코딩 장치는 상기 현재 크로마 블록에 대한 예측 모드 정보를 포함하는 영상 정보를 인코딩할 수 있고, 비트스트림을 통하여 시그널링할 수 있다. 상기 예측 모드 정보는 상기 현재 크로마 블록에 CCLM 예측이 적용되는지 여부를 나타내는 플래그를 포함할 수 있다. 또한, 상기 예측 모드 정보는 상기 현재 크로마 블록의 CCLM 예측 모드를 나타내는 인덱스 정보를 포함할 수 있다.
또한, 예를 들어, 상기 영상 정보는 상기 특정값을 나타내는 정보를 포함할 수 있다. 또한, 예를 들어, 상기 영상 정보는 상기 특정 임계값을 나타내는 정보를 포함할 수 있다. 또한, 예를 들어, 상기 영상 정보는 상기 특정값을 기반으로 주변 참조 샘플의 개수를 도출하는지 여부를 나타내는 플래그 정보를 포함할 수 있다.
한편, 비록 도시되지는 않았으나 인코딩 장치는 상기 현재 크로마 블록에 대한 원본 샘플들과 예측 샘플들을 기반으로 상기 현재 크로마 블록에 대한 레지듀얼 샘플들을 도출할 수 있고, 상기 레지듀얼 샘플들을 기반으로 상기 현재 크로마 블록에 대한 레지듀얼에 관한 정보를 생성할 수 있고, 상기 레지듀얼에 관한 정보를 인코딩할 수 있다. 상기 영상 정보는 상기 레지듀얼에 관한 정보를 포함할 수 있다. 또한, 인코딩 장치는 상기 현재 크로마 블록에 대한 상기 예측 샘플들 및 상기 레지듀얼 샘플들을 기반으로 상기 현재 크로마 블록에 대한 복원 샘플들을 생성할 수 있다.
한편, 상기 비트스트림은 네트워크 또는 (디지털) 저장매체를 통하여 디코딩 장치로 전송될 수 있다. 여기서 네트워크는 방송망 및/또는 통신망 등을 포함할 수 있고, 디지털 저장매체는 USB, SD, CD, DVD, 블루레이, HDD, SSD 등 다양한 저장매체를 포함할 수 있다.
도 25는 본 문서에 따른 영상 인코딩 방법을 수행하는 인코딩 장치를 개략적으로 나타낸다. 도 24에서 개시된 방법은 도 25에서 개시된 인코딩 장치에 의하여 수행될 수 있다. 구체적으로 예를 들어, 도 25의 상기 인코딩 장치의 예측부는 도 24의 S2400 내지 S2450을 수행할 수 있고, 도 25의 상기 인코딩 장치의 엔트로피 인코딩부는 도 24의 S2460을 수행할 수 있다. 또한, 비록 도시되지는 않았으나 상기 현재 크로마 블록에 대한 원본 샘플들과 예측 샘플들을 기반으로 상기 현재 크로마 블록에 대한 레지듀얼 샘플들을 도출하는 과정은 도 25의 상기 인코딩 장치의 감산부에 의하여 수행될 수 있고, 상기 현재 크로마 블록에 대한 예측 샘플들 및 레지듀얼 샘플들을 기반으로 상기 현재 크로마 블록에 대한 복원 샘플들을 도출하는 과정은 도 25의 상기 인코딩 장치의 가산부에 의하여 수행될 수 있고, 상기 레지듀얼 샘플들을 기반으로 상기 현재 크로마 블록에 대한 레지듀얼에 관한 정보를 생성하는 과정은 도 25의 상기 인코딩 장치의 변환부에 의하여 수행될 수 있고, 상기 레지듀얼에 관한 정보를 인코딩하는 과정은 도 17의 상기 인코딩 장치의 엔트로피 인코딩부에 의하여 수행될 수 있다.
도 26은 본 문서에 따른 디코딩 장치에 의한 영상 디코딩 방법을 개략적으로 나타낸다. 도 26에서 개시된 방법은 도 3에서 개시된 디코딩 장치에 의하여 수행될 수 있다. 구체적으로 예를 들어, 도 26의 S2600은 상기 디코딩 장치의 엔트로피 디코딩부에 의하여 수행될 수 있고, S2610 내지 S2650은 상기 디코딩 장치의 예측부에 의하여 수행될 수 있고, S1860은 상기 디코딩 장치의 가산부에 의하여 수행될 수 있다. 또한, 비록 도시되지는 않았으나 비트스트림을 통하여 현재 블록의 레지듀얼에 관한 정보를 획득하는 과정은 상기 디코딩 장치의 엔트로피 디코딩부에 의하여 수행될 수 있고, 상기 레지듀얼 정보를 기반으로 상기 현재 블록에 대한 상기 레지듀얼 샘플을 도출하는 과정은 상기 디코딩 장치의 역변환부에 의하여 수행될 수 있다.
디코딩 장치는 현재 크로마 블록에 대한 예측 모드 정보를 포함하는 영상 정보를 획득한다(S2600). 디코딩 장치는 비트스트림을 통하여 상기 현재 크로마 블록에 대한 예측 모드 정보를 포함하는 영상 정보를 수신할 수 있다. 상기 예측 모드 정보는 상기 현재 크로마 블록의 인트라 예측 모드를 나타낼 수 있다. 또한, 상기 현재 크로마 블록에 대한 상기 예측 모드 정보를 나타내는 신텍스 요소(syntax element)는 intra_chroma_pred_mode 일 수 있다. 영상 정보는 상기 예측 모드 정보를 포함할 수 있다.
또한, 상기 예측 모드 정보는 CCLM(cross-component linear model) 예측 모드들 중 상기 현재 크로마 블록의 상기 CCLM 예측 모드를 가리키는 인덱스 정보를 포함할 수 있다. 상기 CCLM 예측 모드들은 레프트탑(lefttop) LM 모드, 탑(top) LM 모드 및 레프트(left) LM 모드를 포함할 수 있다. 상기 레프트탑 LM 모드는 상술한 LM_LT 모드를 나타낼 수 있고, 상기 레프트 LM 모드는 상술한 LM_L 모드를 나타낼 수 있고, 상기 탑 LM 모드는 상술한 LM_T 모드를 나타낼 수 있다. 또한, 상기 예측 모드 정보는 상기 현재 크로마 블록에 CCLM 예측이 적용되는지 여부를 나타내는 플래그를 포함할 수 있다. 예를 들어, 상기 현재 크로마 블록에 CCLM 예측이 적용되는 경우, 상기 인덱스 정보가 가리키는 CCLM 예측 모드가 상기 현재 크로마 블록에 대한 CCLM 예측 모드로 도출될 수 있다.
디코딩 장치는 상기 예측 모드 정보를 기반으로 복수의 CCLM 예측 모드들 중 하나를 상기 현재 크로마 블록의 상기 CCLM 예측 모드로 도출한다(S2610). 디코딩 장치는 상기 예측 모드 정보를 기반으로 상기 현재 크로마 인트라 예측 모드의 인트라 예측 모드를 도출할 수 있다. 예를 들어, 상기 예측 모드 정보는 상기 현재 크로마 블록의 상기 CCLM 예측 모드를 나타낼 수 있다. 예를 들어, 상기 현재 크로마 블록의 상기 CCLM 예측 모드는 상기 인덱스 정보를 기반으로 도출될 수 있다. 상기 복수의 CCLM 예측 모드들 중 상기 인덱스 정보가 가리키는 CCLM 예측 모드가 상기 현재 크로마 블록의 상기 CCLM 예측 모드로 도출될 수 있다.
디코딩 장치는 상기 현재 크로마 블록의 상기 CCLM 예측 모드, 상기 현재 크로마 블록의 사이즈 및 특정값을 기반으로 상기 현재 크로마 블록의 주변 크로마 샘플들의 샘플 개수를 도출한다(S2620).
여기서, 상기 현재 크로마 블록의 상기 CCLM 예측 모드가 상기 레프트 LM 모드인 경우, 상기 주변 크로마 샘플들은 상기 현재 크로마 블록의 좌측 주변 크로마 샘플들만을 포함할 수 있다. 또한, 상기 현재 크로마 블록의 상기 CCLM 예측 모드가 상기 탑 LM 모드인 경우, 상기 주변 크로마 샘플들은 상기 현재 크로마 블록의 상측 주변 크로마 샘플들만을 포함할 수 있다. 또한, 상기 현재 크로마 블록의 상기 CCLM 예측 모드가 상기 레프트탑 LM 모드인 경우, 상기 주변 크로마 샘플들은 상기 현재 크로마 블록의 상기 좌측 주변 크로마 샘플들 및 상기 상측 주변 크로마 샘플들을 포함할 수 있다.
예를 들어, 상기 현재 크로마 블록의 상기 CCLM 예측 모드가 상기 레프트 LM 모드인 경우, 디코딩 장치는 상기 현재 크로마 블록의 높이와 상기 특정값을 기반으로 상기 샘플 개수를 도출할 수 있다.
일 예로, 디코딩 장치는 상기 높이의 2배수와 상기 특정값의 2배수를 비교하여 상기 주변 크로마 샘플들의 상기 샘플 개수를 도출할 수 있다. 예를 들어, 상기 현재 크로마 블록의 상기 높이의 2배수와 상기 특정값의 2배수보다 큰 경우, 상기 샘플 개수는 상기 특정값의 2배수로 도출될 수 있다. 또한, 예를 들어, 상기 현재 크로마 블록의 상기 높이의 2배수가 상기 특정값의 2배수 이하인 경우, 상기 샘플 개수는 상기 높이의 2배수로 도출될 수 있다.
또한, 예를 들어, 상기 현재 크로마 블록의 상기 CCLM 예측 모드가 상기 탑 LM 모드인 경우, 디코딩 장치는 상기 현재 크로마 블록의 폭과 상기 특정값을 기반으로 상기 샘플 개수를 도출할 수 있다.
일 예로, 디코딩 장치는 상기 폭의 2배수와 상기 특정값의 2배수를 비교하여 상기 주변 크로마 샘플들의 상기 샘플 개수를 도출할 수 있다. 예를 들어, 상기 현재 크로마 블록의 상기 폭의 2배수와 상기 특정값의 2배수보다 큰 경우, 상기 샘플 개수는 상기 특정값의 2배수로 도출될 수 있다. 또한, 예를 들어, 상기 현재 크로마 블록의 상기 폭의 2배수가 상기 특정값의 2배수 이하인 경우, 상기 샘플 개수는 상기 폭의 2배수로 도출될 수 있다.
또한, 예를 들어, 상기 현재 크로마 블록의 상기 CCLM 예측 모드가 상기 레프트탑 LM 모드인 경우, 디코딩 장치는 상기 폭 및 상기 높이와 상기 특정값을 비교하여 상기 상측 주변 크로마 샘플들 및 상기 좌측 주변 크로마 샘플들의 상기 샘플 개수를 도출할 수 있다.
예를 들어, 상기 현재 크로마 블록의 상기 폭 및 상기 높이가 상기 특정값보다 큰 경우, 상기 샘플 개수는 상기 특정값으로 도출될 수 있다.
또한, 예를 들어, 상기 현재 크로마 블록의 상기 폭 및 상기 높이가 상기 특정값 이하인 경우, 상기 샘플 개수는 상기 샘플 개수는 상기 폭 및 상기 높이 중 하나의 값으로 도출될 수 있다. 일 예로, 상기 폭 및 상기 높이 중 작은 값으로 도출될 수 있다.
한편, 상기 특정값은 상기 현재 크로마 블록의 CCLM 파라미터들을 도출하기 위하여 도출될 수 있다. 여기서, 상기 특정값은 주변 샘플 개수 상한선 또는 최대 주변 샘플 개수라고 나타낼 수도 있다. 일 예로, 상기 특정값은 2로 도출될 수 있다. 또는, 상기 특정값은 4, 8 또는 16 으로 도출될 수 있다.
또한, 예를 들어, 상기 특정값은 기설정된 값으로 도출될 수 있다. 즉, 상기 특정값은 인코딩 장치 및 디코딩 장치 간에 약속된 값으로 도출될 수 있다. 다시 말해, 상기 특정값은 상기 CCLM 모드가 적용되는 상기 현재 크로마 블록에 대하여 기설정된 값으로 도출될 수 있다.
또는, 예를 들어, 디코딩 장치는 비트스트림을 통하여 예측 관련 정보를 획득할 수 있다. 다시 말해, 상기 영상 정보는 상기 특정값을 나타내는 정보를 포함할 수 있고, 상기 특정값은 상기 특정값을 나타내는 정보를 기반으로 도출될 수 있다. 상기 특정값을 나타내는 정보는 CU(coding unit) 단위로 시그널링될 수 있다. 또는, 상기 특정값을 나타내는 정보는 슬라이스 헤더(slice header), PPS(Picture Parameter Set), 또는 SPS(Sequence Parameter Set) 단위로 시그널링될 수 있다. 즉, 상기 특정값을 나타내는 정보는 슬라이스 헤더, PPS, 또는 SPS 로 시그널링될 수 있다.
또는, 예를 들어, 디코딩 장치는 비트스트림을 통하여 상기 특정값을 기반으로 주변 참조 샘플의 개수를 도출하는지 여부를 나타내는 플래그 정보를 획득할 수 있다. 다시 말해, 상기 영상 정보는 상기 특정값을 기반으로 상기 샘플 개수를 도출하는지 여부를 나타내는 플래그 정보를 포함할 수 있고, 상기 플래그 정보의 값이 1인 경우, 상기 영상 정보는 상기 특정값을 나타내는 정보를 포함할 수 있고, 상기 특정값은 상기 특정값을 나타내는 정보를 기반으로 도출될 수 있다. 한편, 상기 플래그 정보의 값이 0인 경우, 상기 플래그 정보는 상기 특정값을 기반으로 주변 참조 샘플의 개수를 도출하지 않음을 나타낼 수 있다. 상기 플래그 정보 및/또는 상기 특정값을 나타내는 정보는 CU(coding unit) 단위로 시그널링될 수 있다. 또는, 상기 플래그 정보 및/또는 상기 특정값을 나타내는 정보는 슬라이스 헤더(slice header), PPS(Picture Parameter Set), 또는 SPS(Sequence Parameter Set) 단위로 시그널링될 수 있다. 즉, 상기 플래그 정보 및/또는 상기 특정값을 나타내는 정보는 슬라이스 헤더, PPS, 또는 SPS 로 시그널링될 수 있다.
또는, 예를 들어, 상기 특정값은 상기 현재 크로마 블록의 사이즈를 기반으로 도출될 수 있다.
일 예로, 상기 현재 크로마 블록의 상기 폭 및 상기 높이 중 작은 값이 2 이하인 경우, 상기 특정값은 1로 도출될 수 있고, 상기 현재 크로마 블록의 상기 폭 및 상기 높이 중 작은 값이 4인 경우, 상기 특정값은 2로 도출될 수 있고, 상기 현재 크로마 블록의 상기 폭 및 상기 높이 중 작은 값이 4보다 큰 경우, 상기 특정값은 4로 도출될 수 있다.
또한, 일 예로, 상기 현재 크로마 블록의 상기 폭 및 상기 높이 중 작은 값이 2 이하인 경우, 상기 특정값은 1로 도출될 수 있고, 상기 현재 크로마 블록의 상기 폭 및 상기 높이 중 작은 값이 4인 경우, 상기 특정값은 2로 도출될 수 있고, 상기 현재 크로마 블록의 상기 폭 및 상기 높이 중 작은 값이 8인 경우, 상기 특정값은 4로 도출될 수 있고, 상기 현재 크로마 블록의 상기 폭 및 상기 높이 중 작은 값이 8보다 큰 경우, 상기 특정값은 8로 도출될 수 있다.
또한, 일 예로, 상기 현재 크로마 블록의 상기 폭 및 상기 높이 중 작은 값이 2 이하인 경우, 상기 특정값은 1로 도출될 수 있고, 상기 현재 크로마 블록의 상기 폭 및 상기 높이 중 작은 값이 2보다 큰 경우, 상기 특정값은 2로 도출될 수 있다.
또한, 일 예로, 상기 현재 크로마 블록의 상기 폭 및 상기 높이 중 작은 값이 2 이하인 경우, 상기 특정값은 1로 도출될 수 있고, 상기 현재 크로마 블록의 상기 폭 및 상기 높이 중 작은 값이 2보다 큰 경우, 상기 특정값은 4로 도출될 수 있다.
또한, 일 예로, 상기 현재 크로마 블록의 사이즈가 2x2 인 경우, 상기 특정값은 1로 도출될 수 있고, 상기 현재 크로마 블록의 상기 폭 및 상기 높이 중 작은 값이 2인 경우, 상기 특정값은 2로 도출될 수 있고, 상기 현재 크로마 블록의 상기 폭 및 상기 높이 중 작은 값이 2보다 큰 경우, 상기 특정값은 4로 도출될 수 있다.
또한, 일 예로, 상기 현재 크로마 블록의 사이즈가 2x2 인 경우, 상기 특정값은 1로 도출될 수 있고, 상기 현재 크로마 블록의 상기 폭 및 상기 높이 중 작은 값이 2인 경우, 상기 특정값은 2로 도출될 수 있고, 상기 현재 크로마 블록의 상기 폭 및 상기 높이 중 작은 값이 4인 경우, 상기 특정값은 2로 도출될 수 있고, 상기 현재 크로마 블록의 상기 폭 및 상기 높이 중 작은 값이 4보다 큰 경우, 상기 특정값은 4로 도출될 수 있다.
또한, 일 예로, 상기 현재 크로마 블록의 사이즈가 2x2 인 경우, 상기 특정값은 1로 도출될 수 있고, 상기 현재 크로마 블록의 상기 폭 및 상기 높이 중 작은 값이 2인 경우, 상기 특정값은 2로 도출될 수 있고, 상기 현재 크로마 블록의 상기 폭 및 상기 높이 중 작은 값이 4인 경우, 상기 특정값은 4로 도출될 수 있고, 상기 현재 크로마 블록의 상기 폭 및 상기 높이 중 작은 값이 4보다 큰 경우, 상기 특정값은 8로 도출될 수 있다.
또한, 일 예로, 상기 현재 크로마 블록의 상기 폭 및 상기 높이 중 작은 값이 2인 경우, 상기 특정값은 1로 도출될 수 있고, 상기 현재 크로마 블록의 상기 폭 및 상기 높이 중 작은 값이 4인 경우, 상기 특정값은 2로 도출될 수 있고, 상기 현재 크로마 블록의 상기 폭 및 상기 높이 중 작은 값이 4보다 큰 경우, 상기 특정값은 4로 도출될 수 있다.
또한, 일 예로, 상기 현재 크로마 블록의 상기 폭 및 상기 높이 중 작은 값이 2인 경우, 상기 특정값은 1로 도출될 수 있고, 상기 현재 크로마 블록의 상기 폭 및 상기 높이 중 작은 값이 4인 경우, 상기 특정값은 2로 도출될 수 있다.
또한, 일 예로, 상기 현재 크로마 블록의 상기 폭 및 상기 높이 중 작은 값이 4보다 큰 경우, 상기 특정값은 4로 도출될 수 있다.
또한, 일 예로, 상기 현재 크로마 블록의 상기 폭 및 상기 높이 중 작은 값이 2보다 큰 경우, 상기 특정값은 2로 도출될 수 있다.
또한, 일 예로, 상기 특정값은 상기 현재 블록의 폭 및 높이 중 작은 값이 특정 임계값보다 큰지 여부를 기반으로 도출될 수 있다. 예를 들어, 상기 현재 블록의 폭 및 높이 중 작은 값이 특정 임계값보다 큰 경우, 상기 특정값은 4로 도출될 수 있고, 상기 현재 블록의 폭 및 높이 중 작은 값이 특정 임계값 이하인 경우, 상기 특정값은 2로 도출될 수 있다. 상기 특정 임계값은 기설정된 값으로 도출될 수 있다. 즉, 상기 특정 임계값은 인코딩 장치 및 디코딩 장치 간에 약속된 값으로 도출될 수 있다. 또는, 예를 들어, 상기 영상 정보는 상기 특정 임계값을 나타내는 정보를 포함할 수 있다. 이 경우, 상기 특정 임계값은 상기 특정 임계값을 나타내는 정보를 기반으로 도출될 수 있다. 예를 들어, 상기 도출된 특정 임계값은 4 또는 8일 수 있다.
디코딩 장치는 상기 샘플 개수의 상기 주변 크로마 샘플들을 도출한다(S2630). 디코딩 장치는 상기 샘플 개수의 상기 주변 크로마 샘플들을 도출할 수 있다.
예를 들어, 상기 현재 크로마 블록의 상기 CCLM 예측 모드가 상기 레프트탑 LM 모드인 경우, 디코딩 장치는 상기 샘플 개수의 좌측 주변 크로마 샘플들 및 상기 샘플 개수의 상측 주변 크로마 샘플들을 도출할 수 있다. 구체적으로, 상기 현재 크로마 블록의 사이즈가 NxM 인 경우, 디코딩 장치는 N개의 상측 주변 크로마 샘플들에서 상기 샘플 개수의 상측 주변 크로마 샘플들을 도출할 수 있고, N개의 좌측 주변 크로마 샘플들에서 상기 샘플 개수의 좌측 주변 크로마 샘플들을 도출할 수 있다. 여기서, N 은 M 보다 작거나 같을 수 있다.
또한, 예를 들어, 상기 현재 크로마 블록의 상기 CCLM 예측 모드가 상기 탑 LM 모드인 경우, 디코딩 장치는 상기 샘플 개수의 상측 주변 크로마 샘플들을 도출할 수 있다. 구체적으로, 상기 현재 크로마 블록의 사이즈가 NxM 인 경우, 디코딩 장치는 2N개의 상측 주변 크로마 샘플들에서 상기 샘플 개수의 상측 주변 크로마 샘플들을 도출할 수 있다. 여기서, N 은 M 보다 작거나 같을 수 있다.
또한, 예를 들어, 상기 현재 크로마 블록의 상기 CCLM 예측 모드가 상기 레프트 LM 모드인 경우, 디코딩 장치는 상기 샘플 개수의 좌측 주변 크로마 샘플들을 도출할 수 있다. 구체적으로, 상기 현재 크로마 블록의 사이즈가 MxN 인 경우, 디코딩 장치는 2N개의 좌측 주변 크로마 샘플들에서 상기 샘플 개수의 좌측 주변 크로마 샘플들을 도출할 수 있다. 여기서, N 은 M 보다 작거나 같을 수 있다.
디코딩 장치는 현재 루마 블록의 다운 샘플링된 주변 루마 샘플들 및 다운 샘플링된 루마 샘플들을 도출한다(S2640). 여기서, 상기 주변 루마 샘플들은 상기 주변 크로마 샘플들과 대응할 수 있다. 예를 들어, 상기 다운 샘플링된 주변 루마 샘플들은 상기 상측 주변 크로마 샘플들과 대응하는 상기 현재 루마 블록의 다운 샘플링된 상측 주변 루마 샘플들 및 상기 좌측 주변 크로마 샘플들과 대응하는 상기 현재 루마 블록의 다운 샘플링된 좌측 주변 루마 샘플들을 포함할 수 있다.
즉, 예를 들어, 상기 주변 루마 샘플들은 상기 상측 주변 크로마 샘플들과 대응하는 상기 샘플 개수의 다운 샘플링된 상측 주변 루마 샘플들 및 상기 좌측 주변 크로마 샘플들과 대응하는 상기 샘플 개수의 다운 샘플링된 좌측 주변 루마 샘플들을 포함할 수 있다.
또는, 예를 들어, 상기 다운 샘플링된 주변 루마 샘플들은 상기 상측 주변 크로마 샘플들과 대응하는 상기 현재 루마 블록의 다운 샘플링된 상측 주변 루마 샘플들을 포함할 수 있다. 즉, 예를 들어, 상기 주변 루마 샘플들은 상기 상측 주변 크로마 샘플들과 대응하는 상기 샘플 개수의 다운 샘플링된 상측 주변 루마 샘플들을 포함할 수 있다.
또는, 예를 들어, 상기 다운 샘플링된 주변 루마 샘플들은 상기 좌측 주변 크로마 샘플들과 대응하는 상기 현재 루마 블록의 다운 샘플링된 좌측 주변 루마 샘플들을 포함할 수 있다. 즉, 예를 들어, 상기 주변 루마 샘플들은 상기 좌측 주변 크로마 샘플들과 대응하는 상기 샘플 개수의 다운 샘플링된 좌측 주변 루마 샘플들을 포함할 수 있다.
디코딩 장치는 상기 주변 크로마 샘플들 및 상기 다운 샘플링된 주변 루마 샘플들을 기반으로 CCLM 파라미터들을 도출한다(S2650). 디코딩 장치는 상기 주변 크로마 샘플들 및 상기 다운 샘플링된 주변 루마 샘플들을 기반으로 CCLM 파라미터들을 도출할 수 있다. 예를 들어, 상기 CCLM 파라미터들은 상술한 수학식 3을 기반으로 도출될 수 있다. 또는, 예를 들어, 상기 CCLM 파라미터들은 상술한 수학식 4를 기반으로 도출될 수 있다.
디코딩 장치는 상기 CCLM 파라미터들 및 상기 다운 샘플링된 루마 샘플들을 기반으로 상기 현재 크로마 블록에 대한 예측 샘플들을 도출한다(S2660). 디코딩 장치는 상기 CCLM 파라미터들 및 상기 다운 샘플링된 루마 샘플들을 기반으로 상기 현재 크로마 블록에 대한 예측 샘플들을 도출할 수 있다. 디코딩 장치는 상기 CCLM 파라미터들로 도출되는 CCLM을 상기 다운 샘플링된 루마 샘플들에 적용하여 상기 현재 크로마 블록에 대한 예측 샘플들을 생성할 수 있다. 즉, 디코딩 장치는 상기 CCLM 파라미터들을 기반으로 CCLM 예측을 수행하여 상기 현재 크로마 블록에 대한 예측 샘플들을 생성할 수 있다. 예를 들어, 상기 예측 샘플들은 상술한 수학식 1을 기반으로 도출될 수 있다.
디코딩 장치는 상기 예측 샘플들을 기반으로 상기 현재 크로마 블록에 대한 복원 샘플들을 생성한다(S2670). 디코딩 장치는 상기 예측 샘플들을 기반으로 복원 샘플들을 생성할 수 있다. 예를 들어, 디코딩 장치는 상기 비트스트림으로부터 상기 현재 크로마 블록에 대한 레지듀얼에 관한 정보를 수신할 수 있다. 상기 레지듀얼에 관한 정보는 (크로마) 레지듀얼 샘플에 관한 변환 계수를 포함할 수 있다. 디코딩 장치는 상기 레지듀얼 정보를 기반으로 상기 현재 크로마 블록에 대한 상기 레지듀얼 샘플(또는 레지듀얼 샘플 어레이)을 도출할 수 있다. 이 경우 디코딩 장치는 상기 예측 샘플들 및 상기 레지듀얼 샘플들을 기반으로 상기 복원 샘플들을 생성할 수 있다. 디코딩 장치는 상기 복원 샘플을 기반으로 복원 블록 또는 복원 픽처를 도출할 수 있다. 이후 디코딩 장치는 필요에 따라 주관적/객관적 화질을 향상시키기 위하여 디블록킹 필터링 및/또는 SAO 절차와 같은 인루프 필터링 절차를 상기 복원 픽처에 적용할 수 있음은 상술한 바와 같다.
도 27은 본 문서에 따른 영상 디코딩 방법을 수행하는 디코딩 장치를 개략적으로 나타낸다. 도 26에서 개시된 방법은 도 27에서 개시된 디코딩 장치에 의하여 수행될 수 있다. 구체적으로 예를 들어, 도 27의 상기 디코딩 장치의 엔트로피 디코딩부는 도 26의 S2600을 수행할 수 있고, 도 27의 상기 디코딩 장치의 예측부는 도 26의 S2610 내지 S2660을 수행할 수 있고, 도 27의 상기 디코딩 장치의 가산부는 도 26의 S2670을 수행할 수 있다. 또한, 비록 도시되지는 않았으나 비트스트림을 통하여 현재 블록의 레지듀얼에 관한 정보를 포함하는 영상 정보를 획득하는 과정은 도 27의 상기 디코딩 장치의 엔트로피 디코딩부에 의하여 수행될 수 있고, 상기 레지듀얼에 관한 정보를 기반으로 상기 현재 블록에 대한 상기 레지듀얼 샘플들을 도출하는 과정은 도 27의 상기 디코딩 장치의 역변환부에 의하여 수행될 수 있다.
상술한 본 문서에 따르면 CCLM을 기반으로 인트라 예측을 수행하여 영상 코딩 효율을 높일 수 있다.
또한, 본 문서에 따르면 복수의 LM 모드들, 즉, MDLM(multi-directional Linear Model)을 포함하는 CCLM을 기반으로 하는 인트라 예측의 효율을 높일 수 있다.
또한, 본 문서에 따르면 사이즈가 큰 크로마 블록에서 수행되는 MDLM(multi-directional Linear Model)을 위한 선형 모델 파라미터를 도출하기 위하여 선택되는 주변 샘플의 개수를 특정 개수로 제한함으로써 인트라 예측의 복잡도를 줄일 수 있다.
상술한 실시예에서, 방법들은 일련의 단계 또는 블록으로써 순서도를 기초로 설명되고 있지만, 본 문서는 단계들의 순서에 한정되는 것은 아니며, 어떤 단계는 상술한 바와 다른 단계와 다른 순서로 또는 동시에 발생할 수 있다. 또한, 당업자라면 순서도에 나타내어진 단계들이 배타적이지 않고, 다른 단계가 포함되거나 순서도의 하나 또는 그 이상의 단계가 본 문서의 범위에 영향을 미치지 않고 삭제될 수 있음을 이해할 수 있을 것이다.
본 문서에서 설명한 실시예들은 프로세서, 마이크로 프로세서, 컨트롤러 또는 칩 상에서 구현되어 수행될 수 있다. 예를 들어, 각 도면에서 도시한 기능 유닛들은 컴퓨터, 프로세서, 마이크로 프로세서, 컨트롤러 또는 칩 상에서 구현되어 수행될 수 있다. 이 경우 구현을 위한 정보(ex. information on instructions) 또는 알고리즘이 디지털 저장 매체에 저장될 수 있다.
또한, 본 문서의 실시예들이 적용되는 디코딩 장치 및 인코딩 장치는 멀티미디어 방송 송수신 장치, 모바일 통신 단말, 홈 시네마 비디오 장치, 디지털 시네마 비디오 장치, 감시용 카메라, 비디오 대화 장치, 비디오 통신과 같은 실시간 통신 장치, 모바일 스트리밍 장치, 저장 매체, 캠코더, 주문형 비디오(VoD) 서비스 제공 장치, OTT 비디오(Over the top video) 장치, 인터넷 스트리밍 서비스 제공 장치, 3차원(3D) 비디오 장치, 화상 전화 비디오 장치, 운송 수단 단말 (ex. 차량 단말, 비행기 단말, 선박 단말 등) 및 의료용 비디오 장치 등에 포함될 수 있으며, 비디오 신호 또는 데이터 신호를 처리하기 위해 사용될 수 있다. 예를 들어, OTT 비디오(Over the top video) 장치로는 게임 콘솔, 블루레이 플레이어, 인터넷 접속 TV, 홈시어터 시스템, 스마트폰, 태블릿 PC, DVR(Digital Video Recoder) 등을 포함할 수 있다.
또한, 본 문서의 실시예들이 적용되는 처리 방법은 컴퓨터로 실행되는 프로그램의 형태로 생산될 수 있으며, 컴퓨터가 판독할 수 있는 기록 매체에 저장될 수 있다. 본 문서에 따른 데이터 구조를 가지는 멀티미디어 데이터도 또한 컴퓨터가 판독할 수 있는 기록 매체에 저장될 수 있다. 상기 컴퓨터가 판독할 수 있는 기록 매체는 컴퓨터로 읽을 수 있는 데이터가 저장되는 모든 종류의 저장 장치 및 분산 저장 장치를 포함한다. 상기 컴퓨터가 판독할 수 있는 기록 매체는, 예를 들어, 블루레이 디스크(BD), 범용 직렬 버스(USB), ROM, PROM, EPROM, EEPROM, RAM, CD-ROM, 자기 테이프, 플로피 디스크 및 광학적 데이터 저장 장치를 포함할 수 있다. 또한, 상기 컴퓨터가 판독할 수 있는 기록 매체는 반송파(예를 들어, 인터넷을 통한 전송)의 형태로 구현된 미디어를 포함한다. 또한, 인코딩 방법으로 생성된 비트스트림이 컴퓨터가 판독할 수 있는 기록 매체에 저장되거나 유무선 통신 네트워크를 통해 전송될 수 있다.
또한, 본 문서의 실시예는 프로그램 코드에 의한 컴퓨터 프로그램 제품으로 구현될 수 있고, 상기 프로그램 코드는 본 문서의 실시예에 의해 컴퓨터에서 수행될 수 있다. 상기 프로그램 코드는 컴퓨터에 의해 판독가능한 캐리어 상에 저장될 수 있다.
도 28은 본 문서의 실시예들이 적용되는 컨텐츠 스트리밍 시스템 구조도를 예시적으로 나타낸다.
본 문서의 실시예들이 적용되는 컨텐츠 스트리밍 시스템은 크게 인코딩 서버, 스트리밍 서버, 웹 서버, 미디어 저장소, 사용자 장치 및 멀티미디어 입력 장치를 포함할 수 있다.
상기 인코딩 서버는 스마트폰, 카메라, 캠코더 등과 같은 멀티미디어 입력 장치들로부터 입력된 컨텐츠를 디지털 데이터로 압축하여 비트스트림을 생성하고 이를 상기 스트리밍 서버로 전송하는 역할을 한다. 다른 예로, 스마트폰, 카메라, 캠코더 등과 같은 멀티미디어 입력 장치들이 비트스트림을 직접 생성하는 경우, 상기 인코딩 서버는 생략될 수 있다.
상기 비트스트림은 본 문서의 실시예들이 적용되는 인코딩 방법 또는 비트스트림 생성 방법에 의해 생성될 수 있고, 상기 스트리밍 서버는 상기 비트스트림을 전송 또는 수신하는 과정에서 일시적으로 상기 비트스트림을 저장할 수 있다.
상기 스트리밍 서버는 웹 서버를 통한 사용자 요청에 기초하여 멀티미디어 데이터를 사용자 장치에 전송하고, 상기 웹 서버는 사용자에게 어떠한 서비스가 있는지를 알려주는 매개체 역할을 한다. 사용자가 상기 웹 서버에 원하는 서비스를 요청하면, 상기 웹 서버는 이를 스트리밍 서버에 전달하고, 상기 스트리밍 서버는 사용자에게 멀티미디어 데이터를 전송한다. 이때, 상기 컨텐츠 스트리밍 시스템은 별도의 제어 서버를 포함할 수 있고, 이 경우 상기 제어 서버는 상기 컨텐츠 스트리밍 시스템 내 각 장치 간 명령/응답을 제어하는 역할을 한다.
상기 스트리밍 서버는 미디어 저장소 및/또는 인코딩 서버로부터 컨텐츠를 수신할 수 있다. 예를 들어, 상기 인코딩 서버로부터 컨텐츠를 수신하게 되는 경우, 상기 컨텐츠를 실시간으로 수신할 수 있다. 이 경우, 원활한 스트리밍 서비스를 제공하기 위하여 상기 스트리밍 서버는 상기 비트스트림을 일정 시간동안 저장할 수 있다.
상기 사용자 장치의 예로는, 휴대폰, 스마트 폰(smart phone), 노트북 컴퓨터(laptop computer), 디지털방송용 단말기, PDA(personal digital assistants), PMP(portable multimedia player), 네비게이션, 슬레이트 PC(slate PC), 태블릿 PC(tablet PC), 울트라북(ultrabook), 웨어러블 디바이스(wearable device, 예를 들어, 워치형 단말기 (smartwatch), 글래스형 단말기 (smart glass), HMD(head mounted display)), 디지털 TV, 데스크탑 컴퓨터, 디지털 사이니지 등이 있을 수 있다. 상기 컨텐츠 스트리밍 시스템 내 각 서버들은 분산 서버로 운영될 수 있으며, 이 경우 각 서버에서 수신하는 데이터는 분산 처리될 수 있다.

Claims (8)

  1. 디코딩 장치에 의하여 수행되는 영상 디코딩 방법에 있어서,
    현재 크로마 블록에 대한 예측 모드 정보를 포함하는 영상 정보를 획득하는 단계;
    상기 예측 모드 정보를 기반으로 레프트(left) CCLM(cross-component linear model) 예측 모드를 상기 현재 크로마 블록의 인트라 예측 모드로 도출하는 단계;
    상기 현재 크로마 블록의 높이 및 특정값을 기반으로 상기 현재 크로마 블록의 좌측 주변 크로마 샘플들의 샘플 개수를 도출하는 단계;
    상기 샘플 개수의 상기 좌측 주변 크로마 샘플들을 도출하는 단계;
    현재 루마 블록의 상기 좌측 주변 크로마 샘플들과 관련된 다운 샘플링된 좌측 주변 루마 샘플들 및 다운 샘플링된 루마 샘플들을 도출하는 단계;
    상기 좌측 주변 크로마 샘플들, 및 상기 다운 샘플링된 좌측 주변 루마 샘플들을 기반으로 CCLM 파라미터들을 도출하는 단계;
    상기 CCLM 파라미터들 및 상기 다운 샘플링된 루마 샘플들을 기반으로 상기 현재 크로마 블록에 대한 예측 샘플들을 도출하는 단계; 및
    상기 예측 샘플들을 기반으로 상기 현재 크로마 블록에 대한 복원 샘플들을 생성하는 단계를 포함하되,
    상기 특정값은 2로 도출되고,
    상기 현재 크로마 블록의 상기 높이는 N이고,
    2N이 상기 특정값의 2배 이하임을 기반으로, 상기 좌측 주변 크로마 샘플들의 상기 샘플 개수는 2N으로 도출되고,
    상기 2N이 상기 특정값의 2배보다 큼을 기반으로, 상기 좌측 주변 크로마 샘플들의 상기 샘플 개수는 4로 도출되는 것을 특징으로 하는 영상 디코딩 방법.
  2. ◈청구항 2은(는) 설정등록료 납부시 포기되었습니다.◈
    제1항에 있어서,
    상기 예측 모드 정보는 CCLM 예측 모드들 중 하나를 가리키는 인덱스 정보를 포함하고,
    상기 CCLM 예측 모드들은 레프트탑(lefttop) CCLM 예측 모드, 탑(top) CCLM 예측 모드 및 상기 레프트 CCLM 예측 모드를 포함하는 것을 특징으로 하는 영상 디코딩 방법.
  3. ◈청구항 3은(는) 설정등록료 납부시 포기되었습니다.◈
    제1항에 있어서,
    상기 특정값은 상기 레프트 CCLM 모드가 적용되는 상기 현재 크로마 블록에 대하여 기설정된(predetermined) 값으로 도출되는 것을 특징으로 하는 영상 디코딩 방법.
  4. 인코딩 장치에 의하여 수행되는 영상 인코딩 방법에 있어서,
    레프트(left) CCLM(cross-component linear model) 예측 모드를 현재 크로마 블록의 인트라 예측 모드로 도출하는 단계;
    상기 현재 크로마 블록의 높이 및 특정값을 기반으로 상기 현재 크로마 블록의 좌측 주변 크로마 샘플들의 샘플 개수를 도출하는 단계;
    상기 샘플 개수의 상기 좌측 주변 크로마 샘플들을 도출하는 단계;
    현재 루마 블록의 상기 좌측 주변 크로마 샘플들과 관련된 다운 샘플링된 좌측 주변 루마 샘플들 및 다운 샘플링된 루마 샘플들을 도출하는 단계;
    상기 좌측 주변 크로마 샘플들, 및 상기 다운 샘플링된 좌측 주변 루마 샘플들을 기반으로 CCLM 파라미터들을 도출하는 단계;
    상기 CCLM 파라미터들 및 상기 다운 샘플링된 루마 샘플들을 기반으로 상기 현재 크로마 블록에 대한 예측 샘플들을 도출하는 단계; 및
    상기 현재 크로마 블록에 대한 예측 모드 정보를 포함하는 영상 정보를 인코딩하는 단계를 포함하되,
    상기 특정값은 2로 도출되고,
    상기 현재 크로마 블록의 상기 높이는 N이고,
    2N이 상기 특정값의 2배 이하임을 기반으로, 상기 좌측 주변 크로마 샘플들의 상기 샘플 개수는 2N으로 도출되고,
    상기 2N이 상기 특정값의 2배보다 큼을 기반으로, 상기 좌측 주변 크로마 샘플들의 상기 샘플 개수는 4로 도출되는 것을 특징으로 하는 영상 인코딩 방법.
  5. ◈청구항 5은(는) 설정등록료 납부시 포기되었습니다.◈
    제4항에 있어서,
    상기 예측 모드 정보는 CCLM 예측 모드들 중 하나를 가리키는 인덱스 정보를 포함하고,
    상기 CCLM 예측 모드들은 레프트탑(lefttop) CCLM 예측 모드, 탑(top) CCLM 예측 모드 및 상기 레프트 CCLM 예측 모드를 포함하는 것을 특징으로 하는 영상 인코딩 방법.
  6. ◈청구항 6은(는) 설정등록료 납부시 포기되었습니다.◈
    제4항에 있어서,
    상기 특정값은 상기 레프트 CCLM 모드가 적용되는 상기 현재 크로마 블록에 대하여 기설정된(predetermined) 값으로 도출되는 것을 특징으로 하는 영상 인코딩 방법.
  7. 컴퓨터로 판독 가능한 디지털 저장 매체로서, 특정 방법에 의하여 생성된 비트스트림을 저장하고, 상기 특정 방법은
    레프트(left) CCLM(cross-component linear model) 예측 모드를 현재 크로마 블록의 인트라 예측 모드로 도출하는 단계;
    상기 현재 크로마 블록의 높이 및 특정값을 기반으로 상기 현재 크로마 블록의 좌측 주변 크로마 샘플들의 샘플 개수를 도출하는 단계;
    상기 샘플 개수의 상기 좌측 주변 크로마 샘플들을 도출하는 단계;
    현재 루마 블록의 상기 좌측 주변 크로마 샘플들과 관련된 다운 샘플링된 좌측 주변 루마 샘플들 및 다운 샘플링된 루마 샘플들을 도출하는 단계;
    상기 좌측 주변 크로마 샘플들, 및 상기 다운 샘플링된 좌측 주변 루마 샘플들을 기반으로 CCLM 파라미터들을 도출하는 단계;
    상기 CCLM 파라미터들 및 상기 다운 샘플링된 루마 샘플들을 기반으로 상기 현재 크로마 블록에 대한 예측 샘플들을 도출하는 단계; 및
    상기 현재 크로마 블록에 대한 예측 모드 정보를 포함하는 영상 정보를 인코딩하는 단계; 및
    상기 영상 정보를 포함하는 상기 비트스트림을 생성하는 단계를 포함하되,
    상기 특정값은 2로 도출되고,
    상기 현재 크로마 블록의 상기 높이는 N이고,
    2N이 상기 특정값의 2배 이하임을 기반으로, 상기 좌측 주변 크로마 샘플들의 상기 샘플 개수는 2N으로 도출되고,
    상기 2N이 상기 특정값의 2배보다 큼을 기반으로, 상기 좌측 주변 크로마 샘플들의 상기 샘플 개수는 4로 도출되는 것을 특징으로 하는 디지털 저장 매체.
  8. 영상 정보에 대한 데이터의 전송 방법에 있어서,
    현재 크로마 블록에 대한 예측 모드 정보를 포함하는 영상 정보의 비트스트림을 획득하는 단계; 및
    상기 예측 모드 정보를 포함하는 상기 영상 정보의 상기 비트스트림을 포함하는 상기 데이터를 전송하는 단계를 포함하고,
    상기 예측 모드 정보는 레프트(left) CCLM(cross-component linear model) 예측 모드를 상기 현재 크로마 블록의 인트라 예측 모드로 도출하고, 상기 현재 크로마 블록의 높이 및 특정값을 기반으로 상기 현재 크로마 블록의 좌측 주변 크로마 샘플들의 샘플 개수를 도출하고, 상기 샘플 개수의 상기 좌측 주변 크로마 샘플들을 도출하고, 현재 루마 블록의 상기 좌측 주변 크로마 샘플들과 관련된 다운 샘플링된 좌측 주변 루마 샘플들 및 다운 샘플링된 루마 샘플들을 도출하고, 상기 좌측 주변 크로마 샘플들, 및 상기 다운 샘플링된 좌측 주변 루마 샘플들을 기반으로 CCLM 파라미터들을 도출하고, 상기 CCLM 파라미터들 및 상기 다운 샘플링된 루마 샘플들을 기반으로 상기 현재 크로마 블록에 대한 예측 샘플들을 도출하고, 상기 현재 크로마 블록에 대한 상기 예측 모드 정보를 포함하는 상기 영상 정보를 인코딩하여 생성되고,
    상기 특정값은 2로 도출되고,
    상기 현재 크로마 블록의 상기 높이는 N이고,
    2N이 상기 특정값의 2배 이하임을 기반으로, 상기 좌측 주변 크로마 샘플들의 상기 샘플 개수는 2N으로 도출되고,
    상기 2N이 상기 특정값의 2배보다 큼을 기반으로, 상기 좌측 주변 크로마 샘플들의 상기 샘플 개수는 4로 도출되는 것을 특징으로 하는, 전송 방법.
KR1020227021927A 2018-11-23 2019-11-11 영상 코딩 시스템에서 cclm 예측 기반 영상 디코딩 방법 및 그 장치 KR102524061B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020237013084A KR102637084B1 (ko) 2018-11-23 2019-11-11 영상 코딩 시스템에서 cclm 예측 기반 영상 디코딩 방법 및 그 장치

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201862770835P 2018-11-23 2018-11-23
US62/770,835 2018-11-23
KR1020207015860A KR102415322B1 (ko) 2018-11-23 2019-11-11 영상 코딩 시스템에서 cclm 예측 기반 영상 디코딩 방법 및 그 장치
PCT/KR2019/015253 WO2020105925A1 (ko) 2018-11-23 2019-11-11 영상 코딩 시스템에서 cclm 예측 기반 영상 디코딩 방법 및 그 장치

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020207015860A Division KR102415322B1 (ko) 2018-11-23 2019-11-11 영상 코딩 시스템에서 cclm 예측 기반 영상 디코딩 방법 및 그 장치

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020237013084A Division KR102637084B1 (ko) 2018-11-23 2019-11-11 영상 코딩 시스템에서 cclm 예측 기반 영상 디코딩 방법 및 그 장치

Publications (2)

Publication Number Publication Date
KR20220098266A KR20220098266A (ko) 2022-07-11
KR102524061B1 true KR102524061B1 (ko) 2023-04-21

Family

ID=70773851

Family Applications (3)

Application Number Title Priority Date Filing Date
KR1020237013084A KR102637084B1 (ko) 2018-11-23 2019-11-11 영상 코딩 시스템에서 cclm 예측 기반 영상 디코딩 방법 및 그 장치
KR1020207015860A KR102415322B1 (ko) 2018-11-23 2019-11-11 영상 코딩 시스템에서 cclm 예측 기반 영상 디코딩 방법 및 그 장치
KR1020227021927A KR102524061B1 (ko) 2018-11-23 2019-11-11 영상 코딩 시스템에서 cclm 예측 기반 영상 디코딩 방법 및 그 장치

Family Applications Before (2)

Application Number Title Priority Date Filing Date
KR1020237013084A KR102637084B1 (ko) 2018-11-23 2019-11-11 영상 코딩 시스템에서 cclm 예측 기반 영상 디코딩 방법 및 그 장치
KR1020207015860A KR102415322B1 (ko) 2018-11-23 2019-11-11 영상 코딩 시스템에서 cclm 예측 기반 영상 디코딩 방법 및 그 장치

Country Status (14)

Country Link
US (4) US11012699B2 (ko)
EP (2) EP3709645B1 (ko)
JP (3) JP7018139B2 (ko)
KR (3) KR102637084B1 (ko)
CN (3) CN111587574B (ko)
AU (2) AU2019383886B2 (ko)
BR (3) BR122021014717B1 (ko)
CA (2) CA3085391C (ko)
ES (1) ES2934966T3 (ko)
HU (1) HUE060910T2 (ko)
MX (1) MX2020005865A (ko)
PL (1) PL3709645T3 (ko)
TW (2) TWI732355B (ko)
WO (1) WO2020105925A1 (ko)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11178396B2 (en) * 2018-11-14 2021-11-16 Tencent America LLC Constrained intra prediction and unified most probable mode list generation
AU2018454766A1 (en) * 2018-12-25 2021-04-08 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Decoding prediction method and apparatus, and computer storage medium
CN116614633A (zh) * 2019-01-02 2023-08-18 Oppo广东移动通信有限公司 解码预测方法、装置及计算机存储介质
BR112021025916A2 (pt) * 2019-06-28 2022-02-15 Bytedance Inc Método de processamento de dados de vídeo, aparelho para processar dados de vídeo, meio de armazenamento e meio de gravação não transitórios legíveis por computador
US20220092827A1 (en) * 2020-09-23 2022-03-24 Electronics And Telecommunications Research Institute Method, apparatus, system and computer-readable recording medium for feature information
WO2022191553A1 (ko) * 2021-03-08 2022-09-15 현대자동차주식회사 행렬 기반 크로스 컴포넌트 예측을 이용하는 비디오 코딩방법 및 장치
WO2024080828A1 (ko) * 2022-10-13 2024-04-18 한국전자통신연구원 영상 부호화/복호화를 위한 방법, 장치 및 기록 매체
CN115988206B (zh) * 2023-03-21 2024-03-26 深圳传音控股股份有限公司 图像处理方法、处理设备及存储介质

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101138392B1 (ko) 2004-12-30 2012-04-26 삼성전자주식회사 색차 성분의 상관관계를 이용한 컬러 영상의 부호화,복호화 방법 및 그 장치
CN103141103B (zh) * 2010-04-09 2016-02-03 Lg电子株式会社 处理视频数据的方法和装置
JP2013034163A (ja) * 2011-06-03 2013-02-14 Sony Corp 画像処理装置及び画像処理方法
US9693070B2 (en) * 2011-06-24 2017-06-27 Texas Instruments Incorporated Luma-based chroma intra-prediction for video coding
AU2012276410A1 (en) 2011-06-28 2014-02-06 Samsung Electronics Co., Ltd. Prediction method and apparatus for chroma component of image using luma component of image
EP2805496B1 (en) 2012-01-19 2016-12-21 Huawei Technologies Co., Ltd. Reference pixel reduction for intra lm prediction
FI2869557T3 (fi) * 2012-06-29 2023-11-02 Electronics & Telecommunications Res Inst Menetelmä ja laite kuvien koodaamiseksi/dekoodaamiseksi
EP3021578B1 (en) * 2013-07-10 2019-01-02 KDDI Corporation Sub-sampling of reference pixels for chroma prediction based on luma intra prediction mode
US9998742B2 (en) * 2015-01-27 2018-06-12 Qualcomm Incorporated Adaptive cross component residual prediction
US10455249B2 (en) * 2015-03-20 2019-10-22 Qualcomm Incorporated Downsampling process for linear model prediction mode
US10652575B2 (en) * 2016-09-15 2020-05-12 Qualcomm Incorporated Linear model chroma intra prediction for video coding
US10873746B2 (en) 2016-12-21 2020-12-22 Sharp Kabushiki Kaisha Intra prediction image generation device using cross-component liner model, image decoding apparatus, and image coding apparatus using same
US11025903B2 (en) * 2017-01-13 2021-06-01 Qualcomm Incorporated Coding video data using derived chroma mode
HUE062478T2 (hu) * 2018-09-20 2023-11-28 Lg Electronics Inc Eljárás és eszköz kép dekódolására CCLM predikció alapján képkódoló rendszerben
KR102653562B1 (ko) * 2018-11-06 2024-04-02 베이징 바이트댄스 네트워크 테크놀로지 컴퍼니, 리미티드 위치에 따른 인트라 예측

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Benjamin Bross, "Versatile Video Coding(Draft 4)", JVET-M1001, version 7, 2019.3.17.공개*
Geert Van der Auwera, "Description of Core Experement 3 : Intra Prediction and Mode Coding, JVET-J1023, 2018.4.20.공개*

Also Published As

Publication number Publication date
CA3085391A1 (en) 2020-05-28
HUE060910T2 (hu) 2023-04-28
US11412236B2 (en) 2022-08-09
JP2022070864A (ja) 2022-05-13
US20210176480A1 (en) 2021-06-10
BR112020012022B1 (pt) 2022-12-06
KR102415322B1 (ko) 2022-06-30
EP4120680A1 (en) 2023-01-18
US11706426B2 (en) 2023-07-18
CN116939201A (zh) 2023-10-24
EP3709645A1 (en) 2020-09-16
US11012699B2 (en) 2021-05-18
MX2020005865A (es) 2020-09-09
PL3709645T3 (pl) 2023-02-20
AU2021206901A1 (en) 2021-08-12
CN116916016A (zh) 2023-10-20
EP3709645B1 (en) 2022-10-19
AU2021206901B2 (en) 2022-08-04
JP7018139B2 (ja) 2022-02-09
TW202027506A (zh) 2020-07-16
KR20200074218A (ko) 2020-06-24
CN111587574A (zh) 2020-08-25
CA3085391C (en) 2023-10-24
AU2019383886B2 (en) 2021-04-29
KR20230058177A (ko) 2023-05-02
CN111587574B (zh) 2023-06-16
EP3709645A4 (en) 2021-07-14
BR122021014717B1 (pt) 2022-12-06
TW202308385A (zh) 2023-02-16
JP7234425B2 (ja) 2023-03-07
TWI784561B (zh) 2022-11-21
JP2021510245A (ja) 2021-04-15
AU2019383886A1 (en) 2020-06-18
BR122021014718B1 (pt) 2022-12-06
US20220248036A1 (en) 2022-08-04
TW202143720A (zh) 2021-11-16
US20200296391A1 (en) 2020-09-17
US20230308665A1 (en) 2023-09-28
KR102637084B1 (ko) 2024-02-15
KR20220098266A (ko) 2022-07-11
CA3213928A1 (en) 2020-05-28
JP2023054264A (ja) 2023-04-13
WO2020105925A1 (ko) 2020-05-28
ES2934966T3 (es) 2023-02-28
TWI732355B (zh) 2021-07-01
EP4120680B1 (en) 2024-01-31
JP7421673B2 (ja) 2024-01-24
US11956451B2 (en) 2024-04-09
BR112020012022A2 (pt) 2021-06-22

Similar Documents

Publication Publication Date Title
KR102524061B1 (ko) 영상 코딩 시스템에서 cclm 예측 기반 영상 디코딩 방법 및 그 장치
KR102542002B1 (ko) 영상 코딩 시스템에서 cclm 예측에 기반한 영상 디코딩 방법 및 그 장치
KR20210092308A (ko) 영상 코딩 시스템에서 cclm 예측을 사용하는 영상 디코딩 방법 및 그 장치
KR102476272B1 (ko) 영상 코딩 시스템에서 cclm 예측에 기반한 영상 디코딩 방법 및 그 장치
RU2773521C1 (ru) Способ для декодирования изображения на основе предсказания взаимно-компонентной линейной модели в системе кодирования изображения и устройство для этого
RU2794202C2 (ru) Способ для декодирования изображения на основе предсказания взаимно-компонентной линейной модели в системе кодирования изображения и устройство для этого

Legal Events

Date Code Title Description
A107 Divisional application of patent
E701 Decision to grant or registration of patent right
GRNT Written decision to grant