KR102519016B1 - 두꺼운 미디어를 포함하는 가상 현실, 증강 현실 및 혼합 현실 시스템들 및 관련된 방법들 - Google Patents

두꺼운 미디어를 포함하는 가상 현실, 증강 현실 및 혼합 현실 시스템들 및 관련된 방법들 Download PDF

Info

Publication number
KR102519016B1
KR102519016B1 KR1020217036013A KR20217036013A KR102519016B1 KR 102519016 B1 KR102519016 B1 KR 102519016B1 KR 1020217036013 A KR1020217036013 A KR 1020217036013A KR 20217036013 A KR20217036013 A KR 20217036013A KR 102519016 B1 KR102519016 B1 KR 102519016B1
Authority
KR
South Korea
Prior art keywords
light
optical element
guiding optical
light guiding
exit
Prior art date
Application number
KR1020217036013A
Other languages
English (en)
Other versions
KR20210135360A (ko
Inventor
피에르 세인트 힐레르
Original Assignee
매직 립, 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 매직 립, 인코포레이티드 filed Critical 매직 립, 인코포레이티드
Publication of KR20210135360A publication Critical patent/KR20210135360A/ko
Application granted granted Critical
Publication of KR102519016B1 publication Critical patent/KR102519016B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0081Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for altering, e.g. enlarging, the entrance or exit pupil
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0179Display position adjusting means not related to the information to be displayed
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4272Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having plural diffractive elements positioned sequentially along the optical path
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1814Diffraction gratings structurally combined with one or more further optical elements, e.g. lenses, mirrors, prisms or other diffraction gratings
    • G02B5/1819Plural gratings positioned on the same surface, e.g. array of gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/32Holograms used as optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0015Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0016Grooves, prisms, gratings, scattering particles or rough surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0038Linear indentations or grooves, e.g. arc-shaped grooves or meandering grooves, extending over the full length or width of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3887Anchoring optical cables to connector housings, e.g. strain relief features
    • G02B6/3889Anchoring optical cables to connector housings, e.g. strain relief features using encapsulation for protection, e.g. adhesive, molding or casting resin
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/02Details of features involved during the holographic process; Replication of holograms without interference recording
    • G03H1/024Hologram nature or properties
    • G03H1/0248Volume holograms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/26Processes or apparatus specially adapted to produce multiple sub- holograms or to obtain images from them, e.g. multicolour technique
    • G03H1/28Processes or apparatus specially adapted to produce multiple sub- holograms or to obtain images from them, e.g. multicolour technique superimposed holograms only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0123Head-up displays characterised by optical features comprising devices increasing the field of view
    • G02B2027/0125Field-of-view increase by wavefront division
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • G02B2027/0174Head mounted characterised by optical features holographic
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B2027/0178Eyeglass type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0179Display position adjusting means not related to the information to be displayed
    • G02B2027/0185Displaying image at variable distance
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2202Reconstruction geometries or arrangements
    • G03H2001/2223Particular relationship between light source, hologram and observer
    • G03H2001/2226Edge lit holograms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2210/00Object characteristics
    • G03H2210/303D object
    • G03H2210/333D/2D, i.e. the object is formed of stratified 2D planes, e.g. tomographic data

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Planar Illumination Modules (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

머리 착용 이미징 시스템은 광 빔을 생성하도록 구성된 광 소스를 포함한다. 시스템은 또한, 0.1 내지 1.5mm 사이의 두께를 갖고 내부 전반사에 의해 광 빔의 적어도 일부를 전파시키도록 구성된 광 안내 광학 엘리먼트를 포함한다. 시스템은 광 안내 광학 엘리먼트의 입구 부분 및 출구 부분을 더 포함하며, 이 출구 부분은 출구 부분을 어드레싱하는 광의 입사각, 광의 곡률의 반경, 및/또는 광의 파장에 기초하여 광이 광 안내 광학 엘리먼트를 선택적으로 빠져나갈 수 있도록 구성된다.

Description

두꺼운 미디어를 포함하는 가상 현실, 증강 현실 및 혼합 현실 시스템들 및 관련된 방법들{VIRTUAL REALITY, AUGMENTED REALITY, AND MIXED REALITY SYSTEMS INCLUDING THICK MEDIA AND RELATED METHODS}
[0001] 현대의 컴퓨팅 및 디스플레이 기술들은 소위 "MR"("mixed reality"), "VR"("virtual reality") 및 "AR"("augmented reality") 경험들을 위한 시스템들의 개발을 가능하게 하였다. 이는 머리-장착 디스플레이를 통해 사용자에게 컴퓨터-생성 이미저리를 제시함으로써 행해질 수 있다. 이러한 이미저리는 사용자를 시뮬레이팅된 환경에 몰입시키는 감각적 경험을 생성한다. VR 시나리오는 통상적으로 실제 실세계 이미저리를 또한 포함하기 보다는, 컴퓨터-생성 이미저리만의 프리젠테이션(presentation)을 수반한다.
[0002] AR 시스템들은 일반적으로 시뮬레이팅된 엘리먼트들로 실세계 환경을 보완한다. 예컨대, AR 시스템들은 머리-장착 디스플레이를 통해 주변 실세계 환경의 뷰(view)를 사용자에게 제공할 수 있다. 그러나 컴퓨터-생성 이미저리가 또한 실세계 환경을 향상시키기 위해 디스플레이 상에 제시될 수 있다. 이 컴퓨터-생성 이미저리는 실세계 환경과 맥락적으로 관련된 엘리먼트들을 포함할 수 있다. 이러한 엘리먼트들은 시뮬레이팅된 텍스트, 이미지들, 객체들 등을 포함할 수 있다. MR 시스템들은 또한, 시뮬레이팅된 객체들을 실세계 환경에 도입하지만 이러한 객체들은 통상적으로 AR 시스템들 보다 더 뛰어난 정도의 상호작용성(interactivity)을 특징으로 한다. 시뮬레이팅된 엘리먼트들은 종종 실시간으로 상호작용적일 수 있다. 인간 시각 지각 시스템은 매우 복잡하고, 다른 가상 또는 실세계 이미저리 엘리먼트들 사이에서 가상 이미지 엘리먼트들의 편안하고, 자연스럽고, 풍부한 프리젠테이션을 가능하게 하는 VR/AR/MR 기술을 만들어 내는 것은 난제이다. 뇌의 시각화 센터(visualization center)는 두 눈들 및 그의 컴포넌트들의 서로에 대한 움직임으로부터 귀중한 지각 정보를 획득한다. 서로에 대한 두 눈들의 이접운동(vergence) 움직임들(즉, 객체를 응시하기 위해 눈들의 시선들을 수렴하도록 서로를 향하는 또는 서로 멀어지는 동공들의 롤링(rolling) 움직임들)은 눈들의 렌즈들의 포커싱(또는 "원근조절")과 밀접하게 연관된다. 정상 조건들하에서, 상이한 거리에 있는 객체를 포커싱하기 위해, 눈들의 렌즈들의 포커스를 변화시키거나, 또는 눈들을 원근조절하는 것은 "원근조절-이접운동 반사(accommodation-vergence reflex)"로서 알려진 관계하에서, 동일한 거리에 대한 이접운동의 매칭 변화(matching change)를 자동으로 유발할 것이다. 마찬가지로, 이접운동의 변화는 정상 조건들하에서, 원근조절의 매칭 변화를 트리거할 것이다. 대부분의 종래의 스테레오스코픽 VR/AR/MR 구성들이 그런 것처럼 이 반사에 대한 작용은 사용자들에게 눈의 피로, 두통들 또는 다른 형태들의 불편함을 초래하는 것으로 알려져 있다.
[0003] 스테레오스코픽 웨어러블 안경은 일반적으로, 3-차원 원근감이 인간 시각 시스템에 의해 지각되도록 약간 상이한 엘리먼트 프리젠테이션으로 이미지들을 디스플레이하도록 구성되는, 좌측 눈 및 우측 눈에 대한 2개의 디스플레이들을 특징으로 한다. 이러한 구성들은 3차원들로 이미지들을 지각하기 위해 극복되어야 하는, 이접운동 및 원근조절 사이의 미스매치(mismatch)("이접운동-원근조절 충돌")로 인해 다수의 사용자들에게 불편한 것으로 밝혀졌다. 사실상, 일부 사용자들은 스테레오스코픽 구성들을 용인할 수 없다. 이러한 제한들이 VR, AR 및 MR 시스템들에 적용된다. 따라서, 대부분의 종래의 VR/AR/MR 시스템들은 사용자에게 편안하고 최대로 유용한 방식으로 풍부한 양안 3-차원 경험을 제시하는 데 최적으로 적합하진 않은데, 부분적으로 그 이유는, 종래의 시스템들은 이접운동-원근조절 충돌을 포함해서, 인간 지각 시스템의 기본적인 양상들 중 일부를 해결하지 못하기 때문이다.
[0004] VR/AR/MR 시스템들은 또한 사용자에 대한 다양한 지각된 포지션들 및 거리들에 있는 가상 디지털 콘텐츠를 디스플레이하는 것이 가능해야 한다. 또한, VR/AR/MR 시스템들의 설계는 가상 디지털 콘텐츠의 전달 시에 시스템의 속도, 가상 디지털 콘텐츠의 품질, 사용자의 눈동자 거리(eye relief)(이접운동-원근조절 충돌을 해결함), 시스템의 크기 및 휴대성 및 다른 시스템 및 광학 난제들을 포함한 다수의 다른 난제들을 제시한다.
[0005] 이러한 문제들(이접운동-원근조절 충돌을 포함함)을 해결하기 위한 하나의 가능한 접근법은, 광 및 광에 의해 랜더링되는 이미지들이 다수의 깊이 평면들로부터 유래하는 것처럼 보이도록 복수의 광-안내(light guiding) 광학 엘리먼트들을 사용하여 사용자의 눈들에 광을 프로젝팅하는 것이다. 광-안내 광학 엘리먼트들은, 디지털 또는 가상 객체들에 대응하는 가상 광을 인-커플링(in-couple)하여 이를 "TIR"(total internal reflection)에 의해 전파하고, 그 후 가상 광을 아웃-커플링(out-couple)하여 디지털 또는 가상 객체들을 사용자의 눈들에 디스플레이하도록 설계된다. AR/MR 시스템들에서, 광-안내 광학 엘리먼트들은 또한 실제의 실세계 객체들로부터의(예컨대, 이로부터 반사되는) 광에 대해 투명하게 되도록 설계된다. 따라서, 광-안내 광학 엘리먼트들 중 일부들은 AR/MR 시스템들에서 실세계 객체들로부터의 실세계 광에 대해 투명하게 되면서, TIR을 통한 전파를 위해 가상 광을 반사하도록 설계된다.
[0006] 다수의 광 안내 광학 엘리먼트 시스템들을 구현하기 위해, 하나 이상의 광 소스들로부터의 광은 광 안내 광학 엘리먼트 시스템들 각각에 제어 가능하게 분배되어야 한다. 하나의 접근법은 매우 다수의 광학 엘리먼트들(예컨대, 광 소스들, 프리즘들, 격자들, 필터들, 스캔-광학기들, 빔 분할기들, 미러들, 하프-미러들, 셔터들, 접안렌즈들 등)를 사용하여 충분히 많은 수(예컨대, 6개)의 깊이 평면들의 이미지들을 프로젝팅하는 것이다. 이 접근법의 문제는 이러한 방식으로 매우 다수의 컴포넌트들을 사용하는 것은 필수적으로, 바람직한 것보다 더 큰 폼 팩터(form factor)를 필요로 하고 시스템 크기가 감소될 수 있는 정도를 제한한다는 것이다. 또한, 이들 시스템에서의 매우 다수의 광학 엘리먼트들은 더 긴 광학 경로를 초래하며, 이 때문에, 그 안에 포함된 광 및 정보가 저하될 것이다. 이러한 설계 이슈들은, 또한 전력 집약적인 성가신 시스템들을 초래한다. 본원에서 설명된 시스템들 및 방법들은 이러한 난제들을 해결하도록 구성된다.
[0007] 본 발명의 실시예들은 입사각, 곡률의 반경 및/또는 파장 면에서의 선택도(selectivity)를 가능하게 하기 위해, 단일의 두꺼운(예컨대, 약 0.1 내지 약 1.5 밀리미터 또는 "mm" 두께) 광 안내 광학 엘리먼트(예컨대, 도파관)를 사용함으로써 개선된 시스템을 제공하며, 이 광 안내 광학 엘리먼트는 더 좁은 범위의 광 곡률들, 방향들 및/또는 파장들을 갖는 광을 인-커플링 및 아웃-커플링하도록 구성된다. 도파관은 재료의 큰 동적 범위로 인해 다중 초점 평면들 및/또는 파장들의 멀티플렉싱을 허용한다. 광 안내 광학 엘리먼트를 제조하는 재료의 두께가 각도 및/또는 파장 선택도를 가능하게 하기 때문에, 도파관을 따라 전파되는 광선들의 부분만이 아웃-커플링된다. 따라서, 좁은 각도 및 필드 곡률 범위 및/또는 좁은 파장 범위에 대응하는 광 빔들이 도파관으로부터 아웃-커플링될 것이다. 도파관은 각도 및 파면 곡률 둘 모두를 보존하는 인-커플링 및 아웃-커플링 격자들의 형성(이는 인-커플링 및 아웃-커플링에 대한 개별 광선 위치 및 방향의 정밀한 제어를 허용함)을 가능하게 한다. 따라서, 다수의 뷰잉 평면들은, 단일 중합체 층에 복수의 아웃-커플링 격자들을 갖는 단일의 두꺼운 광 안내 광학 엘리먼트를 사용하여 멀티플렉싱될 수 있다.
[0008] 일 실시예에서, 머리 착용 이미징 시스템은 광 빔을 생성하도록 구성된 광 소스를 포함한다. 시스템은 또한, 0.1 내지 1.5 mm의 두께를 갖는 광 안내 광학 엘리먼트를 포함한다. 광 안내 광학 엘리먼트는 입구 부분 및 출구 부분을 포함한다. 광 안내 광학 엘리먼트는 내부 전반사에 의해 광 빔의 적어도 일부를 전파시키도록 구성된다. 광 안내 광학 엘리먼트의 출구 부분은, 출구 부분을 어드레싱(addressing)하는 광의 입사각에 기초하여 그 광이 광 안내 광학 엘리먼트를 선택적으로 빠져나갈 수 있도록 구성된다.
[0009] 다른 실시예에서, 머리 착용 이미징 시스템은 광 빔을 생성하도록 구성된 광 소스를 포함한다. 시스템은 또한, 0.1 내지 1.5 mm의 두께를 갖고 광 안내 광학 엘리먼트를 포함한다. 광 안내 광학 엘리먼트는 입구 부분 및 출구 부분을 포함한다. 광 안내 광학 엘리먼트는 내부 전반사에 의해 광 빔의 적어도 일부를 전파시키도록 구성된다. 광 안내 광학 엘리먼트의 출구 부분은, 출구 부분을 어드레싱하는 광의 파장에 기초하여 그 광이 광 안내 광학 엘리먼트를 선택적으로 빠져나갈 수 있도록 구성된다.
[0010] 또 다른 실시예에서, 머리 착용 이미징 시스템은 광 빔을 생성하도록 구성된 광 소스를 포함한다. 시스템은 또한, 0.1 내지 1.5 mm의 두께를 갖는 광 안내 광학 엘리먼트를 포함한다. 광 안내 광학 엘리먼트는 입구 부분 및 출구 부분을 포함한다. 광 안내 광학 엘리먼트는 내부 전반사에 의해 광 빔의 적어도 일부를 전파시키도록 구성된다. 광 안내 광학 엘리먼트의 출구 부분은, 출구 부분을 어드레싱하는 광의 곡률의 반경에 기초하여 그 광이 광 안내 광학 엘리먼트를 선택적으로 빠져나갈 수 있도록 구성된다.
[0011] 하나 이상의 실시예들에서, 광 안내 광학 엘리먼트는 광 안내 광학 엘리먼트를 통해 복수의 초점 평면들을 갖는 광의 멀티플렉싱을 허용한다. 광 안내 광학 엘리먼트는 광 안내 광학 엘리먼트를 통해 복수의 파장들을 갖는 광의 멀티플렉싱을 허용할 수 있다. 광 안내 광학 엘리먼트는 광 안내 광학 엘리먼트를 통해 복수의 곡률 반경들을 갖는 광의 멀티플렉싱을 허용할 수 있다. 출구 부분은 특정 깊이 평면에 대응하는 아웃-커플링 격자를 포함할 수 있다.
[0012] 하나 이상의 실시예들에서, 시스템은 또한, 광 빔이 입구 부분을 통해 광 안내 광학 엘리먼트에 진입하기 전에, 적어도 하나의 포커스를 조정함으로써 광 빔의 곡률을 조정하도록 구성된 가변 포커스 엘리먼트를 포함한다. 광 안내 광학 엘리먼트의 두께 또는 인-커플링 격자에 적어도 기초하여 광 빔의 일부가 광 안내 광학 엘리먼트를 빠져나가도록 선택될 수 있다.
[0013] 본 발명의 양상들, 목적들 및 이점들에 대한 추가의 세부사항들은 아래의 상세한 설명, 도면들 및 청구항들에서 설명된다. 위의 일반적인 설명 및 다음의 상세한 설명은 둘 모두 예시적이고 설명적이며, 본 발명의 범위에 관해 제한하는 것으로 의도되지 않는다.
[0014] 도면들은 본 발명의 다양한 실시예들의 설계 및 활용을 예시한다. 도면들은 실척대로 그려진 것이 아니며 유사한 구조들 또는 기능들의 엘리먼트들은 도면들 전체에 걸쳐 유사한 참조 번호들로 표현된다는 것이 주의되어야 한다. 본 발명의 다양한 실시예들의 위에서 언급된 그리고 다른 이점들 및 목적들이 어떻게 달성되는지를 더 잘 인지하기 위해, 위에서 간략하게 설명한 본 발명들의 보다 상세한 설명이 첨부 도면들에서 예시되는 본 발명의 특정 실시예들을 참조하여 제공될 것이다. 이들 도면들이 단지 본 발명의 통상적인 실시예들을 도시할 뿐이며, 이에 따라 본 발명의 범위를 제한하는 것으로 간주되지 않는다는 것을 이해하면서, 본 발명은 첨부된 도면들의 사용을 통해 부가적인 특이성 및 세부사항에 관해 설명되고 기술될 것이다.
[0015] 도 1은 일 실시예에 따른 광학 시스템의 상세 개략도이다.
[0016] 도 2는 일 실시예에 따른 단일의 두꺼운 광학 엘리먼트를 사용한 각도 멀티플렉싱을 도시한다.
[0017] 도 3은 일 실시예에 따른 단일의 두꺼운 광학 엘리먼트를 사용한 곡률 멀티플렉싱을 도시한다.
[0018] 도 4는 일 실시예에 따른 단일의 두꺼운 광학 엘리먼트를 사용한 스펙트럼 멀티플렉싱을 도시한다.
[0019] 도 5는 일 실시예에 따른 광학 시스템의 초점 평면들을 도시하는 도면이다.
[0020] 도 6은 일 실시예에 따른 광학 시스템의 광 안내 광학 엘리먼트의 상세 개략도이다.
[0021] 도 7은 일 실시예에 따른 광학 시스템의 광 안내 광학 엘리먼트의 상세 사시도이다.
[0001] 당업자들이 본 발명을 실시하는 것을 가능하게 하도록 본 발명의 예시적인 예들로서 제공되는 도면들을 참조하여 다양한 실시예들이 이제 상세하게 설명될 것이다. 특히, 이하의 도면들 및 예들은 본 발명의 범위를 제한하는 것으로 의도되지 않는다. 본 발명의 소정의 엘리먼트들이 알려진 컴포넌트들(또는 방법들 또는 프로세스들)을 사용하여 부분적으로 또는 완전히 구현될 수 있는 경우, 본 발명의 이해에 필수적인 그러한 알려진 컴포넌트들(또는 방법들 또는 프로세스들)의 부분들만이 설명될 것이며, 그러한 알려진 컴포넌트들(또는 방법들 또는 프로세스들)의 다른 부분들의 상세한 설명들은 본 발명을 모호하게 하지 않도록 생략될 것이다. 또한, 다양한 실시예들은 예시로 본원에서 언급된 컴포넌트들에 대한 현재 알려진 등가물들 및 미래에 알려질 등가물들을 포함한다.
[0022] 당업자들이 본 발명을 실시하는 것을 가능하게 하도록 본 발명의 예시적인 예들로서 제공되는 도면들을 참조하여 다양한 실시예들이 이제 상세하게 설명될 것이다. 특히, 이하의 도면들 및 예들은 본 발명의 범위를 제한하는 것으로 의도되지 않는다. 본 발명의 소정의 엘리먼트들이 알려진 컴포넌트들(또는 방법들 또는 프로세스들)을 사용하여 부분적으로 또는 완전히 구현될 수 있는 경우, 본 발명의 이해에 필수적인 그러한 알려진 컴포넌트들(또는 방법들 또는 프로세스들)의 부분들만이 설명될 것이며, 그러한 알려진 컴포넌트들(또는 방법들 또는 프로세스들)의 다른 부분들의 상세한 설명들은 본 발명을 모호하게 하지 않도록 생략될 것이다. 또한, 다양한 실시예들은 예시로 본원에서 언급된 컴포넌트들에 대한 현재 알려진 등가물들 및 미래에 알려질 등가물들을 포함한다.
[0023] 본원에서 설명된 광학 시스템들은 VR/AR/MR 시스템들과 독립적으로 구현될 수 있지만, 이하의 다수의 실시예들은 단지 예시 목적들을 위해 VR/AR/MR 시스템들과 관련하여 설명된다.
문제점 및 솔루션의 요약
[0024] 다양한 깊이들의 이미지들을 생성하기 위한 광학 시스템의 하나의 유형은, 3D 경험/시나리오의 품질(예컨대, 이미징 평면들의 수) 및 이미지들의 품질(예컨대, 이미지 컬러들의 수)이 증가함에 따라, 수적으로 증가하는 다수의 광학 컴포넌트들(예컨대, 광 소스들, 프리즘들, 격자들, 필터들, 스캔-광학기들, 빔 분할기들, 미러들, 하프-미러들, 셔터들, 접안렌즈들 등)을 포함하고, 그리하여 VR/AR/MR 시스템들의 복잡성, 크기 및 비용을 증가시킨다. 증가하는 3D 시나리오/이미지 품질에 따른 광학 시스템들의 증가하는 크기는, VR/AR/MR 시스템들의 크기에 제한을 두어 감소된 광학 효율을 갖는 성가신 시스템들을 초래한다.
[0025] 다수의 광 안내 광학 엘리먼트들의 머리 장착 이미징 시스템을 구현하기 위해, 하나 이상의 소스들로부터의 광이 제어 가능하게 분배되어야 한다. 레거시 솔루션들은 하나 이상의 광 소스들로부터의 광을, 고품질 VR/AR/MR 시나리오들을 렌더링하는 데 필요한 복수의 광 안내 광학 엘리먼트들(예컨대, 평면 도파관들)에 선택적으로 분배하면서, 광학 시스템들의 크기를 감소시키기 위해, 다양한 시스템 컴포넌트들 및 설계들을 포함하는 다양한 광 분배 시스템들을 활용하는 시스템들을 사용하는 것을 수반했다. 이러한 다수의 광 안내 광학 엘리먼트 유형의 시스템들을 사용하는 것의 문제는, 얇은 회절 엘리먼트들이 도파관을 따라 전파되는 광선들의 회절에서 스펙트럼 및 각도 선택도를 거의 갖지 않는다는 것이다. 이는 다수의 뷰 평면들 및/또는 원색들을 제공하는 단일 도파관의 능력을 제한한다.
[0026] 따라서, 레거시 솔루션들에서 다수의 뷰 평면들 및 원색들을 제공하기 위해 다수의 도파관들이 필요하다. 레거시 시스템들은 스택된 "LOE"(light guiding optical element) 어셈블리를 사용함으로써 다수의 깊이 평면들을 생성하며, 각각의 LOE는 특정 깊이 평면으로부터 유래한 것처럼 보이는 이미지들을 디스플레이하도록 구성된다. 스택은 임의의 수의 LOE들을 포함할 수 있다는 것이 주의되어야 한다. 그러나 N개의 깊이 평면들을 생성하기 위해 적어도 N개의 스택된 LOE들이 필요하다. 또한, N개, 2N개 또는 3N개의 스택된 LOE들은 N개의 깊이 평면들의 RGB 컬러 이미지들을 생성하는 데 사용될 수 있다. 그러나 다수의 도파관들을 사용하는 것은, 다수의 이슈들, 이를테면, 다중-평면 스위칭 엘리먼트들에 대한 요건들, 층들의 정렬의 어려움, 결과적인 접안렌즈들의 두께 및 다수의 표면 반사들로부터의 산란 효과들을 도입한다.
[0027] 다음의 개시내용은 더 적은 컴포넌트들 및 증가된 효율을 갖는 광학 시스템들을 제공함으로써, 문제를 해결하는 단일의 두꺼운 광 안내 광학 엘리먼트를 사용하여 3D 지각을 생성하기 위한 시스템들 및 방법들의 다양한 실시예들을 설명한다. 특히, 본원에서 설명된 시스템들은 단일의 두꺼운 광 안내 광학 엘리먼트를 활용하여, 입사각, 곡률의 반경 및 광의 파장에 기초하여 하나 이상의 광 소스들로부터의 광을, 고품질 VR/AR/MR 시나리오들을 렌더링하는 데 필요한 광 안내 광학 엘리먼트로 선택적으로 분배하면서, 광학 시스템 컴포넌트들의 수를 감소시킨다.
예시적인 광학 시스템들
[0028] 광 분배 시스템들의 실시예들의 세부사항들을 설명하기 전에, 본 개시내용은 이제 예시적인 광학 시스템들의 간략한 설명을 제공할 것이다. 실시예들은 임의의 광학 시스템과 함께 사용될 수 있지만, 특정 시스템들(예컨대, VR/AR/MR 시스템들)은 실시예들의 근간이 되는 기술들을 예시하기 위해 설명된다.
[0029] 사용자에게 3D 가상 콘텐츠를 제공하기 위해, VR/AR/MR 시스템들은, 가상 콘텐츠의 이미지들이 Z 방향(즉, 사용자의 눈으로부터 직각으로 멀어지는 방향)의 다양한 깊이 평면들로부터 유래한 것처럼 보이도록 이 가상 콘텐츠의 이미지들을 사용자의 눈에 프로젝팅한다. 즉, 가상 콘텐츠는 X 및 Y 방향들에서(즉, 사용자의 눈의 중심 시각 축에 직교하는 2D 평면에서)에서 변할뿐만 아니라, 그것은 Z 방향에서도 변하는 것처럼 보일 수 있어서, 사용자는 객체가 매우 가깝게 있거나 무한대 거리에 또는 그 사이의 임의의 거리에 있는 것으로 지각할 수 있다. 다른 실시예들에서, 사용자는 상이한 깊이 평면들의 다수의 객체들을 동시에 지각할 수 있다. 예컨대, 사용자는 무한대로부터 나타나고 사용자를 향해 나아가는 가상의 용을 볼 수 있다. 대안적으로, 사용자는, 사용자로부터 3m 떨어진 거리의 가상의 새 및 사용자로부터 팔의 길이의(약 1m의) 가상의 커피 컵을 동시에 볼 수 있다.
[0030] 다중-평면 포커스 시스템들은 사용자의 눈으로부터 Z-방향의 각각의 고정된 거리들에 로케이팅된 복수의 깊이 평면들 중 일부 또는 전부에 있는 이미지들을 프로젝팅함으로써 가변 깊이의 지각을 생성한다. 이제 도 5를 참조하면, 다중-평면 포커스 시스템이 통상적으로, 고정된 깊이 평면들(502)(예컨대, 도 5에 도시된 6개의 깊이 평면들(502))의 프레임들을 디스플레이한다는 것이 인지되어야 한다. VR/AR/MR 시스템들이 임의의 수의 깊이 평면들(502)을 포함할 수 있지만, 일 예시적인 다중-평면 포커스 시스템은 Z-방향에서 6개의 고정된 깊이 평면들(502)을 갖는다. 6개의 깊이 평면들(502) 중 하나 이상에서 가상 콘텐츠를 생성하면, 사용자가 사용자의 눈으로부터의 다양한 거리들에 있는 하나 이상의 가상 객체들을 지각하도록, 3D 지각이 생성된다. 인간의 눈이, 멀리 떨어져 있는 것처럼 보이는 객체보다 거리가 더 가까운 객체들에 더 민감하다는 것을 고려하면, 도 5에 도시된 바와 같이, 더 많은 깊이 평면들(502)이 눈에 더 가깝게 생성된다. 다른 실시예들에서, 깊이 평면들(502)은 서로 동일한 거리만큼 떨어져 배치될 수 있다.
[0031] 깊이 평면 포지션들(502)은 통상적으로, 미터로 측정된 초점 길이의 역과 동일한 광 파워(optical power)의 단위인 디옵터로 측정된다. 예컨대, 일 실시예에서, 깊이 평면 1은 1/3 디옵터만큼 떨어져 있을 수 있고, 깊이 평면 2는 0.3 디옵터만큼 떨어져 있을 수 있고, 깊이 평면 3은 0.2 디옵터만큼 떨어져 있을 수 있고, 깊이 평면 4은 0.15 디옵터만큼 떨어져 있을 수 있고, 깊이 평면 5는 0.1 디옵터만큼 떨어져 있을 수 있고, 깊이 평면 6은 무한대(즉, 0 디옵터만큼 떨어짐)를 표현할 수 있다. 다른 실시예들은 다른 거리/디옵터의 깊이 평면들(502)을 생성할 수 있다는 것이 인지되어야 한다. 따라서, 전략적으로 배치된 깊이 평면(502)에 있는 가상 콘텐츠를 생성하면, 사용자는 가상 객체들을 3차원으로 지각할 수 있다. 예컨대, 사용자는, 깊이 평면 1에 디스플레이될 때 제1 가상 객체를 가까이 있는 것으로 지각할 수 있는 반면, 다른 가상 객체는 깊이 평면 6에서 무한대로 나타난다. 대안적으로, 가상 객체는, 가상 객체가 사용자에게 매우 가까이 나타날 때까지, 먼저 깊이 평면 6에, 그 후 깊이 평면 5에 디스플레이 되는 식으로 디스플레이될 수 있다. 위의 예들은 예시 목적들을 위해 상당히 단순화되었다는 것이 인지되어야 한다. 다른 실시예에서, 모든 6개의 깊이 평면들은 사용자로부터 떨어진 특정 초점 거리에 집중될 수 있다. 예컨대, 디스플레이될 가상 콘텐츠가 사용자로부터 1/2 미터 떨어진 커피 컵인 경우, 모든 6개의 깊이 평면들은 커피 컵의 다양한 단면들에서 생성되어, 사용자에게 커피 컵의 고도로 세분화된 3D 뷰를 제공할 수 있다.
[0032] 일 실시예에서, VR/AR/MR 시스템은 다중-평면 포커스 시스템으로서 작동할 수 있다. 즉, 단일 LOE(190)가 조명되어서, 6개의 고정된 깊이 평면들로부터 유래하는 것처럼 보이는 이미지들이 동시에 생성되며, 광 소스는 이미지 정보를 LOE로 신속하게 전달한다. 예컨대, 광학 무한대에 있는 하늘의 이미지를 포함하는 원하는 이미지의 일부는, 시간 1에 주입될 수 있고 광의 시준(collimation)을 유지한 LOE(190)(예컨대, 도 5의 깊이 평면 6)가 활용될 수 있다. 그 후, 더 가까운 나뭇가지의 이미지가 시간 2에 주입될 수 있고, 10 미터 떨어진 깊이 평면(예컨대, 도 5의 깊이 평면 5)으로부터 유래하는 것처럼 보이는 이미지를 생성하도록 구성된 LOE(190)가 활용될 수 있고; 그 후 펜의 이미지가 시간 3에 주입될 수 있고, 1 미터 떨어진 깊이 평면으로부터 유래하는 것처럼 보이는 이미지를 생성하도록 구성된 LOE가 활용될 수 있다. 이러한 유형의 패러다임은 사용자의 눈 및 뇌(예컨대, 시각 피질)가 입력을 동일한 이미지의 모든 부분인 것으로 지각하도록 신속한 시간 순차적(예컨대, 360 Hz) 방식으로 반복될 수 있다.
[0033] 일부 VR/AR/MR 시스템들은 3D 경험을 위한 이미지들을 생성하기 위해 Z 축(즉, 깊이 평면들)을 따라 다양한 위치들로부터 유래하는 것처럼 보이는 이미지들을 프로젝팅(즉, 광 빔들을 발산 또는 수렴시킴으로써)한다. 본 출원에서 사용되는 바와 같이, "광 빔들" 또는 "광선들"은 광 소스로부터 방사되는 광 에너지(가시 및 비가시 광 에너지를 포함함)의 지향성 프로젝션들을 포함(그러나 이에 제한되지 않음)한다. 다양한 깊이 평면들로부터 유래하는 것처럼 보이는 이미지들을 생성하는 것은 그 이미지에 대한 사용자의 눈의 이접운동 및 원근조절에 따르고 이접운동-원근조절 충돌을 최소화 또는 제거한다.
[0034] VR/AR/MR 시스템들을 구현하기 위한 하나의 가능한 접근법은 각각의 깊이 평면들로부터 유래하는 것처럼 보이는 이미지들을 생성하기 위해 상이한 깊이 평면 정보에 대응하는 격자들이 임베딩되는 단일의 두꺼운 체적 위상 홀로그램(volume phase hologram) 또는 "LOE"(light guiding optical element)를 사용한다. 즉, 회절 패턴, 또는 "DOE"(diffractive optical element)가 LOE 상에 각인되거나 또는 그 내에 임베딩될 수 있어서, 광이 LOE를 따라 실질적으로 내부 전반사됨에 따라, 그 광이 다수의 위치들에서 회절 패턴과 교차하고 사용자의 눈을 향해 빠져나간다. DOE들은, LOE로부터 DOE들을 통해 빠져나가는 광이 버징되어서(verged), 이들이 특정 깊이 평면으로부터 유래하는 것처럼 보이도록 구성된다.
[0035] 두꺼운 LOE는 또한 DOE(예컨대, 인-커플링 및 아웃-커플링 격자들)가 파장 전체에 걸쳐 파면들의 곡률을 보존할 수 있게 한다. 이는 광이 LOE에 진입하기 전에 포커싱될 수 있게 하고, 그리하여 안경의 "렌즈"로부터 멀어지는 방향으로 "VFE"(variable focus element)를 이동시킴으로써 디스플레이들의 두께를 최소화한다. 따라서, 접안렌즈에 커플링된 광의 방향 및 곡률을 제어하는 것은 안경의 "렌즈"로부터 나오는 개별 광선들의 방향 및 곡률에 직접적으로 대응할 것이다.
[0036] 접안렌즈(즉, LOE)는, 단순화된 디스플레이 구성을 허용하기 위해 레코딩을 위한 에지-도입 기준 빔 및 디스플레이를 위한 유사 조명 빔을 사용함으로써 에지-라이트(edge-lit) 홀로그래피의 원리들을 적용한다. 이러한 유형의 디스플레이는 홀로그램(즉, LOE), 그의 지지 디스플레이 구조 및 조명 소스를 콤팩트 디바이스에 통합한다.
[0037] 통상적으로, 반사 및 투과 홀로그램들은 각각이 그 자신의 고유한 광학 성질들을 갖는 독특한 유형들로 간주된다. 반사 홀로그램과 투과 홀로그램 간의 핵심적인 차이는 그의 주변부(fringe)들의 기하학적 배향이다. 이는, 투과 유형들의 경우 홀로그램의 면에 수직으로 그리고 반사 유형들의 경우 홀로그램의 면에 평행하게 이어지는 바와 같은 그의 각각의 기준 빔들의 상이한 방향들에 직접적으로 기인한다.
[0038] 이 시스템은 또한 Kogelnik의 결합파(Coupled wave) 이론을 이용하여 체적 격자들 및 홀로그램들에서의 회절을 활용한다. Kogelnik의 이론은 단지 두 개의 평면파들만이 유한 두께 격자 내부 및 외부로 전파된다고 가정한다. Kogelnik의 결합파 이론은 정현파 체적 격자들에서의 회절을 이해하고 회절 효율 계산을 위한 분석 공식들을 제공하는 데 있어 성공적인 접근법이다. 제1 파는 조명 "기준" 파인 것으로 가정하고 제2 "신호" 파는 홀로그램의 응답이다. 2-파 가정은 고차 모드들로의 커플링이 무시할 수 있을 것이라는 가정에 기초한다.
[0039] 도 1은 단일 깊이 평면의 이미지들을 프로젝팅하기 위한 기본 광학 시스템(100)을 도시한다. 시스템(100)은 광 소스(120), 및 ICG(in-coupling grating)(192) 및 "OCG"(out-coupling grating)(198)를 갖는 LOE(190)를 포함한다. 광 소스(120)는 DLP, LCOS, LCD 및 섬유 스캔 디스플레이(Fiber Scanned Display)를 포함(그러나 이에 제한되지 않음)하는 임의의 적합한 이미징 광 소스일 수 있다. 이러한 광 소스들은 본원에서 설명된 시스템들(100) 중 임의의 것과 함께 사용될 수 있다. ICG(192) 및 OCG(198)는 볼류메트릭 또는 표면 릴리프(surface relief)를 포함하는 임의의 유형의 회절 광학 엘리먼트들일 수 있다. ICG(192) 및 OCG(198)는 LOE(190)의 반사-모드 알루미늄 처리된(aluminized) 부분일 수 있다. 대안적으로, ICG(192) 및 OCG(198)는 LOE(190)의 투과 회절 부분일 수 있다. 시스템(100)이 사용중일 때, 광 소스(120)로부터의 가상 광 빔(210)은 ICG(192)를 통해 LOE(190)에 진입하고, 실질적으로 "TIR"(total internal reflection)에 의해 LOE(190)를 따라 전파되고, 사용자의 눈으로의 디스플레이를 위해 OCG(198)를 통해 LOE(190)를 빠져나간다. 광 빔(210)은 그것이 시스템(100)에 의해 지시된 바와 같은 이미지 또는 그 일부를 인코딩하기 때문에 가상이다. 단지 하나의 빔이 도 1에 예시되지만, 이미지를 인코딩하는 다수의 빔들이 동일한 ICG(192)를 통해 광범위한 각도들로부터 LOE(190)에 진입하고 하나 이상의 OCG(198)를 통해 빠져나갈 수 있다는 것이 이해된다. LOE에 "진입하는" 또는 "들어가게 허락된" 광 빔은 실질적으로 TIR에 의해 LOE를 따라 전파되도록 LOE와 상호작용하는 광 빔을 포함(그러나 이에 제한되지 않음)한다. 도 1에 도시된 시스템(100)은 다양한 광 소스들(120)(예컨대, LED들, OLED들, 레이저들 및 마스킹된 광역/광대역 이미터들)을 포함할 수 있다. 광 소스(120)로부터의 광은 또한 광섬유 케이블들(도시되지 않음)을 통해 LOE(190)로 전달될 수 있다.
EDGE를 위한 두꺼운 미디어
[0040] 도 2는 단일의 두꺼운 광 안내 광학 엘리먼트(190)를 사용한 각도 멀티플렉싱을 도시한다. 일부 실시예들에서, 두꺼운 광학 엘리먼트는 약 0.1 내지 약 1.5 mm 두께이다. 다른 실시예들에서, 두꺼운 광학 엘리먼트는 약 0.5mm 두께이다. 두꺼운 홀로그래픽 광학 엘리먼트는 이를 통해 안내되는 광의 각도, 곡률의 반경 및 파장에서 보다 정밀한 선택도를 가능하게 한다. 도파관 내로 커플링되는 광의 방향 및 곡률을 제어함으로써, 시스템은 도파관 외부로 커플링될 개별 광선들의 방향 및 곡률을 제어할 수 있다. 시스템은 또한 작은 변조 인덱스로 매우 효율적인 홀로그램들(즉, 상이한 깊이 평면들로부터 유래하는 것처럼 보이는 이미지들)을 생성할 수 있다. 홀로그램들은 광학 격자들 및 벌크 재료의 굴절률을 매우 작은 스케일로 변조함으로써 만들어진다.
[0041] 다양한 속성들(예컨대, 파장, 곡률의 반경 및/또는 인-커플링 각도들)에 의존하는 두꺼운 LOE 선택 광선들은 시스템이 도파관을 통한 광선들의 출력을 제어할 수 있게 한다. 이는 재료들의 큰 동적 범위로 인해 단일 엘리먼트를 통해 다수의 초점 평면들 및 파장들(예컨대, 컬러)의 멀티플렉싱을 허용한다. 일부 실시예들에서, 재료 동적 범위는, 주어진 회절 효율 멀티플렉싱에 대해 더 많은 홀로그램들이 멀티플렉싱될 수 있도록 0.01 변조이다. 단일의 두꺼운 홀로그래픽 광학 엘리먼트를 사용하는 이점들은 각도 및 파장의 높은 선택도 및 도파관 전반에 걸친 파 곡률들의 보존으로 인해 단지 하나의 도파관만이 필요하다는 것이다.
[0042] (회절된 광이 인입 광선들과 동일한 측으로부터 빠져나가는) 반사 지오메트리들 및 (회절된 광이 인입 광선들과 대향하는 측으로부터 빠져나가는) 투과 지오메트리 둘 모두의 홀로그램들이 도파관을 통해 구현될 수 있다. Kogelnik의 결합파 이론에 의해 설명된 바와 같이, 파장 선택도를 가능하게 하도록 반사 홀로그램들을 사용하는 것이 바람직하다.
[0043] 도 2에 도시된 바와 같이, 매우 좁은 각도 및 곡률의 반경 범위에 대응하는 광선들만이 도파관으로부터 아웃-커플링된다. 시스템은, 광 소스에 의해 생성된 광의 입사각들의 범위, 파장들의 범위 및 곡률의 반경들의 범위를 제어함으로써 도파관 외부로 커플링될 개별 광선들(203)의 방향 및 곡률을 제어할 수 있다. 광 빔들의 선택도는 광 안내 광학 엘리먼트(190)가 제조되는 재료의 두께 및 그 내부에 제조된 광학 엘리먼트들에 의해 결정되기 때문에, 단지 소수의 선택 광선들만이 회절된다.
[0044] LOE는 광이 도파관 내부에서 전파되는 전체 범위를 통해 선택적일 수 있다. LOE가 선택적인 곡률의 반경의 범위는 격자들이 형성되는 중합체 층(205)의 두께에 의존한다. 예컨대, 1mm 두께의 중합체 층을 갖는 두꺼운 LOE의 경우, LOE의 곡률들의 반경들의 범위는 약 1m일 수 있다. LOE의 파장 선택도는 LOE가 투과 또는 반사 모드에서 사용되는지 여부 및 홀로그램들의 곡률에 의존한다. 반사 모드에서, 파장 선택도는 몇 나노미터만큼 작을 수 있다. 입사각들, 곡률의 반경들 및 파장들의 차이들에 대한 LOE의 민감도는 LOE의 지오메트리에 의존하며 상호 의존적일 수 있다.
[0045] 위에서 언급된 바와 같이, 도파관이 각도 및 파면 곡률 둘 모두를 보존하기 때문에, 개별 출사 광선(203) 위치 및 방향이 제어될 수 있으며, 이는 이는, 입력 광을 제어함으로써 개별 출사 광선 위치 및 방향의 선택적 제어를 허용한다. 그러므로, 다수의 뷰잉 평면 동공들이 다수의 격자 위치들에서 멀티플렉싱될 수 있어서, 동공 확장을 허용한다.
[0046] 시스템은 또한 홀로그램에 의해 회절된 구면 광선들의 광의 곡률(즉, 곡률의 반경)을 제어함으로써 깊이 평면들을 변경할 수 있다. 종래 기술의 시스템들에서, (즉, 시준된 광의) 평면파들은 어떠한 곡률도 갖지 않는다. 그러나, 이 시스템은 특정 파면의 곡률을 상이한 방향으로 나아가는 특정 광선에 매칭시키는 것을 허용한다.
[0047] 격자들(207)은 간섭 패턴을 생성하는 간섭 광 빔들에 기초하여 중합체 층(205)에 각인(wirte)될 수 있다. 격자들(207)은 입력 광 빔들의 다양한 특성들에 의존하여 다양한 광 빔들을 다수의 장소들이나 하나의 장소로 회절시키나 또는 어디에도 전혀 회절시키지 않을 수 있다. 각각의 격자(207)는 미리 결정된 입력 방향으로부터 다른 미리 결정된 선택적 출력 방향으로 하나의 세트의 빔들을 회절시킨다. 따라서, 좁은 빔들만이 중합체 층(205)에서 격자들(207)에 의해 회절될 것이다. 중합체 재료의 전체 깊이 내의 체적과 상호작용하는 광은 광 빔 컴포넌트들이 보강적으로 합쳐질 수 있게 한다. 중합체 재료는 약 0.1 mm 내지 약 1.5 mm의 두께를 가질 수 있다. 이는 단지 하나의 빔이 인-커플링되고 하나의 빔이 아웃-커플링될 수 있게 한다. 부가적으로, 시스템은 LOE 및 중합체 층(205)의 중첩을 사용할 수 있으며, 여기서 격자들(207)은 광선의 입력에 기초하여 홀로그램 외부로 투과된 또는 반사된 광선의 시야각을 확장시키도록 형성된다.
[0048] 멀티플렉싱은 시스템이 단일의 접안렌즈를 사용하여 다양한 깊이 평면들의 이미지를 생성할 수 있게 하며, 이는 가상 객체들의 겉보기 깊이(apparent depth)를 변경한다. 일부 실시예들에서, 시스템은 도파관으로의 광 인-커플링의 파면 곡률을 조정할 수 있는 VFE(Variable Focus Element)를 포함할 것이다. VFE는 프로젝팅된 광의 포커스(즉, 파면 곡률)를 변동시키고 광을 사용자의 눈들로 투과시키도록 구성 가능하다. 또한, 위에서 언급된 바와 같이, 입력 격자들은, 특정 각도 및 파장의 광선들만이 인-커플링되도록 프로그래밍될 수 있다. 각도 멀티플렉싱은 또한 입력 대물 렌즈들의 왜곡을 보상할 수 있다.
[0049] 도 3은 단일의 두꺼운 광학 엘리먼트(301)를 사용하는 곡률 멀티플렉싱을 도시한다. 체적 홀로그램들은 도파관(301)으로의 광 인-커플링의 파면 곡률을 보존하기에 충분히 두껍다. 일부 실시예들에서, 시스템은, 격자의 패턴에 기초하여 광 소스에 의해 생성된 광의 입사각의 범위, 파장의 범위 및 곡률의 반경의 범위를 제어함으로써 도파관(301) 외부로 커플링될 개별 광선들(303)의 곡률을 제어할 수 있다. 일부 실시예들에서, 개별 광선들(305)은 격자의 선택된 각도로 인해 도파관(301) 외부로 커플링되지 않을 것이다. 예컨대, 광 빔들의 각도의 선택도에 기초하여 단지 소수의 선택적 곡률 광선들(예컨대, 303)이 아웃 커플링된다.
[0050] 일부 실시예들에서, 시스템은 단일 접안렌즈/도파관에서 다수의 깊이 평면들을 멀티플렉싱할 것이다. 그러나, 시스템은 기존의 도파관들 및 격자들을 그대로 사용할 수 없는데, 그 이유는 이들이 병렬로 회절될 직선 파들(즉, 시준된 광 빔들)만을 수용할 것이기 때문이다. 이는 단일 도파관을 사용하여 깊이를 생성하지 않을 것이다. 한편, 개시된 시스템은 출력 파면 곡률들을 입력 파면 곡률들과 매칭시킨다. 홀로그램은 광의 단편(piece)이 접안렌즈로 들어오는 미리 결정된 방향, 각도, 및 곡률을 갖는 경우에만 그것을 회절시키도록 구성될 수 있다.
[0051] 위에서 언급된 바와 같이, 개별 출사 광선(303) 위치 및 곡률이 제어될 수 있는 데 그 이유는, 도파관이 각도 및 파면 곡률 둘 모두에서 선택적이기 때문이다(이는 입력 광선의 입사각의 범위 및 입력 광선의 곡률의 반경을 제어함으로써 개별 출사 광선 위치 및 곡률의 선택적 제어를 허용함). 따라서, 곡률들은 다수의 격자 위치들에서 멀티플렉싱된 채로 보존될 수 있다.
[0052] 도 4는 단일의 두꺼운 광학 엘리먼트를 사용한 스펙트럼 멀티플렉싱을 도시한다. 체적 홀로그램은 특히, 스펙트럼에 민감하다. 일부 실시예들에서, 이는 R 401, G 403 및 B 405 컬러 컴포넌트들이 단일 층 도파관에서 멀티플렉싱될 수 있게 한다. 다른 실시예들에서, 분산 보상은 스페클(speckle)을 감소시키기 위해 "SLED 또는 SLD"(superluminescent diode) 또는 혼돈 레이저(chaotic laser)와 같은 더 넓은 대역폭의 광 소스들의 사용을 허용할 수 있다.
동공 확장기들
[0053] 도 6에 도시된 바와 같이, 위에서 설명된 LOE들(190)의 부분들은, Y-방향에서 광 소스(120)의 개구 수를 증가시키고 그리하여 시스템(100)의 분해능을 증가시키기 위한 "EPE"(exit pupil expander)(196)들로서 기능할 수 있다. 광 소스(120)가 작은 직경/스폿 크기의 광을 생성하기 때문에, EPE(196)는 시스템 분해능을 증가시키도록, LOE(190)를 빠져나가는 광의 동공의 외견상 크기(apparent size)를 확장시킨다. VR/AR/MR 시스템(100)은 추가로, EPE(196) 외에도, "OPE"(orthogonal pupil expander)(194)를 더 포함하여 X(OPE) 및 Y(EPE) 방향들 둘 모두에서 광을 확장시킬 수 있다. EPE들(196) 및 OPE들(194)에 대한 더 많은 세부사항들은 위에서 참조된 미국 특허 출원 일련 번호 제14/555,585호 및 미국 특허 출원 일련 번호 제14/726,424호에서 설명되며, 이 출원들의 내용들은 인용에 의해 앞서 포함되었다.
[0054] 도 7은 ICG(192), OPE(194) 및 EPE(196)를 갖는 LOE(190)를 포함하는 다른 광학 시스템(100)을 도시한다. 시스템(100)은 또한, ICG(192)를 통해 가상 광 빔(210)을 LOE(190)로 지향시키도록 구성된 광 소스(120)를 포함한다. 광 빔(210)은 위에서 도 6과 관련하여 설명된 바와 같이, OPE(194) 및 EPE(196)에 의해 빔릿(beamlet)들(210')로 분할된다. 또한, 빔릿들(210')이 EPE(196)를 통해 전파됨에 따라, 이들은 또한, EPE(196)를 통해 사용자의 눈을 향해 LOE(190)를 빠져나간다. 명확성을 위해 단지 선택 빔들(210) 및 빔릿들(210')만이 라벨링된다.
[0055] 위에서 설명된 VR/AR/MR 시스템들은 보다 선택적 반사성 광학 엘리먼트들로부터 혜택을 받을 수 있는 다양한 광학 시스템들의 예들로서 제공된다. 따라서, 본원에서 설명된 광학 시스템들의 사용은 개시된 VR/AR/MR 시스템들로 제한되지 않으며, 오히려 임의의 광학 시스템에 적용 가능하다.
[0056] 본 발명의 다양한 예시적인 실시예들이 본원에서 설명된다. 비-제한적인 의미로 이들 예들에 대한 참조가 행해진다. 그 예들은, 본 발명의 더 넓게 적용 가능한 양상들을 예시하기 위해 제공된다. 다양한 변화들이 설명된 발명에 대해 행해질 수 있으며, 등가물들이 본 발명의 실제 사상 및 범위를 벗어나지 않으면서 대체될 수 있다. 부가적으로, 다수의 수정들은, 특정 상황, 재료, 재료의 조성, 프로세스, 프로세스 동작(들) 또는 단계(들)를 본 발명의 목적(들), 사상 또는 범위에 적응시키도록 행해질 수 있다. 추가로, 본원에서 설명되고 예시된 개별 변동들 각각은, 본 발명들의 사상 또는 범위를 벗어나지 않으면서 다른 여러 개의 실시예들 중 임의의 실시예의 특징들로부터 쉽게 분리될 수 있거나 이들과 결합될 수 있는 이산 컴포넌트들 및 특징들을 갖는다는 것이 당업자들에 의해 인지될 것이다. 그러한 모든 수정들은, 본 개시내용과 연관된 청구항들의 범위 내에 있는 것으로 의도된다.
[0057] 본 발명은, 본 발명의 디바이스들을 사용하여 수행될 수 있는 방법들을 포함한다. 방법들은, 그러한 적절한 디바이스를 제공하는 동작을 포함할 수 있다. 그러한 제공은 최종 사용자에 의해 수행될 수 있다. 즉, "제공하는" 동작은 단지, 최종 사용자가 본 방법에서 필수적인 디바이스를 제공하도록 획득, 액세스, 접근, 포지셔닝, 셋-업, 활성화, 파워-업 또는 달리 동작하는 것을 요구한다. 본원에서 인용된 방법들은, 논리적으로 가능한 임의의 순서의 인용된 이벤트들 뿐만 아니라 인용된 순서의 이벤트들로 수행될 수 있다.
[0058] 본 발명의 예시적인 양상들은, 재료 선택 및 제조에 대한 세부사항들과 함께 위에서 기술되었다. 본 발명의 다른 세부사항들에 대해, 이들은, 위에서-참조된 특허들 및 공개공보들과 관련하여 인지될 뿐만 아니라 당업자들에 의해 일반적으로 알려지거나 인지될 수 있다. 이들은 공통적으로 또는 논리적으로 이용되는 바와 같은 부가적인 동작들의 관점들에서 본 발명의 방법-기반 양상들에 적용될 수 있다.
[0059] 부가적으로, 본 발명이 다양한 특징들을 선택적으로 포함하는 여러 개의 예들을 참조하여 설명되었지만, 본 발명은, 본 발명의 각각의 변동에 대해 고려된 바와 같이 설명되거나 표시된 것으로 제한되지 않을 것이다. 다양한 변화들이 설명된 발명에 대해 행해질 수 있으며, (본원에서 인용되었는지 또는 일부 간략화를 위해 포함되지 않았는지 여부에 관계없이) 등가물들이 본 발명의 실제 사상 및 범위를 벗어나지 않으면서 대체될 수 있다. 부가적으로, 다양한 값들이 제공되는 경우, 그 범위의 상한과 하한 사이의 모든 각각의 개재 값 및 그 언급된 범위 내의 임의의 다른 언급된 또는 개재 값이 본 발명 내에 포함되는 것으로 해석된다.
[0060] 또한, 설명된 본 발명의 변동들의 임의의 선택적인 특징이 본원에 설명된 특징들 중 임의의 하나 이상에 독립적으로 또는 그에 결합하여 기술되고 청구될 수 있다는 것이 고려된다. 단수 아이템에 대한 참조는, 복수의 동일한 아이템들이 존재하는 가능성을 포함한다. 보다 구체적으로, 본원 및 본원에 연관된 청구항들에서 사용된 바와 같이, 단수 형태들은, 명확하게 달리 언급되지 않으면 복수의 지시 대상들을 포함한다. 즉, 단수들의 사용은 본 개시내용과 연관된 청구항들뿐 아니라 위의 설명의 청구대상 아이템 중 "적어도 하나"를 허용한다. 이 청구항들이 임의의 선택적인 엘리먼트를 배제하도록 작성될 수 있다는 것에 추가로 주의한다. 따라서, 이런 서술은 청구항 엘리먼트들의 나열과 관련하여 "오로지", "오직" 등 같은 그런 배타적인 용어의 사용, 또는 "부정적" 제한의 사용을 위한 선행 기초로서 역할을 하도록 의도된다.
[0061] 그런 배타적 용어의 사용 없이, 본 개시내용과 연관된 청구항들에서 "포함하는" 이라는 용어는, 주어진 수의 엘리먼트들이 그런 청구항들에 열거되는지, 또는 특징의 부가가 그 청구항들에 기술된 엘리먼트의 성질을 변환하는 것으로 간주될 수 있는지 여부에 무관하게 임의의 부가적인 엘리먼트의 포함을 허용할 수 있다. 본원에 구체적으로 정의된 바를 제외하고, 본원에 사용된 모든 기술적 및 과학적 용어들은 청구항 유효성을 유지하면서 가능한 한 일반적으로 이해되는 의미로 넓게 제공되어야 한다.
[0062] 본 발명의 범위는 제공된 예들 및/또는 본원 명세서로 제한되는 것이 아니라, 오히려 본 개시내용과 연관된 청구항 문언의 범위에 의해서만 제한된다.
[0063] 위의 명세서에서, 본 발명은 본 발명의 특정 실시예들을 참조하여 설명되었다. 그러나, 본 발명의 더 넓은 사상 및 범위를 벗어나지 않으면서 다양한 수정들 및 변경들이 본 발명에 대해 행해질 수 있다는 것은 명백할 것이다. 예컨대, 위에서-설명된 프로세스 흐름들은, 프로세스 동작들의 특정한 순서를 참조하여 설명된다. 그러나, 설명된 프로세스 동작들 대부분의 순서는 본 발명의 범위 또는 동작에 영향을 주지 않으면서 변경될 수 있다. 따라서, 명세서 및 도면들은 제한적인 의미보다는 예시적인 의미로 간주될 것이다.

Claims (8)

  1. 사용자의 눈으로부터의 다양한 거리들에 이미지들을 생성하기 위한 머리 착용 이미징 시스템으로서,
    광 빔을 생성하도록 구성된 광 소스; 및
    0.1 내지 1.5 mm의 두께를 갖고 입구 부분 및 출구 부분을 포함하는 광 안내 광학 엘리먼트를 포함하고,
    하나의 광 안내 광학 엘리먼트가 복수의 깊이 평면들을 생성하도록 구성되고,
    상기 복수의 깊이 평면들 각각은 상기 다양한 거리들의 각각의 거리에 로케이팅되고,
    상기 광 안내 광학 엘리먼트는 내부 전반사에 의해 상기 광 빔의 적어도 일부를 전파시키도록 구성되고,
    상기 광 안내 광학 엘리먼트의 출구 부분은, 상기 출구 부분을 어드레싱(addressing)하는 광이 상기 광 안내 광학 엘리먼트를 빠져나가는 것을 상기 광의 파장에 기초하여 선택적으로 허용하도록 구성되고,
    상기 하나의 광 안내 광학 엘리먼트에 복수의 격자들이 임베딩되고, 상기 복수의 격자들 각각은 상기 복수의 깊이 평면들 각각에 대응하여, 상기 하나의 광 안내 광학 엘리먼트를 통해 복수의 파장들을 가지는 광의 멀티플렉싱을 허용하고,
    상기 출구 부분은 상기 하나의 광 안내 엘리먼트에 복수의 아웃-커플링 격자들을 포함하며, 상기 복수의 아웃-커플링 격자들 각각은 상기 복수의 깊이 평면들 중 특정 깊이 평면에 대응하는,
    머리 착용 이미징 시스템.
  2. 삭제
  3. 제1항에 있어서,
    상기 광 빔이 상기 입구 부분을 통해 상기 광 안내 광학 엘리먼트에 진입하기 전에, 적어도 하나의 포커스를 조정함으로써 상기 광 빔의 곡률을 조정하도록 구성된 가변 포커스 엘리먼트를 더 포함하는,
    머리 착용 이미징 시스템.
  4. 제1항에 있어서,
    상기 광 안내 광학 엘리먼트의 두께 또는 인-커플링 격자에 적어도 기초하여 광 빔의 일부가 상기 광 안내 광학 엘리먼트를 빠져나가도록 선택되는,
    머리 착용 이미징 시스템.
  5. 사용자의 눈으로부터의 다양한 거리들에 이미지들을 생성하기 위한 머리 착용 이미징 시스템으로서,
    광 빔을 생성하도록 구성된 광 소스; 및
    0.1 내지 1.5 mm의 두께를 갖고 입구 부분 및 출구 부분을 포함하는 광 안내 광학 엘리먼트를 포함하고,
    하나의 광 안내 광학 엘리먼트가 복수의 깊이 평면들을 생성하도록 구성되고,
    상기 복수의 깊이 평면들 각각은 상기 다양한 거리들의 각각의 거리에 로케이팅되고,
    상기 광 안내 광학 엘리먼트는 내부 전반사에 의해 상기 광 빔의 적어도 일부를 전파시키도록 구성되고,
    상기 광 안내 광학 엘리먼트의 출구 부분은, 상기 출구 부분을 어드레싱하는 광이 상기 광 안내 광학 엘리먼트를 빠져나가는 것을 상기 광의 파면 곡률에 기초하여 선택적으로 허용하도록 구성되고,
    상기 하나의 광 안내 광학 엘리먼트에 복수의 격자들이 임베딩되고, 상기 복수의 격자들 각각은 상기 복수의 깊이 평면들 각각에 대응하여, 상기 하나의 광 안내 광학 엘리먼트를 통해 복수의 파장들을 가지는 광의 멀티플렉싱을 허용하고,
    상기 출구 부분은 상기 하나의 광 안내 엘리먼트에 복수의 아웃-커플링 격자들을 포함하며, 상기 복수의 아웃-커플링 격자들 각각은 상기 복수의 깊이 평면들 중 특정 깊이 평면에 대응하는,
    머리 착용 이미징 시스템.
  6. 삭제
  7. 제5항에 있어서,
    상기 광 빔이 상기 입구 부분을 통해 상기 광 안내 광학 엘리먼트에 진입하기 전에, 적어도 하나의 포커스를 조정함으로써 상기 광 빔의 곡률을 조정하도록 구성된 가변 포커스 엘리먼트를 더 포함하는,
    머리 착용 이미징 시스템.
  8. 제5항에 있어서,
    상기 광 안내 광학 엘리먼트의 두께 또는 인-커플링 격자에 적어도 기초하여 광 빔의 일부가 상기 광 안내 광학 엘리먼트를 빠져나가도록 선택되는,
    머리 착용 이미징 시스템.
KR1020217036013A 2016-09-07 2017-09-07 두꺼운 미디어를 포함하는 가상 현실, 증강 현실 및 혼합 현실 시스템들 및 관련된 방법들 KR102519016B1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201662384552P 2016-09-07 2016-09-07
US62/384,552 2016-09-07
PCT/US2017/050541 WO2018049066A1 (en) 2016-09-07 2017-09-07 Virtual reality, augmented reality, and mixed reality systems including thick media and related methods
KR1020197009888A KR102324728B1 (ko) 2016-09-07 2017-09-07 두꺼운 미디어를 포함하는 가상 현실, 증강 현실 및 혼합 현실 시스템들 및 관련된 방법들

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020197009888A Division KR102324728B1 (ko) 2016-09-07 2017-09-07 두꺼운 미디어를 포함하는 가상 현실, 증강 현실 및 혼합 현실 시스템들 및 관련된 방법들

Publications (2)

Publication Number Publication Date
KR20210135360A KR20210135360A (ko) 2021-11-12
KR102519016B1 true KR102519016B1 (ko) 2023-04-05

Family

ID=61280622

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020197009888A KR102324728B1 (ko) 2016-09-07 2017-09-07 두꺼운 미디어를 포함하는 가상 현실, 증강 현실 및 혼합 현실 시스템들 및 관련된 방법들
KR1020217036013A KR102519016B1 (ko) 2016-09-07 2017-09-07 두꺼운 미디어를 포함하는 가상 현실, 증강 현실 및 혼합 현실 시스템들 및 관련된 방법들

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020197009888A KR102324728B1 (ko) 2016-09-07 2017-09-07 두꺼운 미디어를 포함하는 가상 현실, 증강 현실 및 혼합 현실 시스템들 및 관련된 방법들

Country Status (7)

Country Link
US (3) US10539799B2 (ko)
EP (2) EP4286958A3 (ko)
JP (3) JP6938623B2 (ko)
KR (2) KR102324728B1 (ko)
CN (2) CN109642716B (ko)
CA (1) CA3035452A1 (ko)
WO (1) WO2018049066A1 (ko)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102324728B1 (ko) * 2016-09-07 2021-11-10 매직 립, 인코포레이티드 두꺼운 미디어를 포함하는 가상 현실, 증강 현실 및 혼합 현실 시스템들 및 관련된 방법들
US10371896B2 (en) * 2016-12-22 2019-08-06 Magic Leap, Inc. Color separation in planar waveguides using dichroic filters
US11822078B2 (en) 2017-03-07 2023-11-21 Apple Inc. Head-mounted display system
US10338400B2 (en) 2017-07-03 2019-07-02 Holovisions LLC Augmented reality eyewear with VAPE or wear technology
US10859834B2 (en) 2017-07-03 2020-12-08 Holovisions Space-efficient optical structures for wide field-of-view augmented reality (AR) eyewear
US11782273B2 (en) 2017-10-04 2023-10-10 Akonia Holographics Llc Comb-shifted skew mirrors
CN112673298A (zh) 2018-07-05 2021-04-16 奇跃公司 用于头戴式显示系统的基于波导的照明
US20200183163A1 (en) * 2018-12-11 2020-06-11 Digilens Inc. Methods and Apparatuses for Providing a Single Grating Layer Color Holographic Waveguide Display
US11656458B2 (en) 2019-01-23 2023-05-23 Fusao Ishii Optics of a display using an optical light guide
CN113330348B (zh) * 2019-01-24 2023-01-24 鲁姆斯有限公司 包括具有三阶段扩展的loe的光学系统
JP2022520472A (ja) 2019-02-15 2022-03-30 ディジレンズ インコーポレイテッド 統合された格子を使用してホログラフィック導波管ディスプレイを提供するための方法および装置
DE102019108677A1 (de) * 2019-04-03 2020-10-08 Carl Zeiss Jena Gmbh Vorrichtungen zum Erzeugen von Leuchtverteilungen mit Lichtwellenleitern
EP3980825A4 (en) 2019-06-07 2023-05-03 Digilens Inc. WAVEGUIDES INCORPORATING TRANSPARENT AND REFLECTIVE GRATINGS AND METHODS OF MAKING THEREOF
EP4022370A4 (en) 2019-08-29 2023-08-30 Digilens Inc. VACUUM BRAGG GRATINGS AND METHODS OF MANUFACTURING
US11054566B2 (en) * 2019-10-25 2021-07-06 Facebook Technologies, Llc Display waveguide with a high-index layer
US20210302731A1 (en) * 2020-03-31 2021-09-30 Luminit Llc Laser-based waveguided illumination for front-lit liquid crystal on silicon display
DE102021110734A1 (de) 2021-04-27 2022-10-27 Carl Zeiss Jena Gmbh Optisches System für schwebende Hologramme
DE102021111673A1 (de) 2021-05-05 2022-11-10 Carl Zeiss Jena Gmbh Beleuchtungsmodul zur Beleuchtung einer Fläche sowie Bildgebereinheit mit einem solchen Beleuchtungsmodul
FI130493B (en) * 2021-10-08 2023-10-06 Dispelix Oy Improved optical waveguide arrangement

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060132914A1 (en) 2003-06-10 2006-06-22 Victor Weiss Method and system for displaying an informative image against a background image
JP2012042654A (ja) * 2010-08-18 2012-03-01 Sony Corp 表示装置
US20130038944A1 (en) 2011-08-09 2013-02-14 Samsung Electronics Co., Ltd. Device and method for controlling curvature of lens surface
US20150346490A1 (en) 2014-05-30 2015-12-03 Magic Leap, Inc. Methods and systems for generating virtual content display with a virtual or augmented reality apparatus
US20160116739A1 (en) * 2014-09-29 2016-04-28 Magic Leap, Inc. Architectures and methods for outputting different wavelength light out of waveguides

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5228103A (en) * 1992-08-17 1993-07-13 University Of Maryland Monolithically integrated wavelength division multiplexing laser array
US6347874B1 (en) 2000-02-16 2002-02-19 3M Innovative Properties Company Wedge light extractor with risers
IL148804A (en) 2002-03-21 2007-02-11 Yaacov Amitai Optical device
KR20030088218A (ko) * 2002-05-13 2003-11-19 삼성전자주식회사 착용형 컬러 디스플레이 시스템
JP4655771B2 (ja) * 2005-06-17 2011-03-23 ソニー株式会社 光学装置及び虚像表示装置
JP4810949B2 (ja) * 2005-09-29 2011-11-09 ソニー株式会社 光学装置及び画像表示装置
US7736006B2 (en) * 2005-11-21 2010-06-15 Microvision, Inc. Substrate-guided display with improved image quality
FR2948775B1 (fr) * 2009-07-31 2011-12-02 Horiba Jobin Yvon Sas Systeme optique planaire d'imagerie polychromatique a large champ de vision
US8810913B2 (en) * 2010-01-25 2014-08-19 Bae Systems Plc Projection display
US20110213664A1 (en) * 2010-02-28 2011-09-01 Osterhout Group, Inc. Local advertising content on an interactive head-mounted eyepiece
JP5499985B2 (ja) * 2010-08-09 2014-05-21 ソニー株式会社 表示装置組立体
US8649099B2 (en) * 2010-09-13 2014-02-11 Vuzix Corporation Prismatic multiple waveguide for near-eye display
US10156722B2 (en) 2010-12-24 2018-12-18 Magic Leap, Inc. Methods and systems for displaying stereoscopy with a freeform optical system with addressable focus for virtual and augmented reality
EP2751611B1 (en) * 2011-08-29 2018-01-10 Vuzix Corporation Controllable waveguide for near-eye display applications
WO2013180737A1 (en) * 2012-06-01 2013-12-05 Hewlett-Packard Development Company, L.P. Directional backlight with a modulation layer
CN104737061B (zh) * 2012-06-11 2018-01-16 奇跃公司 使用波导反射器阵列投射器的多深度平面三维显示器
US9671566B2 (en) 2012-06-11 2017-06-06 Magic Leap, Inc. Planar waveguide apparatus with diffraction element(s) and system employing same
US9262869B2 (en) * 2012-07-12 2016-02-16 UL See Inc. Method of 3D model morphing driven by facial tracking and electronic device using the method the same
CN103629625B (zh) * 2012-08-24 2016-01-20 财团法人车辆研究测试中心 模块化微结构导光装置
US20140160543A1 (en) * 2012-12-10 2014-06-12 Samsung Electronics Co., Ltd. Holographic imaging optical device
FR2999301B1 (fr) * 2012-12-12 2015-01-09 Thales Sa Guide optique d'images collimatees a dedoubleur de faisceaux optiques et dispositif optique associe
JP6197295B2 (ja) * 2013-01-22 2017-09-20 セイコーエプソン株式会社 光学デバイス及び画像表示装置
US10295338B2 (en) * 2013-07-12 2019-05-21 Magic Leap, Inc. Method and system for generating map data from an image
US9164290B2 (en) * 2013-11-06 2015-10-20 Microsoft Corporation Grating configurations for a tiled waveguide display
US9857591B2 (en) 2014-05-30 2018-01-02 Magic Leap, Inc. Methods and system for creating focal planes in virtual and augmented reality
CN110542938B (zh) 2013-11-27 2023-04-18 奇跃公司 虚拟和增强现实系统与方法
JP6322975B2 (ja) * 2013-11-29 2018-05-16 セイコーエプソン株式会社 光学デバイスおよび電子機器
US9465215B2 (en) * 2014-03-28 2016-10-11 Google Inc. Lightguide with multiple in-coupling holograms for head wearable display
CN104656258B (zh) * 2015-02-05 2017-06-16 上海理湃光晶技术有限公司 屈光度可调的曲面波导近眼光学显示器件
US10197805B2 (en) * 2015-05-04 2019-02-05 North Inc. Systems, devices, and methods for eyeboxes with heterogeneous exit pupils
KR102324728B1 (ko) * 2016-09-07 2021-11-10 매직 립, 인코포레이티드 두꺼운 미디어를 포함하는 가상 현실, 증강 현실 및 혼합 현실 시스템들 및 관련된 방법들

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060132914A1 (en) 2003-06-10 2006-06-22 Victor Weiss Method and system for displaying an informative image against a background image
JP2012042654A (ja) * 2010-08-18 2012-03-01 Sony Corp 表示装置
US20130038944A1 (en) 2011-08-09 2013-02-14 Samsung Electronics Co., Ltd. Device and method for controlling curvature of lens surface
US20150346490A1 (en) 2014-05-30 2015-12-03 Magic Leap, Inc. Methods and systems for generating virtual content display with a virtual or augmented reality apparatus
US20160116739A1 (en) * 2014-09-29 2016-04-28 Magic Leap, Inc. Architectures and methods for outputting different wavelength light out of waveguides

Also Published As

Publication number Publication date
WO2018049066A1 (en) 2018-03-15
EP4286958A3 (en) 2024-02-28
CN113467093A (zh) 2021-10-01
EP3510321A1 (en) 2019-07-17
US20220163807A1 (en) 2022-05-26
CN109642716B (zh) 2021-07-23
JP7088997B2 (ja) 2022-06-21
CN109642716A (zh) 2019-04-16
EP3510321B1 (en) 2023-10-25
JP2022118077A (ja) 2022-08-12
CN113467093B (zh) 2023-09-22
JP7175416B2 (ja) 2022-11-18
JP6938623B2 (ja) 2021-09-22
KR20210135360A (ko) 2021-11-12
US20200142198A1 (en) 2020-05-07
US10539799B2 (en) 2020-01-21
US11789273B2 (en) 2023-10-17
JP2020201511A (ja) 2020-12-17
CA3035452A1 (en) 2018-03-15
US11281006B2 (en) 2022-03-22
EP3510321A4 (en) 2019-09-11
JP2019530146A (ja) 2019-10-17
KR102324728B1 (ko) 2021-11-10
US20180067318A1 (en) 2018-03-08
KR20190052042A (ko) 2019-05-15
EP4286958A2 (en) 2023-12-06

Similar Documents

Publication Publication Date Title
KR102519016B1 (ko) 두꺼운 미디어를 포함하는 가상 현실, 증강 현실 및 혼합 현실 시스템들 및 관련된 방법들
JP7299950B2 (ja) 仮想および拡張現実システムおよび方法
JP7212806B2 (ja) 仮想現実、拡張現実、および複合現実システムのための接眼レンズ
JP7397924B2 (ja) 分割瞳のための空間光変調器照明を伴うディスプレイシステム
JP6994940B2 (ja) 光結合を用いたヘッドマウント型画像装置
CN111683584A (zh) 用于增强现实显示系统的目镜
KR20180125600A (ko) 증강 현실을 위한 시스템들 및 방법들
US20230375787A1 (en) Bragg gratings for an augmented reality display system
US11774758B2 (en) Waveguide display with multiple monochromatic projectors
Xia et al. Challenges and advancements for AR optical see-through near-eye displays: a review
US11709358B2 (en) Staircase in-coupling for waveguide display

Legal Events

Date Code Title Description
A107 Divisional application of patent
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant