KR102523157B1 - Method for manufacturing metal-carbon composite using coffee waste - Google Patents

Method for manufacturing metal-carbon composite using coffee waste Download PDF

Info

Publication number
KR102523157B1
KR102523157B1 KR1020210028845A KR20210028845A KR102523157B1 KR 102523157 B1 KR102523157 B1 KR 102523157B1 KR 1020210028845 A KR1020210028845 A KR 1020210028845A KR 20210028845 A KR20210028845 A KR 20210028845A KR 102523157 B1 KR102523157 B1 KR 102523157B1
Authority
KR
South Korea
Prior art keywords
metal oxide
coffee waste
composite
coffee
metal
Prior art date
Application number
KR1020210028845A
Other languages
Korean (ko)
Other versions
KR20220052251A (en
Inventor
박경원
신재훈
박덕혜
최진혁
문상현
이우준
김지환
김성범
이학주
이슬기
장재성
Original Assignee
숭실대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 숭실대학교 산학협력단 filed Critical 숭실대학교 산학협력단
Publication of KR20220052251A publication Critical patent/KR20220052251A/en
Application granted granted Critical
Publication of KR102523157B1 publication Critical patent/KR102523157B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 커피박을 탄소원이자 환원제로 이용한 금속-탄소 복합체의 제조방법에 관한 것으로, 보다 상세하게는 금속산화물 및 건조된 커피박을 혼합하여 금속산화물-커피박 복합체를 제조하는 단계; 및 상기 제조된 금속화물-커피박 복합체를 열처리하여 탄화 및 환원시키는 단계;를 포함하는 금속-탄소 복합체 제조방법을 제공한다.
본 발명에 따른 금속-탄소 복합체 제조방법은 버려지는 커피박을 재활용하기에 친환경적이며, 커피박의 탄화 공정과 금속산화물의 환원 공정을 단일 공정으로 동시에 진행함으로써 제조 시간을 단축시킬 수 있어 경제적인 장점이 있다.
The present invention relates to a method for producing a metal-carbon composite using coffee waste as a carbon source and a reducing agent, and more particularly, by mixing a metal oxide and dried coffee waste to prepare a metal oxide-coffee waste composite; and carbonizing and reducing the prepared metallized-coffee waste composite by heat treatment.
The metal-carbon composite manufacturing method according to the present invention is eco-friendly because it recycles discarded coffee waste, and it is economical because it can shorten the manufacturing time by simultaneously performing the carbonization process of coffee waste and the reduction process of metal oxide in a single process. there is

Description

커피박을 이용한 금속-탄소 복합체 제조방법{METHOD FOR MANUFACTURING METAL-CARBON COMPOSITE USING COFFEE WASTE}Metal-carbon composite manufacturing method using coffee waste {METHOD FOR MANUFACTURING METAL-CARBON COMPOSITE USING COFFEE WASTE}

본 발명은 커피박을 탄소원이자 환원제로 이용한 금속-탄소 복합체의 제조방법 및 이에 따라 제조된 복합체를 포함하는 이차전지용 음극활물질에 관한 것이다.The present invention relates to a method for producing a metal-carbon composite using coffee waste as a carbon source and a reducing agent, and to a negative electrode active material for a secondary battery including the composite prepared according to the method.

전 세계적으로 커피소비량이 점차 늘어나면서 매년 600만 톤 이상의 커피찌꺼기, 일명 '커피박(coffee waste 또는 coffee ground)'이 버려지고 있다. 커피박은 원두에서 커피를 추출한 성분을 제외한 나머지를 일컫는 커피 추출 폐기물로, 아메리카노 한 잔을 만들기 위해 약 15g의 커피 원두가 사용되는데, 이 중 14,7g, 즉 99.8%의 원두는 커피박이 되어 버려지고 있다. 우리나라의 2017년 기준 연간 커피소비량은 1인 평균 512잔으로, 해마다 20% 증가하고 있어, 이에 따른 커피박이 코끼리 4만 3천 마리의 무게와 맞먹는 약 129,500톤이 배출되고 있다.As coffee consumption is gradually increasing worldwide, more than 6 million tons of coffee grounds, so-called 'coffee waste or coffee ground', are thrown away every year. Coffee waste is coffee extraction waste that refers to the rest except for the ingredients extracted from coffee beans. About 15g of coffee beans are used to make a cup of Americano, of which 14.7g, or 99.8% of the beans, are discarded as coffee waste. there is. As of 2017, annual coffee consumption in Korea is an average of 512 cups per person, and it is increasing by 20% every year.

커피박은 현재 폐기물 쓰레기로 배출되어 대부분 매립 또는 소각 처리되고 있으나, 커피박을 땅에 매립할 경우 온실가스인 메탄(CH4)이 배출되는데, 이 메탄의 지구온난화 지수(이산화탄소 1kg과 비교해 특정 기체 1kg이 지구온난화에 얼마나 영향을 미치는지 비교한 지표)가 34로, 이산화탄소보다 34배의 온실효과를 일으키는 것과 비슷한 영향을 미칠 수 있다.Coffee grounds are currently discharged as waste and are mostly landfilled or incinerated. However, when coffee grounds are landfilled, methane (CH 4 ), a greenhouse gas, is emitted. This index comparing how much it affects global warming) is 34, which can have a similar effect as causing a greenhouse effect 34 times more than carbon dioxide.

한편, 커피박은 탄소, 유기물과 풍부한 섬유소를 포함하고 있는, 재활용 가치가 높은 유기성 자원으로, 최근 탈취제나 비료뿐만 아니라 점토나 비누 등 다각적으로 커피박을 재활용하는 방안에 대한 관심이 높아지고 이에 대한 기술 개발이 시도되고 있다. 국·내외를 살펴보면, 에너지, 바이오-식품, 흡착제, 건축, 농업 분야 등 다양한 분야에서 커피박 재활용 방안이 활발히 연구되고 있다. 이러한 커피박의 재활용은 쓰레기를 줄이면서 고부가가치 산업에 이용될 수 있다는 점에서 친환경적이고 경제적인 측면에서 큰 이점이 있다. On the other hand, coffee waste is an organic resource with high recycling value that contains carbon, organic matter and abundant fiber. Recently, interest in recycling coffee waste in various ways, such as deodorants and fertilizers as well as clay and soap, has increased and technology development for this. this is being tried At home and abroad, coffee waste recycling methods are being actively studied in various fields such as energy, bio-food, adsorbent, construction, and agriculture. Recycling of such coffee waste has a great advantage in terms of eco-friendliness and economy in that it can be used in high value-added industries while reducing waste.

하지만, 커피박을 재활용하기 위한 종래 기술들은 커피박를 이용하여 결정성과 단일상의 순도 높은 탄소를 추출 및 정제하는 기술로 공정이 까다롭다는 문제가 있어, 보다 간단한 제조 공정을 통해 커피박을 재활용할 수 있는 기술이 필요한 실정이다.However, conventional technologies for recycling coffee waste are techniques for extracting and refining crystallinity and single-phase high-purity carbon using coffee waste. There is a need for technology.

대한민국 등록특허 제10-1493617호 (2015.02.16. 공고)Republic of Korea Patent Registration No. 10-1493617 (2015.02.16. Notice)

본 발명의 목적은 커피박을 탄소원이자 환원제로 이용하는 금속-탄소 복합체의 제조방법을 제공하는 데에 있다.An object of the present invention is to provide a method for producing a metal-carbon composite using coffee grounds as a carbon source and a reducing agent.

본 발명의 다른 목적은 상기 제조방법에 따라 제조된 금속-탄소 복합체를 포함하는 이차전지 음극활물질을 제공하는 데에 있다.Another object of the present invention is to provide a secondary battery negative electrode active material comprising a metal-carbon composite prepared according to the above manufacturing method.

상기와 같은 목적을 달성하기 위하여, 본 발명은 금속산화물 및 건조된 커피박을 혼합하여 금속산화물-커피박 복합체를 제조하는 단계; 및 상기 제조된 금속화물-커피박 복합체를 열처리하여 탄화 및 환원시키는 단계;를 포함하는 금속-탄소 복합체 제조방법을 제공한다.In order to achieve the above object, the present invention comprises the steps of preparing a metal oxide-coffee waste composite by mixing a metal oxide and dried coffee waste; and carbonizing and reducing the prepared metallized-coffee waste composite by heat treatment.

본 발명은 상기의 제조방법에 따라 제조된 금속-탄소 복합체를 포함하는 이차전지용 음극활물질을 제공한다.The present invention provides an anode active material for a secondary battery comprising a metal-carbon composite prepared according to the above manufacturing method.

또한, 본 발명은 상기의 이차전지용 음극활물질을 포함하는 리튬이차전지를 제공한다.In addition, the present invention provides a lithium secondary battery including the negative electrode active material for a secondary battery.

본 발명에 따른 금속-탄소 복합체 제조방법은 커피박의 탄화 공정과 금속산화물의 환원 공정을 단일 공정으로 동시에 진행함으로써, 공정이 보다 간단해져 상기 복합체의 제조 시간을 단축시킬 수 있어 경제적인 장점이 있다.The method for manufacturing a metal-carbon composite according to the present invention has an economical advantage in that the carbonization process of coffee grounds and the reduction process of metal oxide are performed simultaneously in a single process, thereby simplifying the process and shortening the manufacturing time of the composite. .

또한, 본 발명은 탄소원이자 금속산화물의 환원제로, 버려지는 커피박을 재활용하여 이차전지용 음극활물질로 사용할 수 있는 금속-탄소 복합체를 제조할 수 있어, 친환경적인 장점이 있다.In addition, the present invention has an eco-friendly advantage in that a metal-carbon composite that can be used as a negative electrode active material for a secondary battery by recycling discarded coffee grounds as a carbon source and a reducing agent for metal oxides.

도 1은 금속산화물인 이산화게르마늄(germanium dioxide, GeO2)만을 600℃로 열처리하여 X선 회절 분석(XRD)을 진행한 결과이다.
도 2는 본 발명의 실시예 1에 따라 제조된 금속산화물(GeO2)/커피박 복합체를 600℃로 열처리한 후 XRD로 분석한 결과이다.
도 3은 본 발명의 실시예 1에 따라 제조된 GeO2/커피박 복합체를 500℃로 열처리한 후 XRD로 분석한 결과이다.
도 4는 본 발명의 실시예 1에 따라 제조된 GeO2/커피박 복합체를 700℃로 열처리한 결과 이미지이다.
도 5는 GeO2만을 600℃로 열처리한 후 라만분광분석법(Raman spectroscopy analysis)으로 분석한 결과이다.
도 6은 GeO2/커피박 복합체를 600℃로 열처리한 후 라만분광분석법으로 분석한 결과이다.
도 7은 본 발명의 실시예 2에 따라 금속(Ge)/탄소(C) 복합체를 전자주사현미경(Scanning electron microscope, SEM)으로 관찰한 이미지이다.
도 8은 도 7의 Ge/C 복합체를 에너지분산형분광분석(Elecron dispersive X-ray spectroscopy, EDS)를 통해 성분 분석한 이미지이다.
도 9는 커피박 유무에 따른 열처리 이후의 샘플의 사이클 특성을 나타낸 것이다.
1 is a result of performing X-ray diffraction analysis (XRD) by heat-treating only germanium dioxide (GeO 2 ), which is a metal oxide, at 600 ° C.
2 is a result of XRD analysis after heat treatment of a metal oxide (GeO 2 )/coffee waste composite prepared according to Example 1 of the present invention at 600°C.
3 is a result of XRD analysis after heat treatment of the GeO 2 /coffee waste composite prepared according to Example 1 of the present invention at 500 ° C.
4 is an image of the result of heat treatment of the GeO 2 /coffee waste composite prepared according to Example 1 of the present invention at 700 ° C.
5 is a result obtained by heat-treating only GeO 2 at 600° C. and analyzing by Raman spectroscopy analysis.
6 is a result of analysis by Raman spectroscopy after heat treatment of the GeO 2 /coffee waste composite at 600°C.
7 is an image of a metal (Ge)/carbon (C) composite according to Example 2 of the present invention observed with a scanning electron microscope (SEM).
FIG. 8 is an image obtained by analyzing the components of the Ge/C composite of FIG. 7 through energy dispersive X-ray spectroscopy (EDS).
Figure 9 shows the cycle characteristics of the sample after heat treatment according to the presence or absence of coffee waste.

이하, 본 발명을 상세하게 설명하기로 한다.Hereinafter, the present invention will be described in detail.

본 발명은 커피박을 이용한 금속-탄소 복합체 제조방법을 제공한다.The present invention provides a method for manufacturing a metal-carbon composite using coffee waste.

본 명세서에서, "복합체"란, 각 성분이 결합하고 있는 입자로 구성되어 있는 것으로, 각 성분의 입자가 단순히 집합하여 구성되어 있는 "혼합체"와는 상이한 개념이다.In this specification, a "composite" is composed of particles to which each component is bonded, and is a concept different from a "mixture" composed of particles of each component simply aggregated.

본 발명에 따른 금속-탄소 복합체 제조방법은 금속산화물 및 건조된 커피박을 혼합하여 금속산화물-커피박 복합체를 제조하는 단계; 및 상기 제조된 금속화물-커피박 복합체를 열처리하여 탄화 및 환원시키는 단계;를 포함할 수 있다.A method for manufacturing a metal-carbon composite according to the present invention comprises preparing a metal oxide-coffee waste composite by mixing a metal oxide and dried coffee waste; and carbonizing and reducing the prepared metallization-coffee waste composite by heat treatment.

상기 제조방법에 있어서, 상기 금속산화물-커피박 복합체를 제조하는 단계는 상기 혼합된 금속산화물 및 건조된 커피박에 분산매를 추가하여 30분 내지 2시간 교반한 후, 1 내지 3시간 동안 초음파 처리하여 수행될 수 있다.In the above manufacturing method, the step of preparing the metal oxide-coffee waste composite is to add a dispersion medium to the mixed metal oxide and dried coffee waste, stir for 30 minutes to 2 hours, and then treat with ultrasonic waves for 1 to 3 hours. can be performed

상기 금속산화물은 금속이 산소와 결합된 화합물로, 상기 금속은 게르마늄(Ge), 주석(Sn), 망간(Mn), 인듐(In), 철(Fe), 니켈(Ni) 및 코발트(Co)로 이루어진 군에서 선택되는 하나 이상일 수 있으나, 이에 제한되는 것은 아니다.The metal oxide is a compound in which a metal is combined with oxygen, and the metal is germanium (Ge), tin (Sn), manganese (Mn), indium (In), iron (Fe), nickel (Ni), and cobalt (Co) It may be one or more selected from the group consisting of, but is not limited thereto.

상기 분산매는 에탄올, 메탄올, 아이소프로필 알코올(isopropyl alcohol), 아세트산에틸(ethyl acetate), 디메틸포름아미드(Dimethylformamide), NMP(N-methylpyrrolidone), 에틸렌글리콜(Etyhlene glycol)과 같은 유기용매, 증류수 또는 이들의 혼합 용액에서 선택될 수 있고, 바람직하게는 에탄올일 수 있으나, 이에 제한되지 않고 당업계에 공지된 분산매를 모두 포함할 수 있으며, 상기 금속산화물의 종류에 따라 선택적으로 사용될 수 있다.The dispersion medium is an organic solvent such as ethanol, methanol, isopropyl alcohol, ethyl acetate, dimethylformamide, NMP (N-methylpyrrolidone), ethylene glycol, distilled water, or these It may be selected from a mixed solution of, preferably ethanol, but may include all dispersion media known in the art without being limited thereto, and may be selectively used according to the type of the metal oxide.

상기 제조방법에 있어서, 상기 탄화 및 환원시키는 단계는 상기 제조된 금속산화물-커피박 복합체를 비산화성 분위기에서 500 내지 700℃ 온도로, 2 내지 4시간 동안 열처리하여 수행될 수 있다.In the above manufacturing method, the carbonization and reduction steps may be performed by heat-treating the prepared metal oxide-coffee waste composite at a temperature of 500 to 700 ° C. for 2 to 4 hours in a non-oxidizing atmosphere.

상기 비산화성 분위기는, 질소, 수소, 헬륨, 네온 또는 이들의 혼합가스에서 선택되는 분위기일 수 있고, 바람직하게는, 상기 질소 및 수소가 9 : 1의 부피비로 혼합된 분위기에서 600℃ 온도로, 3시간 동안 열처리함으로써 수행될 수 있다.The non-oxidizing atmosphere may be an atmosphere selected from nitrogen, hydrogen, helium, neon, or a mixed gas thereof, and preferably, in an atmosphere in which nitrogen and hydrogen are mixed in a volume ratio of 9: 1 at a temperature of 600 ° C, It can be performed by heat treatment for 3 hours.

상기 탄화 및 환원시키는 단계는, 상기의 조건에서 열처리함으로써 상기 커피박의 탄화 과정 및 상기 금속산화물의 환원 과정이 동시에 이루어질 수 있다.In the carbonization and reduction step, by heat treatment under the above conditions, the carbonization process of the coffee grounds and the reduction process of the metal oxide can be performed simultaneously.

본 발명의 일 실험예에 따르면, 커피박 없이 금속산화물만을 열처리하거나, 상기 온도 범위 이하 또는 이상으로 열처리한 경우, 상기 금속산화물이 금속으로 온전하게 환원되지 못함을 확인할 수 있는 바, 상기 온도 범위에서 열처리하는 것이 바람직하다.According to an experimental example of the present invention, when only a metal oxide is heat-treated without coffee grounds or heat-treated below or above the above temperature range, it can be confirmed that the metal oxide is not completely reduced to a metal, in the above temperature range Heat treatment is preferred.

또한, 상기 열처리 시간이 지나치게 짧을 경우, 충분히 탄화 및 환원 과정이 일어나지 않아 전기 전도성이 떨어질 수 있고, 상기 열처리 시간이 지나치게 길면 경제적으로 바람직하지 않은 바, 상기 시간 범위에서 열처리하는 것이 바람직하다.In addition, when the heat treatment time is too short, carbonization and reduction processes do not sufficiently occur, and electrical conductivity may be deteriorated. When the heat treatment time is too long, it is economically undesirable.

본 발명의 다른 실험예에 따르면, 커피박을 이용하여 금속산화물이 완전히 환원된 경우는 커피박 없이 금속산화물을 환원시킨 경우와 사이클 특성을 비교하였을 때, 비용량(specific capacity)이 현저히 증가함을 확인할 수 있었다.According to another experimental example of the present invention, when the metal oxide is completely reduced using coffee waste, the specific capacity significantly increases when the cycle characteristics are compared with the case where the metal oxide is reduced without coffee waste. I was able to confirm.

본 발명은 상기 제조방법에 따라 제조된 금속-탄소 복합체를 포함하는 이차전지용 음극활물질(anode material)을 제공한다.The present invention provides an anode material for a secondary battery comprising a metal-carbon composite manufactured according to the above manufacturing method.

상기 제조방법에 따라 제조된 금속-탄소 복합체는 사이클 특성이 보다 향상된 바, 재충전이 가능한 이차전지용 음극활물질로 유용하게 사용될 수 있다.Since the metal-carbon composite prepared according to the above manufacturing method has improved cycle characteristics, it can be usefully used as an anode active material for a rechargeable secondary battery.

상기 이차전지용 음극은 상기 음극활물질 외에 필요에 따라 도전성을 부여하기 위한 도전재, 결착성을 부여하기 위한 바인더(binder)를 더 포함할 수 있다.The negative electrode for a secondary battery may further include a conductive material for imparting conductivity and a binder for imparting binding properties, as needed, in addition to the negative electrode active material.

상기 도전재로는 당업계에서 통상 사용되고 있는 모든 것을 포함할 수 있고, 탄소 재료를 포함하는 경우에는 탄소 재료의 종류는 특별히 한정되지 않는다. 예를 들어, 카본블랙(carbon black)을 포함할 수 있고, 상기 카본블랙은 아세틸렌 블랙(AB), 케첸블랙(KB), 카본 파이버(VGCF), 카본 나노튜브(CNT), 흑연, 소프트 카본, 하드 카본, 메소포러스 카본, 그라펜, 기상 성장 탄소 등에서 하나 또는 둘 이상 선택될 수 있다.The conductive material may include anything commonly used in the art, and in the case of including a carbon material, the type of the carbon material is not particularly limited. For example, it may include carbon black, and the carbon black may include acetylene black (AB), ketjen black (KB), carbon fiber (VGCF), carbon nanotube (CNT), graphite, soft carbon, One or more may be selected from hard carbon, mesoporous carbon, graphene, vapor grown carbon, and the like.

상기 바인더도 당업계에서 통상 사용되고 있는 모든 것을 포함할 수 있고, 예를 들면, 폴리아크릴산(polyacrylic acid), 폴리플루오르화 비닐리덴(PVdF), 폴리테트라플루오로에틸렌(PTFE), 폴리이미드(PI), 폴리아미드, 폴리아미드이미드, 스티렌 부타디엔 고무(SBR), 스티렌-에틸렌-부틸렌-스티렌 공중합체(SEBS), 카복시메틸 셀룰로스(CMC), 폴리비닐알콜(PVA), 폴리비닐부티럴(PVB), 에틸렌-비닐 아세테이트(EVA) 등에서 하나 또는 둘 이상 선택될 수 있다.The binder may also include all commonly used in the art, for example, polyacrylic acid (polyacrylic acid), polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), polyimide (PI) , polyamide, polyamideimide, styrene butadiene rubber (SBR), styrene-ethylene-butylene-styrene copolymer (SEBS), carboxymethyl cellulose (CMC), polyvinyl alcohol (PVA), polyvinyl butyral (PVB) , ethylene-vinyl acetate (EVA), and the like.

또한, 본 발명은 상기 이차전지용 음극활물질을 포함하는 리튬이차전지를 제공한다.In addition, the present invention provides a lithium secondary battery including the anode active material for a secondary battery.

상기 리튬이차전지는 사용하는 세퍼레이터와 전해질의 종류에 따라 리튬이온전지, 리튬이온 폴리머전지 및 리튬 폴리머 전지로 분류될 수 있다. 또한, 그 형태에 따라 원통형, 각형, 코인형, 파우치형 등으로 분류될 수 있으며, 사이즈에 따라 벌크 타입과 박막 타입으로 나눌 수 있다.The lithium secondary battery may be classified into a lithium ion battery, a lithium ion polymer battery, and a lithium polymer battery according to the type of separator and electrolyte used. In addition, it can be classified into a cylindrical shape, a prismatic shape, a coin shape, a pouch type, etc. according to its shape, and can be divided into a bulk type and a thin film type according to its size.

이하, 본 발명의 이해를 돕기 위하여 실시예를 들어 상세하게 설명하기로 한다. 다만 하기의 실시예는 본 발명의 내용을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.Hereinafter, examples will be described in detail to aid understanding of the present invention. However, the following examples are merely illustrative of the contents of the present invention, but the scope of the present invention is not limited to the following examples. The embodiments of the present invention are provided to more completely explain the present invention to those skilled in the art.

<실시예 1> 금속산화물(metal oxide)/커피박(coffee ground) 복합체 제조<Example 1> Preparation of metal oxide/coffee ground composite

커피박을 온전히 건조를 시킨 뒤, 금속산화물(ex. 이산화게르마늄(germanium dioxide, GeO2))과 건조된 커피박을 막자사발로 고체-상태-믹싱(solid-state-mixing)을 통해 7:3의 중량비로 혼합시켰다. 고르게 분산시키기 위해 에탄올 50mL을 추가 혼합하여 1시간 동안 교반한 후, 울트라-소니케이션(ultra-sonication)을 2시간 진행한 다음, 에탄올을 이용하여 세척하고 50℃ 오븐에서 건조하여 금속산화물/커피박 복합체(metal oxide/coffee composite)를 제조하였다.After completely drying the coffee grounds, metal oxide (eg germanium dioxide, GeO 2 ) and dried coffee grounds are mixed in a mortar at a ratio of 7:3 through solid-state-mixing. were mixed in a weight ratio of In order to disperse evenly, 50mL of ethanol was additionally mixed and stirred for 1 hour, followed by ultra-sonication for 2 hours, washed with ethanol and dried in an oven at 50 ° C to form metal oxide/coffee waste. A composite (metal oxide/coffee composite) was prepared.

<실시예 2> 금속/탄소 (metal/C) 복합체 제조<Example 2> Preparation of metal/carbon (metal/C) composite

상기 실시예 1에 따라 제조된 금속산화물/커피박 복합체를 600℃ 퍼니스(furnace)에서 질소 90%, 수소 10% 분위기에서 3시간 동안 열처리를 진행하여 금속/탄소 복합체(metal/C composite)를 제조하였다.The metal oxide/coffee waste composite prepared in Example 1 was subjected to heat treatment in a furnace at 600° C. in an atmosphere of 90% nitrogen and 10% hydrogen for 3 hours to prepare a metal/carbon composite. did

<실험예 1> 구조 분석<Experimental Example 1> Structural analysis

금속산화물인 이산화게르마늄(germanium dioxide, GeO2)을 이용하여 상기 실시예 1 및 2에 따라 복합체를 제조하여 X선 회절 분석(X-ray diffraction, XRD)을 진행하였다.Composites were prepared according to Examples 1 and 2 using germanium dioxide (GeO 2 ), which is a metal oxide, and subjected to X-ray diffraction (XRD) analysis.

도 1은 GeO2만을 600℃로 열처리한 후 XRD로 분석한 것으로, 이를 참조하면, 온전히 환원되지 못하고 육방정(hexagonal)과 정방정(tetragonal) 구조를 이루는 GeO2가 남아 있음을 확인할 수 있다.FIG. 1 shows an XRD analysis of only GeO 2 after heat treatment at 600° C. Referring to this, it can be seen that GeO 2 remaining in a hexagonal and tetragonal structure is not completely reduced.

도 2는 상기 실시예 1에 따라 제조된 금속산화물/커피박 복합체, 즉 GeO2/커피박 복합체를 600℃로 열처리한 후 XRD로 분석한 것으로, 이를 참조하면, 완전히 단일상의 게르마늄(Ge)으로 환원되었음을 확인할 수 있다.Figure 2 is a metal oxide / coffee waste composite prepared according to Example 1, that is, GeO 2 / coffee waste composite analyzed by XRD after heat treatment at 600 ° C. Referring to this, it is completely made of single-phase germanium (Ge). It can be confirmed that it has been restored.

도 3은 상기 실시예 1에 따라 제조된 GeO2/커피박 복합체를 500℃로 열처리한 후 XRD로 분석한 결과로, 이 때는 게르마늄(Ge)의 단일상을 이루지 못하였고, 도 4는 상기 실시예 1에 따라 제조된 GeO2/커피박 복합체를 700℃로 열처리한 결과 이미지로, 상기 온도로 열처리한 결과 반응중에 있는 GeO가 승화하여 실리카 관에 실리카 관에 코팅되어 손실이 생김을 확인할 수 있는 바, 열처리 온도는 600℃가 적절하다.3 is a result of XRD analysis after heat treatment of the GeO 2 /coffee waste composite prepared according to Example 1 at 500 ° C. In this case, a single phase of germanium (Ge) was not formed, and FIG. As an image of the result of heat treatment of the GeO 2 /coffee waste composite prepared according to Example 1 at 700 ° C, as a result of heat treatment at the above temperature, GeO in the reaction sublimes and is coated on the silica pipe to confirm that loss occurs Bar, 600 ℃ is appropriate for the heat treatment temperature.

탄화작용을 거친 커피박은 비결정성 탄소로 이루어져 XRD 분석 결과로 확인이 불가능한 바, 이를 라만분광분석법(Raman spectroscopy analysis)으로 확인하였다.The carbonized coffee waste was composed of amorphous carbon and could not be confirmed by XRD analysis, which was confirmed by Raman spectroscopy analysis.

도 5는 GeO2만을 600℃로 열처리한 후 라만분광분석법으로 분석한 결과로, 상기 그래프에서 탄소를 확인할 수 있는 D band (1350cm-1)와 G band (1600cm-1) 근처의 Raman shift가 관찰되지 않았다. Figure 5 is a result of analyzing only GeO 2 by Raman spectroscopy after heat treatment at 600 ° C. In the graph, a Raman shift near the D band (1350 cm -1 ) and G band (1600 cm -1 ), which can identify carbon, is observed. It didn't work.

도 6은 GeO2/커피박 복합체를 600℃로 열처리한 후 라만분광분석법으로 분석한 결과로, D band와 G band의 피크가 관찰되었고 결정성을 알 수 있는 intensity ratio가 0.93임을 확인하여, 비결정성임을 확인할 수 있다.6 is a result of analyzing the GeO 2 / coffee ground composite by Raman spectroscopy after heat treatment at 600 ° C., peaks of D band and G band were observed, and it was confirmed that the intensity ratio of crystallinity was 0.93, the secret It can be confirmed that it is correct.

도 7은 본 발명의 실시예 2에 따라 금속/탄소 복합체, 즉 Ge/C 복합체를 전자주사현미경(Scanning electron microscope, SEM)으로 관찰한 이미지로, 수십 마이크로미터 크기의 탄소 위에 Ge가 잘 분포되어 있음을 확인할 수 있다. 7 is an image of a metal/carbon composite, that is, a Ge/C composite, observed with a scanning electron microscope (SEM) according to Example 2 of the present invention, in which Ge is well distributed on carbon with a size of several tens of micrometers. can confirm that there is

도 8은 도 6의 Ge/C 복합체를 에너지분산형분광분석(Elecron dispersive X-ray spectroscopy, EDS)를 통해 성분 분석한 이미지로, 이를 통해 Ge/C 복합체 형태를 확인할 수 있다.8 is an image obtained by component analysis of the Ge/C composite of FIG. 6 through energy dispersive X-ray spectroscopy (EDS), through which the form of the Ge/C composite can be confirmed.

<실험예 2> 전기화학분석<Experimental Example 2> Electrochemical analysis

전기화학분석을 위해 페이스트 믹서(paste mixer)를 이용하여 활물질, 도전재(케첸블랙), 바인더(PVdF)를 8:1:1의 중량비로 D.I Wster 용매에 넣어 점도를 조절하였다. 슬러리를 동박(Cu foil) 위에 코팅한 후 오븐에 말려 전극을 제조하였다. 반대전극으로 리튬 금속(lithium metal), 분리막으로 폴리에틸렌(polyethylene), 전해질로 에틸렌 카보네이트(Ethylene carbonate) 및 디에틸 카보네이트(Diethyl carbonate)가 1:1의 부피비로 섞인 혼합 용액에 1.1M LiPF6를 리튬염으로 사용하였다.For electrochemical analysis, the active material, the conductive material (Ketjen Black), and the binder (PVdF) were added to the DI Wster solvent at a weight ratio of 8:1:1 using a paste mixer to adjust the viscosity. After coating the slurry on copper foil (Cu foil), it was dried in an oven to prepare an electrode. 1.1M LiPF 6 is added to a mixed solution of lithium metal as the counter electrode, polyethylene as the separator, and ethylene carbonate and diethyl carbonate as the electrolyte in a volume ratio of 1:1. used as a salt.

도 9는 커피박 유무에 따른 열처리 이후의 샘플의 사이클 특성을 나타낸 것으로, 0.1 C의 속도에서 커피박을 넣지 않은 샘플은 약 40mAh g-1의 용량을 나타내었으나, 커피박을 이용하여 완전한 환원을 이룬 Ge/C 샘플은 약 5배 증가한 200 mAh g-1의 용량을 나타내었다.Figure 9 shows the cycle characteristics of the sample after heat treatment according to the presence or absence of coffee grounds. At a rate of 0.1 C, the sample without coffee grounds showed a capacity of about 40mAh g -1 , but complete reduction using coffee grounds The achieved Ge/C sample exhibited a capacity of 200 mAh g -1 , an increase of about 5 times.

이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 즉, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다.Having described specific parts of the present invention in detail above, it is clear to those skilled in the art that these specific descriptions are only preferred embodiments, and the scope of the present invention is not limited thereby. do. That is, the substantial scope of the present invention is defined by the appended claims and their equivalents.

Claims (7)

이산화게르마늄 및 건조된 커피박을 혼합하여 금속산화물-커피박 복합체를 제조하는 단계; 및
상기 제조된 금속산화물-커피박 복합체를 열처리하여 탄화 및 환원시키는 단계;를 포함하고,
상기 금속산화물-커피박 복합체를 제조하는 단계는,
상기 혼합된 금속산화물 및 건조된 커피박에 분산매를 추가하여 30분 내지 2시간 교반한 후, 1 내지 3시간 동안 초음파 처리하여 수행되고,
상기 금속산화물 및 건조된 커피박은 7:3의 중량비로 혼합시킨 것이고,
상기 탄화 및 환원시키는 단계는,
상기 제조된 금속산화물-커피박 복합체를 질소, 수소 및 이들의 혼합가스에서 이루어지는 군으로부터 선택되는 분위기에서 500℃ 초과 내지 700℃ 미만의 온도로, 2 내지 4시간 동안 열처리하여 수행되고,
상기 열처리에 의해 상기 커피박의 탄화 과정 및 상기 금속산화물의 환원 과정이 동시에 이루어지는 것을 특징으로 하는 금속-탄소 복합체 제조방법.
Preparing a metal oxide-coffee waste composite by mixing germanium dioxide and dried coffee waste; and
Including; carbonizing and reducing the prepared metal oxide-coffee waste composite by heat treatment;
The step of preparing the metal oxide-coffee waste composite,
A dispersion medium is added to the mixed metal oxide and the dried coffee waste, stirred for 30 minutes to 2 hours, and then ultrasonicated for 1 to 3 hours,
The metal oxide and the dried coffee grounds are mixed in a weight ratio of 7:3,
The carbonization and reduction step,
Heat-treating the prepared metal oxide-coffee waste composite at a temperature of greater than 500 ° C. to less than 700 ° C. for 2 to 4 hours in an atmosphere selected from the group consisting of nitrogen, hydrogen and mixed gases thereof,
A method for producing a metal-carbon composite, characterized in that the carbonization of the coffee waste and the reduction of the metal oxide are simultaneously performed by the heat treatment.
삭제delete 삭제delete 삭제delete 삭제delete 제 1 항에 따라 제조된 금속-탄소 복합체를 포함하는 이차전지용 음극활물질.An anode active material for a secondary battery comprising the metal-carbon composite prepared according to claim 1. 제 6 항에 따른 이차전지용 음극활물질을 포함하는 리튬이차전지.A lithium secondary battery comprising the anode active material for a secondary battery according to claim 6.
KR1020210028845A 2020-10-20 2021-03-04 Method for manufacturing metal-carbon composite using coffee waste KR102523157B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200135679 2020-10-20
KR20200135679 2020-10-20

Publications (2)

Publication Number Publication Date
KR20220052251A KR20220052251A (en) 2022-04-27
KR102523157B1 true KR102523157B1 (en) 2023-04-18

Family

ID=81390894

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210028845A KR102523157B1 (en) 2020-10-20 2021-03-04 Method for manufacturing metal-carbon composite using coffee waste

Country Status (1)

Country Link
KR (1) KR102523157B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102574545B1 (en) 2023-01-17 2023-09-08 (주) 매그나텍 Coffee foil composition and negative electrode material for secondary battery comprising same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101721493B1 (en) * 2015-11-24 2017-03-31 한국기계연구원 Activated carbon, and method for manufacture thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101493617B1 (en) 2013-11-29 2015-02-16 한양대학교 에리카산학협력단 Carbon-metal composite and method of fabricating the same
KR101898110B1 (en) * 2016-08-31 2018-09-12 부산대학교 산학협력단 A secondary battery anode utilizing exhausted coffee-powder and Si complex and method of manufacturing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101721493B1 (en) * 2015-11-24 2017-03-31 한국기계연구원 Activated carbon, and method for manufacture thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
H.-S. choe et al., "Synthesis of Ge/C composites as anodes using glucose as a reductant and carbon source for lithium-ion batteries", RSC Adv., 2016, 6, 72926-72932*

Also Published As

Publication number Publication date
KR20220052251A (en) 2022-04-27

Similar Documents

Publication Publication Date Title
Li et al. Hard carbon microtubes made from renewable cotton as high‐performance anode material for sodium‐ion batteries
US10347916B2 (en) Graphene powder, method for producing graphene powder and electrode for lithium ion battery containing graphene powder
JP6241480B2 (en) Highly dispersible graphene composition and method for producing the same, and electrode for lithium ion secondary battery including highly dispersible graphene composition
Rao et al. Polyacrylonitrile hard carbon as anode of high rate capability for lithium ion batteries
US20180287162A1 (en) High surface area porous carbon materials as electrodes
Kanakaraj et al. Candle soot carbon nanoparticles as high-performance universal anode for M-ion (M= Li+, Na+ and K+) batteries
Khamlich et al. Pulsed laser deposited Cr2O3 nanostructured thin film on graphene as anode material for lithium-ion batteries
EP3358656B1 (en) Carbonaceous material for negative electrode of nonaqueous-electrolyte secondary battery, and process for producing same
JPWO2014034858A1 (en) Non-aqueous electrolyte secondary battery negative electrode carbonaceous material and method for producing the same
JP2013258076A (en) Negative electrode material for nonaqueous electrolyte secondary battery and method for producing the same
CN117673358A (en) Conductive composition for electrode, electrode using same, and battery
JP5737265B2 (en) Silicon oxide and manufacturing method thereof, negative electrode, lithium ion secondary battery and electrochemical capacitor
JP2012150934A (en) Sulfur-based positive electrode active material, method for manufacturing the same, and positive electrode for lithium ion secondary battery
CN111799098A (en) Porous carbon/metal oxide composite material and preparation method and application thereof
JP5182498B2 (en) Anode material for non-aqueous electrolyte secondary battery, method for producing the same, lithium ion secondary battery, and electrochemical capacitor
Zhang et al. Encapsulating Sn (OH) 4 Nanoparticles in Micropores of Mesocarbon Microbeads: A New Anode Material for High‐Performance Lithium Ion Batteries
JP2017183080A (en) Carbonaceous material for nonaqueous electrolyte secondary battery negative electrode, and method for manufacturing the same
KR101993371B1 (en) Sulface modified Reduced Graphene Oxide-Sulfur Composite by Polydopamine for Lithium-Sulfur Battery and its Manufacturing Method
KR102523157B1 (en) Method for manufacturing metal-carbon composite using coffee waste
CN113410459B (en) Embedded MoS x Three-dimensional ordered macroporous graphene carbon material of nanosheet, preparation and application
KR20140076497A (en) Negative electrode active material for nonaqueous electrolytic secondary battery and method for producing the same
Youjie et al. Lithium titanate anode for high-performance lithium-ion batteries using octadecylamine and folic acid-functionalized graphene oxide for fabrication of ultrathin lithium titanate nanoflakes and modification of binder
JP2015230794A (en) Conductive material for lithium ion secondary battery, composition for forming lithium ion secondary battery negative electrode, composition for forming lithium ion secondary battery positive electrode, negative electrode for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6315258B2 (en) Conductive material for lithium ion secondary battery, composition for forming negative electrode of lithium ion secondary battery, composition for forming positive electrode of lithium ion secondary battery, negative electrode for lithium ion secondary battery, positive electrode for lithium ion secondary battery and lithium ion secondary Secondary battery
Zhong et al. One-step spray pyrolysis synthesized CuO-carbon composite combined with carboxymethyl cellulose binder as anode for lithium-ion batteries

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant