KR102518328B1 - Methods and Apparatus for Highly Reflective Aluminum Layers - Google Patents

Methods and Apparatus for Highly Reflective Aluminum Layers Download PDF

Info

Publication number
KR102518328B1
KR102518328B1 KR1020207034777A KR20207034777A KR102518328B1 KR 102518328 B1 KR102518328 B1 KR 102518328B1 KR 1020207034777 A KR1020207034777 A KR 1020207034777A KR 20207034777 A KR20207034777 A KR 20207034777A KR 102518328 B1 KR102518328 B1 KR 102518328B1
Authority
KR
South Korea
Prior art keywords
cobalt
layer
depositing
titanium
substrate
Prior art date
Application number
KR1020207034777A
Other languages
Korean (ko)
Other versions
KR20200140925A (en
Inventor
재클린 렌치
리치 우
시앙 닝 우
폴 마
상-호 유
푸취안 그레이스 바시크나논트
노부유키 사사키
Original Assignee
어플라이드 머티어리얼스, 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 어플라이드 머티어리얼스, 인코포레이티드 filed Critical 어플라이드 머티어리얼스, 인코포레이티드
Publication of KR20200140925A publication Critical patent/KR20200140925A/en
Application granted granted Critical
Publication of KR102518328B1 publication Critical patent/KR102518328B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • C23C16/0281Deposition of sub-layers, e.g. to promote the adhesion of the main coating of metallic sub-layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/08Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metal halides
    • C23C16/12Deposition of aluminium only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67276Production flow monitoring, e.g. for increasing throughput
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0209Pretreatment of the material to be coated by heating
    • C23C16/0218Pretreatment of the material to be coated by heating in a reactive atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • C23C16/20Deposition of aluminium only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02186Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing titanium, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02658Pretreatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67253Process monitoring, e.g. flow or thickness monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76843Barrier, adhesion or liner layers formed in openings in a dielectric
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76843Barrier, adhesion or liner layers formed in openings in a dielectric
    • H01L21/76846Layer combinations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76871Layers specifically deposited to enhance or enable the nucleation of further layers, i.e. seed layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14685Process for coatings or optical elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14698Post-treatment for the devices, e.g. annealing, impurity-gettering, shor-circuit elimination, recrystallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/0007Applications not otherwise provided for
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1463Pixel isolation structures

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electromagnetism (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Optics & Photonics (AREA)
  • Chemical Vapour Deposition (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

기판 상의 알루미늄 층의 반사율을 증가시키기 위한 방법들 및 장치가 제공된다. 일부 실시예들에서, 기판 상에 알루미늄 층을 증착하는 방법은, CVD(chemical vapor deposition) 프로세스를 이용하여 기판 상에 코발트 또는 코발트 합금 층 또는 티타늄 또는 티타늄 합금 층을 증착하는 단계, 코발트 또는 코발트 합금 층의 상단 표면이 손상되면 대략 섭씨 400도의 온도에서의 열 수소 어닐을 이용하여 코발트 또는 코발트 합금 층을 전-처리하는 단계, 및 대략 섭씨 120도의 온도에서의 CVD 프로세스를 이용하여 코발트 또는 코발트 합금 층 또는 티타늄 또는 티타늄 합금 층 상에 알루미늄 층을 증착하는 단계를 포함한다. 대략 60초 내지 대략 120초의 지속기간 동안 코발트 또는 코발트 합금 층의 전-처리가 완수될 수 있다.Methods and apparatus are provided for increasing the reflectance of an aluminum layer on a substrate. In some embodiments, a method of depositing an aluminum layer on a substrate includes depositing a cobalt or cobalt alloy layer or a titanium or titanium alloy layer on the substrate using a chemical vapor deposition (CVD) process, cobalt or cobalt alloy If the top surface of the layer is damaged, pre-treating the cobalt or cobalt alloy layer using a thermal hydrogen anneal at a temperature of approximately 400 degrees Celsius, and the cobalt or cobalt alloy layer using a CVD process at a temperature of approximately 120 degrees Celsius. or depositing an aluminum layer on the titanium or titanium alloy layer. Pre-treatment of the cobalt or cobalt alloy layer may be completed for a duration of about 60 seconds to about 120 seconds.

Description

고 반사율 알루미늄 층들을 위한 방법들 및 장치Methods and Apparatus for Highly Reflective Aluminum Layers

[0001] 본 원리들의 실시예들은 일반적으로, 반도체 프로세싱에 관한 것이다.[0001] Embodiments of the present principles relate generally to semiconductor processing.

[0002] 반도체들은, 제어된 프로세싱 환경에서 기판들(예컨대, 반도체 웨이퍼들)을 프로세싱하는 능력을 갖는 하나 이상의 프로세스 챔버들에서 형성된다. 프로세스 챔버들 중 일부는 기판 상에 예컨대 알루미늄과 같은 재료들을 증착하기 위해 사용된다. 알루미늄의 전도성 및 반사성 특성들에 기인하여, 알루미늄은 반도체 설계들의 많은 상이한 요소들에 통합되었다. 이미지 센서들은 흔히, 센서의 동작에 필요한 반사성 특성들을 제공하기 위해 알루미늄을 사용한다. 반도체 프로세스들은 통상적으로, 실리콘으로 만들어진 기판 상에, 대개는 기판 상에 증착된 티타늄 나이트라이드(TiN) 층 상에 알루미늄 층을 증착한다. 그러나, 본 발명자들은, TiN 상에 증착될 때 알루미늄의 반사율이 일반적으로 넓은 대역의 파장들에 걸쳐 50% 미만의 반사율로 좋지 않았다(poor)는 것을 관찰했다. 좋지 않은 반사율은 이미지 센서들의 성능에 악영향을 미친다.[0002] Semiconductors are formed in one or more process chambers having the ability to process substrates (eg, semiconductor wafers) in a controlled processing environment. Some of the process chambers are used to deposit materials such as aluminum on a substrate. Due to aluminum's conductive and reflective properties, aluminum has been incorporated into many different elements of semiconductor designs. Image sensors often use aluminum to provide the reflective properties necessary for the operation of the sensor. Semiconductor processes typically deposit an aluminum layer on a substrate made of silicon, usually a titanium nitride (TiN) layer deposited on the substrate. However, the inventors have observed that the reflectance of aluminum when deposited on TiN is poor, generally less than 50% reflectance over a wide band of wavelengths. Poor reflectivity adversely affects the performance of image sensors.

[0003] 따라서, 본 발명자들은, 높은 반사율을 갖는 알루미늄 층의 증착을 위한 개선된 방법들 및 장치를 제공했다.[0003] Accordingly, the inventors have provided improved methods and apparatus for the deposition of an aluminum layer having high reflectivity.

[0004] 방법들 및 장치는 반도체 프로세스들을 위해 증가된 알루미늄 반사율을 제공한다.[0004] Methods and apparatus provide increased aluminum reflectance for semiconductor processes.

[0005] 일부 실시예들에서, 기판 상에 알루미늄 층을 증착하는 방법은, 기판 상에 코발트 또는 코발트 합금 층 또는 티타늄 또는 티타늄 합금 층을 증착하는 단계, 및 코발트 또는 코발트 합금 층 또는 티타늄 또는 티타늄 합금 층 상에 알루미늄 층을 증착하는 단계를 포함한다.[0005] In some embodiments, a method of depositing an aluminum layer on a substrate includes depositing a cobalt or cobalt alloy layer or a titanium or titanium alloy layer on the substrate, and a cobalt or cobalt alloy layer or titanium or titanium alloy layer on the substrate. and depositing an aluminum layer on the layer.

[0006] 일부 실시예들에서, 방법은, 알루미늄 층을 증착하기 전에 열 수소 어닐(thermal hydrogen anneal)을 이용하여 코발트 또는 코발트 합금 층을 전-처리(pre-treating)하는 단계; 대략 섭씨 300도 내지 대략 섭씨 400도의 온도에서 코발트 또는 코발트 합금 층을 전-처리하는 단계; 대략 60초 내지 대략 120초의 지속기간 동안 코발트 또는 코발트 합금 층을 전-처리하는 단계 ―알루미늄 층은 대략 250 nm 내지 대략 900 nm의 파장들에 대해 적어도 대략 80%의 반사율을 가짐―; 코발트 또는 코발트 합금 층 또는 티타늄 또는 티타늄 합금 층을 대략 20 옹스트롬 내지 대략 30 옹스트롬의 두께로 증착하는 단계; CVD(chemical vapor deposition) 프로세스, MOCVD(metal-organic chemical vapor deposition) 프로세스 또는 PVD(physical vapor deposition) 프로세스를 이용하여 코발트 또는 코발트 합금 층 또는 티타늄 또는 티타늄 합금 층을 증착하는 단계 ―코발트 또는 코발트 합금 층은 코발트 또는 코발트 실리콘을 포함하고, 티타늄 또는 티타늄 합금 층은 티타늄, 티타늄 실리콘 또는 티타늄 알루미늄을 포함함―; 알루미늄 층을 대략 300 옹스트롬 내지 대략 1,000 옹스트롬의 두께로 증착하는 단계; 대략 섭씨 60도 내지 대략 섭씨 250도의 온도에서 알루미늄 층을 증착하는 단계; 반응 가스(reactant gas)로서 수소 가스, 암모니아 가스, 하이드라진 화합물 가스, 수소와 암모니아의 혼합 가스, 또는 수소와 하이드라진의 화합물 가스를 사용하여 알루미늄 층을 증착하는 단계; 알레인(alane) 유형 전구체 또는 알킬 유형 전구체를 사용하여 알루미늄 층을 증착하는 단계 ―알레인 유형 전구체는 트리메틸아민-알레인 보레인(TMAAB), 메틸 피리딘 알루미늄 또는 디메틸에틸아민-알레인을 포함하고, 알킬 유형 전구체는 디메틸알루미늄 하이드라이드(DMAH)를 포함함―; 및/또는 기판 상에 증착된 티타늄 나이트라이드 층 상에 코발트 또는 코발트 합금 층 또는 티타늄 또는 티타늄 합금 층을 증착하는 단계를 더 포함할 수 있다.[0006] In some embodiments, a method includes pre-treating a cobalt or cobalt alloy layer using a thermal hydrogen anneal prior to depositing an aluminum layer; pre-treating the cobalt or cobalt alloy layer at a temperature of about 300 degrees Celsius to about 400 degrees Celsius; pre-treating the cobalt or cobalt alloy layer for a duration of about 60 seconds to about 120 seconds, wherein the aluminum layer has a reflectance of at least about 80% for wavelengths between about 250 nm and about 900 nm; depositing a layer of cobalt or cobalt alloy or a layer of titanium or titanium alloy to a thickness of about 20 angstroms to about 30 angstroms; Depositing a cobalt or cobalt alloy layer or a titanium or titanium alloy layer using a chemical vapor deposition (CVD) process, a metal-organic chemical vapor deposition (MOCVD) process, or a physical vapor deposition (PVD) process—a cobalt or cobalt alloy layer. comprises cobalt or cobalt silicon, and the titanium or titanium alloy layer comprises titanium, titanium silicon or titanium aluminum; depositing an aluminum layer to a thickness of between approximately 300 Angstroms and approximately 1,000 Angstroms; depositing an aluminum layer at a temperature of about 60 degrees Celsius to about 250 degrees Celsius; depositing an aluminum layer using hydrogen gas, ammonia gas, hydrazine compound gas, a mixed gas of hydrogen and ammonia, or a compound gas of hydrogen and hydrazine as a reactant gas; Depositing an aluminum layer using an alane type precursor or an alkyl type precursor, wherein the alane type precursor comprises trimethylamine-alane borane (TMAAB), methyl pyridine aluminum or dimethylethylamine-alane and , alkyl type precursors include dimethylaluminum hydride (DMAH); and/or depositing a cobalt or cobalt alloy layer or a titanium or titanium alloy layer on the titanium nitride layer deposited on the substrate.

[0007] 일부 실시예들에서, 기판 상에 알루미늄 층을 증착하는 방법은, CVD(chemical vapor deposition) 프로세스를 이용하여 기판 상에 코발트 또는 코발트 합금 층 또는 티타늄 또는 티타늄 합금 층을 대략 20 옹스트롬 내지 대략 30 옹스트롬의 두께로 증착하는 단계, 코발트 또는 코발트 합금 층의 상단 표면이 손상되면(compromised), 대략 섭씨 400도의 온도에서의 열 수소 어닐을 이용하여 코발트 또는 코발트 합금 층을 전-처리하는 단계, 및 대략 섭씨 120도의 온도에서의 CVD 프로세스를 이용하여 코발트 또는 코발트 합금 층 또는 티타늄 또는 티타늄 합금 층 상에 알루미늄 층을 대략 300 옹스트롬 내지 대략 1,000 옹스트롬의 두께로 증착하는 단계를 포함한다.[0007] In some embodiments, a method of depositing an aluminum layer on a substrate comprises depositing a cobalt or cobalt alloy layer or a titanium or titanium alloy layer on the substrate using a chemical vapor deposition (CVD) process in a thickness of from about 20 angstroms to about depositing to a thickness of 30 angstroms, pre-treating the cobalt or cobalt alloy layer using a thermal hydrogen anneal at a temperature of approximately 400 degrees Celsius once the top surface of the cobalt or cobalt alloy layer is compromised, and depositing an aluminum layer to a thickness of about 300 angstroms to about 1,000 angstroms on the cobalt or cobalt alloy layer or the titanium or titanium alloy layer using a CVD process at a temperature of about 120 degrees Celsius.

[0008] 일부 실시예들에서, 방법은, 대략 60초 내지 대략 120초의 지속기간 동안 코발트 또는 코발트 합금 층을 전-처리하는 단계; 기판 상에 증착된 티타늄 나이트라이드 층 상에 코발트 또는 코발트 합금 층 또는 티타늄 또는 티타늄 합금 층을 증착하는 단계를 더 포함하고, 그리고/또는 알루미늄 층은 대략 250 nm 내지 대략 900 nm의 파장들에 대해 적어도 대략 80%의 반사율을 갖는다.[0008] In some embodiments, a method includes pre-treating a cobalt or cobalt alloy layer for a duration of about 60 seconds to about 120 seconds; depositing a cobalt or cobalt alloy layer or a titanium or titanium alloy layer on the titanium nitride layer deposited on the substrate, and/or the aluminum layer is at least for wavelengths from about 250 nm to about 900 nm; It has a reflectance of about 80%.

[0009] 일부 실시예들에서, 반도체 디바이스에서 다양한 파장들을 반사하기 위한 장치는, 실리콘-기반 재료로 형성된 기판, 기판의 실리콘-기반 재료 상에 증착된 티타늄 나이트라이드 층, 티타늄 나이트라이드 층 상에 증착된 코발트 또는 코발트 합금 층 또는 티타늄 또는 티타늄 합금 층, 및 코발트 또는 코발트 합금 층 또는 티타늄 또는 티타늄 합금 층 상에 증착된 알루미늄 층을 포함한다.[0009] In some embodiments, an apparatus for reflecting various wavelengths in a semiconductor device includes a substrate formed of a silicon-based material, a titanium nitride layer deposited on the silicon-based material of the substrate, or a titanium nitride layer on the titanium nitride layer. deposited cobalt or cobalt alloy layer or titanium or titanium alloy layer, and an aluminum layer deposited on the cobalt or cobalt alloy layer or titanium or titanium alloy layer.

[0010] 일부 실시예들에서, 장치는, 기판에 형성된, 측면(side)들 및 바닥과 함께 개구를 갖는 고 종횡비 피처(high aspect ratio feature)를 더 포함할 수 있고, 여기서, 알루미늄 층은 고 종횡비 피처의 측면들 및 바닥에 컨포멀(conformal)하고, 그리고/또는 알루미늄 층은 적어도 80%의 반사율을 갖는다.[0010] In some embodiments, the device may further include a high aspect ratio feature having an opening with sides and a bottom formed in the substrate, wherein the aluminum layer is Conformal to the sides and bottom of the aspect ratio feature, and/or the aluminum layer has a reflectivity of at least 80%.

[0011] 다른 그리고 추가적인 실시예들이 아래에서 개시된다.[0011] Other and additional embodiments are disclosed below.

[0012] 위에서 간략히 요약되며 아래에서 더욱 상세히 논의되는 본 원리들의 실시예들은, 첨부된 도면들에 도시된 본 원리들의 예시적인 실시예들을 참조하여 이해될 수 있다. 그러나, 첨부된 도면들은 본 원리들의 통상적인 실시예들만을 예시하며, 이에 따라 범위를 제한하는 것으로 간주되지 않아야 하는데, 이는 본 원리들이 다른 동일하게 유효한 실시예들을 허용할 수 있기 때문이다.
[0013] 도 1은 본 원리들의 일부 실시예들에 따른, 고 반사율 알루미늄 층들을 형성하는 방법이다.
[0014] 도 2는 본 원리들의 일부 실시예들에 따른, 도 1의 방법으로 형성된 구조의 단면도를 도시한다.
[0015] 도 3은 본 원리들의 일부 실시예들에 따른, 도 1의 방법으로 형성된, 알루미늄 층을 갖는 구조의 단면도를 도시한다.
[0016] 도 4는 본 원리들의 일부 실시예들에 따른, 알루미늄 층을 갖는 고-종횡비 피처의 단면도를 도시한다.
[0017] 도 5는 본 원리들의 일부 실시예들에 따른, 다양한 파장들에 걸친, 알루미늄 층의 반사율의 그래프를 도시한다.
[0018] 도 6은 본 원리들의 일부 실시예들에 따른, 알루미늄 층의 비교(comparative) 입자 사이즈의 그래프를 도시한다.
[0019] 도 7은 본 원리들의 일부 실시예들에 따른, 어닐링 프로세스를 겪은 후의 알루미늄 층의 비교 반사율의 그래프를 도시한다.
[0020] 이해를 용이하게 하기 위해, 도면들에 대해 공통인 동일한 요소들을 지정하기 위해 가능한 경우 동일한 참조 번호들이 사용되었다. 도면들은 실척대로 그려지지 않으며, 명확성을 위해 단순화될 수 있다. 일 실시예의 요소들 및 특징들은 유익하게, 추가적인 언급 없이, 다른 실시예들에 통합될 수 있다.
[0012] Embodiments of the present principles, briefly summarized above and discussed in more detail below, can be understood with reference to exemplary embodiments of the present principles illustrated in the accompanying drawings. However, the accompanying drawings illustrate only typical embodiments of the present principles and should therefore not be regarded as limiting in scope, as the present principles may admit to other equally valid embodiments.
1 is a method of forming high reflectivity aluminum layers, according to some embodiments of the present principles.
[0014] FIG. 2 shows a cross-sectional view of a structure formed by the method of FIG. 1, in accordance with some embodiments of the present principles.
[0015] FIG. 3 shows a cross-sectional view of a structure having an aluminum layer, formed by the method of FIG. 1, according to some embodiments of the present principles.
[0016] FIG. 4 shows a cross-sectional view of a high-aspect ratio feature having an aluminum layer, in accordance with some embodiments of the present principles.
[0017] FIG. 5 shows a graph of reflectance of an aluminum layer over various wavelengths, in accordance with some embodiments of the present principles.
[0018] FIG. 6 shows a graph of comparative grain size of an aluminum layer, according to some embodiments of the present principles.
7 shows a graph of comparative reflectance of an aluminum layer after undergoing an annealing process, in accordance with some embodiments of the present principles.
[0020] For ease of understanding, like reference numbers have been used where possible to designate like elements that are common to the drawings. The drawings are not drawn to scale and may have been simplified for clarity. Elements and features of one embodiment may advantageously be incorporated into other embodiments without further recitation.

[0021] 방법들 및 장치는 반도체 기판 상에 고 반사율 알루미늄 층을 제공한다. 코발트 또는 코발트 합금 하부층(underlayer) 또는 티타늄 또는 티타늄 합금 하부층은 유리하게는, 알루미늄 층의 평활도(smoothness)를 증가시키고, 이는 결국, 넓은 대역의 파장들에 걸쳐 반사율을 증가시킨다. 방법들 및 장치는 또한, 증가된 반사율을 유지하면서, 매우 컨포멀한 알루미늄 층을 제공한다. 고 반사율은 또한, 열 프로세싱을 필요로 하는 후속하는 반도체 프로세스들 후에 유익하게 유지된다.[0021] Methods and apparatus provide a high reflectivity aluminum layer on a semiconductor substrate. A cobalt or cobalt alloy underlayer or a titanium or titanium alloy underlayer advantageously increases the smoothness of the aluminum layer, which in turn increases reflectance over a broad band of wavelengths. The methods and apparatus also provide a highly conformal aluminum layer while maintaining increased reflectivity. The high reflectivity is also beneficially maintained after subsequent semiconductor processes requiring thermal processing.

[0022] 본 발명자들은, 텅스텐(W), 루테늄(Ru) 또는 티타늄 나이트라이드(TiN)와 같은 하부층들을 사용하는 것이 넓은 대역의 파장들에 걸쳐 50% 미만의 반사율 수치들을 산출한다는 것을 알아냈다. 텅스텐, Ru 및 TiN은 알루미늄 증착을 위한 우수한 하부층을 제공하지 않아서, 좋지 않은 반사율을 유발한다. 본 발명자들은, 코발트 또는 코발트 합금 또는 티타늄 또는 티타늄 합금의 하부층들이 알루미늄 층들에 대해 훨씬 더 높은 반사율(예컨대, 이 대역의 파장들에 걸쳐 대략 85%) 및 더 큰 증착 레이트들을 제공한다는 것을 발견했다. 본 발명자들은 또한, 알루미늄 층의 증착 온도를 낮추는 것이 알루미늄 층에 대해 더 높은 반사율을 산출하고 더 나은 스텝 커버리지 및 갭 필(gap fill)을 제공한다는 것을 알아냈다. 본 원리들의 방법들 및 장치는, 기판 계면에서의 응집(agglomeration)에 기인하여 코발트 또는 코발트 합금 또는 티타늄 또는 티타늄 합금 하부층 상에서의 알루미늄 증착의 개선된 핵 형성을 제공하여서, 더 매끄럽고 더욱 연속적인 알루미늄 필름들을 산출하고 반사율을 증가시킨다.[0022] The inventors have found that using sublayers such as tungsten (W), ruthenium (Ru) or titanium nitride (TiN) yield reflectance values of less than 50% over a broad band of wavelengths. Tungsten, Ru and TiN do not provide good underlayers for aluminum deposition, resulting in poor reflectivity. The inventors have found that sublayers of cobalt or cobalt alloy or titanium or titanium alloy provide much higher reflectivity (eg, approximately 85% over this band of wavelengths) and greater deposition rates for aluminum layers. The inventors have also found that lowering the deposition temperature of the aluminum layer yields higher reflectivity for the aluminum layer and provides better step coverage and gap fill. The methods and apparatus of the present principles provide improved nucleation of aluminum deposition on cobalt or cobalt alloy or titanium or titanium alloy underlayer due to agglomeration at the substrate interface, resulting in a smoother and more continuous aluminum film. and increase the reflectance.

[0023] 도 1은 일부 실시예들에 따른, 고 반사율 알루미늄 층들을 형성하는 방법(100)이다. 블록(102)에서, 방법은, 도 1의 방법으로 형성된 구조(200)의 단면도를 도시하는 도 2에 예시된 바와 같이, 기판(202) 상에 코발트 또는 코발트 합금 층 또는 티타늄 또는 티타늄 합금 층(208)을 증착함으로써 시작된다. 일부 실시예들에서, 코발트 또는 코발트 합금 층은 코발트 또는 코발트 합금, 이를테면, 코발트 실리콘(CoSi) 등을 포함(그러나, 이에 제한되지 않음)할 수 있다. 일부 실시예들에서, 티타늄 또는 티타늄 합금 층은 티타늄 또는 티타늄 합금, 이를테면, 티타늄 알루미늄(TiAl), 티타늄 실리콘(TiSi) 등을 포함(그러나, 이에 제한되지 않음)할 수 있다. 일부 실시예들에서, TiAl 층은 TiCl4(티타늄 테트라클로라이드) + TEA(트리에틸알루미늄)를 사용하여 증착될 수 있다. 알루미늄 및/또는 클로라이드 농도는 프로세스 조건들 및/또는 애플리케이션들에 따라 대략 10% 내지 대략 40%로 변할 수 있다. 일부 실시예들에서, 기판(202)은 실리콘-기반 재료로 형성될 수 있고, 기판(202)의 상부 표면 상에 실리콘 옥사이드 층(204)의 층을 가질 수 있다. 일부 실시예들에서, 기판(202)은 또한, 코발트 또는 코발트 합금 층 또는 티타늄 또는 티타늄 합금 층(208)의 증착 전에 기판(202) 상에 증착된 티타늄 나이트라이드(TiN) 층(206)을 가질 수 있다. 일부 실시예들에서, 코발트 또는 코발트 합금 층 또는 티타늄 또는 티타늄 합금 층(208)은 대략 20 옹스트롬 내지 대략 30 옹스트롬일 수 있다. 일부 실시예들에서, 코발트 또는 코발트 합금 층 또는 티타늄 또는 티타늄 합금 층(208)은 코발트 또는 코발트 합금 또는 티타늄 또는 티타늄 합금 재료를 사용하여 CVD(chemical vapor deposition) 프로세스, MOCVD(metal-organic CVD) 프로세스 또는 PVD(physical vapor deposition) 프로세스를 이용하여 증착될 수 있다.1 is a method 100 of forming high reflectivity aluminum layers, in accordance with some embodiments. At block 102, the method performs a layer of cobalt or cobalt alloy or a layer of titanium or titanium alloy on the substrate 202, as illustrated in FIG. 208). In some embodiments, the cobalt or cobalt alloy layer may include (but is not limited to) cobalt or a cobalt alloy, such as cobalt silicon (CoSi), and the like. In some embodiments, the titanium or titanium alloy layer may include (but is not limited to) titanium or a titanium alloy, such as titanium aluminum (TiAl), titanium silicon (TiSi), and the like. In some embodiments, a TiAl layer may be deposited using TiCl 4 (titanium tetrachloride) + TEA (triethylaluminum). The aluminum and/or chloride concentration may vary from approximately 10% to approximately 40% depending on process conditions and/or applications. In some embodiments, substrate 202 may be formed of a silicon-based material and may have a layer of silicon oxide layer 204 on a top surface of substrate 202 . In some embodiments, the substrate 202 will also have a titanium nitride (TiN) layer 206 deposited on the substrate 202 prior to the deposition of the cobalt or cobalt alloy layer or the titanium or titanium alloy layer 208. can In some embodiments, the cobalt or cobalt alloy layer or the titanium or titanium alloy layer 208 may be approximately 20 angstroms to approximately 30 angstroms. In some embodiments, the cobalt or cobalt alloy layer or titanium or titanium alloy layer 208 is formed by a chemical vapor deposition (CVD) process, a metal-organic CVD (MOCVD) process using a cobalt or cobalt alloy or titanium or titanium alloy material. or may be deposited using a physical vapor deposition (PVD) process.

[0024] 블록(104)에서, 알루미늄 층의 증착 전에, 코발트 또는 코발트 합금 층을 세정하기 위해 코발트 또는 코발트 합금 층 상에 전-처리가 선택적으로 수행될 수 있다. 일부 환경들에서, 코발트 또는 코발트 합금 층은 산소에 노출될 수 있고, 이는 코발트 또는 코발트 합금 층 상에 옥사이드를 형성할 수 있다. 옥사이드 및/또는 다른 오염물질들은 전-처리 프로세스에 의해 제거된다. 일부 실시예들에서, 전-처리는 열 수소 어닐 프로세스이다. 일부 실시예들에서, 전-처리는, 대략 60초 동안 섭씨 400도(C)의 온도에서 수소를 이용하여 수행된다. 일부 실시예들에서, 전-처리는, 대략 60초 내지 대략 120초의 시간 지속기간 동안 수소를 이용하여 수행된다. 일부 실시예들에서, 전-처리는, 대략 섭씨 300도 내지 대략 섭씨 400도의 온도에서 수소를 이용하여 수행된다. 코발트 또는 코발트 합금 층의 전-처리는, 코발트 또는 코발트 합금 층의 표면 상의 임의의 오염물질들을 제거함으로써, 알루미늄이 코발트 또는 코발트 합금 층 상에 더욱 잘 증착될 수 있게 할 수 있다. 일부 실시예들에서, 코발트 또는 코발트 합금 층의 증착은 제1 반도체 프로세스 툴에서 수행되고, 그런 다음, 전-처리를 위해 제2 반도체 프로세스 툴로 이동된다. 본 발명자들은, 수소가 암모늄보다 더 나은 알루미늄 증착 결과들을 제공하며, 전-처리의 지속기간이, 처리된 코발트 또는 코발트 합금 층의 얇은 두께(thinness)에 기인하여 강한 영향을 미치지 않았다는 것을 알아냈다.[0024] At block 104, a pre-treatment may optionally be performed on the cobalt or cobalt alloy layer to clean the cobalt or cobalt alloy layer prior to deposition of the aluminum layer. In some circumstances, the cobalt or cobalt alloy layer can be exposed to oxygen, which can form an oxide on the cobalt or cobalt alloy layer. Oxides and/or other contaminants are removed by a pre-treatment process. In some embodiments, the pre-treatment is a thermal hydrogen anneal process. In some embodiments, the pre-treatment is performed with hydrogen at a temperature of 400 degrees Celsius (C) for approximately 60 seconds. In some embodiments, the pre-treatment is performed with hydrogen for a time duration of about 60 seconds to about 120 seconds. In some embodiments, the pre-treatment is performed with hydrogen at a temperature between approximately 300 degrees Celsius and approximately 400 degrees Celsius. Pre-treatment of the cobalt or cobalt alloy layer may allow aluminum to be better deposited on the cobalt or cobalt alloy layer by removing any contaminants on the surface of the cobalt or cobalt alloy layer. In some embodiments, deposition of the cobalt or cobalt alloy layer is performed in a first semiconductor process tool and then moved to a second semiconductor process tool for pre-treatment. We have found that hydrogen provides better aluminum deposition results than ammonium, and that the duration of the pre-treatment did not have a strong effect due to the thinness of the treated cobalt or cobalt alloy layer.

[0025] 블록(106)에서, 예컨대, 도 2 및 도 3에 예시된 바와 같이, 코발트 또는 코발트 합금 층 또는 티타늄 또는 티타늄 합금 층(208) 상에 알루미늄 층(310)이 증착된다. 일부 실시예들에서, 알루미늄 층(310)은, 코발트 또는 코발트 합금 층 또는 티타늄 또는 티타늄 합금 층(208) 및 전-처리에 각각 사용되는 제1 반도체 프로세스 툴 및 제2 반도체 프로세스 툴이 아닌 제3 반도체 프로세스 툴(예컨대, MOCVD 또는 CVD 챔버)에서 증착될 수 있다. 알루미늄 층(310)은, 코발트 또는 코발트 합금 층 또는 티타늄 또는 티타늄 합금 층(208)과의 계면 핵 형성(308)을 갖는다. 알루미늄 층(310)과 코발트 또는 코발트 합금 층 또는 티타늄 또는 티타늄 합금 층(208) 사이의 상호혼합(intermixing)은 알루미늄 층(310)의 핵 형성을 돕고, 이는 알루미늄 층(310)의 더 나은 증착을 가능하게 한다. 일부 실시예들에서, 알루미늄 층(310)의 증착은 텅스텐 및 TiN 하부층들보다 대략 80% 내지 대략 95%의 증가된 증착 레이트를 가질 수 있다. 계면 핵 형성은 더 높은 필름 연속성을 제공하고, 이는 높은 반사율을 갖는 더 얇은 알루미늄 층들을 가능하게 한다. 일부 실시예들에서, 알루미늄 증착 온도들은 대략 섭씨 60도 내지 대략 섭씨 250도의 범위일 수 있다. 본 발명자들은, 온도를 감소시키는 것이 증착된 알루미늄 층(310)의 반사율을 증가시키는 데 도움이 될 수 있다는 것을 알아냈다. 일부 실시예들에서, 알루미늄 증착 온도는 알루미늄 증착 층에 대해 더 높은 레벨의 반사율(적어도 대략 85%)을 산출하기 위해 대략 섭씨 120도일 수 있다.[0025] At block 106, an aluminum layer 310 is deposited on the cobalt or cobalt alloy layer or the titanium or titanium alloy layer 208, eg, as illustrated in FIGS. 2 and 3. In some embodiments, the aluminum layer 310 is the cobalt or cobalt alloy layer or the titanium or titanium alloy layer 208 and the third but not the first semiconductor process tool and the second semiconductor process tool used for the pre-treatment, respectively. It can be deposited in a semiconductor process tool (eg, MOCVD or CVD chamber). The aluminum layer 310 has an interfacial nucleation 308 with a cobalt or cobalt alloy layer or a titanium or titanium alloy layer 208 . Intermixing between the aluminum layer 310 and the cobalt or cobalt alloy layer or the titanium or titanium alloy layer 208 aids in the nucleation of the aluminum layer 310, which allows better deposition of the aluminum layer 310. make it possible In some embodiments, the deposition of the aluminum layer 310 may have an increased deposition rate of about 80% to about 95% over the tungsten and TiN underlayers. Interfacial nucleation provides higher film continuity, which allows for thinner aluminum layers with high reflectivity. In some embodiments, aluminum deposition temperatures may range from approximately 60 degrees Celsius to approximately 250 degrees Celsius. The inventors have found that reducing the temperature can help increase the reflectivity of the deposited aluminum layer 310 . In some embodiments, the aluminum deposition temperature may be approximately 120 degrees Celsius to yield a higher level of reflectivity (at least approximately 85%) for the aluminum deposition layer.

[0026] 일부 실시예들에서, 알루미늄 층(310)의 반사율은 50% 초과 내지 대략 90% 이상일 수 있다. 본 발명자들은, 사용된 증착 전구체, 증착의 두께 및 증착 온도가 알루미늄 층의 반사율에 영향을 미칠 수 있다는 것을 알아냈다. 일부 실시예들에서, 알루미늄 증착 전구체는 알레인 유형 전구체, 이를테면, 예컨대, 트리메틸아민-알레인 보레인(TMAAB), 메틸 피리딘 알루미늄 또는 디메틸에틸아민-알레인(DMEAA)일 수 있다. 일부 실시예들에서, 알루미늄 증착 전구체는 알킬 유형 전구체, 이를테면, 예컨대, 디메틸알루미늄 하이드라이드(DMAH)일 수 있다. DMAH는, DMAH가 높은 점도를 갖는 것에 기인하여 다루기가 어려운 것으로 판명될 수 있다. 일부 실시예들에서, DMAH는, 보다 쉽게 다루기 위해 DMAH에 첨가된 소량(대략 0.1% 내지 대략 5%)의 용매 또는 첨가제를 가질 수 있다. 일부 실시예들에서, 알루미늄 증착 프로세스는 반응 가스, 이를테면, 예컨대, 수소 가스(H2), 암모니아 가스(NH3), 하이드라진 화합물 가스 또는 혼합 가스(예컨대, H2 + NH3, H2 + 하이드라진 화합물 가스 등)를 사용할 수 있다.[0026] In some embodiments, the reflectivity of the aluminum layer 310 may be greater than 50% to approximately 90% or greater. The inventors have discovered that the deposition precursor used, the thickness of the deposition and the deposition temperature can affect the reflectance of the aluminum layer. In some embodiments, the aluminum deposition precursor may be an allein type precursor, such as, for example, trimethylamine-alane borane (TMAAB), methyl pyridine aluminum or dimethylethylamine-alane (DMEAA). In some embodiments, the aluminum deposition precursor may be an alkyl type precursor, such as, for example, dimethylaluminum hydride (DMAH). DMAH can prove difficult to handle due to DMAH's high viscosity. In some embodiments, DMAH may have a small amount (approximately 0.1% to approximately 5%) of a solvent or additive added to DMAH for easier handling. In some embodiments, the aluminum deposition process is performed using a reactant gas, such as, for example, hydrogen gas (H 2 ), ammonia gas (NH 3 ), hydrazine compound gas or mixed gas (eg, H 2 + NH 3 , H 2 + hydrazine). compound gas, etc.) can be used.

[0027] 일부 실시예들에서, 대략 250 nm 내지 대략 900 nm의 범위에 있는 파장들에 걸쳐 적어도 85%의 알루미늄 반사율이 획득될 수 있다. 일부 실시예들에서, 알루미늄 층의 두께는 대략 300 옹스트롬 내지 대략 1,000 옹스트롬일 수 있다. 더 얇은 두께는, 특히 기판의 고-종횡비 피처들에 대해, 알루미늄 층을 더욱 컨포멀하게 하는 데 도움이 된다. 텅스텐 및 TiN 하부층들은, 알루미늄이 연속되기 전에 두꺼운 알루미늄 층을 필요로 한다. 코발트 또는 코발트 합금 하부층 또는 티타늄 또는 티타늄 합금 하부층은 더 얇은 알루미늄 층에 대해 더 높은 연속성을 가능하게 하여서, 높은 반사율 및 더 큰 범위의 애플리케이션들을 갖는 얇은 컨포멀 알루미늄 층들이 산출된다. 본 원리들의 방법들 및 장치에 따른 알루미늄 층의 특성들은, 다양한 스텝-높이들에 걸쳐 고-분해능 전도성 패터닝이 사용되는 고-종횡비 피처들 및 RDL(redistribution layer)들에, 그리고 또한 후속하는 프로세싱이 부가적인 가열 단계들(예컨대, BEOL(back-end-of-line) 프로세스들 등)을 사용하는 애플리케이션들에 사용하기에 알루미늄 층이 이상적이게 한다.[0027] In some embodiments, an aluminum reflectance of at least 85% may be obtained over wavelengths ranging from approximately 250 nm to approximately 900 nm. In some embodiments, the thickness of the aluminum layer may be between approximately 300 Angstroms and approximately 1,000 Angstroms. A smaller thickness helps make the aluminum layer more conformal, especially for high-aspect ratio features of the substrate. The tungsten and TiN underlayers require a thick aluminum layer before the aluminum continuation. The cobalt or cobalt alloy sublayer or the titanium or titanium alloy sublayer enables higher continuity to the thinner aluminum layer, resulting in thin conformal aluminum layers with high reflectivity and a greater range of applications. The properties of the aluminum layer according to the methods and apparatus of the present principles are suitable for high-aspect ratio features and redistribution layers (RDLs) where high-resolution conductive patterning is used over various step-heights, and also for subsequent processing This makes the aluminum layer ideal for use in applications that use additional heating steps (eg, back-end-of-line (BEOL) processes, etc.).

[0028] 도 4는 일부 실시예들에 따른, 컨포멀 알루미늄 층(410)을 갖는 고-종횡비 피처(400)의 단면도를 예시한다. 고-종횡비 피처(400)는 개구(404), 측면들(406) 및 바닥(408)을 갖는다. 기판(202)은 실리콘-기반 재료로 만들어지고, 이 실리콘-기반 재료는 기판(202)의 표면 상에 실리콘 옥사이드 층(204)을 가질 수 있다. 기판(202) 상에 증착되는 TiN 층(206) 상에 코발트 또는 코발트 합금 층 또는 티타늄 또는 티타늄 합금 층(208)이 증착된다. 고-종횡비 피처(400)에서도 높은 반사율을 유지하면서, 컨포멀 알루미늄 층(410)이 바닥(408) 및 측면들(406) 상에서 고-종횡비 피처(400)에 컨포밍되도록(conform), 컨포멀 알루미늄 층(410)은 코발트 또는 코발트 합금 층 또는 티타늄 또는 티타늄 합금 층(208) 상에 증착된다. 일부 실시예들에서, 컨포멀 알루미늄 층(410)은 대략 500 옹스트롬의 두께를 가질 수 있다. 본 원리들의 방법들 및 장치에 의해 제공되는 얇은 두께는, 피처들이 고-종횡비들을 가질 때에도, 알루미늄이 컨포멀 방식으로 증착될 수 있게 한다. 본 원리들의 방법들 및 장치의 컨포멀 특성은 또한, RDL(redistribution layer)들의 구성 동안 맞닥뜨리는 것들과 같은 다양한 스텝-높이들에 걸쳐 알루미늄 층들의 증착을 허용한다.4 illustrates a cross-sectional view of a high-aspect ratio feature 400 having a conformal aluminum layer 410, in accordance with some embodiments. High-aspect ratio feature 400 has an opening 404 , sides 406 and a bottom 408 . The substrate 202 is made of a silicon-based material, which may have a silicon oxide layer 204 on the surface of the substrate 202 . A layer of cobalt or a cobalt alloy or a layer of titanium or a titanium alloy 208 is deposited on a TiN layer 206 that is deposited on a substrate 202 . Conformal aluminum layer 410 conforms to high-aspect-ratio feature 400 on bottom 408 and sides 406, while maintaining high reflectivity even in high-aspect-ratio feature 400. An aluminum layer 410 is deposited on the cobalt or cobalt alloy layer or the titanium or titanium alloy layer 208 . In some embodiments, conformal aluminum layer 410 may have a thickness of approximately 500 angstroms. The thinness provided by the methods and apparatus of the present principles allows aluminum to be deposited in a conformal manner, even when features have high-aspect ratios. The conformal nature of the methods and apparatus of the present principles also allows deposition of aluminum layers over a variety of step-heights, such as those encountered during construction of redistribution layers (RDLs).

[0029] 도 5는 일부 실시예들에 따른, 다양한 파장들에 걸친, 알루미늄 층의 반사율의 그래프(500)를 도시한다. 그래프(500)는, 본 원리들의 방법들 및 장치를 사용하여 넓은 범위의 파장들에 대해 본 발명자들에 의해 발견된 높은 레벨의 반사율을 예시한다. 일부 실시예들에서, 파장들은 적어도 대략 85%의 반사율을 알루미늄 층에 대해 나타냈다. 도 6은 일부 실시예들에 따른, 알루미늄 층의 비교 입자 사이즈의 그래프(600)를 도시한다. 본 발명자들은, 코발트(Co) 606이 텅스텐(W) 604 또는 루테늄(Ru) 602에 비해 훨씬 더 작은 알루미늄 입자 사이즈를 생성했다는 것을 알아냈다. 코발트 606의 더 작은 입자 사이즈는, 감소된 두께를 갖는 알루미늄 층에 대해 높은 필름 연속성을 제공하는 데 도움이 된다고 본 발명자들에 의해 여겨진다. 도 7은 일부 실시예들에 따른, 어닐링 프로세스를 겪은 후의 알루미늄 층의 비교 반사율의 그래프(700)를 도시한다. 본 발명자들은, 본 원리들에 따라 증착된 알루미늄 층의 반사율에 대한 후속하는 반도체 열 프로세싱 단계들의 효과를 예시하기 위해 높은 반사율을 갖는 알루미늄 층이 어닐링 프로세스를 겪게 했다. 어닐-후 반사율(704)은, 테스트된 대역의 파장들에 걸쳐 어닐-전 반사율(702)의 무시할 수 있는 백분율 내에 있었다. 본 원리들의 방법들 및 장치의 유리한 견고성(robustness)에 기인하여, 열 가열을 사용하는 후속하는 반도체 프로세스들은 반사율에 부정적인 영향을 거의 미치지 않을 것이다.5 shows a graph 500 of reflectance of an aluminum layer over various wavelengths, in accordance with some embodiments. Graph 500 illustrates the high level of reflectivity discovered by the inventors for a wide range of wavelengths using the methods and apparatus of the present principles. In some embodiments, the wavelengths exhibited a reflectivity for the aluminum layer of at least approximately 85%. 6 shows a graph 600 of comparative grain size of an aluminum layer, in accordance with some embodiments. The inventors found that cobalt (Co) 606 produced a much smaller aluminum particle size compared to tungsten (W) 604 or ruthenium (Ru) 602. The smaller grain size of cobalt 606 is believed by the inventors to help provide high film continuity for aluminum layers having reduced thickness. 7 shows a graph 700 of comparative reflectance of an aluminum layer after undergoing an annealing process, in accordance with some embodiments. The inventors subjected an aluminum layer with high reflectance to an annealing process to illustrate the effect of subsequent semiconductor thermal processing steps on the reflectance of an aluminum layer deposited according to the present principles. The post-anneal reflectance 704 was within a negligible percentage of the pre-anneal reflectance 702 over the tested band of wavelengths. Due to the advantageous robustness of the methods and apparatus of the present principles, subsequent semiconductor processes using thermal heating will have little negative impact on reflectance.

[0030] 전술된 내용은 본 원리들의 실시예들에 관한 것이지만, 본 원리들의 기본적인 범위로부터 벗어나지 않고, 본 원리들의 다른 그리고 추가적인 실시예들이 창안될 수 있다.[0030] Although the foregoing relates to embodiments of the present principles, other and additional embodiments of the present principles may be devised without departing from the basic scope of the present principles.

Claims (15)

기판 상에 알루미늄 층을 증착하는 방법으로서,
실리콘-기반 재료로 기판을 형성하는 단계;
상기 기판의 상기 실리콘-기반 재료 상에 티타늄 나이트라이드 층을 증착하는 단계;
상기 티타늄 나이트라이드 층 상에 코발트 또는 코발트 합금 층 또는 티타늄 또는 티타늄 합금 층을 증착하는 단계; 및
상기 코발트 또는 코발트 합금 층 또는 상기 티타늄 또는 티타늄 합금 층 상에 알루미늄 층을 증착하는 단계
를 포함하고,
상기 알루미늄 층은 다양한 파장들에 대해 적어도 80%의 반사율을 갖는,
기판 상에 알루미늄 층을 증착하는 방법.
A method of depositing an aluminum layer on a substrate, comprising:
forming a substrate from a silicon-based material;
depositing a titanium nitride layer on the silicon-based material of the substrate;
depositing a cobalt or cobalt alloy layer or a titanium or titanium alloy layer on the titanium nitride layer; and
depositing an aluminum layer on the cobalt or cobalt alloy layer or the titanium or titanium alloy layer;
including,
wherein the aluminum layer has a reflectance of at least 80% for various wavelengths;
A method of depositing an aluminum layer on a substrate.
제1 항에 있어서,
상기 알루미늄 층을 증착하는 단계 전에 열 수소 어닐(thermal hydrogen anneal)을 이용하여 상기 코발트 또는 코발트 합금 층을 전-처리(pre-treating)하는 단계를 더 포함하는,
기판 상에 알루미늄 층을 증착하는 방법.
According to claim 1,
further comprising pre-treating the cobalt or cobalt alloy layer using a thermal hydrogen anneal prior to depositing the aluminum layer;
A method of depositing an aluminum layer on a substrate.
제2 항에 있어서,
섭씨 300도 내지 섭씨 400도의 온도에서 상기 코발트 또는 코발트 합금 층을 전-처리하는 단계를 더 포함하는,
기판 상에 알루미늄 층을 증착하는 방법.
According to claim 2,
further comprising pre-treating the cobalt or cobalt alloy layer at a temperature of 300 degrees Celsius to 400 degrees Celsius.
A method of depositing an aluminum layer on a substrate.
제2 항에 있어서,
60초 내지 120초의 지속기간 동안 상기 코발트 또는 코발트 합금 층을 전-처리하는 단계를 더 포함하는,
기판 상에 알루미늄 층을 증착하는 방법.
According to claim 2,
further comprising pre-treating the cobalt or cobalt alloy layer for a duration of 60 seconds to 120 seconds.
A method of depositing an aluminum layer on a substrate.
제1 항에 있어서,
상기 알루미늄 층은 250 nm 내지 900 nm의 파장들에 대해 적어도 85%의 반사율을 갖는,
기판 상에 알루미늄 층을 증착하는 방법.
According to claim 1,
wherein the aluminum layer has a reflectance of at least 85% for wavelengths between 250 nm and 900 nm;
A method of depositing an aluminum layer on a substrate.
제1 항에 있어서,
상기 코발트 또는 코발트 합금 층 또는 상기 티타늄 또는 티타늄 합금 층을 20 옹스트롬 내지 30 옹스트롬의 두께로 증착하는 단계를 더 포함하는,
기판 상에 알루미늄 층을 증착하는 방법.
According to claim 1,
depositing the cobalt or cobalt alloy layer or the titanium or titanium alloy layer to a thickness of 20 angstroms to 30 angstroms,
A method of depositing an aluminum layer on a substrate.
제1 항에 있어서,
상기 알루미늄 층을 300 옹스트롬 내지 1,000 옹스트롬의 두께로 증착하는 단계를 더 포함하는,
기판 상에 알루미늄 층을 증착하는 방법.
According to claim 1,
further comprising depositing the aluminum layer to a thickness of 300 angstroms to 1,000 angstroms.
A method of depositing an aluminum layer on a substrate.
제1 항에 있어서,
섭씨 60도 내지 섭씨 250도의 온도에서 상기 알루미늄 층을 증착하는 단계를 더 포함하는,
기판 상에 알루미늄 층을 증착하는 방법.
According to claim 1,
Depositing the aluminum layer at a temperature of 60 degrees Celsius to 250 degrees Celsius,
A method of depositing an aluminum layer on a substrate.
제1 항에 있어서,
알레인(alane) 유형 전구체 또는 알킬 유형 전구체를 사용하여 상기 알루미늄 층을 증착하는 단계를 더 포함하고, 상기 알레인 유형 전구체는 트리메틸아민-알레인 보레인(TMAAB), 메틸 피리딘 알루미늄 또는 디메틸에틸아민-알레인을 포함하고, 상기 알킬 유형 전구체는 디메틸알루미늄 하이드라이드(DMAH)를 포함하는,
기판 상에 알루미늄 층을 증착하는 방법.
According to claim 1,
further comprising depositing the aluminum layer using an alane type precursor or an alkyl type precursor, wherein the alane type precursor is trimethylamine-alane borane (TMAAB), methyl pyridine aluminum or dimethylethylamine -comprising allein, wherein the alkyl type precursor comprises dimethylaluminum hydride (DMAH),
A method of depositing an aluminum layer on a substrate.
삭제delete 기판 상에 알루미늄 층을 증착하는 방법으로서,
CVD(chemical vapor deposition) 프로세스를 이용하여 상기 기판 상에 코발트 또는 코발트 합금 층 또는 티타늄 또는 티타늄 합금 층을 20 옹스트롬 내지 30 옹스트롬의 두께로 증착하는 단계;
상기 코발트 또는 코발트 합금 층의 상단 표면이 손상되면(compromised), 섭씨 400도의 온도에서의 열 수소 어닐을 이용하여 상기 코발트 또는 코발트 합금 층을 전-처리하는 단계; 및
섭씨 120도의 온도에서의 CVD 프로세스를 이용하여 상기 코발트 또는 코발트 합금 층 또는 상기 티타늄 또는 티타늄 합금 층 상에 알루미늄 층을 300 옹스트롬 내지 1,000 옹스트롬의 두께로 증착하는 단계
를 포함하는,
기판 상에 알루미늄 층을 증착하는 방법.
A method of depositing an aluminum layer on a substrate, comprising:
depositing a layer of cobalt or a cobalt alloy or a layer of titanium or a titanium alloy to a thickness of 20 angstroms to 30 angstroms on the substrate using a chemical vapor deposition (CVD) process;
if the top surface of the cobalt or cobalt alloy layer is compromised, pre-treating the cobalt or cobalt alloy layer using a thermal hydrogen anneal at a temperature of 400 degrees Celsius; and
depositing an aluminum layer to a thickness of 300 angstroms to 1,000 angstroms on the cobalt or cobalt alloy layer or the titanium or titanium alloy layer using a CVD process at a temperature of 120 degrees Celsius.
including,
A method of depositing an aluminum layer on a substrate.
제11 항에 있어서,
60초 내지 120초의 지속기간 동안 상기 코발트 또는 코발트 합금 층을 전-처리하는 단계를 더 포함하는,
기판 상에 알루미늄 층을 증착하는 방법.
According to claim 11,
further comprising pre-treating the cobalt or cobalt alloy layer for a duration of 60 seconds to 120 seconds.
A method of depositing an aluminum layer on a substrate.
제11 항에 있어서,
상기 기판 상에 증착된 티타늄 나이트라이드 층 상에 상기 코발트 또는 코발트 합금 층 또는 상기 티타늄 또는 티타늄 합금 층을 증착하는 단계를 더 포함하는,
기판 상에 알루미늄 층을 증착하는 방법.
According to claim 11,
Depositing the cobalt or cobalt alloy layer or the titanium or titanium alloy layer on the titanium nitride layer deposited on the substrate.
A method of depositing an aluminum layer on a substrate.
제11 항에 있어서,
상기 알루미늄 층은 250 nm 내지 900 nm의 파장들에 대해 적어도 80%의 반사율을 갖는,
기판 상에 알루미늄 층을 증착하는 방법.
According to claim 11,
wherein the aluminum layer has a reflectance of at least 80% for wavelengths between 250 nm and 900 nm;
A method of depositing an aluminum layer on a substrate.
반도체 디바이스에서 다양한 파장들을 반사하기 위한 장치로서,
실리콘-기반 재료로 형성된 기판;
상기 기판의 상기 실리콘-기반 재료 상에 증착된 티타늄 나이트라이드 층;
상기 티타늄 나이트라이드 층 상에 증착된 코발트 또는 코발트 합금 층 또는 티타늄 또는 티타늄 합금 층; 및
상기 코발트 또는 코발트 합금 층 또는 상기 티타늄 또는 티타늄 합금 층 상에 증착된 알루미늄 층
을 포함하고,
상기 알루미늄 층은 적어도 80%의 반사율을 갖는,
반도체 디바이스에서 다양한 파장들을 반사하기 위한 장치.
An apparatus for reflecting various wavelengths in a semiconductor device, comprising:
a substrate formed of a silicon-based material;
a titanium nitride layer deposited on the silicon-based material of the substrate;
a cobalt or cobalt alloy layer or a titanium or titanium alloy layer deposited on the titanium nitride layer; and
An aluminum layer deposited on the cobalt or cobalt alloy layer or the titanium or titanium alloy layer.
including,
wherein the aluminum layer has a reflectivity of at least 80%;
A device for reflecting various wavelengths in a semiconductor device.
KR1020207034777A 2018-05-04 2019-05-02 Methods and Apparatus for Highly Reflective Aluminum Layers KR102518328B1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201862667086P 2018-05-04 2018-05-04
US62/667,086 2018-05-04
US16/398,782 2019-04-30
US16/398,782 US11421318B2 (en) 2018-05-04 2019-04-30 Methods and apparatus for high reflectivity aluminum layers
PCT/US2019/030307 WO2019213339A1 (en) 2018-05-04 2019-05-02 Methods and apparatus for high reflectivity aluminum layers

Publications (2)

Publication Number Publication Date
KR20200140925A KR20200140925A (en) 2020-12-16
KR102518328B1 true KR102518328B1 (en) 2023-04-04

Family

ID=68384272

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020207034777A KR102518328B1 (en) 2018-05-04 2019-05-02 Methods and Apparatus for Highly Reflective Aluminum Layers

Country Status (6)

Country Link
US (1) US11421318B2 (en)
JP (1) JP7155404B2 (en)
KR (1) KR102518328B1 (en)
CN (1) CN112470263B (en)
TW (1) TWI812709B (en)
WO (1) WO2019213339A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024112649A1 (en) * 2022-11-21 2024-05-30 Pc Krause And Associates, Inc. Reflective assembly

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015018839A (en) * 2013-07-08 2015-01-29 株式会社アルバック Cu WIRING STRUCTURE FORMATION METHOD

Family Cites Families (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3498818A (en) * 1968-01-23 1970-03-03 Gen Electric Method of making highly reflective aluminum films
US4483750A (en) * 1984-03-16 1984-11-20 Aluminum Company Of America Process for anodizing highly reflective aluminum materials
AU3908585A (en) * 1984-03-16 1985-09-19 Aluminium Company Of America Producing reflective aluminum material by anodizing
US4808471A (en) * 1985-03-01 1989-02-28 Minnesota Mining And Manufacturing Company Flat transparent top coat for retroreflective sheeting
US4820611A (en) * 1987-04-24 1989-04-11 Advanced Micro Devices, Inc. Titanium nitride as an antireflection coating on highly reflective layers for photolithography
US5047367A (en) 1990-06-08 1991-09-10 Intel Corporation Process for formation of a self aligned titanium nitride/cobalt silicide bilayer
US5975912A (en) * 1994-06-03 1999-11-02 Materials Research Corporation Low temperature plasma-enhanced formation of integrated circuits
GB9500330D0 (en) 1995-01-09 1995-03-01 Pilkington Plc Coatings on glass
KR0156219B1 (en) * 1995-02-10 1998-12-01 문정환 Method of forming dense tin and tisix thin film and fabrication method of semiconductor device therewith
US5904969A (en) * 1995-07-07 1999-05-18 Hitachi Maxell, Ltd. Optical data recording medium and manufacturing method thereof
SG42438A1 (en) 1995-09-27 1997-08-15 Motorola Inc Process for fabricating a CVD aluminium layer in a semiconductor device
US6120844A (en) 1995-11-21 2000-09-19 Applied Materials, Inc. Deposition film orientation and reflectivity improvement using a self-aligning ultra-thin layer
US6017144A (en) 1996-03-05 2000-01-25 Applied Materials, Inc. Method and apparatus for depositing highly oriented and reflective crystalline layers using a low temperature seeding layer
US5759916A (en) * 1996-06-24 1998-06-02 Taiwan Semiconductor Manufacturing Company Ltd Method for forming a void-free titanium nitride anti-reflective coating(ARC) layer upon an aluminum containing conductor layer
US6383915B1 (en) 1999-02-03 2002-05-07 Applied Materials, Inc. Tailoring of a wetting/barrier layer to reduce electromigration in an aluminum interconnect
US6352620B2 (en) * 1999-06-28 2002-03-05 Applied Materials, Inc. Staged aluminum deposition process for filling vias
KR20020048716A (en) * 2000-12-18 2002-06-24 박종섭 Image sensor having reflection layer on back side of semiconductor substrate and method for fabricating the same
US6630786B2 (en) * 2001-03-30 2003-10-07 Candescent Technologies Corporation Light-emitting device having light-reflective layer formed with, or/and adjacent to, material that enhances device performance
JP4547857B2 (en) * 2003-01-08 2010-09-22 セイコーエプソン株式会社 Method for manufacturing transistor
US6894822B2 (en) * 2003-02-04 2005-05-17 Silicon Light Machines Corporation Robust reflective surface for light modulators
KR100579964B1 (en) * 2003-12-31 2006-05-12 동부일렉트로닉스 주식회사 Image sensor and method for fabricating the same
JP4402964B2 (en) * 2004-01-14 2010-01-20 富士フイルム株式会社 Pattern film forming method
US7226858B2 (en) * 2004-09-30 2007-06-05 Microchip Technology Incorporated Submicron contact fill using a CVD TiN barrier and high temperature PVD aluminum alloy deposition
JP2007049084A (en) * 2005-08-12 2007-02-22 Toshiba Corp Switch element, memory device, and magnetoresistance effect element
KR100756403B1 (en) 2006-05-18 2007-09-10 (주)디엔에프 Synthesis of aluminum compound for forming aluminum films by chemical vapor deposition
US7501295B2 (en) 2006-05-25 2009-03-10 Philips Lumileds Lighting Company, Llc Method of fabricating a reflective electrode for a semiconductor light emitting device
TW200916745A (en) * 2007-07-09 2009-04-16 Kobe Steel Ltd Temperature-measuring member, temperature-measuring device, and method for measuring temperature
US7867900B2 (en) 2007-09-28 2011-01-11 Applied Materials, Inc. Aluminum contact integration on cobalt silicide junction
DE102007054731A1 (en) * 2007-11-14 2009-05-20 Carl Zeiss Smt Ag Optical element for reflection of UV radiation, manufacturing method therefor and projection exposure apparatus therewith
US8963178B2 (en) * 2009-11-13 2015-02-24 Seoul Viosys Co., Ltd. Light emitting diode chip having distributed bragg reflector and method of fabricating the same
CN102082115B (en) * 2009-12-01 2014-03-19 无锡华润上华半导体有限公司 Aluminum interconnection structure and method for forming aluminum interconnection structure
US20120258561A1 (en) * 2011-04-11 2012-10-11 Twin Creeks Technologies, Inc. Low-Temperature Method for Forming Amorphous Semiconductor Layers
KR20130010298A (en) * 2011-07-18 2013-01-28 삼성전자주식회사 Semiconductor device and method of forming the same
US8927059B2 (en) 2011-11-08 2015-01-06 Applied Materials, Inc. Deposition of metal films using alane-based precursors
CN102709180A (en) * 2012-05-22 2012-10-03 上海华力微电子有限公司 Preparation process of aluminium thin film
US9151880B2 (en) * 2013-02-19 2015-10-06 Guardian Do Brasil Vidros Planos Ltda. Mirror having reflective layer of or including silicon aluminum
US9249505B2 (en) * 2013-06-28 2016-02-02 Wayne State University Bis(trimethylsilyl) six-membered ring systems and related compounds as reducing agents for forming layers on a substrate
CN110066984B (en) 2013-09-27 2021-06-08 应用材料公司 Method for realizing seamless cobalt gap filling
TWI536607B (en) * 2013-11-11 2016-06-01 隆達電子股份有限公司 An electrode structure
US9396953B2 (en) * 2014-03-14 2016-07-19 Taiwan Semiconductor Manufacturing Company, Ltd. Conformity control for metal gate stack
US10047435B2 (en) * 2014-04-16 2018-08-14 Asm Ip Holding B.V. Dual selective deposition
JP2016062956A (en) 2014-09-16 2016-04-25 アイシン精機株式会社 Substrate and manufacturing method thereof, semiconductor element and manufacturing method thereof, and laser machining device
US20170031067A1 (en) * 2015-07-29 2017-02-02 U.S.A. As Represented By The Administrator Of The National Aeronautics And Space Administration MgF2 AND LIF AND RARE-EARTH FLUORIDE FILMS FOR ALUMINUM MIRRORS FOR FAR-ULTRAVIOLET SPECTRAL REGION AND METHOD OF MAKING SAME
DE202015009393U1 (en) * 2015-08-25 2017-05-30 Alanod Gmbh & Co. Kg Reflecting composite material with an aluminum support and with a silver reflection layer
KR102680860B1 (en) 2016-09-05 2024-07-03 삼성전자주식회사 Semiconductor device and method of manufacturing the same
TWI758398B (en) * 2017-01-24 2022-03-21 美商應用材料股份有限公司 Method of forming cobalt layer on substrate

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015018839A (en) * 2013-07-08 2015-01-29 株式会社アルバック Cu WIRING STRUCTURE FORMATION METHOD

Also Published As

Publication number Publication date
US20190338415A1 (en) 2019-11-07
TWI812709B (en) 2023-08-21
WO2019213339A1 (en) 2019-11-07
US11421318B2 (en) 2022-08-23
CN112470263B (en) 2024-07-26
JP2021521349A (en) 2021-08-26
KR20200140925A (en) 2020-12-16
CN112470263A (en) 2021-03-09
JP7155404B2 (en) 2022-10-18
TW201947057A (en) 2019-12-16

Similar Documents

Publication Publication Date Title
US10910262B2 (en) Method of selectively depositing a capping layer structure on a semiconductor device structure
CN109661481B (en) Using MoOC14CVD Mo deposition
US11587829B2 (en) Doping control of metal nitride films
US6139700A (en) Method of and apparatus for forming a metal interconnection in the contact hole of a semiconductor device
KR102298038B1 (en) Methods of depositing a metal alloy film
US6797340B2 (en) Method for depositing refractory metal layers employing sequential deposition techniques
US9145612B2 (en) Deposition of N-metal films comprising aluminum alloys
TWI661080B (en) Selective formation of metal silicides
KR20210146431A (en) Enhanced cobalt agglomeration resistance and gap-fill performance by ruthenium doping
US20050238808A1 (en) Methods for producing ruthenium film and ruthenium oxide film
JP4947922B2 (en) Film-forming method and computer-readable storage medium
KR102518328B1 (en) Methods and Apparatus for Highly Reflective Aluminum Layers
JPH08279558A (en) Manufacture of semiconductor device
KR100504269B1 (en) IMPROVED PECVD AND CVD PROCESSES FOR WNx DEPOSITION
US11869806B2 (en) Methods of forming molybdenum contacts
US20200362458A1 (en) Deposition of rhenium-containing thin films
US20060292871A1 (en) Methods of forming titanium-containing materials, and semiconductor processing methods
US20240360549A1 (en) Low-temperature deposition processes to form molybdenum-based materials with improved resistivity
TW202346466A (en) Selective metal removal with flowable polymer
Ishii et al. METAL CLAD LAYER FORMATION FOR CMOSFETs/SIMOX BY SELECTIVE CHEMICAL VAPOR DEPOSITION OF TUNGSTEN

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
AMND Amendment
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant