KR102517459B1 - 복합 다중극자 자석 및 쌍극자 스캐닝 자석 - Google Patents

복합 다중극자 자석 및 쌍극자 스캐닝 자석 Download PDF

Info

Publication number
KR102517459B1
KR102517459B1 KR1020177014259A KR20177014259A KR102517459B1 KR 102517459 B1 KR102517459 B1 KR 102517459B1 KR 1020177014259 A KR1020177014259 A KR 1020177014259A KR 20177014259 A KR20177014259 A KR 20177014259A KR 102517459 B1 KR102517459 B1 KR 102517459B1
Authority
KR
South Korea
Prior art keywords
coils
focusing
magnet
yoke
scanning
Prior art date
Application number
KR1020177014259A
Other languages
English (en)
Other versions
KR20170101198A (ko
Inventor
에드워드 아이즈너
Original Assignee
액셀리스 테크놀러지스, 인크.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 액셀리스 테크놀러지스, 인크. filed Critical 액셀리스 테크놀러지스, 인크.
Publication of KR20170101198A publication Critical patent/KR20170101198A/ko
Application granted granted Critical
Publication of KR102517459B1 publication Critical patent/KR102517459B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/05Electron or ion-optical arrangements for separating electrons or ions according to their energy or mass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/08Ion sources; Ion guns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/10Lenses
    • H01J37/14Lenses magnetic
    • H01J37/141Electromagnetic lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/147Arrangements for directing or deflecting the discharge along a desired path
    • H01J37/1472Deflecting along given lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/147Arrangements for directing or deflecting the discharge along a desired path
    • H01J37/1472Deflecting along given lines
    • H01J37/1474Scanning means
    • H01J37/1475Scanning means magnetic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3171Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation for ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/04Means for controlling the discharge
    • H01J2237/049Focusing means
    • H01J2237/0492Lens systems
    • H01J2237/04922Lens systems electromagnetic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/10Lenses
    • H01J2237/14Lenses magnetic
    • H01J2237/1405Constructional details
    • H01J2237/1415Bores or yokes, i.e. magnetic circuit in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/15Means for deflecting or directing discharge
    • H01J2237/152Magnetic means

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Electron Tubes For Measurement (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

이온 주입 시스템을 위한 복합 스캐닝 및 포커싱 자석이 제공된다. 상기 복합 스캐닝 및 포커싱 자석은 고투자율을 갖는 요크를 포함한다. 상기 요크는 이온 빔을 통과시키는 홀을 형성한다. 하나 또는 둘 이상의 스캐너 코일은 동작가능하게 요크에 연결되고 전원 공급원에 전기적으로 결합 될 때 시변 우세한 쌍극자 자기장을 생성하도록 구성된다. 하나 또는 둘 이상의 포커싱 코일은 요크에 동작가능하게 연결되고 우세한 다중극자 자기장을 생성하도록 구성되며, 상기 우세한 다중극자 자기장은 정적 또는 시변 중 하나이다.

Description

복합 다중극자 자석 및 쌍극자 스캐닝 자석 {COMBINED MULTIPOLE MAGNET AND DIPOLE SCANNING MAGNET}
본 발명은 이온 주입 시스템 및 방법에 관한 것으로, 더 자세하게는 이온 빔을 제어하기 위한 복합 다중극자 스캐닝 자석 및 빔 스캐닝 자석에 관한 것이다.
본 출원은 2014년 12월 26일자로 출원된 미국 가출원 제62/096,968 호(명칭: 복합 다중극자 자석 및 쌍극자 스캐닝 자석)의 우선권 및 그 이익을 주장하며, 이의 내용은 그 전체가 본원에 참고로 인용된다.
일반적으로, 이온 주입기들은 지정된 양의 도펀트들 또는 불순물들을 공작물 또는 반도체 웨이퍼들 내에 배치하는데 이용된다. 통상적인 이온 주입 시스템에서, 도펀트 물질은 이온화되고 가속되어 이온 빔을 생성한다. 상기 이온 빔은 반도체 웨이퍼 내로 이온들을 주입하기 위해 상기 웨이퍼의 표면으로 지향되고, 상기 이온들은 상기 웨이퍼의 표면을 관통하여 원하는 도전성 영역을 형성한다. 예를 들어, 이온 주입은 반도체 공작물에 트랜지스터들을 제조하는 데 특히 유용하다. 통상적인 이온 주입기는 상기 이온 빔을 생성하기 위한 이온 소스, 상기 빔 내의 이온들을 지향 및/또는 필터링(가령, 질량 분해)하기 위한 질량 분석 장치를 포함하는 빔 라인 조립체, 및 하나 이상의 웨이퍼들 또는 공작물들을 포함하는 타켓 챔버를 포함한다.
다양한 형태의 이온 주입기들은 공작물 내에서 달성될 수 있는 원하는 특성에 기초하여 각각 다양한 이온의 주입량 및 에너지를 허용한다. 예를 들어 고 전류 이온 주입기는 대개 고 선량 주입에 사용되며, 중 전류 내지 저 전류 이온 주입기는 저 용량 응용에 사용된다. 이온들의 에너지는 더욱 변화 가능하고, 상기 에너지는 일반적으로 반도체 장치에서 접합 깊이를 제어하기 위해 상기 이온들이 공작물 내에 주입되는 깊이를 결정한다. 일반적으로 저 전류 내지 중 전류 주입기는 상기 공작물에 충돌하기 전에 이온 빔(이온 주입기의 빔 라인이라고도 함)의 긴 실질적인 이동 거리를 가진다. 그러나 고 전류 주입기는 전형적으로 이온 빔과 관련된 저 에너지로 인해 적어도 부분적으로 훨씬 짧은 빔 라인을 가지며, 상기 고 전류 이온 빔은 긴 빔 라인으로 일관성을 잃는 경향이 있다.
상기 이온 빔은 고정될 수 있으며, 공작물이 주입 중에 고정 빔을 통해 스캐닝 된다. 이러한 공작물의 스캐닝은 종종 고정 이온 빔을 통해 상기 공작물을 균일하게 병진시키기 위한 복잡한 구조를 필요로 한다. 공작물을 단지 병진시키는 것에 대한 하나의 대안은 상기 공작물을 대략 직교하는 방향으로 병진시키면서 상기 이온 빔을 한 방향으로 스캐닝 또는 디더링하는 것이다. 일반적으로 전자석은 제어 된 방식으로 이온 빔의 경로를 변경하는 데 사용된다. 그러나 그러한 스캐너 자석은 종종 빔 라인을 따라 상당 부분의 부동산에 존재한다. 또한, 스캐닝 이온 빔의 경우, 이온 빔의 최적 스캐닝을 제공하기 위해 이온 빔을 집중시킬 필요성이 더 커지는 경우가 자주 등장한다. 그러나 스캐너 자석은 많은 빔 라인 길이를 소비하기 때문에, 그러한 포커싱 자석 또는 광학의 구현은 통상적으로 제한적이다.
본 발명은 복합 스캐닝 및 포커싱 자석으로 이온 빔 스캐닝 및 포커싱의 동시 제어를 제공하는 시스템, 장치 및 방법을 제공함으로써 종래 기술의 한계를 극복한다.
따라서 다음은 본 발명의 일부 측면의 기본적인 이해를 제공하기 위해 본 발명의 단순화 된 요약을 제공한다. 이러한 요약은 본 발명의 광범위한 개요는 아니다. 이는 본 발명의 키 또는 주요한 구성요소를 식별하거나 본 발명의 범위를 기술하지 않는다. 본 명세서의 목적은 나중에 제시되는 보다 자세한 설명의 서곡으로 간략한 형태로 본 발명의 일부 개념을 제시하는 데 있다.
스캐닝 빔(scanned beam) 및 디더링 펜슬 빔(dithered pencil beam) 이온 주입기 양자 모두에서, 이온 빔의 형상, 입사각 및 이온 빔의 다른 원하는 특성을 조정하기 위해 가능한 한 다양한 특징을 충분히 제어하는 것이 바람직하다. 스캐너 자석은 종종 이온 주입기의 빔 라인의 중요한 부분이지만 일반적으로 전체 정적 포커싱을 제공하지 않는다. 스캐너를 다중극자 자석(가령, 4극 또는 6극 자석) 또는 일련의 다중극자 자석(가령, 긴 스캐너의 경우)과 조합함으로써, 빔 라인 길이를 크게 절약 할 수 있다.
스캐너 자석은 스캐닝 각도에 따라 초점을 제공할 수 있다. 즉, 스캐너 자석은 일반적으로 이온 빔이 직선을 통과 할 때 포커싱을 제공하지 않지만, 이온 빔이 최대 굽힘 각도 또는 그 근처에서 더 강한 포커싱을 제공한다. 따라서 다중극자 자석에는 임의의 정적 DC 성분뿐만 아니라 스캐너 자석을 구동하는 것과 유사한 시간 의존 파형이 제공되는 이러한 각도-의존성 포커싱을 향상시키거나 감소시키는 것이 유리할 수 있다.
상기 스캐너 자석은 이온 빔의 허리(가령, x-방향의 가장 좁은 부분)가 스캔 정점 또는 그 부근에서 발생하도록 배치된다. 허리 방향의 빔에 큰 영향을 미치지 않으면서 허리에 수직인 방향(가령, y-방향)으로 포커싱을 부가하는 것이 가능하므로, 상기 빔의 허리는 본 발명의 다중극자 자석을 위한 바람직한 장소이기도 하다. 또한 스캐너 뒤에 보정 장치를 사용하면 상기 보정 장치가 허리 방향으로 초점을 벗어나는 부분을 평행하게 처리한다. 따라서 본 발명은 쌍극자 스캐닝 자석을 갖는 복합 다중극자 자석을 유리하게 제공한다.
예를 들어, 복합 자석은 강철 요크의 와전류 손실을 줄이기 위해 강철 라미네이션으로 만들어진다. 스캐너 코일은 임의의 형상일 수 있고, 다양한 설계 기준에 기초하여 설계될 수 있다. 예를 들어, 도면에 도시 된 단순한 코일, 베드 스테이드 코일 또는 다른 코일이 요크 둘레에 감겨 질 수 있다. 예를 들어, 코일은 진공 또는 공기 중에 있다. 예를 들어 다중극자 코일은 플럭스 보정을 추가하여 유사한 코일이 될 수 있다. 도면 중 하나는 쌍극자 코일 내부에 파노푸스키 타입(Panofsky-type)의 사중극자를 보여준다.
본 발명에 따르면, 이온 주입 시스템이 제공되며, 이온 주입 시스템은 이온 빔을 발생시키도록 구성된 이온 소스를 포함한다. 이온 소스는 예를 들어 스폿 이온 빔 또는 리본 빔을 생성하도록 구성될 수 있다. 이온 주입 시스템은 이온 빔을 질량 분해하도록 구성된 질량 분석기 또는 질량 분해 자석을 더 포함한다. 질량 분해 장치는 질량 분석기의 하류에 위치하며, 상기 질량 분석 장치는 이온 빔으로부터 원하지 않는 종을 필터링하도록 구성된다.
본 발명의 예시적인 일 측면에 따르면, 복합 스캐닝 및 포커싱 자석은 질량 분해 자석의 하류에 위치한다. 복합 스캐닝 및 포커싱 자석은 이온 빔의 스캐닝 또는 디더링을 위해 질량 분해 자석의 하류에서 이온 빔의 경로를 제어하면서 동시에 다중극자 자석을 통해 이온 빔을 포커싱 하도록 구성된다.
전술한 목적 및 관련된 목적의 달성을 위해, 본 발명은 이하에서 충분히 설명되고 특히 청구 범위에서 지적된 특징을 포함한다. 다음의 설명 및 첨부된 도면은 본 발명의 특정 실시 예를 상세히 설명한다. 그러나 이들 실시 예는 본 발명의 원리가 구현될 수 있는 다양한 방식 중 몇 가지를 나타낸다. 본 발명의 다른 목적, 이점 및 신규 한 특징은 도면과 관련하여 고려될 때 본 발명의 다음의 상세한 설명으로부터 명백해질 것이다.
도 1은 본 발명의 여러 측면에 따른 예시적인 이온 주입 시스템을 나타내는 블록도이다.
도 2는 본 발명의 일 측면에 따라 예시적인 복합 스캐닝 및 포커싱 자석의 사시도이다.
도 3a는 본 발명의 다른 측면에 따라 도 2의 복합 스캐닝 및 포커싱 자석의 예시적인 쌍극자 스캐닝 코일의 사시도이다.
도 3b는 본 발명의 또 다른 측면에 따라 도 2의 복합 스캐닝 및 포커싱 자석의 예시적인 파노푸스키 타입 사중극자 포커싱 코일의 사시도이다.
도 3c는 본 발명의 또 다른 측면에 따라 도 2의 복합 스캐닝 및 포커싱 자석의 스캐닝 코일 및 포커싱 코일의 사시도이다.
도 4는 본 발명의 또 다른 측면에 따라 또 다른 예시적인 복합 스캐닝 및 포커싱 자석의 사시도이다.
도 5a는 본 발명의 다른 측면에 따라 도 4의 복합 스캐닝 및 포커싱 자석의 요크의 사시도이다.
도 5b는 본 발명의 또 다른 측면에 따라 복합 스캐닝 및 포커싱 자석의 쌍극자 스캐닝 코일의 사시도이다.
도 5c는 본 발명의 또 다른 측면에 따라 도 4의 복합 스캐닝 및 포커싱 자석의 예시적인 파노푸스키 타입 사중극자 자석 코일의 사시도이다.
도 6은 본 발명의 또 다른 예시적인 측면에 따라 공작물 내로 이온을 주입하는 예시적인 방법을 도시한다.
본 발명은 일반적으로 공작물에서 이온 주입 시스템 및 이온 주입 방법에 관한 것으로, 이온 빔은 일반적으로 복합 다중극자 및 쌍극자 스캐닝 및 포커싱 자석을 통해 동시에 자기적으로 스캐닝 되고 포커싱 된다. 따라서 본 발명은 도면을 참조하여 설명될 것이며, 도면 전체에 걸쳐 동일한 참조 부호가 동일한 요소를 나타내기 위해 사용될 수 있다. 이들 측면들의 설명은 단지 예시적인 것이며, 제한적인 의미로 해석되어서는 안된다는 것을 이해해야 한다. 이하에서, 설명의 목적으로, 다수의 특정 세부사항이 본 발명의 완전한 이해를 제공하기 위해 설명된다. 그러나 당업자에게는 본 발명이 이러한 특정 세부사항 없이 실시될 수 있음이 명백할 것이다.
도면을 참조하면, 도 1은 본 발명의 다양한 예시적인 측면에 따른 이온 주입 시스템(100)을 도시한다. 상기 시스템(110)은 설명의 목적을 위해 제공되며, 본 발명의 측면은 설명된 이온 주입 시스템으로 제한되지 않고 다양한 구성의 다른 적합한 이온 주입 시스템이 또한 사용될 수 있음을 알 수 있다.
시스템(100)은 단자(112), 빔 라인 조립체(114), 및 엔드 스테이션(116)을 포함한다. 단자(112)는 이온 빔(124)을 생성하여 빔 라인 조립체(114)로 지향시키는 고전압 전원(122)에 의해서 전력을 공급받는 이온 소스(120)를 포함한다. 이온 소스(120)는 빔 라인 조립체(114) 내의 빔 경로를 따라 엔드 스테이션(116)으로 향하는 이온 빔(124)으로 추출되어 형성되는 대전 된 이온들을 생성한다.
이온들을 생성하기 위해서, 이온화 되는 도펀트 물질(도시하지 않음)의 가스가 이온 소스(120)의 생성 챔버(121) 내에 위치된다. 도펀트 가스는, 예를 들어, 가스 소스(도시하지 않음)로부터 챔버(121) 내로 공급될 수 있다. 전원(122)에 더하여, 예를 들어, RF 또는 마이크로파 여기(excitation) 소스, 전자 빔 주사 소스, 전자기 소스 및/또는 챔버 내에서 아크 방전을 생성하는 음극과 같은, 임의의 개체수의 적합한 기구(도시하지 않음)를 사용하여 이온 생성 챔버(121) 내에서 자유 전자를 여기 시킬 수 있을 것이다. 여기 된 전자들은 도펀트 가스 분자들과 충돌하고 그에 따라 이온들이 생성된다. 일반적으로, 양이온들이 생성되나, 본 발명은 음이온들이 생성되는 시스템에도 적용될 수 있다.
본 실시 예에서, 이온들은 이온 추출 조립체(123)에 의해서 챔버(121) 내의 슬릿(118)을 통해서 제어 가능하게 추출된다. 이온 추출 조립체(123)는 복수의 추출(extraction) 및/또는 억제(suppression) 전극(125)을 포함한다. 이온 추출 조립체(123)는, 예를 들어, 추출 및/또는 억제 전극(125)을 바이어스 시켜 이온 생성 챔버(121)로부터의 이온을 가속하기 위한 독립된 추출 전원(도시하지 않음)을 포함할 수 있다. 이온 빔(124)이 동일한 대전 입자를 포함하기 때문에, 상기 빔은 동일한 대전 입자가 서로 반발함에 따라 방사상 외측으로 확장하거나 팽창하는 경향을 가질 수 있음을 알 수 있다. 대전 된 입자들 사이에는 많은 반발력이 존재하지만 대전 된 입자들(가령, 고 전류)이 동일한 방향으로 (가령, 저 에너지) 상대적으로 천천히 이동하는 저 에너지, 고 전류(고 주파수) 빔에서 빔 확장이 악화 될 수 있음을 알 수 있다.
따라서 이온 추출 조립체(123)는 일반적으로 빔이 고 에너지에서 추출되어 상기 빔이 확장되지 않도록 구성된다. 더욱이, 이 예에서 빔(124)은 일반적으로 시스템 전체에 걸쳐 상대적으로 높은 에너지로 전달되고, 빔 봉쇄(containment)를 촉진시키기 위해 공작물(130) 직전에 감소 될 수 있다.
빔 라인 조립체(114)는 빔 가이드(132), 질량 분석기(126), 결합된 스캐닝 및 포커싱 시스템(scanning and focusing system)(135), 및 평행화 장치(parallelizer)(139)를 포함한다. 질량 분석기(126)는 이온 빔(124)에 대한 질량 분석 및 각도 보정/조정을 수행한다. 이 실시 예에서, 질량 분석기(126)는 대략 90°로 형성되고, 그 안에 (쌍극자) 자기장을 확립하는 역할을 하는 하나 이상의 자석(도시되지 않음)을 포함한다. 상기 빔(124)이 질량 분석기(126)에 진입함에 따라, 상기 빔(124)은 부적절한 전하-대-질량비의 이온이 제거되도록 자기장에 대응하여 벤딩된다. 보다 특히, 전하-대-질량비가 너무 크거나 너무 작은 이온들이 질량 분석기(126)의 측벽(127) 내로 편향된다. 이러한 방식에서, 질량 분석기(126)는 원하는 전하-대-질량비를 가지는 빔(124) 내의 이온들만이 통과할 수 있게 허용하고 그리고 분해 개구부(resolving aperture)(134)를 통해서 빠져나갈 수 있게 허용한다.
질량 분석기(126)는 쌍극자 자기장의 진폭을 제어 또는 조정함으로써 이온 빔(124)에 대한 각도 보정을 수행할 수 있다. 자기장의 이러한 조정은 원하는/선택된 전하-대-질량비를 갖는 선택된 이온이 상이한 또는 변경된 경로를 따라 이동 하게한다. 그 결과, 분해 개구부(134)는 상기 변경된 경로에 따라 조정될 수 있다. 일 예시에서, 개구 조립체(133)는 분해 개구부(134)를 통한 변경된 경로를 수용하도록 x방향으로 이동 가능하다. 다른 예에서, 개구부(134)는 변경된 경로의 선택된 범위를 수용하는 형상을 가질 수 있다. 질량 분석기(126) 및 분해 개구부(134)는 시스템(110)에 적합한 질량 분해능을 유지하면서 자기장 및 그에 따른 변경 된 경로의 변화를 허용한다. 적합한 질량 분석기 및 분해 개구부 시스템에 대한 보다 자세한 예가 아래에 제공된다.
시스템(100) 내의 다른 입자와의 이온 빔 충돌은 빔 무결성(integrity)을 저하시킬 수 있다는 것을 알 수 있을 것이다. 따라서 하나 또는 둘 이상의 펌프(도시하지 않음)가 적어도 빔 가이드(132) 및 질량 분석기(126)를 배기하기 위해서 포함될 수 있을 것이다.
본 발명은 스캐닝 후에 빔을 포커싱시키는 것이 때때로 어렵기 때문에, 가능한 한 스캐너에 가깝게 포커싱 요소를 갖는 것이 바람직할 수 있음을 알 수 있다. 본 발명에 따른 복합 스캐닝 및 포커싱 시스템(135)은 자기 스캐닝 요소(136) 및 포커싱 및/또는 스티어링 요소(138)를 포함하며, 이들은 단일 유닛으로서 효과적으로 결합되기 때문에, 따라서 스캐닝 된 빔을 포커싱하기 위해 매우 복잡한 조립체에 의지하지 않고 가능한 한 하류 측으로 포커싱 요소를 위치시킨다. 각각의 전원(149 및 150)이 스캐닝 요소(136) 및 포커싱/스티어링 요소(138)에 작동적으로 커플링되고, 그리고 보다 특히 내부에 위치된 스캐닝 코일(136a, 136b), 및 포커싱 코일(138a, 및 138b)에 작동적으로 커플링된다.
편향 성분(138)은 상대적으로 좁은 프로파일을 가지는(예를 들어, 도시된 시스템(100)에서 "펜슬" 또는 "스폿" 빔) 질량 분석된 이온 빔(124)을 수용한다. 이온 빔(124)은 본 발명에서 주로 비교적 좁은 프로파일을 갖는 것으로 주로 설명되었지만, 이온 빔은 대안적으로 길쭉한 프로파일(가령, 공칭 빔 경로를 따라 보았을 때 일반적으로 타원형 단면을 가지며, 일반적으로 "리본" 이온 빔으로 지칭된다)을 가질 수 있으며, 이러한 모든 이온 빔은 본 발명의 범위 내에 포함되는 것으로 고려된다.
일실시 예에 따르면, 전원 공급원(150)에 의해 포커싱 코일(138a, 138b)에 인가 된 교류(AC) 또는 직류(DC) 전압과 같은 전압은 이온 빔(124)을 스캐닝 소자(136)의 스캔 정점(151)에 포커싱하고 스티어링 하도록 동작시킨다. 전원 공급원(149)(이론적으로 '150'과 동일한 공급원이 될 수 있다)에 의해서 전자석(136a 및 136b)에 인가 된 전압 파형(waveform)은 이 예에서 빔(124)을 앞뒤로 스캔한다. 스캔 정점(151)이 광학 경로 내의 지점으로서 규정될 수 있으며, 그러한 지점으로부터 빔의 스캐닝 된 부분 또는 각각의 빔렛(beamlet)이 스캐닝 요소(136)에 의해서 스캐닝 된 후에 발생되는 것으로 보인다.
스캐닝 된 빔(124)이 평행화 장치/보정 장치(corrector)(139)를 통과하고, 상기 평행화 장치는 도시된 예에서 2개의 쌍극자 자석(139a, 139b)을 포함한다. 쌍극자는 실질적으로 사다리꼴이고, 빔(124)이 실질적으로 S자 형상으로 벤딩 되도록 서로 대향하도록 배향된다. 달리 말하면, 본 발명의 쌍극자 평행화 장치/보정 장치(139)는 동일한 각도 및 반경 및 반대 방향의 곡률을 갖는다. 평행화 장치/보정 장치(139)는 스캐닝 된 빔이 그 경로를 변경하게 하여, 빔(124)이 스캔 각도에 관계없이 빔 축에 평행하게 이동하도록 한다. 결과적으로, 주입 각도는 공작물(130)에 걸쳐 비교적 균일하다.
하나 이상의 감속 스테이지(157)가 본 실시 예에서 평행화 장치(139)의 하류에 배치된다. 지금까지 시스템(100)에서, 일반적으로 이온 빔(124)은 상대적으로 높은 에너지 레벨로 이송되어 빔 확장에 대한 경향을 완화시키며, 이는 예를 들어 주사 정점(151)에서와 같이 빔 밀도가 상승하는 경우 특히 높을 수 있다. 감속 스테이지(157)는 이온 빔(124)을 감속하도록 작동될 수 있는 하나 또는 둘 이상의 전극(157a, 157b)을 포함한다. 전극(157a, 157b)은 통상적으로 빔이 이동하는 개구이며, 도 1에서 직선으로 그려 질 수 있다.
2개의 전극 혹은 코일들(125a 및 125b, 136a 및 136b, 138a 및 138b 및 157a 및 157b)이 예시적인 이온 추출 조립체(123), 스캐닝 요소(136), 포커싱 및 스티어링 성분(138) 및 감속 스테이지(157)에서 각각 도시되어 있는 한편, Rathmell 등에게 허여되고 전체가 본원 명세서에서 참조되는 미국 특허 6,777,696 에 기재된 것과 실질적으로 유사한 방식으로 이온 빔(124)을 포커싱, 벤딩, 편향, 수렴, 발산, 스캐닝, 평행화 및/또는 정제하는 것뿐만 아니라 이온을 가속 및/또는 감속하기 위해서 정렬되고 바이어싱 되는 적절한 수의 전극들 혹은 코일들을 이들 요소들(123, 136, 138 및 157)이 포함할 수 있다는 것을 이해할 수 있을 것이다.
엔드 스테이션(116)은 공작물(130)을 향하는 이온 빔(124)을 수용한다. 여러 가지 타입의 엔드 스테이션(116)이 주입기(100)에서 채용될 수 있다는 것을 이해할 것이다. 예를 들어, "배치(batch)" 타입의 엔드 스테이션은 회전 지지 구조체 상에 다수의 공작물(130)을 동시에 지지 할 수 있으며, 여기서 공작물(130)은 모든 공작물(130)이 완전히 주입 될 때까지 이온 빔의 경로를 통해 회전된다. 다른 한편으로, "직렬(serial)" 타입의 엔드 스테이션은 주입을 위한 빔 경로를 따라 단일 공작물(130)을 지지하며, 다중 공작물(130)은 직렬 방식으로 한 번에 하나씩 주입되며, 각각의 공작물(130)은 다음 공작물(130)이 시작되기 전에 완전히 주입된다. 하이브리드 시스템에서, 공작물(130)은 제1(Y 또는 저속 스캔) 방향으로 기계적으로 이동 될 수 있으며, 빔은 제2(X 또는 고속 스캔) 방향으로 스캐닝 되어 전체 공작물(130) 위에 빔(124)을 부여한다.
도시된 예에서 엔드 스테이션(116)은 주입을 위한 빔 경로를 따라서 단일 공작물(130)을 지지하는 "직렬(serial)" 타입의 엔드 스테이션이다. 선량측정(dosimetry) 시스템(152)이 또한 주입 작업에 앞서서 교정 측정을 위해서 공작물 위치에 인접하여 엔드 스테이션(116) 내에 포함될 수 있다. 일실시 예에서, 교정 동안에, 빔(124)이 선량측정 시스템(152)을 통과한다. 선량측정 시스템(152)은 프로파일러(158) 경로를 횡단할 수 있는 하나 또는 둘 이상의 프로파일러(156)를 포함하고, 그에 따라 스캐닝 된 빔의 프로파일을 측정한다.
프로파일러(156)는 예를 들어 패러데이 컵(Faraday cup)과 같은 전류 밀도 센서를 포함할 수 있고, 그리고 이는 스캔닝 된 빔의 전류 밀도를 측정하며, 전류 밀도는 주입 각도(가령, 상기 빔과 상기 공작물의 기계적 표면 및/또는 상기 빔과 상기 공작물의 결정질 격자 구조 사이의 상대적인 배향)의 함수 이다. 전류 밀도 센서는 스캐닝 된 빔에 대해 일반적으로 직교하는 방식으로 이동하며, 따라서 통상적으로 리본 빔의 폭을 가로 지른다. 일실시 예에서, 선량측정 시스템은 빔 밀도 분포 및 각도 분포를 측정한다.
이온 소스(120), 질량 분석기(126), 개구 조립체(133), 스캐닝 요소(136) 및 포커싱 및/또는 스티어링 요소(138)를 포함하는 복합 스캐닝 및 포커싱 시스템(135), 평행화 장치(139) 및 선량 측정 시스템(152)을 제어, 통신 및/또는 조정할 수 있는 제어 시스템(154)이 존재한다. 제어 시스템(154)은 컴퓨터, 마이크로프로세서 등을 포함 할 수 있으며, 빔 특성의 측정 값을 취하여 이에 따라 파라미터를 조정하도록 동작 할 수 있다. 제어 시스템(154)은 이온 빔이 생성되는 단자(112), 빔 라인 조립체(114)의 질량 분석기(126), 스캐닝 요소(136)(가령, 전원 공급원(149)을 통해서), 포커싱 및 스티어링 요소(138)(가령, 전원 공급원(150)을 통해서), 평행화 장치(139), 및 감속 스테이지(157)로 커플링 될 수 있다. 따라서 이러한 요소들은 원하는 이온 주입을 용이하게 하기 위해 제어 시스템(154)에 의해 조정될 수 있다. 예를 들어, 빔의 에너지 레벨은 일례로, 이온 추출 조립체(123) 및 감속 스테이지(157)에서 전극에 인가 된 바이어스를 조정함으로써 접합(junction) 깊이를 조절하도록 적용될 수 있다.
질량 분석기(126)에서 생성 된 자기장(들)의 강도 및 배향은, 예를 들어 빔의 전하-대-질량비를 변경하기 위해 그 내부의 계자 권선을 통해 흐르는 전류의 양을 조절함으로써 조정될 수 있다. 주입 각도는 개구 조립체(133)와 협력하여 질량 분석기(126)에서 생성 된 자기장(들)의 강도 또는 진폭을 조정함으로써 제어 될 수 있다. 제어 시스템(154)은 본 실시 예에서 프로파일러(156)로부터의 측정 데이터에 따라 질량 분석기(126)의 자기장(들) 및 분해 개구부(134)의 위치를 조정할 수 있다. 제어 시스템(154)은 추가적인 측정 데이터를 통해 조정을 확인할 수 있고, 필요하다면 질량 분석기(126) 및 분해 개구부(134)를 통해 추가적인 조정을 수행할 수 있다.
본 발명의 하나 이상의 측면에 따른 복합 스캐닝 및 포커싱 시스템(135)은 도 2에 도시된 바와 같이 복합 스캐닝 및 포커싱 자석(200)을 포함하며, 상기 복합 스캐닝 및 포커싱 자석(200)은 도 1의 스캐닝 요소(136) 및 다중 극자 포커싱 요소(138)를 모두 포함하며, 상기 복합 스캐닝 및 포커싱 자석은 이온 빔(124)을 전자기적으로 스캐닝 하면서 동시에 이온 빔의 추가적인 포커싱을 제공하도록 구성된다.
도 2의 상기 복합 스캐닝 및 포커싱 자석(200)은 예를 들어, 고투자율(high magnetic permeability)을 갖는 요크(202)(가령, 철 요크(ferrous yoke))를 포함하며, 요크는 일반적으로 도 1의 이온 빔(124)을 통과시키도록 구성된 홀(204)을 형성한다. 예를 들어, 요크(202)는 일반적으로 장방형(rectangular) 강철(steel) 요크를 포함하고, 복수의 적층 철판(ferrous sheets)으로 구성 될 수 있다. 도 3a에 더 도시 된 바와 같이, 하나 또는 둘 이상의 스캐너 코일(206A, 206B)은 예를 들어, 도 2의 요크(202)에 작동가능하게 결합되고, 상기 하나 또는 둘 이상의 스캐너 코일은 상기 전원 공급원(149)에 전기적으로 결합될 때 시변(time-varying)하며, 우세한 쌍극자 자기장을 생성하도록 구성된다. 도 2 및 도 3a에 도시 된 바와 같이, 하나 또는 둘 이상의 스캐너 코일(206A, 206B)은 하나 또는 둘 이상의 베드스테이드(bedstead) 코일(208)을 포함한다.
본 발명의 다른 예시적인 측면에 따르면, 하나 또는 둘 이상의 포커싱 코일(210A 내지 210D)은 도 2의 요크(202)에 동작가능하게 결합되고, 상기 하나 또는 둘 이상의 포커싱 코일은 도 1의 전원 공급원(150)에 전기적으로 결합될 때 우세한 다중극자(가령, 4극 또는 6극) 자기장을 발생 시키도록 구성된다. 예를 들면, 상기 우세한 다중극자 자기장은 정적(static) 자기장 또는 시변(time-varying) 자기장 중 하나이다. 예를 들면, 다중극자 자기장은 하나의 이온 빔에 대해 한번 설정 될 수 있고, 계속해서 다른 이온 빔에 대해 변경 될 수 있다. 내지는, 스캐너 전류와 위상이 같거나 스캐너 전류와 위상차가 있는 교류 전류를 사용할 수 있다. 도 3b는 하나 또는 둘 이상의 포커싱 코일(210A 내지 210D)을 나타내고, 상기 하나 또는 둘 이상의 포커싱 코일은 파노푸스키 타입(Panofsky-type) 다중극자 코일(가령, 사중극자)을 포함한다. 내지는, 하나 또는 둘 이상의 포커싱 코일(210)은 다수의 베드 스테이드 코일(도시되지 않음)을 포함한다.
도 3c는 도 2의 요크를 포함하지 않는 하나 또는 둘 이상의 스캐너 코일(206A, 206B) 및 하나 또는 둘 이상의 포커싱 코일(210A 내지 210D)을 더 명확하게 도시한다. 본 발명에 따르면, 도 1의 이온 빔(124)의 스캐닝은 도 3c의 하나 또는 둘 이상의 스캐너 코일(206A, 206B)을 통해 전류를 통과시킴으로써 달성되고, 이온 빔의 포커싱 및 스티어링은 전류를 하나 또는 둘 이상의 포커싱 코일(210A 내지 210D)에 통과시킴으로써 달성된다.
도 4는 또 다른 예시적인 복합 스캐닝 및 포커싱 자석(300)을 도시한다. 도 4의 상기 복합 스캐닝 및 포커싱 자석(300)은 예를 들어, 도 1의 이온 빔(124)을 통과시키도록 구성된 홀(304)을 규정하는 요크(302)를 포함한다. 도 4의 요크(302) 예를 들어, 도 5a에 도시된다.
특정 개수의 스캐너 코일(206) 및 포커싱 코일(210)이 개시되어 있지만, 본 발명은 임의의 수의 스캐너 코일 및 포커싱 코일을 고려하고, 이러한 코일은 다양한 구성 및 임의의 수의 각각의 코일로 중첩 될 수 있으며, 그러한 모든 변형은 본 발명의 범위 내에 있는 것으로 고려된다.
본 발명의 상기 조합 된 스캐닝 및 포커싱 자석 개념이 스캐닝 요소만으로 점유 된 공간에서 추가의 제어 가능성 및 포커싱을 제공하기 때문에, 도 1의 상기 복합 스캐닝 및 포커싱 시스템(135) 및 도 2 및 도 4의 상기 예시적인 조합 된 스캐닝 및 포커싱 자석(200, 300)은 예를 들어, 종래의 별도의 스캐닝 및 포커싱 시스템에 비해 유리하다. 이와 같이, 전체 빔 라인은 상기 복합 스캐닝 및 포커싱 시스템(135)의 구성에 적어도 부분적으로 기인하여 더 짧아 질 수 있다.
하나의 예시적인 측면에 따르면, 제로 차수에 이르기까지, 도 1의 스캐너 코일(136)의 쌍극자 자기장 및 포커싱 코일(138) 사이에는 다중극자 코일의 대칭성(symmetry)에 의하여 커플링이 존재하지 않을 것이다. 이러한 커플링 또는 상호 인덕턴스는 두 자석의 제어에 해로울 수 있으며, 전원 공급 장치에 손상을 줄 수 있다. 그러나 실제로 코일(136, 138) 및 고자기 투과성(high-magnetic-permeability) 코어 또는 요크(202, 302)의 권선 및 정렬의 불완전으로 인해 비교적 작은 정도의 결합이 있을 수 있다. 예를 들어, 이러한 작은 결합은 능동 또는 수동 필터링에 의해 최소로 감소될 수 있고, 전원 공급원(149, 150)(가령, 다중극자 전원)에서의 입력 전압이 전원 사양 내에 있고, 다중극자 자석에 전달되는 전류의 리플이 회피된다.
경우에 따라 필터 사용은 문제가 될 수 있고, 스캐너가 광범위한 주파수로 구동되는 경우 특히 문제가 될 수 있다. 그러한 경우에, 상호 인덕턴스를 가능한 한 최대로 감소시켜 전체적으로 필터링을 피하거나 적어도 제공된 필터링의 양을 최소화하는 것이 바람직 할 수 있다. 커플링을 최소화하는 하나의 방법은 상호 인덕턴스를 상쇄하기 위해 스캐너 자석 프린지 필드(fringe field)를 충분히 포착하는 방식으로 포커싱 코일(138)의 리드를 라우팅하는 것이다. 그러나 커플링을 줄이는데 충분하지 않으면 포커스 코일은 아래에 설명 된 것처럼 추가적인 특징을 가질 수 있다.
이러한 커플링을 감소시키는 일례는 원하는 필드에 크게 기여하지는 않지만 일반적으로 상호 인덕턴스를 상쇄하는 다중극자 코일 포커싱(138) 내의 하나 또는 둘 이상의 조정 가능한 플럭스 루프(flux loop) 코일(도시되지 않음)을 포함한다. 상기 플럭스 루프 코일(들)은 다중극자 포커싱 코일(138)의 입력, 출력 또는 입출력 양 단부 상에 있을 수 있다. 상기 플럭스 루프 코일(들)은 스캐너 쌍극자의 프린지 필드(가령, 스캐너 요크에 의해 이온 빔(124)으로부터 차폐 됨)에 위치 될 수 있으며, 따라서 이온 빔에 대한 교란(perturbation)은 최소화될 수 있다. 이러한 루프 또는 루프들을 통과하는 플럭스는 코일의 위치를 변경하거나 혹은 코일의 추가 부분 또는 철재로 코일을 차폐하거나 혹은 요크를 코일 안팎으로 움직여서 조정할 수 있다. 플럭스 루프 코일의 권수는 예를 들어, 소거 될 플럭스의 원하는 양에 의해 결정된다. 이러한 조정은 자석이 분해되거나 이동되지 않는다고 가정하면 한 번 만들어지고 고정 될 수 있다.
예를 들어, 포커싱 코일(138)의 리드들은 포커싱 자석과 스캐닝 자석 사이의 상호 인덕턴스를 제거하도록 배치된다. 일실시 예에서, 하나 또는 둘 이상의 보조 코일들(도시되지 않음)은 하나 또는 둘 이상의 포커싱 코일들(138)과 결합되고, 상기 하나 또는 둘 이상의 보조 코일들은 상기 하나 또는 둘 이상의 스캐너 코일들(136)과 관련 된 프린지 필드 영역에 위치하며, 상기 하나 또는 둘 이상의 포커싱 코일과 상기 하나 또는 둘 이상의 스캐닝 코일 사이의 상호 인덕턴스는 일반적으로 제거된다. 다른 실시 예에서, 조절 가능한 보조 요크(도시되지 않음)는 보조 요크 주위에 감겨진 하나 또는 둘 이상의 보조 코일(도시되지 않음)을 포함하고, 상기 하나 또는 둘 이상의 보조 코일은 상기 하나 또는 둘 이상의 스캐너 코일(136)과 관련된 프린지 필드 영역에 위치하며, 하나 또는 둘 이상의 포커싱 코일(138)과 하나 또는 둘 이상의 스캐닝 코일 사이의 상호 인덕턴스는 일반적으로 제거된다.
본 발명의 다른 측면에 따르면, 도 6은 이온을 공작물에 주입하기 위한 예시적인 방법(500)을 도시한다. 예시적인 방법이 본 명세서에서 일련의 동작들 또는 사건들로서 도시되고 설명되지만, 본 발명은 그러한 동작들 또는 사건들의 예시 된 순서에 의해 제한되지 않으며, 몇몇 단계들은 본 발명에 따라 본 명세서에 도시되고 설명 된 것 이외에 다른 순서들 및/또는 다른 단계들과 동시에 발생할 수 있다. 또한, 모든 개시된 단계가 본 발명에 따른 방법을 구현하는 것이 요구 될 수 있는 것은 아니다. 또한, 상기 방법은 도시되지 않은 다른 시스템과 관련할 뿐만 아니라 여기에 도시되고 기술 된 시스템과 관련하여 구현 될 수 있음을 알 것이다.
도 6을 참조하면, 방법(500)은 이온 빔이 형성되는 단계(502)에서 시작된다. 이온 빔은 예를 들어 도 1의 이온 주입 시스템(100)을 통해 형성될 수 있다. 단계(504)에서, 이온 빔은 질량 분석되고, 단계(506)에서, 이온 빔은 도 1의 상기 복합 스캐닝 및 포커싱 시스템(135)과 같이 복합 스캐닝 및 포커싱 자석을 통해 동시에 스캐닝 되고 포커싱 된다. 예를 들어, 이온 빔을 동시에 스캐닝하고 포커싱하는 것은 도 2 및 도 4의 예시적인 복합 스캐닝 및 포커싱 자석(200, 300) 중 하나를 이용하여 수행 될 수 있다.
비록 본 발명이 특정 바람직한 실시 예 또는 실시 예들과 관련하여 도시되고 설명되었지만, 본 명세서 및 첨부 된 도면을 읽고 이해할 때 당업자에게 균등한 변경 및 수정이 발생할 것이라는 것은 명백하다. 특히, 전술한 성분들(조립체, 장치, 회로 등)에 의해 수행되는 여러 기능들과 관련하여, 그러한 성분을 설명하기 위해서 사용된 용어("수단"을 포함)는, 다른 언급이 없는 경우에도, 비록 구조적으로는 개시된 구조와 균등하지 않더라도 예시적인 실시예에서의 기능을 실행하는, 본원 명세서에서 설명된 성분의 특정 기능(즉, 기능적으로 균등한)을 실시하는 임의 성분에 상응하는 것이다. 또한, 몇몇 실시예들 중 하나에 대해서만 특정의 특징을 설명하였지만, 그러한 특징은 필요에 따라서 그리고 특정 용도에 따라서 다른 실시예들의 하나 또는 둘 이상의 특징들과 조합될 수 있을 것이다.

Claims (22)

  1. 복합 스캐닝 및 포커싱 자석으로서,
    고투자율을 가지는 요크로서, 상기 요크는 이온 빔을 통과시키도록 구성된 홀을 형성하고;
    상기 요크에 동작가능하게 결합되고 전원 공급원에 전기적으로 결합 될 때 시변하는 우세한 쌍극자 자기장을 생성하도록 구성된 하나 또는 둘 이상의 스캐너 코일; 및
    상기 요크에 동작가능하게 결합되고 우세한 다중극자 자기장을 생성하도록 구성된 하나 또는 둘 이상의 포커싱 코일을 포함하고,
    상기 우세한 다중극자 자기장은 정적 또는 시변 중 하나이고,
    상기 포커싱 자석 코일 리드들의 리드들은 상기 포커싱 자석과 상기 스캐닝 자석 사이의 상호 인덕턴스를 제거하도록 위치되고,
    조절 가능한 보조 요크를 더 포함하고, 하나 또는 둘 이상의 보조 코일이 상기 보조 요크 둘레에 감겨져 있고, 상기 하나 또는 둘 이상의 보조 코일은 상기 하나 또는 둘 이상의 스캐너 코일과 관련된 프린지 필드 영역에 위치하고, 상기 하나 또는 둘 이상의 포커싱 코일과 상기 하나 또는 둘 이상의 스캐닝 코일 사이의 상호 인덕턴스는 제거되는 것을 특징으로 하는 복합 스캐닝 및 포커싱 자석.
  2. 제 1 항에 있어서,
    상기 요크는 장방형 강철 요크를 포함하는 것을 특징으로 하는 복합 스캐닝 및 포커싱 자석.
  3. 제 1 항에 있어서,
    상기 요크는 다수의 적층 철판을 포함하는 것을 특징으로 하는 복합 스캐닝 및 포커싱 자석.
  4. 제 1 항에 있어서,
    교류 전원을 더 포함하며, 상기 하나 또는 둘 이상의 스캐너 코일들 및 상기 하나 또는 둘 이상의 포커싱 코일들은 상기 교류 전원으로부터 전력을 수신하도록 구성되는 것을 특징으로 하는 복합 스캐닝 및 포커싱 자석.
  5. 제 1 항에 있어서,
    직류 전원을 더 포함하고, 상기 하나 또는 둘 이상의 스캐너 코일들 및 상기 하나 또는 둘 이상의 포커싱 코일들은 상기 직류 전원으로부터 전력을 수신하도록 구성되는 것을 특징으로 하는 복합 스캐닝 및 포커싱 자석.
  6. 제 1 항에 있어서,
    상기 하나 또는 둘 이상의 포커싱 코일은 파노푸스키 타입 다중극자 코일을 포함하는 것을 특징으로 하는 복합 스캐닝 및 포커싱 자석.
  7. 제 1 항에 있어서,
    상기 하나 또는 둘 이상의 포커싱 코일은 하나 또는 둘 이상의 베드 스테이드 코일을 포함하는 것을 특징으로 하는 복합 스캐닝 및 포커싱 자석.
  8. 제 1 항에 있어서,
    상기 하나 또는 둘 이상의 스캐너 코일은 하나 또는 둘 이상의 베드 스테이드 코일을 포함하는 것을 특징으로 하는 복합 스캐닝 및 포커싱 자석.
  9. 제 1 항에 있어서,
    상기 하나 또는 둘 이상의 포커싱 코일과 관련된 하나 또는 둘 이상의 보조 코일을 더 포함하며, 상기 하나 또는 둘 이상의 보조 코일은 상기 하나 또는 둘 이상의 스캐너 코일과 관련된 프린지 필드 영역에 위치하고, 상기 하나 또는 둘 이상의 포커싱 코일과 상기 하나 또는 둘 이상의 스캐닝 코일 사이의 상호 인덕턴스는 제거되는 것을 특징으로 하는 복합 스캐닝 및 포커싱 자석.
  10. 이온 빔을 생성시키도록 구성되는 이온 소스;
    상기 이온 빔을 질량 분해하도록 구성되는 질량 분해 자석;
    상기 질량 분해 자석의 하류에 위치하는 질량 분해 개구부로서, 상기 질량 분해 개구부는 상기 이온 빔으로부터 바람직하지 않은 종을 필터링하도록 구성되며, 상기 이온 빔은 질량 분해 개구부를 통과한 후에 발산하며; 및
    상기 질량 분해 자석의 하류에 위치하는 복합 스캐닝 및 포커싱 자석을 포함하고,
    상기 이온 빔의 경로는 전자기적으로 스캐닝되면서, 동시에 상기 이온 빔을 포커싱하고,
    상기 복합 스캐닝 및 포커싱 자석은,
    고투자율을 갖는 요크로서, 상기 요크는 이온 빔을 통과시키도록 구성되는 홀을 형성하고;
    상기 요크에 동작가능하게 결합되고 전원 공급원에 전기적으로 결합 될 때 시변하는 우세한 쌍극자 자기장을 생성하도록 구성되는 하나 또는 둘 이상의 스캐너 코일들; 및
    상기 요크에 동작가능하게 결합되고 우세한 다중극자 자기장을 발생시키도록 구성되는 하나 또는 둘 이상의 포커싱 코일을 포함하되,
    상기 우세한 다중극자 자기장은 정적 또는 시변 중 하나이고,
    상기 포커싱 자석 코일 리드들의 리드들은 상기 포커싱 자석과 상기 스캐닝 자석 사이의 상호 인덕턴스를 제거하도록 위치되고,
    조절 가능한 보조 요크를 더 포함하고, 하나 또는 둘 이상의 보조 코일이 상기 보조 요크 둘레에 감겨져 있고, 상기 하나 또는 둘 이상의 보조 코일은 상기 하나 또는 둘 이상의 스캐너 코일과 관련된 프린지 필드 영역에 위치하고, 상기 하나 또는 둘 이상의 포커싱 코일과 상기 하나 또는 둘 이상의 스캐닝 코일 사이의 상호 인덕턴스는 제거되는 것을 특징으로 하는 이온 주입 시스템.
  11. 제 10 항에 있어서,
    상기 요크는 장방형 강철 요크를 포함하는 것을 특징으로 하는 이온 주입 시스템.
  12. 제 10 항에 있어서,
    상기 요크는 다수의 적층 철판을 포함하는 것을 특징으로 하는 이온 주입 시스템.
  13. 제 10 항에 있어서,
    상기 하나 또는 둘 이상의 포커싱 코일은 파노푸스키 타입 다중극자 코일을 포함하는 것을 특징으로 하는 이온 주입 시스템.
  14. 제 10 항에 있어서,
    상기 하나 또는 둘 이상의 포커싱 코일은 하나 또는 둘 이상의 베드 스테이드 코일을 포함하는 것을 특징으로 하는 이온 주입 시스템.
  15. 제 10 항에 있어서,
    상기 하나 또는 둘 이상의 스캐너 코일은 하나 또는 둘 이상의 베드 스테이드 코일을 포함하는 것을 특징으로 하는 이온 주입 시스템.
  16. 제 10 항에 있어서,
    상기 이온 소스, 상기 질량 분해 자석, 그리고 복합 스캐닝 및 포커싱 자석에 동작가능하게 결합되는 제어기를 더 포함하고, 상기 제어기는 공작물 내로 주입되는 이온들의 원하는 투여량 및 분포에 적어도 부분적으로 기초하여 상기 이온 소스, 상기 질량 분해 자석, 그리고 복합 스캐닝 및 포커싱 자석의 적어도 하나의 동작을 제어하도록 구성되는 것을 특징으로 하는 이온 주입 시스템.
  17. 제 16 항에 있어서,
    교류 전원을 더 포함하고, 상기 제어기는 상기 하나 또는 둘 이상의 스캐너 코일들 및 상기 하나 또는 둘 이상의 포커싱 코일들에 상기 교류 전원을 선택적으로 제공하도록 구성되는 것을 특징으로 하는 이온 주입 시스템.
  18. 제 16 항에 있어서,
    직류 전원을 더 포함하고, 상기 제어기는 상기 하나 또는 둘 이상의 스캐너 코일들 및 상기 하나 또는 둘 이상의 포커싱 코일들에 상기 직류 전원을 선택적으로 제공하도록 구성되는 것을 특징으로 하는 이온 주입 시스템.
  19. 제 10 항에 있어서,
    상기 이온 빔의 하나 또는 둘 이상의 특성을 결정하도록 구성된 측정 구성을 더 포함하고, 제어기는 또한 상기 측정 구성에 동작가능하게 결합되고, 상기 이온 빔의 결정된 상기 하나 또는 둘 이상의 특성에 적어도 부분적으로 기초하여 상기 이온 소스, 상기 질량 분해 자석, 및 복합 스캐닝 및 포커싱 자석 중 적어도 하나의 동작을 제어하도록 구성되는 것을 특징으로 하는 이온 주입 시스템.




  20. 삭제
  21. 삭제
  22. 삭제
KR1020177014259A 2014-12-26 2015-12-28 복합 다중극자 자석 및 쌍극자 스캐닝 자석 KR102517459B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201462096968P 2014-12-26 2014-12-26
US62/096,968 2014-12-26
PCT/US2015/067730 WO2016106425A2 (en) 2014-12-26 2015-12-28 Combined multipole magnet and dipole scanning magnet

Publications (2)

Publication Number Publication Date
KR20170101198A KR20170101198A (ko) 2017-09-05
KR102517459B1 true KR102517459B1 (ko) 2023-03-31

Family

ID=55359702

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020177014259A KR102517459B1 (ko) 2014-12-26 2015-12-28 복합 다중극자 자석 및 쌍극자 스캐닝 자석

Country Status (6)

Country Link
US (1) US9620327B2 (ko)
JP (1) JP6755249B2 (ko)
KR (1) KR102517459B1 (ko)
CN (1) CN107112180B (ko)
TW (1) TWI679669B (ko)
WO (1) WO2016106425A2 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY195425A (en) * 2017-01-25 2023-01-20 Sumitomo Heavy Industries Particle Acceleration System And Particle Acceleration System Adjustment Method
US10290463B2 (en) 2017-04-27 2019-05-14 Imatrex, Inc. Compact deflecting magnet
CN109872938B (zh) * 2017-12-05 2022-03-29 中国电子科技集团公司第四十八研究所 一种适用于微纳器件制造的离子注入机
US11114270B2 (en) * 2018-08-21 2021-09-07 Axcelis Technologies, Inc. Scanning magnet design with enhanced efficiency

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006313750A (ja) * 2005-05-06 2006-11-16 Advanced Ion Beam Technology Inc リボンイオンビーム用高アスペクト比、高質量分解能アナライザマグネット及びシステム

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3984687A (en) * 1975-03-17 1976-10-05 International Business Machines Corporation Shielded magnetic lens and deflection yoke structure for electron beam column
US4117434A (en) * 1977-01-19 1978-09-26 General Electric Company Hybrid deflection system with quadripolar correction coils
CA1104630A (en) * 1978-03-17 1981-07-07 James H. Logan Hybrid deflection yoke with quadripolar correction coils
US4469948A (en) * 1982-01-26 1984-09-04 The Perkin-Elmer Corp. Composite concentric-gap magnetic lens
US5311028A (en) * 1990-08-29 1994-05-10 Nissin Electric Co., Ltd. System and method for producing oscillating magnetic fields in working gaps useful for irradiating a surface with atomic and molecular ions
US5672879A (en) * 1995-06-12 1997-09-30 Glavish; Hilton F. System and method for producing superimposed static and time-varying magnetic fields
US5554857A (en) * 1995-10-19 1996-09-10 Eaton Corporation Method and apparatus for ion beam formation in an ion implanter
DE19903872C2 (de) * 1999-02-01 2000-11-23 Siemens Ag Röntgenröhre mit Springfokus zur vergrößerten Auflösung
US6777696B1 (en) 2003-02-21 2004-08-17 Axcelis Technologies, Inc. Deflecting acceleration/deceleration gap
US20060017010A1 (en) * 2004-07-22 2006-01-26 Axcelis Technologies, Inc. Magnet for scanning ion beams
US7019314B1 (en) * 2004-10-18 2006-03-28 Axcelis Technologies, Inc. Systems and methods for ion beam focusing
US7615763B2 (en) * 2006-09-19 2009-11-10 Axcelis Technologies, Inc. System for magnetic scanning and correction of an ion beam
WO2008115339A1 (en) * 2007-03-15 2008-09-25 White Nicholas R Open-ended electromagnetic corrector assembly and method for deflecting, focusing, and controlling the uniformity of a traveling ion beam
US8138484B2 (en) * 2010-04-28 2012-03-20 Axcelis Technologies Inc. Magnetic scanning system with improved efficiency
US8637838B2 (en) * 2011-12-13 2014-01-28 Axcelis Technologies, Inc. System and method for ion implantation with improved productivity and uniformity

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006313750A (ja) * 2005-05-06 2006-11-16 Advanced Ion Beam Technology Inc リボンイオンビーム用高アスペクト比、高質量分解能アナライザマグネット及びシステム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Combined Panofsky Quadrupole & Corrector Dipole", Proceeding of PAC07, Albuquerque, New Mexico, USA (2007. 06. 29.)*

Also Published As

Publication number Publication date
TWI679669B (zh) 2019-12-11
JP2018506134A (ja) 2018-03-01
CN107112180B (zh) 2019-12-10
WO2016106425A2 (en) 2016-06-30
JP6755249B2 (ja) 2020-09-16
WO2016106425A3 (en) 2016-08-25
US20160189913A1 (en) 2016-06-30
US9620327B2 (en) 2017-04-11
TW201637061A (zh) 2016-10-16
KR20170101198A (ko) 2017-09-05
CN107112180A (zh) 2017-08-29

Similar Documents

Publication Publication Date Title
KR101354633B1 (ko) 이온 비임의 자기식 스캐닝 및 교정 시스템
US5132544A (en) System for irradiating a surface with atomic and molecular ions using two dimensional magnetic scanning
US8637838B2 (en) System and method for ion implantation with improved productivity and uniformity
JP2007516573A (ja) リボンビーム型イオン注入機のための高分析分離磁石
KR102517459B1 (ko) 복합 다중극자 자석 및 쌍극자 스캐닝 자석
KR20170101191A (ko) 빔 감속을 가지는 이온 주입기의 빔 각도 조정을 위한 시스템 및 방법
JP5388865B2 (ja) イオン注入個所の磁界低減化技術
US8008636B2 (en) Ion implantation with diminished scanning field effects
TW202038287A (zh) 用於高處理量的掃描射束離子植入器的掃描和校正器磁體設計
US6885014B2 (en) Symmetric beamline and methods for generating a mass-analyzed ribbon ion beam
US9443698B2 (en) Hybrid scanning for ion implantation
US7019314B1 (en) Systems and methods for ion beam focusing

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant