KR102515819B1 - Organic compounds, organic light emitting diode and organic light emittid device having the compounds - Google Patents

Organic compounds, organic light emitting diode and organic light emittid device having the compounds Download PDF

Info

Publication number
KR102515819B1
KR102515819B1 KR1020170160426A KR20170160426A KR102515819B1 KR 102515819 B1 KR102515819 B1 KR 102515819B1 KR 1020170160426 A KR1020170160426 A KR 1020170160426A KR 20170160426 A KR20170160426 A KR 20170160426A KR 102515819 B1 KR102515819 B1 KR 102515819B1
Authority
KR
South Korea
Prior art keywords
light emitting
group
formula
organic light
organic
Prior art date
Application number
KR1020170160426A
Other languages
Korean (ko)
Other versions
KR20190061747A (en
Inventor
배숙영
신인애
김준연
Original Assignee
엘지디스플레이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지디스플레이 주식회사 filed Critical 엘지디스플레이 주식회사
Priority to KR1020170160426A priority Critical patent/KR102515819B1/en
Publication of KR20190061747A publication Critical patent/KR20190061747A/en
Application granted granted Critical
Publication of KR102515819B1 publication Critical patent/KR102515819B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/56Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/56Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms
    • C07D233/58Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D277/00Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
    • C07D277/02Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings
    • C07D277/20Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D277/22Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/656Aromatic compounds comprising a hetero atom comprising two or more different heteroatoms per ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms

Abstract

본 발명은 전자주개(electron donor)로 기능하는 인데노인덴(indenoindene)으로 치환된 트리 아릴 아민 모이어티에 전자받개(electron acceptor)로 기능하는 이미다졸(imidazole) 또는 티아졸(thiazole) 모이어티가 방향족 링커(linker)를 통하여 연결된 유기 화합물에 관한 것이다. 하나의 분자 내에 전자주개와 전자받개 모이어티를 모두 포함하고 있어, 분자 내에서 전하가 쉽게 이동하여 발광 효율이 향상될 수 있다. 또한, 전자주개의 일부분인 질소 원자는 견고한 구조를 가지는 축합 방향족 고리인 인데노인덴 고리와 연결되어 있기 때문에, 분자의 3차원 입체구조가 제한된다. 따라서 본 발명의 유기 화합물은 고색순도의 청색을 발광하는 지연 형광 도펀트로 사용될 수 있다. 본 발명의 유기 화합물을 적용하여 구동 전압이 낮으면서, 발광 효율 및 색 순도가 우수한 유기발광다이오드, 표시장치 및 조명 장치와 같은 유기발광장치에 활용될 수 있다.In the present invention, an indenoindene-substituted triarylamine moiety serving as an electron donor and an imidazole or thiazole moiety serving as an electron acceptor are aromatic It relates to an organic compound linked through a linker. Since it contains both an electron donor and an electron acceptor moiety in one molecule, charge can easily move in the molecule and the luminous efficiency can be improved. In addition, since the nitrogen atom, which is a part of the electron donor, is connected to the indenoindene ring, which is a condensed aromatic ring having a rigid structure, the three-dimensional three-dimensional structure of the molecule is limited. Therefore, the organic compound of the present invention can be used as a delayed fluorescence dopant emitting blue light of high color purity. By applying the organic compound of the present invention, it can be used in organic light emitting devices such as organic light emitting diodes, display devices, and lighting devices having low driving voltage and excellent luminous efficiency and color purity.

Description

유기 화합물, 이를 포함하는 유기발광다이오드 및 유기발광장치{ORGANIC COMPOUNDS, ORGANIC LIGHT EMITTING DIODE AND ORGANIC LIGHT EMITTID DEVICE HAVING THE COMPOUNDS}Organic compounds, organic light emitting diodes and organic light emitting devices containing the same

본 발명은 유기 화합물에 관한 것으로, 더욱 상세하게는 발광 효율이 우수하여 유기발광다이오드의 발광층에 적용될 수 있는 유기 화합물, 이를 포함하는 유기발광다이오드 및 유기발광장치에 관한 것이다. The present invention relates to an organic compound, and more particularly, to an organic compound that can be applied to a light emitting layer of an organic light emitting diode due to its excellent light emitting efficiency, an organic light emitting diode and an organic light emitting device including the organic compound.

현재 널리 사용되고 있는 평면표시소자 중 하나로서 유기전계발광소자(organic electroluminescent device; OELD)라고도 불리는 유기발광다이오드 소자의 기술이 빠른 속도로 발전하고 있다. As one of the currently widely used flat display devices, the technology of an organic light emitting diode device, also called an organic electroluminescent device (OELD), is rapidly developing.

유기발광다이오드(organic light emitting diodes; OLED)는 2000 Å 이내의 얇은 유기 박막으로 형성되고, 사용되는 전극의 구성에 따라 단일 방향 또는 양방향으로의 화상 구현이 가능하다. 또한 유기발광다이오드를 포함하는 유기발광장치의 하나인 유기발광다이오드 표시장치는 플라스틱과 같은 플렉서블(flexible) 투명 기판 위에도 소자를 형성할 수 있어서 플렉서블 또는 폴더블(foldable) 표시장치를 구현할 수 있다. 뿐만 아니라, 유기발광다이오드 표시장치는 낮은 전압에서 구동이 가능하고, 색순도가 우수하여, 액정표시장치(liquid crystal display device; LCD)에 비하여 큰 장점을 가지고 있다. Organic light emitting diodes (OLEDs) are formed of a thin organic thin film of less than 2000 Å, and can implement images in a single direction or in both directions depending on the configuration of electrodes used. In addition, an organic light emitting diode display, which is one of organic light emitting devices including organic light emitting diodes, can form elements on a flexible transparent substrate such as plastic, so that a flexible or foldable display device can be realized. In addition, the organic light emitting diode display can be driven at a low voltage and has excellent color purity, so it has great advantages over a liquid crystal display device (LCD).

유기발광다이오드는 정공 주입 전극(양극)과, 전자 주입 전극(음극)과, 상기 양극과 음극 사이에 형성되는 유기발광층을 포함한다. 발광 효율을 증가시키기 위하여, 유기발광층은 정공 주입 전극 상에 순차적으로 적층되는 정공주입층, 정공수송층, 발광물질층, 전자수송층, 전자주입층을 포함할 수 있다. 이때, 양극에서 주입된 정공(hole)과 음극에서 주입된 전자(electron)가 발광물질층에서 결합하여 여기자(엑시톤, exciton)을 형성하여 불안정한 에너지 상태(excited state)로 되었다가, 안정한 바닥 상태(ground state)로 돌아오며 빛을 방출한다. 발광물질층에 적용된 발광 물질의 외부양자효율(external quantum efficiency, EQE; ηext)은 하기 식(1)로 연산할 수 있다.An organic light emitting diode includes a hole injection electrode (anode), an electron injection electrode (cathode), and an organic light emitting layer formed between the anode and the cathode. In order to increase luminous efficiency, the organic light emitting layer may include a hole injection layer, a hole transport layer, a light emitting material layer, an electron transport layer, and an electron injection layer sequentially stacked on the hole injection electrode. At this time, holes injected from the anode and electrons injected from the cathode are combined in the light emitting material layer to form excitons (exciton) to enter an unstable energy state (excited state), and then to a stable ground state ( It returns to the ground state and emits light. External quantum efficiency (EQE; η ext ) of the light emitting material applied to the light emitting material layer can be calculated by the following formula (1).

Figure 112017118505170-pat00001
Figure 112017118505170-pat00001

S/T는 여기자생성효율(singlet/Triplet ratio), г는 전하 균형 인자(charge balance factor); Φ는 방사양자효율(radiative quantum efficiency); ηout-coupling은 광-추출 효율(out-coupling efficiency)임)S/T is the singlet/triplet ratio, г is the charge balance factor; Φ is the radiative quantum efficiency; η out-coupling is the light-extraction efficiency (out- coupling efficiency)

여기자생성효율(ηS/T)은 생성된 여기자(exciton)가 빛의 형태로 전환되는 비율로, 형광 물질의 경우 최대 0.25의 제한적인 값을 갖는다. 이론적으로 정공과 전자가 만나 여기자를 형성할 때, 스핀의 배열에 따라 짝스핀(paired spin) 형태인 단일항 여기자(singlet exciton)과 홀스핀(unpaired spin) 형태인 삼중항 여기자(triplet exciton)이 1:3의 비율로 생성된다. 형광 물질에서는 단일항 여기자만이 발광에 참여하고 나머지 75%의 삼중항 여기자는 발광에 참여하지 못하기 때문이다. Exciton generation efficiency (η S/T ) is a rate at which generated excitons are converted into light, and has a limiting value of up to 0.25 in the case of fluorescent materials. Theoretically, when a hole and an electron meet to form an exciton, a singlet exciton in the form of paired spin and a triplet exciton in the form of unpaired spin are formed according to the arrangement of spins. It is produced in a ratio of 1:3. This is because in fluorescent materials, only singlet excitons participate in light emission, and the remaining 75% of triplet excitons do not participate in light emission.

전하균형인자(г)는 여기자를 형성하는 정공과 전자의 균형을 의미하는데, 일반적으로 100%의 1:1 매칭(matching)을 가정하여 '1'의 값을 갖는다. 방사양자효율(Φ)은 실질적인 발광 물질의 발광 효율에 관여하는 값으로, 호스트(host)-도펀트(dopant) 시스템에서는 도펀트의 광-발광(photoluminescence, PL)에 의존한다. The charge balance factor (г) means the balance of holes and electrons forming excitons, and generally has a value of '1' assuming a 1:1 matching of 100%. Radiant quantum efficiency (Φ) is a value related to the actual luminous efficiency of a light emitting material, and depends on the photoluminescence (PL) of a dopant in a host-dopant system.

광-추출 효율(ηout-coupling)은 발광 물질에서 발광된 빛 중에서 외부로 추출되는 빛의 비율이다. 일반적으로 등방성(isotropic) 형태의 발광 물질을 열-증착하여 박막을 형성할 경우, 개개의 발광 분자는 일정한 방향성을 가지지 않고 무질서한 상태로 존재한다. 이와 같은 무질서한 배열(random orientation) 상태에서의 광-추출 효율은 일반적으로 0.2의 값으로 가정한다. 따라서 식 (1)에 나타난 4개의 요소들을 조합하면, 형광 물질을 이용한 유기발광다이오드의 최대 발광 효율은 약 5%에 불과하다. Light-extraction efficiency (η out-coupling ) is a ratio of light extracted to the outside among light emitted from a light emitting material. In general, when a thin film is formed by thermally depositing an isotropic light emitting material, individual light emitting molecules do not have a certain directionality and exist in a disordered state. Light-extraction efficiency in such a random orientation state is generally assumed to be 0.2. Therefore, when the four elements shown in Equation (1) are combined, the maximum luminous efficiency of the organic light emitting diode using the fluorescent material is only about 5%.

반면, 인광 물질은 단일항 여기자와 삼중항 여기자를 모두 빛으로 전환시키는 발광 메커니즘을 가지고 있다. 인광 물질은 단일항 여기자를 계간전이(intersystem crossing; ISC)를 통해 삼중항으로 변환시킨다. 따라서 단일항 여기자와 삼중항 여기자를 모두 사용하는 인광 물질을 사용하는 경우, 형광 물질이 가지는 낮은 발광 효율을 향상시킬 수 있다. 인광 재료로서 Ir, Pt 등의 중금속을 포함하는 금속 착화합물을 사용하면, 중금속 원소에 의하여 강한 스핀-궤도 결합에 의하여 삼중항 상태에서 단일항 상태로의 전이가 가능하다. 그런데 특히 청색 인광 물질은 색순도가 표시장치에 적용하기 어려운 수준이며, 수명 또한 매우 짧아 상용화 수준에 크게 미치지 못하고 있다. On the other hand, phosphorescent materials have a light-emitting mechanism that converts both singlet excitons and triplet excitons into light. Phosphorescent materials convert singlet excitons into triplets through intersystem crossing (ISC). Therefore, when a phosphorescent material using both singlet excitons and triplet excitons is used, the low luminous efficiency of the fluorescent material can be improved. When a metal complex containing a heavy metal such as Ir or Pt is used as a phosphorescent material, a transition from a triplet state to a singlet state is possible due to strong spin-orbit coupling by the heavy metal element. However, in particular, the color purity of blue phosphor materials is difficult to apply to display devices, and the lifetime is also very short, so they do not reach the level of commercialization.

특히, 청색 인광 호스트는 청색 인광 도펀트의 삼중항 에너지가 호스트로 전이(back energy transfer)되는 것을 방지하기 위하여 인광 도펀트 재료의 삼중항 에너지보다 높아야 한다. 그런데, 유기 방향족 화합물은 공액화(conjugated) 구조가 늘어나거나 접합 고리(fused ring)를 가지게 되면, 삼중항 에너지가 급격하게 낮아지므로 청색 인광 호스트로 사용될 수 있는 유기 분자가 극히 제한된다. 아울러, 높은 삼중항 에너지를 가지기 위하여 인광 호스트는 에너지 밴드갭이 상당히 넓게 설계된다. 에너지 밴드갭이 넓은 인광 호스트 재료로 인하여 전하의 주입 및 수송이 지연되고, 이에 따라 유기발광다이오드의 구동 전압이 상승하면서 소비 전력 면에서 악영향을 미치게 되고, 발광층을 구성하는 재료에 전기적인 스트레스가 가해지면서 소자의 수명 특성이 저하되는 문제가 발생하였다.In particular, the blue phosphorescent host should be higher than the triplet energy of the phosphorescent dopant material in order to prevent back energy transfer of the blue phosphorescent dopant to the host. However, when the organic aromatic compound has an increased conjugated structure or a fused ring, the triplet energy is drastically lowered, so organic molecules that can be used as a blue phosphorescent host are extremely limited. In addition, in order to have a high triplet energy, the phosphorescent host is designed to have a fairly wide energy band gap. Charge injection and transport are delayed due to the phosphorescent host material having a wide energy bandgap, and accordingly, the driving voltage of the organic light-emitting diode increases, adversely affecting power consumption, and electrical stress is applied to the material constituting the light emitting layer. However, a problem occurred in that the lifetime characteristics of the device were deteriorated.

본 발명의 목적은 발광 효율을 향상시킬 수 있는 유기 화합물과, 상기 유기 화합물을 이용하여 구동 전압을 낮춰서 소비 전력을 감소시키며, 소자 수명이 향상된 유기발광다이오드 및 유기발광장치를 제공하고자 하는 것이다.SUMMARY OF THE INVENTION An object of the present invention is to provide an organic light emitting diode and an organic light emitting device that can improve light emitting efficiency, reduce power consumption by lowering a driving voltage using the organic compound, and improve device lifetime.

본 발명의 일 측면에 따르면, 본 발명은 전자주개(electron donor)로 작용하는 인데노인덴(indenoindene) 고리로 치환된 트리 아릴 아민 모이어티에 전자받개(electron acceptor)로 작용하는 이미다졸(imidazole) 또는 티아졸(thiazole) 모이어티가 방향족 링커(linker)를 통하여 연결된 유기 화합물을 제공한다. According to one aspect of the present invention, the present invention provides an indenoindene ring-substituted triaryl amine moiety acting as an electron donor, imidazole acting as an electron acceptor, or Provides an organic compound in which thiazole moieties are linked through an aromatic linker.

일례로, 전자주개를 구성하는 아민 원자는 인데노인덴 고리를 제외한 나머지 2곳이 호모 아릴기로 연결될 수 있으며, 전자주개와 전자받개 사이의 방향족 링커는 호모 아릴렌 고리일 수 있다. For example, the remaining two amine atoms constituting the electron donor may be connected with a homo aryl group except for the indenoindene ring, and the aromatic linker between the electron donor and the electron acceptor may be a homo arylene ring.

본 발명의 다른 측면에 따르면, 본 발명은 전술한 유기 화합물이 유기발광층에 적용된 유기 발광다이오드와, 유기발광장치를 제공한다. According to another aspect of the present invention, the present invention provides an organic light emitting diode and an organic light emitting device in which the organic compound described above is applied to an organic light emitting layer.

예를 들어, 상기 유기 화합물은 발광물질층에 적용될 수 있다. For example, the organic compound may be applied to the light emitting material layer.

하나의 예시적인 실시형태에서, 본 발명의 유기 화합물은 발광물질층의 도펀트로 사용될 수 있다.In one exemplary embodiment, the organic compound of the present invention may be used as a dopant of the light emitting material layer.

본 발명에 따른 유기 화합물은 전자주개(electron donor)로 작용하며, 인데노인덴(indenoindene) 고리를 가지는 트리 아릴 아민 모이어티에 전자받개(electron acceptor)로 작용하는 이미다졸(imidazole) 또는 티아졸(thiazole) 모이어티가 방향족 링커(linker)를 통하여 연결되어 있다. The organic compound according to the present invention acts as an electron donor, and imidazole or thiazole acts as an electron acceptor for a triaryl amine moiety having an indenoindene ring. ) moiety is linked through an aromatic linker.

4개의 방향족 고리가 축합된 인데노인덴 고리를 가지는 트리 아릴 아민 모이어티가 전자주개로 이용되고, 이미다졸 또는 티아졸 모이어티가 전자받개로 이용되는데, 전자주개를 구성하는 인데노인덴 고리와 전자받개 사이의 입체장애가 커지면서, 전자주개와 전자받개 사이의 이면각이 증가한다. 전자주개로 기능하는 인데노인덴 축합 방향족 고리를 가지는 트리 아릴 아민 모이어티와 전자받개로 기능하는 이미다졸/티아졸 모이어티 사이의 공액 구조(conjugate structure)의 형성이 제한되면서, 유기 화합물의 최고준위점유분자궤도(HOMO) 에너지 상태와 최저준위비점유분자궤도(LUMO) 에너지 상태로 쉽게 분리되면서 발광 효율이 향상될 수 있다. A triaryl amine moiety having an indenoindene ring in which four aromatic rings are condensed is used as an electron donor, and an imidazole or thiazole moiety is used as an electron acceptor. As the steric hindrance between the acceptors increases, the dihedral angle between the electron donor and the electron acceptor increases. As the formation of the conjugate structure between the triaryl amine moiety having an indenoindene condensed aromatic ring that functions as an electron donor and the imidazole/thiazole moiety that functions as an electron acceptor is limited, the highest level of organic compounds Luminous efficiency can be improved while being easily separated into an occupied molecular orbital (HOMO) energy state and a lowest unoccupied molecular orbital (LUMO) energy state.

또한, 전자주개로 기능하는 트리 아릴 아민 모이어티에서 전자받개로 기능하는 이미다졸/티아졸 모이어티로 쌍극자(dipole)가 형성되어, 분자 내부의 쌍극자 모멘트(dipole moment)가 증가하면서 발광 효율이 더욱 향상될 수 있다. In addition, a dipole is formed from the triaryl amine moiety that functions as an electron donor to the imidazole/thiazole moiety that functions as an electron acceptor, and as the dipole moment inside the molecule increases, the luminous efficiency further increases. can be improved

또한, 전자주개로 기능하며, 인데노인덴 축합 방향족 고리를 가지는 트리 아릴 아민 모이어티는 페닐렌과 같은 호모 또는 헤테로 아릴렌기를 통하여 전자받개인 이미다졸/티아졸 모이어티와 연결된다. 전자주개와 전자받개 사이의 거리가 증가하기 때문에, HOMO와 LUMO 간 중첩이 감소하게 되므로, 삼중항 에너지 준위와 단일항 에너지 준위의 차이(ΔEST)를 줄일 수 있다. 링커를 통한 입체장애에 의하여 본 발명에 따른 유기 화합물을 포함하는 유기발광층으로부터 발광되는 빛의 적색 천이(red shift) 문제를 최소화할 수 있다. In addition, the triaryl amine moiety that functions as an electron donor and has an indenoindene condensed aromatic ring is connected to an imidazole/thiazole moiety that is an electron acceptor through a homo or hetero arylene group such as phenylene. Since the distance between the electron donor and the electron acceptor increases, the overlap between the HOMO and the LUMO decreases, so the difference between the triplet energy level and the singlet energy level (ΔE ST ) can be reduced. It is possible to minimize the red shift problem of light emitted from the organic light emitting layer including the organic compound according to the present invention due to steric hindrance through the linker.

더욱이, 전자주개로 기능하는 트리 아릴 아민 모이어티는 견고한 구조의 축합 방향족 고리인 인데노인덴 고리를 가지고 있기 때문에, 분자의 3차원 입체구조(conformation)가 크게 제한된다. 본 발명에 따른 유기 화합물이 발광할 때 분자의 3차원 입체구조의 변경에 따른 에너지 손실이 없으며, 발광 스펙트럼을 특정 범위로 제한할 수 있기 때문에 고색순도를 구현할 수 있다.Moreover, since the triaryl amine moiety functioning as an electron donor has an indenoindene ring, which is a rigid condensed aromatic ring, the three-dimensional conformation of the molecule is greatly restricted. When the organic compound according to the present invention emits light, there is no energy loss due to a change in the three-dimensional structure of the molecule, and since the emission spectrum can be limited to a specific range, high color purity can be realized.

따라서 본 발명의 유기 화합물을 유기발광다이오드를 구성하는 유기발광층, 예를 들어 발광물질층의 도펀트로 사용하여, 발광 소자의 구동 전압을 낮추고, 발광 효율을 향상시킬 수 있다. 낮은 전압에서도 구동이 가능하기 때문에 높은 전압에서 발생하는 열로 인하여 발광 소자가 열화되지 않으며, 발광 효율이 향상되어 발광 소자의 전류 밀도를 감소시킬 수 있기 때문에, 발광 소자를 구동할 때 부하를 감소시켜 소자의 수명이 증가한다. Therefore, by using the organic compound of the present invention as a dopant of an organic light emitting layer constituting an organic light emitting diode, for example, a light emitting material layer, the driving voltage of the light emitting device can be lowered and the light emitting efficiency can be improved. Since it can be driven at a low voltage, the light emitting element does not deteriorate due to heat generated at a high voltage, and since the current density of the light emitting element can be reduced due to improved luminous efficiency, the load when driving the light emitting element is reduced to reduce the element increases the lifespan of

결국, 본 발명에 따른 유기 화합물을 적용하여, 발광 효율 및 소자 수명 특성이 개선되며, 청색으로 발광할 수 있는 유기발광다이오드와, 유기발광다이오드 표시장치 및 조명 장치 등의 유기발광장치를 구현할 수 있다. As a result, by applying the organic compound according to the present invention, it is possible to implement an organic light emitting device such as an organic light emitting diode capable of emitting blue light, an organic light emitting diode display device, and a lighting device with improved light emitting efficiency and device lifetime characteristics. .

도 1은 본 발명의 예시적인 실시형태에 따른 유기 화합물이 지연 형광 물질로 사용되었을 때의 발광 메커니즘을 설명하기 위한 모식도이다.
도 2는 본 발명의 예시적인 실시형태에 따라 유기 화합물이 유기발광층에 적용된 유기발광다이오드를 개략적으로 도시한 단면도이다.
도 3은 본 발명의 예시적인 실시형태에 따른 유기 화합물이 지연 형광 물질로 사용되었을 때의 호스트로 사용되는 물질과의 에너지 준위를 설명하기 위한 모식도이다.
도 4는 본 발명의 다른 예시적인 실시형태에 따라 유기 화합물이 유기발광층에 적용된 유기발광다이오드를 개략적으로 도시한 단면도이다.
도 5는 본 발명의 예시적인 실시형태에 따라 유기 화합물이 유기발광층에 적용된 유기발광다이오드를 가지는 유기발광장치의 일례로서 유기발광다이오드 표시장치를 개략적으로 도시한 단면도이다.
1 is a schematic diagram for explaining a light emitting mechanism when an organic compound according to an exemplary embodiment of the present invention is used as a delayed fluorescent material.
2 is a cross-sectional view schematically illustrating an organic light emitting diode in which an organic compound is applied to an organic light emitting layer according to an exemplary embodiment of the present invention.
3 is a schematic diagram for explaining an energy level of a material used as a host when an organic compound according to an exemplary embodiment of the present invention is used as a delayed fluorescent material.
4 is a cross-sectional view schematically illustrating an organic light emitting diode in which an organic compound is applied to an organic light emitting layer according to another exemplary embodiment of the present invention.
5 is a cross-sectional view schematically illustrating an organic light emitting diode display as an example of an organic light emitting diode having an organic light emitting diode applied to an organic light emitting layer according to an exemplary embodiment of the present invention.

이하, 필요한 경우에 첨부하는 도면을 참조하면서 본 발명을 상세하게 설명한다. Hereinafter, the present invention will be described in detail with reference to the accompanying drawings when necessary.

[유기 화합물][organic compound]

본 발명에 따른 유기 화합물은 견고한 화학 구조를 가지는 인데노인덴(indenoindene) 방향족 고리를 가지며 전자주개(electron donor)로 기능하는 트리 아릴 아민 모이어티와, 트리 아릴 아민 모이어티에 적절한 방향족 링커(linker)를 통하여 연결되어 전자받개(electron acceptor)로 기능하는 이미다졸(imidazole) 또는 티아졸(thiazole)기를 포함한다. 본 발명에 따른 유기 화합물은 하기 화학식 1로 표시될 수 있다. The organic compound according to the present invention comprises a triaryl amine moiety having an indenoindene aromatic ring having a rigid chemical structure and functioning as an electron donor, and an aromatic linker suitable for the triaryl amine moiety. It contains an imidazole or thiazole group that is linked through and functions as an electron acceptor. The organic compound according to the present invention may be represented by Formula 1 below.

화학식 1Formula 1

Figure 112017118505170-pat00002
Figure 112017118505170-pat00002

(화학식 1에서, R1 내지 R4는 각각 독립적으로 수소, 중수소, 삼중수소, 치환되지 않거나 치환된 C1~C20 알킬기 및 치환되지 않거나 치환된 C1~C20 알콕시기로 구성되는 군에서 선택됨; R5는 하기 화학식 2로 표시됨; Ar1 및 Ar2는 각각 독립적으로 치환되지 않거나 치환된 C5~C30 호모 아릴기 및 치환되지 않거나 치환된 C4~C30 헤테로 아릴기로 구성되는 군에서 선택됨)(In Formula 1, R 1 to R 4 are each independently selected from the group consisting of hydrogen, deuterium, tritium, unsubstituted or substituted C 1 ~ C 20 alkyl group and unsubstituted or substituted C 1 ~ C 20 alkoxy group ; R 5 is represented by Formula 2; Ar 1 and Ar 2 are each independently selected from an unsubstituted or substituted C 5 to C 30 homoaryl group and an unsubstituted or substituted C 4 to C 30 heteroaryl group. selected)

화학식 2Formula 2

Figure 112017118505170-pat00003
Figure 112017118505170-pat00003

(화학식 2에서 R6 및 R7은 각각 독립적으로 치환되지 않거나 치환된 C5~C30 호모 아릴기 및 치환되지 않거나 치환된 C4~C30 헤테로 아릴기로 구성되는 군에서 선택됨; X는 S 또는 NR8이고, R8은 치환되지 않거나 치환된 C5~C30 호모 아릴기 및 치환되지 않거나 치환된 C4~C30 헤테로 아릴기로 구성되는 군에서 선택됨; L1은 치환되지 않거나 치환된 C5~C30 호모 아릴렌기 및 치환되지 않거나 치환된 C4~C30 헤테로 아릴렌기로 구성되는 군에서 선택됨)(In Formula 2, R 6 and R 7 are each independently selected from the group consisting of an unsubstituted or substituted C 5 ~ C 30 homoaryl group and an unsubstituted or substituted C 4 ~ C 30 heteroaryl group; X is S or NR 8 , R 8 is selected from the group consisting of an unsubstituted or substituted C 5 ~ C 30 homoaryl group and an unsubstituted or substituted C 4 ~ C 30 heteroaryl group; L 1 is an unsubstituted or substituted C 5 ~ C 30 selected from the group consisting of a homo arylene group and an unsubstituted or substituted C 4 ~ C 30 hetero arylene group)

본 명세서에서 '치환되지 않은' 또는 '치환되지 않거나'란, 수소 원자가 치환된 것을 의미하며, 이 경우 수소 원자는 경수소, 중수소 및 삼중수소가 포함된다. In the present specification, 'unsubstituted' or 'unsubstituted' means that a hydrogen atom is substituted, and in this case, the hydrogen atom includes light hydrogen, heavy hydrogen, and tritium.

본 명세서에서 '치환된'에서 치환기는 예를 들어, 치환되지 않거나 할로겐 원자, 시아노기 및/또는 니트로기로 치환된 C1~C20 알킬기, 치환되지 않거나 할로겐 원자, 시아노기 및/또는 니트로기로 치환된 C1~C20 알콕시기, 할로겐 원자, 시아노기, -CF3와 같은 알킬할라이드기, 치환되지 않거나 할로겐 원자, 시아노기 및/또는 니트로기로 각각 치환된 하이드록시기, 카르복시기, 카르보닐기, 아민기, C1~C10 알킬치환 아민기, C5~C30 아릴치환 아민기, C4~C30 헤테로아릴치환 아민기, 니트로기, 하이드라질기(hydrazyl group), 술폰산기, C1~C20 알킬 실릴기, C1~C20 알콕시 실릴기, C3~C30 사이클로알킬 실릴기, C5~C30 아릴 실릴기, C4~C30 헤테로아릴 실릴기, C5~C30 아릴기, C4~C30 헤테로 아릴기, C5~C30 호모 아랄킬기, C4~C30 헤테로 아랄킬기, C5~C30 호모 아랄콕시기 또는 C4~C30 헤테로 아랄콕시기 등을 들 수 있지만, 본 발명이 이에 한정되는 것은 아니다.In the present specification, the substituent in 'substituted' is, for example, a C 1 ~ C 20 alkyl group unsubstituted or substituted with a halogen atom, a cyano group, and/or a nitro group, an unsubstituted or substituted with a halogen atom, a cyano group, and/or a nitro group. C 1 ~C 20 alkoxy group, halogen atom, cyano group, alkyl halide group such as -CF 3 , hydroxy group unsubstituted or substituted with a halogen atom, cyano group and/or nitro group, carboxy group, carbonyl group, amine group , C 1 ~C 10 alkyl substituted amine group, C 5 ~C 30 aryl substituted amine group, C 4 ~C 30 heteroaryl substituted amine group, nitro group, hydrazyl group, sulfonic acid group, C 1 ~C 20 Alkyl silyl group, C 1 ~C 20 Alkoxy silyl group, C 3 ~C 30 Cycloalkyl silyl group, C 5 ~C 30 Aryl silyl group, C 4 ~C 30 Heteroaryl silyl group, C 5 ~C 30 Aryl group , C 4 ~ C 30 heteroaryl group, C 5 ~ C 30 homo aralkyl group, C 4 ~ C 30 hetero aralkyl group, C 5 ~ C 30 homo aralkoxy group or C 4 ~ C 30 hetero aralkoxy group, and the like. However, the present invention is not limited thereto.

본 명세서에서 '헤테로 방향족 고리', '헤테로 사이클로알킬렌기', '헤테로 아릴기', '헤테로 아랄킬기', '헤테로 아랄옥실기', '헤테로 아릴 아민기' 등에서 사용된 용어 '헤테로'는 이들 방향족 또는 지환족(alicyclic) 고리를 구성하는 탄소 원자 중 1개 이상, 예를 들어 1 내지 5개의 탄소 원자가 N, O, S 및 이들의 조합으로 구성되는 군에서 선택된 하나 이상의 헤테로 원자로 치환된 것을 의미한다.In the present specification, the term 'hetero' used in 'heteroaromatic ring', 'heterocycloalkylene group', 'heteroaryl group', 'heteroaralkyl group', 'heteroaraloxyl group', 'heteroarylamine group', etc. It means that one or more of the carbon atoms constituting the aromatic or alicyclic ring, for example, 1 to 5 carbon atoms are substituted with one or more heteroatoms selected from the group consisting of N, O, S, and combinations thereof. do.

예를 들어, 화학식 1 및 화학식 2에서 R1 내지 R4가 각각 알킬기 또는 알콕시기이고/이거나, Ar1, Ar2, R6 및/또는 R7이 각각 독립적으로 알킬기 또는 알콕시기로 치환된 경우, 이들 알킬기 및/또는 알콕시기는 직쇄 또는 측쇄의 C1~C20 알킬기 또는 알콕시기, 바람직하게는 C1~C10 알킬기 또는 알콕시기일 수 있다. For example, when R 1 to R 4 in Formula 1 and Formula 2 are each an alkyl group or an alkoxy group, and/or Ar 1 , Ar 2 , R 6 and/or R 7 are each independently substituted with an alkyl group or an alkoxy group, These alkyl groups and/or alkoxy groups may be straight-chain or branched C 1 -C 20 alkyl groups or alkoxy groups, preferably C 1 -C 10 alkyl groups or alkoxy groups.

또한, 화학식 1 및 화학식 2에서 Ar1, Ar2, R6, R7 및/또는 R8이 방향족 작용기인 경우, 이들 방향족 작용기는 각각 독립적으로 치환되지 않거나 치환된 페닐기, 바이페닐기, 터페닐기, 테트라페닐기, 나프틸기, 안트라세닐기, 인데닐기, 페날레닐기, 페난트레닐기, 아줄레닐기, 파이레닐기, 플루오레닐기, 테트라세닐기, 인다세닐기 또는 스파이로 플루오레닐기와 같은 축합되지 않거나 축합된(fused) 호모 방향족 고리, 및/또는 피롤릴기, 피리디닐기, 피리미디닐기, 피라지닐기, 피리다지닐기, 트리아지닐기, 테트라지닐기, 이미다졸일기, 피라졸일기, 인돌일기, 카바졸일기, 벤조카바졸일기, 디벤조카바졸일기, 인돌로카바졸일기, 인데노카바졸일기, 벤조퓨라노카바졸일기, 벤조티에노카바졸일기, 퀴놀리닐기, 이소퀴놀리닐기, 프탈라지닐기, 퀴녹살리닐기, 시놀리닐기, 퀴나졸리닐기, 프탈라지닐기, 퀴녹살리닐기, 시놀리닐기, 퀴나졸리닐기, 벤조퀴놀리닐기, 벤조이소퀴놀리닐기, 벤조퀴나졸리닐기, 벤조퀴녹살리닐기, 아크리디닐기, 페난트롤리닐기, 퓨라닐기, 파이라닐기, 옥사지닐기, 옥사졸일기, 옥사디아졸일기, 트리아졸일기, 디옥시닐기, 벤조퓨라닐기, 디벤조퓨라닐기, 티오파이라닐기, 티아지닐기, 티오페닐기 또는 N-치환된 스파이로 플루오레닐기와 같은 축합되지 않거나 축합된 헤테로 방향족 고리일 수 있다. In addition, when Ar 1 , Ar 2 , R 6 , R 7 and/or R 8 in Formulas 1 and 2 are aromatic functional groups, these aromatic functional groups may each independently be an unsubstituted or substituted phenyl group, a biphenyl group, a terphenyl group, tetraphenyl group, naphthyl group, anthracenyl group, indenyl group, phenalenyl group, phenanthrenyl group, azulenyl group, pyrenyl group, fluorenyl group, tetracenyl group, indacenyl group or spiro fluorenyl group. or fused homoaromatic ring, and/or pyrrolyl group, pyridinyl group, pyrimidinyl group, pyrazinyl group, pyridazinyl group, triazinyl group, tetrazinyl group, imidazolyl group, pyrazolyl group, indole diary, carbazolyl group, benzocarbazolyl group, dibenzocarbazolyl group, indolocarbazolyl group, indenocarbazolyl group, benzofuranocarbazolyl group, benzothienocarbazolyl group, quinolinyl group, isoquinoyl group Nyl group, phthalazinyl group, quinoxalinyl group, cinolinyl group, quinazolinyl group, phthalazinyl group, quinoxalinyl group, cinolinyl group, quinazolinyl group, benzoquinolinyl group, benzoisoquinolinyl group, benzoquinazoli Nyl group, benzoquinoxalinyl group, acridinyl group, phenanthrolinyl group, furanyl group, pyranyl group, oxazinyl group, oxazolyl group, oxadiazolyl group, triazolyl group, dioxynyl group, benzofuranyl group, dibenzofura It may be an uncondensed or condensed heteroaromatic ring such as a yl group, a thiopyranyl group, a thiazinyl group, a thiophenyl group or an N-substituted spiro fluorenyl group.

예를 들어, 화학식 1 및 화학식 2에서 Ar1, Ar2, R6, R7 및/또는 R8은 각각 독립적으로 페닐기, 바이페닐기, 터페닐기, 나프틸기, 안트라세닐기, 플루오레닐기 또는 스파이로플루오레닐기와 같은 호모 아릴기 및/또는 벤조티오펜일기, 디벤조티오펜일기, 벤조퓨라닐기, 디벤조퓨라닐기, 피롤릴기, 피리디닐기, 피리미디닐기, 피라지닐기, 피리다지닐기, 트리아지닐기, 테트라지닐기, 이미다졸일기, 피라졸일기, 인돌일기, 카바졸일기, 벤조카바졸일기, 디벤조카바졸일기, 인돌로카바졸일기, 인데노카바졸일기, 벤조퓨라노카바졸일기, 벤조티에노카바졸일기, 퀴놀리닐기, 이소퀴놀리닐기, 프탈라지닐기, 퀴녹살리닐기, 시놀리닐기, 퀴나졸리닐기, 프탈라지닐기, 퀴녹살리닐기, 시놀리닐기, 퀴나졸리닐기, 벤조퀴놀리닐기, 벤조이소퀴놀리닐기, 벤조퀴나졸리닐기 또는 벤조퀴녹살리닐기와 같은 헤테로 아릴기일 수 있다.For example, in Formula 1 and Formula 2, Ar 1 , Ar 2 , R 6 , R 7 and/or R 8 are each independently a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, an anthracenyl group, a fluorenyl group, or a spy group. A homoaryl group such as a rofluorenyl group and/or a benzothiophenyl group, a dibenzothiophenyl group, a benzofuranyl group, a dibenzofuranyl group, a pyrrolyl group, a pyridinyl group, a pyrimidinyl group, a pyrazinyl group, a pyridazinyl group group, triazinyl group, tetrazinyl group, imidazolyl group, pyrazolyl group, indolyl group, carbazolyl group, benzocarbazolyl group, dibenzocarbazolyl group, indolocarbazolyl group, indenocarbazolyl group, benzofur Ranocarbazolyl group, benzothienocarbazolyl group, quinolinyl group, isoquinolinyl group, phthalazinyl group, quinoxalinyl group, cinolinyl group, quinazolinyl group, phthalazinyl group, quinoxalinyl group, cinolinyl group , It may be a heteroaryl group such as a quinazolinyl group, a benzoquinolinyl group, a benzoisoquinolinyl group, a benzoquinazolinyl group, or a benzoquinoxalinyl group.

이때, 화학식 1 및 화학식 2에서 Ar1, Ar2, R6, R7 및/또는 R8을 구성하는 방향족 고리의 개수가 많아지면, 전체 유기 화합물에서 공액화(conjugated) 구조가 지나치게 길어져서, 유기 화합물의 밴드갭이 지나치게 줄어들 수 있다. 따라서 바람직하게는 화학식 1 및 화학식 2에서 Ar1, Ar2, R6, R7 및/또는 R8을 각각 구성하는 방향족 고리의 개수는 1 내지 2개, 더욱 바람직하게는 1개이다. 또한, 전하의 주입 및 이동 특성과 관련하여, 화학식 1 및 화학식 2에서 Ar1, Ar2, R6, R7 및/또는 R8은 각각 5-원자 고리(5-membered ring) 내지 7-원자 고리(7-membered ring)일 수 있으며, 특히 6-원자 고리(6-membered ring)인 것이 바람직할 수 있다. 예를 들어, 화학식 1 및 화학식 2에서 Ar1, Ar2, R6, R7 및/또는 R8은 각각 독립적으로 치환되거나 치환되지 않은 페닐기, 바이페닐기, 나프틸기, 바이페닐기, 피롤기, 이미다졸기, 피라졸기, 피리디닐기, 피라지닐기, 피리미디닐기, 피리다지닐기, 퓨라닐기 또는 티오페닐기일 수 있다.At this time, when the number of aromatic rings constituting Ar 1 , Ar 2 , R 6 , R 7 and/or R 8 in Formulas 1 and 2 increases, the conjugated structure in the entire organic compound becomes too long, The band gap of the organic compound may be excessively reduced. Therefore, preferably, the number of aromatic rings constituting Ar 1 , Ar 2 , R 6 , R 7 and/or R 8 in Formulas 1 and 2 is 1 to 2, more preferably 1. In addition, with respect to charge injection and transfer characteristics, in Formulas 1 and 2 , Ar 1 , Ar 2 , R 6 , R 7 and/or R 8 may each be a 5-membered ring to a 7-membered ring. It may be a 7-membered ring, particularly preferably a 6-membered ring. For example, in Formulas 1 and 2, Ar 1 , Ar 2 , R 6 , R 7 and/or R 8 are each independently a substituted or unsubstituted phenyl group, a biphenyl group, a naphthyl group, a biphenyl group, a pyrrole group, It may be a dazole group, a pyrazole group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a furanyl group, or a thiophenyl group.

한편, 하나의 비-제한적인 실시형태에서, 화학식 2에서 링커(연결기)인 L1 은 전자주개 모이어티와 전자받개 모이어티를 매개하며, 치환되지 않거나 치환된 방향족 연결기일 수 있다. 예를 들어, L1이 치환되지 않거나 치환된 C5~C30 아릴렌기인 경우, L1은 치환되지 않거나 치환된 페닐렌기(phenylene), 바이페닐렌기(biphenylene), 터페닐렌기(terphenylene), 테트라페닐렌기(tetraphenylene), 인데닐렌기(indenylene), 나프틸렌기(naphthylene), 아줄레닐렌기(azulenylene), 인다세닐렌기(indacenylene), 아세나프틸렌기(acenaphthylene), 플루오레닐렌기(fluorenylene), 스파이로-플루오레닐렌기, 페날레닐렌기(phenalenylene), 페난트레닐렌기(phenanthrenylene), 안트라세닐렌기(anthracenylene), 플루오란트레닐렌기(fluoranthrenylene), 트리페닐레닐렌기(triphenylenylene), 파이레닐렌기(pyrenylene), 크라이세닐렌기(chrysenylene), 나프타세닐렌기(naphthacenylene), 피세닐렌기(picenylene), 페릴레닐렌기(perylenylene), 펜타페닐렌기(pentaphenylene) 및 헥사세닐렌기(hexacenylene)로 구성되는 군에서 선택될 수 있다. Meanwhile, in one non-limiting embodiment, L 1 , which is a linker (linking group) in Formula 2, mediates between an electron donor moiety and an electron acceptor moiety, and may be an unsubstituted or substituted aromatic linking group. For example, when L 1 is an unsubstituted or substituted C 5 ~ C 30 arylene group, L 1 is an unsubstituted or substituted phenylene group, a biphenylene group, a terphenylene group, Tetraphenylene, indenylene, naphthylene, azulenylene, indacenylene, acenaphthylene, fluorenylene ), spiro-fluorenylene group, phenalenylene group, phenanthrenylene group, anthracenylene group, fluoranthrenylene group, triphenylenylene group, pi Composed of pyrenylene, chrysenylene, naphthacenylene, picenylene, perylenylene, pentaphenylene and hexacenylene can be selected from the group

다른 선택적인 실시형태에서, L1이 치환되지 않거나 치환된 C4~C30 헤테로 아릴렌기인 경우, L1은 치환되지 않거나 치환된 피롤릴렌기(pyrrolylene), 이미다졸일렌기(imidazolylene), 피라졸일렌기(pyrazolylene), 피리디닐렌기(pyridinylene), 피라지닐렌기(pyrazinylene), 피리미디닐렌기(pyrimidinylene), 피리다지닐렌기(pyridazinylene), 이소인돌일렌기(isoindolylene), 인돌일렌기(indolylene), 인다졸일렌기(indazolylene), 푸리닐렌기(purinylene), 퀴놀리닐렌기(quinolinylene), 이소퀴놀리닐렌기(isoquinolinylene), 벤조퀴놀리닐렌기(benzoquinolinylene), 프탈라지닐렌기(phthalazinylene), 나프티리디닐렌기(naphthyridinylene), 퀴녹살리닐렌기(quinoxalinylene), 퀴나졸리닐렌기(quinazolinylene), 벤조퀴놀리닐렌기, 벤조이소퀴놀리닐렌기, 벤조퀴나졸리닐렌기, 벤조퀴녹살리닐렌기, 시놀리닐렌기(cinnolinylene), 페난트리디닐렌기(phenanthridinylene), 아크리디닐렌기(acridinylene), 페난트롤리닐렌기(phenanthrolinylene), 페나지닐렌기(phenazinylene), 벤즈옥사졸일렌기(benzoxazolylene), 벤즈이미다졸일렌기(benzimidazolylene), 퓨라닐렌기(furanylene), 벤조퓨라닐렌기(benzofuranylene), 티오페닐렌기(thiophenylene), 벤조티오페닐렌기(benzothiophenylene), 티아졸일렌기(thiazolylene), 이소티아졸일렌기(isothiazolylene), 벤조티아졸일렌기(benzothiazolylene), 이소옥사졸일렌기(isoxazolylene), 옥사졸일렌기(oxazolylene), 트리아졸일렌기, 테트라졸일렌기, 옥사디아졸일렌기(oxadiazolylene), 트리아지닐렌기(triazinylene), 벤조퓨라닐렌기, 디벤조퓨라닐렌기(dibenzofuranylene), 벤조퓨로디벤조퓨라닐렌기, 벤조티에노벤조퓨라닐렌기, 벤조티에노디벤조퓨라닐렌기, 벤조티오페닐렌기, 디벤조티오페닐렌기(dibenzothiophenylene), 벤조티에토벤조티오페닐렌기, 벤조티에노디벤조티오페닐렌기, 카바졸일렌기, 벤조카바졸일렌기, 디벤조카바졸일렌기, 인돌로카바졸일렌기, 인데노카바졸일렌기, 벤조퓨로카바졸일렌기, 벤조티에노카바졸일렌기, 이미다조피리미디닐렌기(imidazopyrimidinylene) 및 이미다조피리디닐렌기(imidazopyridinylene)로 구성되는 군에서 선택될 수 있다. In another optional embodiment, when L 1 is an unsubstituted or substituted C 4 ~ C 30 heteroarylene group, L 1 is an unsubstituted or substituted pyrrolylene group, imidazolylene group, pyra Pyrazolylene, pyridinylene, pyrazinylene, pyrimidinylene, pyridazinylene, isoindolylene, indolylene , indazolylene, purinylene, quinolinylene, isoquinolinylene, benzoquinolinylene, phthalazinylene, naphthyl naphthyridinylene, quinoxalinylene, quinazolinylene, benzoquinolinylene, benzoisoquinolinylene, benzoquinazolinylene, benzoquinoxalinylene, cinnoli Cinnolinylene, phenanthridinylene, acridinylene, phenanthrolinylene, phenazinylene, benzoxazolylene, benzimidazolylene (benzimidazolylene), furanylene, benzofuranylene, thiophenylene, benzothiophenylene, thiazolylene, isothiazolylene, benzo Thiazolylene group (benzothiazolylene group), isoxazolylene group (isoxazolylene group), oxazolylene group (oxazolylene group), triazolylene group, tetrazolylene group, oxadiazolyl group (oxadiazolyl ene), triazinylene, benzofuranylene, dibenzofuranylene, benzofuranyldibenzofuranylene, benzothienobenzofuranylene, benzothienodibenzofuranylene, benzothio A phenylene group, a dibenzothiophenylene group, a benzothietobenzothiophenylene group, a benzothienodibenzothiophenylene group, a carbazolylene group, a benzocarbazolylene group, a dibenzocarbazolylene group, an indolocarbazolylene group, and It may be selected from the group consisting of a nocarbazolylene group, a benzofurocarbazolylene group, a benzothienocarbazolylene group, an imidazopyrimidinylene group, and an imidazopyridinylene group.

하나의 예시적인 실시형태에서, L1을 구성하는 방향족 고리의 개수가 많아지면, 전체 유기 화합물에서 공액화(conjugated) 구조가 지나치게 길어져서, 유기 화합물의 밴드갭이 지나치게 줄어들 수 있다. 따라서 바람직하게는 L1을 구성하는 방향족 고리의 개수는 1 내지 2개, 더욱 바람직하게는 1개이다. 또한 전하의 주입 및 이동 특성과 관련해서, L1은 5-원자 고리(5-membered ring) 내지 7-원자 고리(7-membered ring)일 수 있으며, 특히 6-원자 고리(6-membered ring)인 것이 바람직할 수 있다. 예를 들어, L1은 치환되지 않거나 치환된 페닐렌기, 바이페닐렌기, 피롤릴렌기, 이미다졸일렌기, 피라졸일렌기, 피리디닐렌기, 피라지닐렌기, 피리미디닐렌기, 피리다지닐렌기, 퓨라닐렌기 또는 티오페닐렌기일 수 있다.In one exemplary embodiment, when the number of aromatic rings constituting L 1 increases, the conjugated structure in the entire organic compound becomes too long, and thus the band gap of the organic compound may be excessively reduced. Therefore, the number of aromatic rings constituting L 1 is preferably 1 to 2, more preferably 1. In addition, with respect to charge injection and transfer characteristics, L 1 may be a 5-membered ring or a 7-membered ring, particularly a 6-membered ring. It may be desirable to For example, L 1 is an unsubstituted or substituted phenylene group, biphenylene group, pyrrolylene group, imidazolylene group, pyrazolylene group, pyridinylene group, pyrazinylene group, pyrimidinylene group, pyridazinylene group, It may be a furanylene group or a thiophenylene group.

화학식 1 내지 화학식 2로 표시되는 유기 화합물은 전자주개(electron donor)로 기능할 수 있으며, 견고한 구조를 가지는 인데노인덴 축합 방향족 고리를 가지는 트리 아릴 아민 모이어티를 가지며, 트리 아릴 아민 모이어티가 방향족 링커를 통하여 전자받개(electron acceptor)로 기능할 수 있는 이미다졸(imidazole) 고리 또는 티아졸(thiazole) 고리가 연결된다. 4개의 방향족 고리로 이루어지는 인데노인덴 고리의 입체장애(steric hindrance)가 크기 때문에, 인데노인덴 고리가 방향족 고리가 방향족 연결기를 통하여 헤테로 방향족 고리와 화학 결합을 형성하여 합성되는 본 발명의 유기 화합물의 3차원 입체구조(conformation)가 제한된다. 이에 따라 본 발명에 따른 유기 화합물은 견고한(rigid) 구조를 가지게 되어 열 안정성이 향상된다. 화학식 1 내지 화학식 2로 표시되는 유기 화합물이 발광할 때 분자의 3차원 입체구조의 변경에 따른 에너지 손실이 없으며, 발광 스펙트럼을 특정 범위로 제한할 수 있기 때문에 양호한 색순도를 구현할 수 있다. The organic compounds represented by Chemical Formulas 1 to 2 may function as an electron donor, have a triaryl amine moiety having an indenoindene condensed aromatic ring having a rigid structure, and the triaryl amine moiety is aromatic An imidazole ring or a thiazole ring that can function as an electron acceptor is connected through the linker. Since the steric hindrance of the indenoindene ring composed of four aromatic rings is large, the organic compound of the present invention synthesized by forming a chemical bond between the indenoindene ring and the heteroaromatic ring through the aromatic linking group 3D conformation is limited. Accordingly, the organic compound according to the present invention has a rigid structure, thereby improving thermal stability. When organic compounds represented by Chemical Formulas 1 to 2 emit light, there is no energy loss due to a change in the three-dimensional structure of the molecule, and since the emission spectrum can be limited to a specific range, good color purity can be realized.

특히, 본 발명에 따른 유기 화합물을 사용하여 저-전압 구동이 가능하여 소비 전력을 줄일 수 있으며, 소자 수명이 향상된 발광다이오드를 구현할 수 있다. 일례로, 본 발명에 따른 유기 화합물은 유기발광다이오드를 구성하는 유기발광층의 도펀트(dopant)로 사용될 수 있으며, 특히 이른바 지연 형광(delayed florescence) 특성을 가지게 되는데, 이에 대해서 설명한다.In particular, by using the organic compound according to the present invention, low-voltage driving is possible, so power consumption can be reduced, and a light emitting diode with improved lifespan can be realized. As an example, the organic compound according to the present invention can be used as a dopant of an organic light emitting layer constituting an organic light emitting diode, and in particular has so-called delayed florescence characteristics, which will be described.

도 1은 본 발명에 따른 유기 화합물이 지연 형광 화합물로서 사용되었을 때의 발광 메커니즘을 설명하기 위한 모식도이다. 지연 형광은 열-활성지연형광(thermally activated delayed fluorescence; TADF)와 전계-활성지연형광(field activated delayed fluorescence; FADF)로 구분될 수 있는데, 열 또는 전계에 의하여 삼중항 여기자가 활성화되어, 종래 형광 물질에서의 최대 발광 효율을 뛰어넘는 이른바 초-형광을 구현할 수 있다. 1 is a schematic diagram for explaining a light emitting mechanism when an organic compound according to the present invention is used as a delayed fluorescent compound. Delayed fluorescence can be divided into thermally activated delayed fluorescence (TADF) and field activated delayed fluorescence (FADF). Triplet excitons are activated by heat or an electric field, and conventional fluorescence It is possible to realize so-called super-fluorescence that exceeds the maximum luminous efficiency in materials.

즉, 지연 형광 화합물은 소자를 구동할 때 발생하는 열이나 전계에 의하여 삼중항 여기자가 활성화되어 삼중항 여기자도 발광에 관여한다. 일반적으로 지연 형광 화합물은 전자주개 모이어티와 전자받개 모이어티를 모두 가지고 있어서 분자내전하이동(intramolecular charge transfer, ICT) 상태로의 변환이 가능하다. ICT가 가능한 지연 형광 화합물을 도펀트로 이용하면, 지연 형광 화합물에서 단일항 에너지 준위(S1)를 가지는 여기자와 삼중항 에너지 준위(T1)를 가지는 여기자가 중간 상태인 ICT 상태로 이동하고, 바닥 상태(ground state, S0)로 전이된다(S1 →ICT←T1). 단일항 에너지 준위(S1)를 가지는 여기자와 삼중항 에너지 준위(T1)를 가지는 여기자가 모두 발광에 참여하기 때문에 내부양자효율이 향상되고, 이에 따라 발광 효율이 향상된다. That is, in the delayed fluorescent compound, triplet excitons are activated by heat or an electric field generated when the device is driven, and the triplet excitons also participate in light emission. In general, a delayed fluorescent compound has both an electron donor moiety and an electron acceptor moiety, and thus can be converted into an intramolecular charge transfer (ICT) state. When a delayed fluorescence compound capable of ICT is used as a dopant, excitons having a singlet energy level (S 1 ) and an exciton having a triplet energy level (T 1 ) in the delayed fluorescence compound move to an intermediate ICT state, and the bottom State (ground state, S 0 ) transitions (S 1 → ICT←T 1 ). Since excitons having a singlet energy level (S 1 ) and excitons having a triplet energy level (T 1 ) both participate in light emission, the internal quantum efficiency is improved, and thus the luminous efficiency is improved.

종래의 형광 물질은 최고준위점유분자궤도(Highest Occupied Molecular Orbital; HOMO)와 최저준위비점유분자궤도(Lowest Unoccupied Molecular Orbital; LUMO)가 분자 전체에 퍼져있기 때문에, 단일항 상태와 삼중항 상태 사이의 상호 전환이 불가능하다(선택 규칙, selection rule). 하지만, ICT 상태를 가지는 화합물은 HOMO와 LUMO의 궤도 겹침이 적기 때문에, HOMO 상태의 궤도와 LUMO 상태의 궤도 사이의 상호작용이 작다. 따라서 전자의 스핀 상태 변화가 다른 전자에 영향을 미치지 않게 되고, 선택 규칙을 따르지 않는 새로운 전하 이동 밴드(charge transfer band, CT band)가 형성된다. In conventional fluorescent materials, since the Highest Occupied Molecular Orbital (HOMO) and the Lowest Unoccupied Molecular Orbital (LUMO) are spread throughout the molecule, there is a transition between singlet and triplet states. Interchangeability is not possible (selection rule). However, since the overlapping of HOMO and LUMO orbitals in the compound having the ICT state is small, the interaction between the orbits of the HOMO state and the orbits of the LUMO state is small. Therefore, the spin state change of an electron does not affect other electrons, and a new charge transfer band (CT band) that does not follow the selection rule is formed.

즉, 지연 형광 화합물에서 전자받개 모이어티와 전자주개 모이어티가 분자 내에서 이격되어 있기 때문에, 분자 내 쌍극자 모멘트(dipole moment)가 큰 분극 상태로 존재하게 된다. 쌍극자 모멘트가 분극된 상태에서 HOMO와 LUMO 상태의 궤도 간의 상호작용이 작아지고, 삼중항 상태와 단일항 상태에서 중간 상태(ICT)로 전이가 가능해진다. 이에 따라, 단일항 에너지 준위(S1)를 가지는 여기자는 물론이고 삼중항 에너지 준위(T1)를 가지는 여기자가 발광에 참여한다. 즉, 발광 소자가 구동되면, 열이나 전계에 의하여 25%의 단일항 에너지 준위(S1)를 가지는 여기자와 75%의 삼중항 에너지 준위(T1)를 가지는 여기자가 중간 상태(ICT)로 전이되고, 다시 바닥 상태(S0)로 떨어지면서 발광이 일어나기 때문에, 내부양자효율은 이론적으로 100%가 된다. That is, since the electron acceptor moiety and the electron donor moiety in the delayed fluorescent compound are spaced apart in the molecule, the dipole moment in the molecule exists in a large polarization state. In a state where the dipole moment is polarized, the interaction between the orbits of the HOMO and LUMO states becomes small, and a transition from the triplet state and the singlet state to the intermediate state (ICT) becomes possible. Accordingly, excitons having a singlet energy level (S 1 ) as well as excitons having a triplet energy level (T 1 ) participate in light emission. That is, when the light emitting device is driven, excitons having a singlet energy level (S 1 ) of 25% and excitons having a triplet energy level (T 1 ) of 75% are transitioned to an intermediate state (ICT) by heat or an electric field. Since light emission occurs while falling back to the ground state (S 0 ), the internal quantum efficiency theoretically becomes 100%.

지연 형광을 구현하기 위한 도펀트는 다음과 같은 특징을 가질 필요가 있다. 도펀트는 한 분자 내에 전자주개 모이어티와 전자받개 모이어티를 동시에 가지고 있어 ICT 상태를 구현할 수 있어야 한다. 도펀트는 통상 ICT 상태의 착물(ICT 착물) 형태를 가지는데, 한 분자 내에 전자주개 모이어티와 전자받개 모이어티를 동시에 가지고 있어서 분자 내에서 전자 이동이 쉽게 일어난다. 즉, ICT 착물은 특정 조건에서 전자주개 모이어티에서 하나의 전자가 전자받개 부분으로 이동하여 분자 내에서 전하의 분리가 일어난다. A dopant for realizing delayed fluorescence needs to have the following characteristics. The dopant must have an electron donor moiety and an electron acceptor moiety in one molecule at the same time to implement an ICT state. The dopant usually has an ICT state complex (ICT complex), and it has an electron donor moiety and an electron acceptor moiety in one molecule at the same time, so electron transfer easily occurs in the molecule. That is, in the ICT complex, one electron moves from the electron-donor moiety to the electron-acceptor portion under specific conditions, and charge separation occurs within the molecule.

또한, 삼중항 상태와 단일항 상태에서 모두 에너지 전이가 일어나기 위해서는, 지연 형광을 구현하기 위한 도펀트는 단일항 에너지 준위(S1)와 삼중항 에너지 준위(T1)의 차이(ΔEST)가 0.3 eV 이하, 예를 들어 0.05 내지 0.3 eV이어야 한다. 이 경우 단일항 상태와 삼중항 상태의 에너지 차이가 작은 재료는 단일항 상태에서 삼중항 상태로 에너지가 전이되는 계간전이(Inter System Crossing; ISC)가 일어나면서 형광을 나타낼 뿐만 아니라, 상온 수준의 열 에너지 또는 전계에 의하여 삼중항 상태에서 에너지가 보다 높은 단일항 상태로 역 계간전이(Reverse Inter System Crossing; RISC)되고 이 단일항 상태가 바닥 상태로 전이되면서 지연 형광을 나타낸다. 지연 형광의 경우 이론적으로 최대 100%의 효율을 얻을 수 있기 때문에, 종래의 중금속을 포함하는 인광 재료와 동등한 내부 양자 효율을 구현할 수 있다. 하지만, 종래 지연형광 특성을 가지는 화합물의 전자주개-전자받개의 결합 구조 및 구조적 뒤틀림으로 인하여, 추가적인 전하 이동 전이(charge transfer transition, CT transition)이 유발되기 때문에, 발광할 때 넓은 스펙트럼을 가지게 되어 색순도를 저하시키는 단점이 있다. In addition, in order for energy transfer to occur in both the triplet state and the singlet state, the dopant for realizing delayed fluorescence has a difference (ΔE ST ) between the singlet energy level (S 1 ) and the triplet energy level (T 1 ) of 0.3 eV or less, for example 0.05 to 0.3 eV. In this case, a material with a small energy difference between the singlet state and the triplet state not only exhibits fluorescence as intersystem crossing (ISC) occurs, in which energy is transferred from the singlet state to the triplet state, but also exhibits heat at room temperature. Reverse Inter System Crossing (RISC) is performed from a triplet state to a singlet state having higher energy by energy or an electric field, and delayed fluorescence is exhibited as the singlet state transitions to the ground state. In the case of delayed fluorescence, since efficiency of up to 100% can be obtained theoretically, internal quantum efficiency equivalent to that of conventional phosphorescent materials containing heavy metals can be realized. However, due to the bonding structure and structural distortion of the electron donor-electron acceptor of the conventional delayed fluorescence compound, an additional charge transfer transition (CT transition) is induced, resulting in a wide spectrum when emitting, resulting in high color purity. has the disadvantage of lowering the

화학식 1 내지 화학식 2로 표시되는 유기 화합물은 전자주개로 기능하며, 인데노인덴 고리를 가지는 트리 아릴 아민 모이어티와, 전자받개로 기능하는 헤테로 방향족 고리인 이미다졸 또는 티아졸 모이어티가 1개의 분자 내에 공존하기 때문에, 지연 형광 특성을 보일 수 있다. 특히, 인데노인덴 고리와 이미다졸 또는 티아졸 고리 사이의 입체장애가 크기 때문에, 공액 구조의 형성이 제한되고, HOMO와 LUMO 상태로 쉽게 분리된다. 인데노인덴 고리를 가지는 트리 아릴 아민 모이어티와 이미다졸 또는 티아졸 모이어티에 쌍극자가 형성되면서 분자 내부의 쌍극자 모멘트가 증가하여, 발광 효율이 향상된다. 전자주개와 전자받개가 분자 내에 공존하여, 분자의 HOMO와 LUMO의 중첩이 감소한다. Organic compounds represented by Chemical Formulas 1 to 2 have a triaryl amine moiety that functions as an electron donor and has an indenoindene ring, and an imidazole or thiazole moiety that is a heteroaromatic ring that functions as an electron acceptor. One molecule Because it coexists in the inside, it can show delayed fluorescence characteristics. In particular, since the steric hindrance between the indenoindene ring and the imidazole or thiazole ring is large, the formation of a conjugated structure is limited, and it is easily separated into HOMO and LUMO states. As dipoles are formed between the triarylamine moiety having an indenoindene ring and the imidazole or thiazole moiety, the dipole moment inside the molecule increases, thereby improving luminous efficiency. The electron donor and electron acceptor coexist in the molecule, reducing the overlap of the HOMO and LUMO of the molecule.

또한, 링커(화학식 2에서 L1으로 표시)인 방향족 연결기를 통하여 트리 아릴 아민 모이어티와 이미다졸/티아졸 모이어티가 연결되어 있어서, HOMO와 LUMO의 중첩이 더욱 감소하므로, 삼중항 에너지 준위와 단일항 에너지 준위의 에너지 준위의 차이(ΔEST)를 줄일 수 있다. 특히 트리 아릴 아민 모이어티를 구성하는 질소 원자는 견고한 구조의 축합 방향족 고리인 인데노인덴 고리로 연결되어 있기 때문에, 트리 아릴 아민 모이어티와 이미다졸/티아졸 모이어티 사이의 입체구조가 제한된다. 발광할 때 에너지 손실이 없으며 효율이 우수하고 고색순도의 청색 발광을 구현할 수 있다. In addition, since the triaryl amine moiety and the imidazole/thiazole moiety are connected through an aromatic linking group (represented by L 1 in Formula 2), the overlap between HOMO and LUMO is further reduced, and thus the triplet energy level and The energy level difference (ΔE ST ) of the singlet energy level can be reduced. In particular, since the nitrogen atoms constituting the triaryl amine moiety are connected by an indenoindene ring, which is a rigid condensed aromatic ring, the three-dimensional structure between the triaryl amine moiety and the imidazole/thiazole moiety is limited. When emitting light, there is no energy loss, efficiency is excellent, and blue light emission of high color purity can be implemented.

특히, 화학식 1 내지 화학식 2로 표시되는 유기 화합물을 발광물질층의 도펀트로 사용할 때, 화학식 1 내지 화학식 2로 표시되는 유기 화합물의 삼중항 에너지 준위는 종래의 인광 재료의 삼중항 에너지보다 낮으며 에너지 밴드갭은 종래의 인광 재료보다 좁다. 따라서, 화학식 1 내지 화학식 2로 표시되는 유기 화합물과 함께 사용하는 유기 호스트는 종래의 인광 재료를 사용할 때만큼 높은 삼중항 에너지 준위를 가질 필요가 없으며, 밴드갭도 넓을 필요가 없다. 따라서 종래 인광 재료를 적용할 때 한계로 작용하였던 삼중항 에너지가 높은 유기 화합물을 호스트로 사용할 필요가 없으며, 에너지 밴드갭이 넓은 인광 호스트를 반드시 사용하지 않아도 된다. 에너지 밴드갭이 넓은 호스트를 사용함으로 인하여 전하의 주입 및 수송이 지연되고, 이에 따라 발광다이오드의 구동 전압이 상승하고, 소비 전력이 증가하며, 소자의 수명 특성이 저하되는 것을 방지할 수 있다. In particular, when organic compounds represented by Chemical Formulas 1 to 2 are used as dopants in the light emitting material layer, the triplet energy level of the organic compounds represented by Chemical Formulas 1 to 2 is lower than the triplet energy of conventional phosphorescent materials, The band gap is narrower than conventional phosphorescent materials. Therefore, the organic host used together with the organic compounds represented by Chemical Formulas 1 to 2 does not need to have a triplet energy level as high as that of conventional phosphorescent materials and does not need to have a wide band gap. Therefore, it is not necessary to use an organic compound having a high triplet energy, which has been a limitation when applying a conventional phosphorescent material, as a host, and a phosphorescent host having a wide energy bandgap is not necessarily used. Due to the use of a host having a wide energy bandgap, charge injection and transport are delayed, and accordingly, the driving voltage of the light emitting diode increases, power consumption increases, and lifespan characteristics of the device decrease.

하나의 예시적인 실시형태에서, 본 발명에 따른 유기 화합물은 하기 화학식 3으로 표시되는 유기 화합물을 포함한다. In one exemplary embodiment, the organic compound according to the present invention includes an organic compound represented by Formula 3 below.

화학식 3Formula 3

Figure 112017118505170-pat00004
Figure 112017118505170-pat00004

(화학식 3에서 R1 내지 R4는 각각 화학식 1에서 정의된 것과 동일함; R9 및 R10은 각각 독립적으로 수소, 중수소, 삼중수소, C1~C20 알킬기, C1~C20 알콕시기, C5~C30 호모 아릴기 및 C4~C30 헤테로 아릴기로 구성되는 군에서 선택됨; R11은 하기 화학식 4로 표시됨)(In Formula 3, R 1 to R 4 are each the same as defined in Formula 1; R 9 and R 10 are each independently hydrogen, deuterium, tritium, C 1 ~ C 20 alkyl group, C 1 ~ C 20 alkoxy group , C 5 ~ C 30 selected from the group consisting of a homo aryl group and a C 4 ~ C 30 hetero aryl group; R 11 is represented by Formula 4 below)

화학식 4formula 4

Figure 112017118505170-pat00005
Figure 112017118505170-pat00005

(화학식 4에서 X는 화학식 2에서 정의된 것과 동일함)(X in Formula 4 is the same as defined in Formula 2)

보다, 구체적으로, 본 발명에 따른 유기 화합물은 하기 화학식 5로 표시되는 어느 하나의 화합물일 수 있다. More specifically, the organic compound according to the present invention may be any one compound represented by Formula 5 below.

화학식 5Formula 5

Figure 112017118505170-pat00006
Figure 112017118505170-pat00006

Figure 112017118505170-pat00007
Figure 112017118505170-pat00007

Figure 112017118505170-pat00008
Figure 112017118505170-pat00008

Figure 112017118505170-pat00009
Figure 112017118505170-pat00009

화학식 3 내지 화학식 5로 표시되는 유기 화합물은 전자주개로 기능하며, 견고한 구조의 인데노인덴 고리를 가지는 트리 아릴 아민 모이어티와, 전자받개로 기능하는 이미다졸/티아졸 모이어티가 적절한 공액 구조를 가지는 페닐렌 고리로 연결된다. 전자주개인 트리 아릴 아민 모이어티와 전자받개인 이미다졸/티아졸 모이어티가 1분자 내에 존재하여 쌍극자 모멘트가 증가하고 HOMO와 LUMO가 쉽게 분리되어 쌍극자 모멘트가 증가할 수 있는 구조를 가진다. 따라서, 화학식 3 내지 화학식 5로 표시되는 유기 화합물은 지연형광 재료로 응용될 수 있으며, 화학식 3 내지 화학식 5로 표시되는 유기 화합물을 사용하여 유기발광다이오드의 발광 효율을 향상시키고 색순도가 개선할 수 있다. 또한, 화학식 3 내지 화학식 5로 표시되는 유기 화합물을 유기발광다이오드에 적용하여, 유기발광다이오드의 구동 전압을 낮춰서 소비 전력을 줄일 수 있으며, 발광층을 구성하는 유기 재료에 전기적인 스트레스를 감소시켜 소자의 수명 특성을 개선할 수 있다. The organic compounds represented by Formulas 3 to 5 have an appropriate conjugated structure in which a triaryl amine moiety that functions as an electron donor and has an indenoindene ring having a rigid structure and an imidazole/thiazole moiety that functions as an electron acceptor The branches are linked by phenylene rings. A triaryl amine moiety as an electron donor and an imidazole/thiazole moiety as an electron acceptor are present in one molecule to increase the dipole moment, and the HOMO and LUMO are easily separated to increase the dipole moment. Therefore, the organic compounds represented by Chemical Formulas 3 to 5 can be applied as delayed fluorescent materials, and the organic compounds represented by Chemical Formulas 3 to 5 can be used to improve light emitting efficiency and color purity of organic light emitting diodes. . In addition, by applying the organic compounds represented by Chemical Formulas 3 to 5 to the organic light emitting diode, the driving voltage of the organic light emitting diode can be lowered to reduce power consumption, and electrical stress to the organic material constituting the light emitting layer can be reduced to improve the quality of the device. Life characteristics can be improved.

[유기발광다이오드 및 유기발광장치][Organic Light-Emitting Diode and Organic Light-Emitting Device]

전술한 바와 같이, 화학식 1 내지 화학식 5로 표시되는 유기 화합물을 유기발광다이오드를 구성하는 유기발광층에 적용하여, 특히 고순도의 발광 컬러를 얻을 수 있고, 구동 전압을 낮추어 소비 전력을 감소시킬 수 있으며, 소자 수명 특성이 개선된 발광 소자를 구현할 수 있다. 이에 대해서 설명한다. 도 2는 본 발명의 예시적인 실시형태에 따라 유기 화합물이 유기발광층에 적용된 유기발광다이오드를 개략적으로 도시한 단면도이다. As described above, by applying the organic compounds represented by Chemical Formulas 1 to 5 to the organic light emitting layer constituting the organic light emitting diode, it is possible to obtain a particularly high purity light emitting color and reduce power consumption by lowering the driving voltage, A light emitting device with improved lifespan characteristics may be implemented. explain this. 2 is a cross-sectional view schematically illustrating an organic light emitting diode in which an organic compound is applied to an organic light emitting layer according to an exemplary embodiment of the present invention.

도 2에 도시한 바와 같이, 본 발명의 제 1 실시형태에 따른 유기발광다이오드(100)는 서로 마주하는 제 1 전극(110) 및 제 2 전극(120)과, 제 1 및 제 2 전극(110, 120) 사이에 위치하는 유기발광층(130)을 포함한다. 예시적인 실시형태에서, 유기발광층(130)은 제 1 전극(110)으로부터 순차적으로 적층되는 정공주입층(hole injection layer, HIL, 140), 정공수송층(hole transfer layer, HTL, 150), 발광물질층(emissitve material layer, EML, 160), 전자수송층(electron transfer layer, ETL, 170) 및 전자주입층(electron injection layer, EIL, 180)을 포함한다. As shown in FIG. 2 , the organic light emitting diode 100 according to the first embodiment of the present invention includes a first electrode 110 and a second electrode 120 facing each other, and the first and second electrodes 110 , 120) and an organic light emitting layer 130 positioned between them. In an exemplary embodiment, the organic light emitting layer 130 may include a hole injection layer (HIL) 140 sequentially stacked from the first electrode 110, a hole transfer layer (HTL) 150, and a light emitting material. It includes an emissive material layer (EML) 160, an electron transfer layer (ETL) 170 and an electron injection layer (EIL) 180.

제 1 전극(110)은 발광물질층(160)에 정공을 공급하는 양극(anode)일 수 있다. 제 1 전극(110)은 일함수(work function) 값이 비교적 큰 도전성 물질, 예를 들어 투명 도전성 산화물(transparent conductive oxide; TCO)로 형성되는 것이 바람직하다. 예시적인 실시형태에서, 제 1 전극(110)은 인듐-주석-산화물 (indium-tin-oxide; ITO), 인듐-아연-산화물(indium-zinc-oxide; IZO), 인듐-주석-아연-산화물(indium-tin-zinc oxide; ITZO), 주석산화물(SnO), 아연산화물(ZnO), 인듐-구리-산화물(indium-copper-oxide; ICO) 및 알루미늄:산화아연(Al:ZnO; AZO)으로 이루어질 수 있다. The first electrode 110 may be an anode supplying holes to the light emitting material layer 160 . The first electrode 110 is preferably formed of a conductive material having a relatively high work function value, for example, transparent conductive oxide (TCO). In an exemplary embodiment, the first electrode 110 is indium-tin-oxide (ITO), indium-zinc-oxide (IZO), or indium-tin-zinc-oxide. (indium-tin-zinc oxide; ITZO), tin oxide (SnO), zinc oxide (ZnO), indium-copper-oxide (ICO) and aluminum:zinc oxide (Al:ZnO; AZO). It can be done.

제 2 전극(120)은 발광물질층(160)에 전자를 공급하는 음극(cathode)일 수 있다. 제 2 전극(120)은 일함수 값이 비교적 작은 도전성 물질, 예를 들어 알루미늄(Al), 마그네슘(Mg), 칼슘(Ca), 은(Ag), 또는 이들의 합금이나 조합과 같은 반사 특성이 좋은 소재로 이루어질 수 있다. The second electrode 120 may be a cathode supplying electrons to the light emitting material layer 160 . The second electrode 120 is formed of a conductive material having a relatively small work function value, for example, aluminum (Al), magnesium (Mg), calcium (Ca), silver (Ag), or an alloy or combination thereof having reflective properties. It can be made of good material.

정공주입층(140)은 제 1 전극(110)과 정공수송층(150) 사이에 위치하는데, 무기물인 제 1 전극(110)과 유기물인 정공수송층(150) 사이의 계면 특성을 향상시킨다. 하나의 예시적인 실시형태에서, 정공주입층(140)은 4,4',4"-트리스(3-메틸페닐아미노)트리페닐아민(4,4',4"-Tris(3-methylphenylamino)triphenylamine; MTDATA), 4,4',4"-트리스(N,N-디페닐-아미노)트리페닐아민(4,4',4"-Tris(N,N-diphenyl-amino)triphenylamine; NATA), 4,4',4"-트리스(N-(나프탈렌-1-일)-N-페닐-아미노)트리페닐아민(4,4',4"-Tris(N-(naphthalene-1-yl)-N-phenyl-amino)triphenylamine; 1T-NATA), 4,4',4"-트리스(N-(나프탈렌-2-일)-N-페닐-아미노)트리페닐아민(4,4',4"-Tris(N-(naphthalene-2-yl)-N-phenyl-amino)triphenylamine; 2T-NATA), 프탈로시아닌구리(Copper phthalocyanine; CuPc), 트리스(4-카바조일-9일-페닐)아민(Tris(4-carbazoyl-9-yl-phenyl)amine; TCTA), N,N'-디페닐-N,N'-비스(1-나프틸)-1,1'-바이페닐-4,4"-디아민(N,N'-Diphenyl-N,N'-bis(1-naphthyl)-1,1'-biphenyl-4,4"-diamine; NPB; NPD), 1,4,5,8,9,11-헥사아자트리페닐렌헥사카보니트릴(1,4,5,8,9,11-Hexaazatriphenylenehexacarbonitrile, Dipyrazino[2,3-f:2'3'-h]quinoxaline-2,3,6,7,10,11-hexacarbonitrile; HAT-CN), 1,3,5-트리스[4-(디페닐아미노)페닐]벤젠(1,3,5-tris[4-(diphenylamino)phenyl]benzene; TDAPB), 폴리(3,4-에틸렌디옥시티오펜)폴리스티렌 술포네이트(poly(3,4-ethylenedioxythiphene)polystyrene sulfonate; PEDOT/PSS) 및/또는 N-(바이페닐-4-일)-9,9-디메틸-N-(4-(9-페닐-9H-카바졸-3-일)페닐)-9H-플루오렌-2-아민(N-(biphenyl-4-yl)-9,9-dimethyl-N-(4-(9-phenyl-9H-carbazol-3-yl)phenyl)-9H-fluoren-2-amine) 등으로 이루어지는 어느 하나의 화합물로 이루어질 수 있다. 유기발광다이오드(100)의 특성에 따라 정공주입층(140)은 생략될 수 있다. The hole injection layer 140 is positioned between the first electrode 110 and the hole transport layer 150, and improves interface characteristics between the inorganic first electrode 110 and the organic hole transport layer 150. In one exemplary embodiment, the hole injection layer 140 is 4,4 ', 4 "-tris (3-methylphenylamino) triphenylamine (4,4 ', 4 "-Tris (3-methylphenylamino) triphenylamine; MTDATA), 4,4', 4"-tris (N, N-diphenyl-amino) triphenylamine (4,4', 4 "-Tris (N, N-diphenyl-amino) triphenylamine; NATA), 4 ,4',4"-tris(N-(naphthalene-1-yl)-N-phenyl-amino)triphenylamine(4,4',4"-Tris(N-(naphthalene-1-yl)-N -phenyl-amino)triphenylamine; 1T-NATA), 4,4',4"-tris(N-(naphthalen-2-yl)-N-phenyl-amino)triphenylamine(4,4',4"- Tris (N- (naphthalene-2-yl) -N-phenyl-amino) triphenylamine; 2T-NATA), copper phthalocyanine (CuPc), tris (4-carbazoyl-9yl-phenyl) amine (Tris ( 4-carbazoyl-9-yl-phenyl)amine; TCTA), N,N'-diphenyl-N,N'-bis(1-naphthyl)-1,1'-biphenyl-4,4"-diamine (N,N'-Diphenyl-N,N'-bis(1-naphthyl)-1,1'-biphenyl-4,4"-diamine; NPB; NPD), 1,4,5,8,9,11 -Hexaazatriphenylenehexacarbonitrile (1,4,5,8,9,11-Hexaazatriphenylenehexacarbonitrile, Dipyrazino[2,3-f:2'3'-h]quinoxaline-2,3,6,7,10 ,11-hexacarbonitrile; HAT-CN), 1,3,5-tris [4- (diphenylamino) phenyl] benzene (1,3,5-tris [4- (diphenylamino) phenyl] benzene; TDAPB), poly (3,4-ethylenedioxythiophene)polystyrene sulfonate (poly(3,4-ethylenedioxythiophene)polystyrene sulfonate; PEDOT/PSS) and/or N-(biphenyl-4-yl) -9,9-dimethyl-N- (4- (9-phenyl-9H-carbazol-3-yl) phenyl) -9H- fluorene-2-amine (N- (biphenyl-4-yl) -9, 9-dimethyl-N-(4-(9-phenyl-9H-carbazol-3-yl)phenyl)-9H-fluoren-2-amine) and the like. Depending on the characteristics of the organic light emitting diode 100, the hole injection layer 140 may be omitted.

정공수송층(150)은 제 1 전극(110)과 발광물질층(160) 사이에 발광물질층(160)에 인접하여 위치한다. 하나의 예시적인 실시형태에서, 정공수송층(150)은 N,N'-디페닐-N,N'-비스(3-메틸페닐)-1,1'-바이페닐-4,4'-디아민(N,N'-Diphenyl-N,N'-bis(3-methylphenyl)-1,1'-biphenyl-4,4'-diamine; TPD), NPB, 4,4'-비스(N-카바졸릴)-1,1'-바이페닐(4,4'-bis(N-carbazolyl)-1,1'-biphenyl; CBP), 폴리[N,N'-비스(4-부틸페닐)-N,N'-비스(페닐)-벤지딘](Poly[N,N'-bis(4-butylpnehyl)-N,N'-bis(phenyl)-benzidine]; Poly-TPD), 폴리[(9,9-디옥닐플루오레닐-2,7-디일)-co-(4,4'-(N-(4-sec-부틸페닐)디페닐아민))](Poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(4,4'-(N-(4-sec-butylphenyl)diphenylamine))], TFB), 디-[4-(N,N-디-p-톨릴-아미노)페닐]사이클로헥산(Di-[4-(N,N-di-p-tolyl-amino)-phenyl]cyclohexane; TAPC), N-(비페닐-4-일)-9,9-디메틸-N-(4-(9-페닐-9H-카바졸-3-일)페닐)-9H-플루오렌-2-아민(N-(biphenyl-4-yl)-9,9-dimethyl-N-(4-(9-phenyl-9H-carbazol-3-yl)phenyl)-9H-fluoren-2-amine) 및/또는 N-(바이페닐-4-일)-N-(4-(9-페닐-9H-카바졸-3-일)페닐)바이페닐)-4-아민(N-(biphenyl-4-yl)-N-(4-(9-phenyl-9H-carbazol-3-yl)phenyl)biphenyl-4-amine) 등으로 구성되는 군에서 선택되는 화합물로 이루어질 수 있지만, 본 발명이 이에 한정되지 않는다. The hole transport layer 150 is positioned adjacent to the light emitting material layer 160 between the first electrode 110 and the light emitting material layer 160 . In one exemplary embodiment, the hole transport layer 150 is N,N'-diphenyl-N,N'-bis(3-methylphenyl)-1,1'-biphenyl-4,4'-diamine (N ,N'-Diphenyl-N,N'-bis(3-methylphenyl)-1,1'-biphenyl-4,4'-diamine; TPD), NPB, 4,4'-bis(N-carbazolyl)- 1,1'-biphenyl (4,4'-bis (N-carbazolyl) -1,1'-biphenyl; CBP), poly [N, N'-bis (4-butylphenyl) -N, N'- Bis (phenyl) -benzidine] (Poly [N, N'-bis (4-butylpnehyl) -N, N'-bis (phenyl) -benzidine]; Poly-TPD), poly [(9,9-dioxylflu Orenyl-2,7-diyl)-co-(4,4'-(N-(4-sec-butylphenyl)diphenylamine))](Poly[(9,9-dioctylfluorenyl-2,7-diyl )-co-(4,4'-(N-(4-sec-butylphenyl)diphenylamine))], TFB), di-[4-(N,N-di-p-tolyl-amino)phenyl]cyclohexane (Di-[4-(N,N-di-p-tolyl-amino)-phenyl]cyclohexane; TAPC), N-(biphenyl-4-yl)-9,9-dimethyl-N-(4-( 9-phenyl-9H-carbazol-3-yl) phenyl) -9H-fluoren-2-amine (N- (biphenyl-4-yl) -9,9-dimethyl-N- (4- (9-phenyl -9H-carbazol-3-yl)phenyl)-9H-fluoren-2-amine) and/or N-(biphenyl-4-yl)-N-(4-(9-phenyl-9H-carbazole-3 -yl) phenyl) biphenyl) -4-amine (N- (biphenyl-4-yl) -N- (4- (9-phenyl-9H-carbazol-3-yl) phenyl) biphenyl-4-amine), etc. It may consist of a compound selected from the group consisting of, but the present invention is not limited thereto.

발광물질층(160)은 호스트(host)에 도펀트(dopant)가 도핑되어 이루어질 수 있다. 일례로, 발광물질층(160)은 호스트에 도펀트가 약 1 내지 50 중량% 첨가될 수 있으며, 청색을 발광할 수 있다. The light emitting material layer 160 may be formed by doping a host with a dopant. For example, the light emitting material layer 160 may have about 1 to 50% by weight of a dopant added to the host and may emit blue light.

하나의 예시적인 실시형태에서, 화학식 1 내지 화학식 5로 표시되는 유기 화합물은 발광물질층(160)의 도펀트로 사용될 수 있다. 한편, 발광물질층(160)에 사용되는 화학식 1 내지 화학식 5로 표시되는 유기 화합물인 도펀트는 지연 형광 특성을 가지는 도펀트일 수 있다. In one exemplary embodiment, organic compounds represented by Chemical Formulas 1 to 5 may be used as a dopant of the light emitting material layer 160 . Meanwhile, the dopant, which is an organic compound represented by Chemical Formulas 1 to 5 used in the light emitting material layer 160, may be a dopant having delayed fluorescence characteristics.

전술한 바와 같이, 지연 형광 특성을 가지는 화합물은 열이나 전계에 의해 활성화되어 ICT 착물 형태와 같은 중간 에너지 상태를 갖는다. 단일항 에너지 준위를 가지는 여기자와 삼중항 에너지 준위를 가지는 여기자가 모두 발광에 관여하기 때문에 유기발광다이오드(100)의 발광 효율을 향상시킬 수 있다. As described above, the compound having delayed fluorescence is activated by heat or an electric field and has an intermediate energy state such as an ICT complex. Since both excitons having a singlet energy level and excitons having a triplet energy level are involved in light emission, the light emitting efficiency of the organic light emitting diode 100 can be improved.

화학식 1 내지 화학식 5로 표시되는 유기 화합물의 단일항 에너지 준위(S1)와 삼중항 에너지 준위(T1)의 차이(ΔEST)가 0.3 eV 이하, 예를 들어 0.05 내지 0.3 eV일 수 있다. 지연 형광 도펀트로 사용될 수 있는 화학식 1 내지 화학식 5로 표시되는 유기 화합물의 단일항 에너지 준위(S1)와 삼중항 에너지 준위(T1)의 차이(ΔEST)가 0.3 eV 이하인 경우, 이들 에너지 준위에서 각각 중간 에너지 상태로 전이되고, 최종적으로 바닥 상태로 떨어지면서 도펀트의 양자 효율이 향상될 수 있다. 즉, ΔEST가 작을수록 발광 효율이 증가할 수 있으며, 도펀트의 단일항 에너지 준위(S1)와 삼중항 에너지 준위(T1)의 차이가 0.3 eV 이하인 경우, 열이나 전계에 의하여 단일항 상태 여기자와 삼중항 상태 여기자가 중간 상태인 ICT 착물 상태로 전이될 수 있다(ΔEST≤0.3).The difference (ΔE ST ) between the singlet energy level (S 1 ) and the triplet energy level (T 1 ) of the organic compounds represented by Chemical Formulas 1 to 5 may be 0.3 eV or less, for example, 0.05 to 0.3 eV. When the difference (ΔE ST ) between the singlet energy level (S 1 ) and the triplet energy level (T 1 ) of organic compounds represented by Formulas 1 to 5 that can be used as delayed fluorescence dopants is 0.3 eV or less, these energy levels The quantum efficiency of the dopant may be improved while transitioning to an intermediate energy state and finally falling to the ground state. That is, the luminous efficiency may increase as ΔE ST decreases, and when the difference between the singlet energy level (S 1 ) and the triplet energy level (T 1 ) of the dopant is 0.3 eV or less, the singlet state is generated by heat or an electric field. Excitons and triplet state excitons can transition to an intermediate ICT complex state (ΔE ST ≤ 0.3).

한편, 지연 형광을 구현하기 위해서 발광물질층(160)에 포함되는 호스트는 도펀트에서의 삼중항 상태의 여기자가 소광(비발광 소멸, quenching)되지 않고 발광에 관여할 수 있도록 유도할 수 있어야 한다. 도 3은 본 발명의 예시적인 실시형태에 따른 유기 화합물을 호스트로 사용하였을 때, 지연 형광 화합물의 에너지 준위와의 상관 관계를 설명하기 위한 모식도이다. Meanwhile, in order to implement delayed fluorescence, the host included in the light emitting material layer 160 should be able to induce excitons in the triplet state in the dopant to participate in light emission without quenching. 3 is a schematic diagram for explaining a correlation with an energy level of a delayed fluorescent compound when an organic compound according to an exemplary embodiment of the present invention is used as a host.

도 3에 도시한 바와 같이, 지연형광을 구현하기 위한 호스트는 도펀트와의 에너지 준위가 조절되어야 한다. 먼저, 호스트의 삼중항 에너지 준위(T1 H)는 도펀트의 삼중항 에너지 준위(T1 D)보다 높아야 한다. 호스트의 삼중항 에너지 준위(T1 H)가 도펀트의 삼중항 에너지 준위(T1 D)보다 충분히 높지 않은 경우에는, 도펀트의 삼중항 상태 여기자가 호스트의 삼중항 에너지 준위(T1 H)로 넘어가게 되고, 비발광으로 소멸되기 때문에, 도펀트의 삼중항 상태 엑시톤이 발광이 기여하지 못하게 된다. As shown in FIG. 3, the energy level of the host for realizing delayed fluorescence should be adjusted with the dopant. First, the triplet energy level of the host (T 1 H ) must be higher than the triplet energy level of the dopant (T 1 D ). If the triplet energy level of the host (T 1 H ) is not sufficiently higher than the triplet energy level of the dopant (T 1 D ), the triplet state excitons of the dopant cross over to the triplet energy level of the host (T 1 H ). Since the exciton in the triplet state of the dopant does not contribute to light emission, since it disappears due to non-emission.

또한, 호스트와 도펀트의 HOMO 에너지 준위와 LUMO 에너지 준위를 적절하게 조정할 필요가 있다. 일례로, 호스트의 최고준위점유분자궤도 에너지 준위(HOMOH)와 도펀트의 최고준위점유분자궤도 에너지 준위(HOMOD)의 차이(|HOMOH-HOMOD|) 또는 호스트의 최저준위비점유분자궤도 에너지 준위(LUMOH)와 도펀트의 최저준위비점유분자궤도 에너지 준위(LUMOD)의 차이(|LUMOH-LUMOD|)는 0.5 eV 이하, 예를 들어, 0.1 내지 0.5 eV 이하인 것이 바람직할 수 있다. 이에 따라, 호스트에서 도펀트로의 전하 이동 효율이 향상되어, 최종적으로 발광 효율을 향상시킬 수 있다.In addition, it is necessary to properly adjust the HOMO energy level and the LUMO energy level of the host and the dopant. For example, the difference between the highest occupied molecular orbital energy level of the host (HOMO H ) and the highest occupied molecular orbital energy level of the dopant (HOMO D ) (|HOMO H -HOMO D |) or the lowest unoccupied molecular orbital of the host It may be preferable that the difference between the energy level (LUMO H ) and the lowest unoccupied molecular orbital energy level (LUMO D ) of the dopant (|LUMO H -LUMO D |) is 0.5 eV or less, for example, 0.1 to 0.5 eV or less. there is. Accordingly, the charge transfer efficiency from the host to the dopant is improved, and finally, the luminous efficiency may be improved.

하나의 예시적인 실시형태에서, 발광물질층(160)의 호스트는 9-(3-(9H-카바졸-9-일)페닐)-9H-카바졸-3-카보니트릴(9-(3-(9H-carbazol-9-yl)phenyl)-9H-carbazole-3-carbonitrile; mCP-CN), CBP, 3,3'-비스(N-카바졸릴)-1,1'-바이페닐(3,3'-bis(N-carbazolyl)-1,1'-biphenyl; mCBP), 1,3-비스(카바졸-9-일)벤젠(1,3-Bis(carbazol-9-yl)benzene; MCP), (옥시비스(2,1-페닐렌))비스(디페닐포스핀옥사이드)(Oxybis(2,1-phenylene))bis(diphenylphosphine oxide; DPEPO), 2T-NATA, TCTA, 1,3,5-트리[(3-피리딜)-펜-3-일]벤젠(1,3,5-Tri[(3-pyridyl)-phen-3-yl]benzene; TmPyPB), 2,6-디(9H-카바졸-9-일)피리딘(2,6-Di(9H-carbazol-9-yl)pyridine; PYD-2Cz), 3', 5'-디(카바졸-9-일)-[1,1'-바이페닐]-3,5-디카보니트릴(3',5'-Di(carbazol-9-yl)-[1,1'-bipheyl]-3,5-dicarbonitrile; DCzTPA), 4'-(9H-carbazol-9-yl)biphenyl-3,5-dicarbonitrile(4'-(9H-carbazol-9-yl)biphenyl-3,5-dicarbonitrile; pCzB-2CN), 3'-(9H-카바졸-9-일)바이페닐-3,5-디카보니트릴(3'-(9H-carbazol-9-yl)biphenyl-3,5-dicarbonitrile; mCzB-2CN), 4-(3-(트리페닐렌-2-일)페닐)디벤조[b,d]티오펜(4-(3-(triphenylen-2-yl)phenyl)dibenzo[b,d]thiophene), 9-(4-(9H-카바졸-9-일)페닐)-9H-3,9'-바이카바졸(9-(4-(9H-carbazol-9-yl)phenyl)-9H-3,9'-bicarbazole) 및/또는 9-(3-(9H-카바졸-9-일)페닐)-9H-3,9'-바이카바졸(9-(3-(9H-carbazol-9-yl)phenyl)-9H-3,9'-bicarbazole) 등을 포함하지만, 본 발명이 이에 한정되지 않는다. In one exemplary embodiment, the host of the light emitting material layer 160 is 9-(3-(9H-carbazol-9-yl)phenyl)-9H-carbazole-3-carbonitrile (9-(3- (9H-carbazol-9-yl)phenyl)-9H-carbazole-3-carbonitrile; mCP-CN), CBP, 3,3'-bis(N-carbazolyl)-1,1'-biphenyl (3, 3'-bis (N-carbazolyl) -1,1'-biphenyl; mCBP), 1,3-bis (carbazol-9-yl) benzene (1,3-Bis (carbazol-9-yl) benzene; MCP ), (Oxybis (2,1-phenylene)) bis (diphenylphosphine oxide) (Oxybis (2,1-phenylene)) bis (diphenylphosphine oxide; DPEPO), 2T-NATA, TCTA, 1,3, 5-tri[(3-pyridyl)-phen-3-yl]benzene (1,3,5-Tri[(3-pyridyl)-phen-3-yl]benzene; TmPyPB), 2,6-di( 9H-carbazol-9-yl)pyridine (2,6-Di(9H-carbazol-9-yl)pyridine; PYD-2Cz), 3', 5'-di(carbazol-9-yl)-[1 ,1'-biphenyl] -3,5-dicarbonitrile (3',5'-Di (carbazol-9-yl) - [1,1'-bipheyl] -3,5-dicarbonitrile; DCzTPA), 4 '-(9H-carbazol-9-yl)biphenyl-3,5-dicarbonitrile(4'-(9H-carbazol-9-yl)biphenyl-3,5-dicarbonitrile; pCzB-2CN), 3'-(9H- Carbazol-9-yl) biphenyl-3,5-dicarbonitrile (3'-(9H-carbazol-9-yl)biphenyl-3,5-dicarbonitrile; mCzB-2CN), 4-(3-(tri) Phenylen-2-yl) phenyl) dibenzo [b, d] thiophene (4- (3- (triphenylen-2-yl) phenyl) dibenzo [b, d] thiophene), 9- (4- (9H- Carbazol-9-yl) phenyl) -9H-3,9'-bicarbazole (9- (4- (9H-carbazol-9-yl) phenyl) -9H-3,9'-bicarbazole) and / or 9- (3- (9H-carbazol-9-yl) phenyl) -9H-3,9'-bicarbazole (9- (3- (9H-carbazol-9-yl) phenyl) -9H- 3,9'-bicarbazole) and the like, but the present invention is not limited thereto.

다시 도 2 로 돌아가면, 발광물질층(160)과 제 2 전극(120) 사이에는 전자수송층(170)과 전자주입층(180)이 순차적으로 적층될 수 있다. 전자수송층(170)을 이루는 소재는 높은 전자 이동도가 요구되는데, 원활한 전자 수송을 통하여 발광물질층(160)에 전자를 안정적으로 공급한다. Referring back to FIG. 2 , an electron transport layer 170 and an electron injection layer 180 may be sequentially stacked between the light emitting material layer 160 and the second electrode 120 . A material constituting the electron transport layer 170 requires high electron mobility, and electrons are stably supplied to the light emitting material layer 160 through smooth electron transport.

하나의 예시적인 실시형태에서, 전자수송층(170)은 옥사디아졸(oxadiazole), 트리아졸(triazole), 페난트롤린(phenanthroline), 벤족사졸(benzoxazole), 벤조티아졸(benzothiazole), 벤즈이미다졸, 트리아진 등의 유도체일 수 있다. In one exemplary embodiment, the electron transport layer 170 is oxadiazole, triazole, phenanthroline, benzoxazole, benzothiazole, benzimidazole , may be a derivative such as triazine.

일례로, 전자수송층(170)은 트리스(8-하이드록시퀴놀린)알루미늄(tris-(8-hydroxyquinoline aluminum; Alq3), 2-바이페닐-4-일-5-(4-터셔리-부틸페닐)-1,3,4-옥사디아졸(2-biphenyl-4-yl-5-(4-t-butylphenyl)-1,3,4-oxadiazole; PBD), 스파이로-PBD, 리튬 퀴놀레이트(lithium quinolate; Liq), 1,3,5-트리스(N-페닐벤즈이미다졸-2-일)벤젠(1,3,5-Tris(N-phenylbenzimidazol-2-yl)benzene; TPBi), 비스(2-메틸-8-퀴놀리노라토-N1,O8)-(1,1'-바이페닐-4-올라토)알루미늄(Bis(2-methyl-8-quinolinolato-N1,O8)-(1,1'-biphenyl-4-olato)aluminum; BAlq), 4,7-디페닐-1,10-페난트롤린(4,7-diphenyl-1,10-phenanthroline; Bphen), 2,9-비스(나프탈렌-2-일)4,7-디페닐-1,10-페난트롤린(2,9-Bis(naphthalene-2-yl)4,7-diphenyl-1,10-phenanthroline; NBphen), 2,9-디메틸-4,7-디페닐-1,10-페난트롤린(2,9-Dimethyl-4,7-diphenyl-1,10-phenathroline; BCP), 3-(4-바이페닐)-4-페닐-5-터르-부틸페닐-1,2,4-트리아졸(3-(4-Biphenyl)-4-phenyl-5-tert-butylphenyl-1,2,4-triazole; TAZ), 4-(나프탈렌-1-일)-3,5-디페닐-4H-1,2,4-트리아졸(4-(Naphthalen-1-yl)-3,5-diphenyl-4H-1,2,4-triazole; NTAZ), 1,3,5-트리(p-피리드-3-일-페닐)벤젠(1,3,5-Tri(p-pyrid-3-yl-phenyl)benzene; TpPyPB), 2,4,6-트리스(3'-(피리딘-3-일)바이페닐-3-일)1,3,5-트리아진(2,4,6-Tris(3'-(pyridin-3-yl)biphenyl-3-yl)1,3,5-triazine; TmPPPyTz), 폴리[(9,9-비스(3'-((N,N-디메틸)-N-에틸암모늄)-프로필)-2,7-플루오렌)-알트-2,7-(9,9-디옥틸플루오렌)](Poly[9,9-bis(3'-((N,N-dimethyl)-N-ethylammonium)-propyl)-2,7-fluorene]-alt-2,7-(9,9-dioctylfluorene)]; PFNBr) 및/또는 트리스(페닐퀴녹살린)(tris(phenylquinoxaline; TPQ) 등으로 구성되는 군에서 선택될 수 있지만, 본 발명이 이에 한정되는 것은 아니다.For example, the electron transport layer 170 is tris (8-hydroxyquinoline) aluminum (tris- (8-hydroxyquinoline aluminum; Alq 3 ), 2-biphenyl-4-yl-5- (4-tert-butylphenyl ) -1,3,4-oxadiazole (2-biphenyl-4-yl-5- (4-t-butylphenyl) -1,3,4-oxadiazole; PBD), spiro-PBD, lithium quinolate ( lithium quinolate; Liq), 1,3,5-tris (N-phenylbenzimidazol-2-yl) benzene (1,3,5-Tris (N-phenylbenzimidazol-2-yl) benzene; TPBi), bis ( 2-methyl-8-quinolinolato-N1,O8)-(1,1'-biphenyl-4-olato)aluminum (Bis(2-methyl-8-quinolinolato-N1,O8)-(1, 1'-biphenyl-4-olato)aluminum; BAlq), 4,7-diphenyl-1,10-phenanthroline; Bphen), 2,9-bis( Naphthalen-2-yl) 4,7-diphenyl-1,10-phenanthroline (2,9-Bis (naphthalene-2-yl) 4,7-diphenyl-1,10-phenanthroline; NBphen), 2, 9-dimethyl-4,7-diphenyl-1,10-phenanthroline (2,9-Dimethyl-4,7-diphenyl-1,10-phenathroline; BCP), 3-(4-biphenyl)-4 -Phenyl-5-tert-butylphenyl-1,2,4-triazole (3-(4-Biphenyl)-4-phenyl-5-tert-butylphenyl-1,2,4-triazole; TAZ), 4- (Naphthalen-1-yl)-3,5-diphenyl-4H-1,2,4-triazole (4-(Naphthalen-1-yl)-3,5-diphenyl-4H-1,2,4- triazole; NTAZ), 1,3,5-Tri(p-pyrid-3-yl-phenyl)benzene; TpPyPB), 2 ,4,6-tris(3'-(pyridin-3-yl)biphenyl-3-yl)1,3,5-triazine(2,4,6-Tris(3'-(pyrid in-3-yl)biphenyl-3-yl)1,3,5-triazine; TmPPPyTz), poly[(9,9-bis(3′-((N,N-dimethyl)-N-ethylammonium)-propyl)-2,7-fluorene)-alt-2,7-(9, 9-dioctylfluorene)](Poly[9,9-bis(3'-((N,N-dimethyl)-N-ethylammonium)-propyl)-2,7-fluorene]-alt-2,7- (9,9-dioctylfluorene)]; PFNBr) and/or tris(phenylquinoxaline; TPQ), etc., but the present invention is not limited thereto.

전자주입층(180)은 제 2 전극(120)과 전자수송층(170) 사이에 위치하는데, 제 2 전극(120)의 특성을 개선하여 소자의 수명을 개선할 수 있다. 하나의 예시적인 실시형태에서, 전자주입층(180)의 소재로는 LiF, CsF, NaF, BaF2 등의 알칼리 할라이드계 물질 및/또는 Liq(lithium quinolate), 리튬 벤조에이트(lithium benzoate), 소듐 스테아레이트(sodium stearate) 등의 유기금속계 물질이 사용될 수 있지만, 본 발명이 이에 한정되는 것은 아니다. The electron injection layer 180 is positioned between the second electrode 120 and the electron transport layer 170, and the life of the device can be improved by improving the characteristics of the second electrode 120. In one exemplary embodiment, as a material of the electron injection layer 180, an alkali halide-based material such as LiF, CsF, NaF, BaF 2 , and/or lithium quinolate (Liq), lithium benzoate, sodium Organometallic materials such as stearate (sodium stearate) may be used, but the present invention is not limited thereto.

본 발명의 예시적인 실시형태에 따른 유기발광다이오드(100)는 유기발광층(130)을 구성하는 발광물질층(160)에 지연 형광 특성을 가지는 화학식 1 내지 화학식 5로 표시되는 유기 화합물인 도펀트를 가지고 있다. 단일항 에너지 상태 및 삼중항 에너지 상태의 여기자가 모두 발광에 관여하기 때문에, 발광 효율이 향상된다. The organic light emitting diode 100 according to an exemplary embodiment of the present invention has a dopant, which is an organic compound represented by Chemical Formulas 1 to 5 having delayed fluorescence, in the light emitting material layer 160 constituting the organic light emitting layer 130, and there is. Since both excitons in the singlet energy state and the triplet energy state are involved in light emission, the light emission efficiency is improved.

화학식 1 내지 화학식 5로 표시되는 유기 화합물은 전자주개 모이어티와 전자받개 모이어티가 공존하기 때문에, 쌍극자 모멘트가 증가하고, HOHO와 LUMO가 쉽게 분리되며, 쌍극자 모멘트가 증가할 수 있는 구조를 가지기 때문에, 지연 형광 특성을 가진다. 또한, 견고한 구조를 가지는 인데노인덴 고리와 이미다졸 고리 또는 티아졸 고리 사이의 입체 구조가 크게 제한되어 발광할 때 에너지 손실이 감소하므로, 발광 효율과 색순도가 개선된 청색 발광을 구현할 수 있다. Since the organic compounds represented by Formulas 1 to 5 coexist with the electron donor moiety and the electron acceptor moiety, the dipole moment increases, HOHO and LUMO are easily separated, and the dipole moment has a structure that can increase , has delayed fluorescence properties. In addition, since the three-dimensional structure between the indenoindene ring having a rigid structure and the imidazole ring or thiazole ring is greatly restricted and energy loss is reduced during light emission, blue light emission with improved luminous efficiency and color purity can be implemented.

또한, 종래의 중금속을 포함하는 인광 재료를 사용하는 경우와 비교할 때, 화학식 1 내지 화학식 5로 표시되는 유기 화합물과 함께 발광물질층(EML, 160)에 포함되는 유기 호스트는 높은 삼중항 에너지 준위를 가지지 않아도 되며, 밴드갭도 넓을 필요가 없다. 따라서, 에너지 밴드갭이 넓은 유기 호스트를 사용함으로 인하여 야기되는 문제점, 즉, 전하의 주입 및 수송이 지연되고, 이에 따라 발광다이오드(100)의 구동 전압이 상승하고 소비 전력이 증가하며, 소자의 수명 특성이 저하되는 것을 방지할 수 있다. In addition, compared to the case of using a conventional phosphorescent material containing a heavy metal, the organic host included in the light emitting material layer (EML, 160) together with the organic compounds represented by Chemical Formulas 1 to 5 has a high triplet energy level. It does not have to have, and the band gap does not have to be wide. Therefore, problems caused by using an organic host having a wide energy bandgap, that is, charge injection and transport are delayed, and accordingly, the driving voltage of the light emitting diode 100 increases, power consumption increases, and device lifespan A deterioration of properties can be prevented.

한편, 본 발명에 따른 유기발광다이오드는 1개 이상의 엑시톤 차단층을 더욱 포함할 수 있다. 도 4는 본 발명의 예시적인 제 2 실시형태에 따라 인광 화합물이 적용된 유기발광다이오드를 개략적으로 도시한 단면도이다. 도 4에 도시한 바와 같이, 본 발명의 제 2 실시형태에 따른 유기발광다이오드(200)는 서로 마주하는 제 1 전극(210) 및 제 2 전극(220)과, 제 1 및 제 2 전극(210, 220) 사이에 위치하는 유기발광층(230)을 포함한다. Meanwhile, the organic light emitting diode according to the present invention may further include one or more exciton blocking layers. 4 is a schematic cross-sectional view of an organic light emitting diode to which a phosphorescent compound is applied according to a second exemplary embodiment of the present invention. As shown in FIG. 4, the organic light emitting diode 200 according to the second embodiment of the present invention includes a first electrode 210 and a second electrode 220 facing each other, and the first and second electrodes 210 , 220) and an organic light emitting layer 230 positioned between them.

예시적인 실시형태에서, 유기발광층(230)은 제 1 전극(210)으로부터 순차적으로 적층되는 정공주입층(240), 정공수송층(250), 발광물질층(260), 전자수송층(270) 및 전자주입층(280)을 포함한다. 또한, 유기발광층(230)은 정공수송층(250)과 발광물질층(260) 사이에 위치하는 제 1 엑시톤 차단층인 전자차단층(electron blocking layer, EBL, 255) 및/또는 발광물질층(260)과 전자수송층(270) 사이에 위치하는 제 2 엑시톤 차단층인 정공차단층(hole blocking layer, HBL, 265)을 더욱 포함한다. In an exemplary embodiment, the organic light emitting layer 230 includes a hole injection layer 240, a hole transport layer 250, a light emitting material layer 260, an electron transport layer 270, and electron transport layer 270 sequentially stacked from the first electrode 210. An injection layer 280 is included. In addition, the organic light emitting layer 230 includes an electron blocking layer (EBL, 255) and/or a first exciton blocking layer positioned between the hole transport layer 250 and the light emitting material layer 260 and/or the light emitting material layer 260 ) and a hole blocking layer (HBL, 265) as a second exciton blocking layer located between the electron transport layer 270.

전술한 바와 같이, 제 1 전극(210)은 양극일 수 있으며, 일함수 값이 비교적 큰 도전성 물질인 ITO, IZO, ITZO, SnO, ZnO, ICO 및 AZO 등으로 이루어질 수 있다. 제 2 전극(220)은 음극일 수 있으며, 일함수 값이 비교적 적은 도전성 물질인 Al, Mg, Ca, Ag 또는 이들의 합금이나 조합으로 이루어질 수 있다. As described above, the first electrode 210 may be an anode and may be made of ITO, IZO, ITZO, SnO, ZnO, ICO, and AZO, which are conductive materials having a relatively high work function value. The second electrode 220 may be a cathode and may be made of Al, Mg, Ca, Ag, or an alloy or combination thereof, which is a conductive material having a relatively low work function value.

정공주입층(240)은 제 1 전극(210)과 정공수송층(22) 사이에 위치한다. 정공주입층(240)은 MTDATA, NATA, 1T-NATA, 2T-NATA, CuPc, TCTA, NPB(NPD), HAT-CN, TDAPB, PEDOT/PSS 및/또는 N-(비페닐-4-일)-9,9-디메틸-N-(4-(9-페닐-9H-카바졸-3-일)페닐)-9H-플루오렌-2-아민 등으로 이루어지는 어느 하나의 화합물로 이루어질 수 있다. The hole injection layer 240 is positioned between the first electrode 210 and the hole transport layer 22 . The hole injection layer 240 is made of MTDATA, NATA, 1T-NATA, 2T-NATA, CuPc, TCTA, NPB (NPD), HAT-CN, TDAPB, PEDOT/PSS and/or N-(biphenyl-4-yl) -9,9-dimethyl-N-(4-(9-phenyl-9H-carbazol-3-yl)phenyl)-9H-fluoren-2-amine and the like.

정공수송층(250)은 제 1 전극(210)과 발광물질층(260) 사이에 발광물질층(260)에 인접하여 위치한다. 정공수송층(250)은 TPD, NPD(NPB), CBP, Poly-TPD, TFB, TAPC, N-(비페닐-4-일)-9,9-디메틸-N-(4-(9-페닐-9H-카바졸-3-일)페닐)-9H-플루오렌-2-아민 및/또는 N-(비페닐-4-일)-N-(4-(9-페닐-9H-카바졸-3-일)페닐)비페닐)-4-아민 등의 방향족 아민 화합물을 포함하는 군에서 선택되는 화합물로 이루어질 수 있다. The hole transport layer 250 is positioned adjacent to the light emitting material layer 260 between the first electrode 210 and the light emitting material layer 260 . Hole transport layer 250 is TPD, NPD (NPB), CBP, Poly-TPD, TFB, TAPC, N- (biphenyl-4-yl) -9,9-dimethyl-N- (4- (9-phenyl- 9H-carbazol-3-yl)phenyl)-9H-fluoren-2-amine and/or N-(biphenyl-4-yl)-N-(4-(9-phenyl-9H-carbazole-3 -yl) phenyl) biphenyl) -4-amine and other aromatic amine compounds.

발광물질층(260)은 호스트에 도펀트가 도핑되어 이루어질 수 있다. 일례로, 발광물질층(260)은 호스트에 도펀트가 약 1 내지 50 중량% 첨가될 수 있으며, 청색을 발광할 수 있다. 예를 들어, 화학식 1 내지 화학식 5로 표시되는 유기 화합물이 발광물질층(260)의 도펀트로 사용되고, mCP-CN, CBP, mCBP, MCP, DPEPO, 2T-NATA, TCTA, TmPyPB, PYD-2Cz, DCzTPA, pCzB-2CN, mCzB-2CN, 4-(3-(트리페닐렌-2-일)페닐)디벤조[b,d]티오펜, 9-(4-(9H-카바졸-9-일)페닐)-9H-3,9'-바이카바졸 및/또는 9-(3-(9H-카바졸-9-일)페닐)-9H-3,9'-바이카바졸 등의 화합물이 호스트로 사용될 수 있다. The light emitting material layer 260 may be formed by doping a host with a dopant. For example, the light emitting material layer 260 may have a dopant added to the host in an amount of about 1 to 50% by weight, and may emit blue light. For example, organic compounds represented by Chemical Formulas 1 to 5 are used as dopants of the light emitting material layer 260, and mCP-CN, CBP, mCBP, MCP, DPEPO, 2T-NATA, TCTA, TmPyPB, PYD-2Cz, DCzTPA, pCzB-2CN, mCzB-2CN, 4-(3-(triphenylen-2-yl)phenyl)dibenzo[b,d]thiophene, 9-(4-(9H-carbazol-9-yl ) Phenyl) -9H-3,9'-bicarbazole and / or 9- (3- (9H-carbazol-9-yl) phenyl) -9H-3,9'-bicarbazole and the like compounds host can be used as

전자수송층(270)은 발광물질층(260)과 전자주입층(280) 사이에 위치한다. 일례로, 전자수송층(270)은 옥사디아졸(oxadiazole), 트리아졸(triazole), 페난트롤린(phenanthroline), 벤족사졸(benzoxazole), 벤조티아졸(benzothiazole), 벤즈이미다졸, 트리아진 등의 유도체일 수 있다. 예를 들어, 전자수송층(270)은 Alq3, PBD, 스파이로-PBD, Liq, BAlq, Bphen, NBphen, BCP, TAZ, NTAZ, TpPyPB, TmPPPyTz, PFNBr 및/또는 TPQ 등으로 이루어질 수 있지만, 본 발명이 이에 한정되는 것은 아니다.The electron transport layer 270 is positioned between the light emitting material layer 260 and the electron injection layer 280 . For example, the electron transport layer 270 may include oxadiazole, triazole, phenanthroline, benzoxazole, benzothiazole, benzimidazole, triazine, and the like. may be a derivative. For example, the electron transport layer 270 may be made of Alq 3 , PBD, spiro-PBD, Liq, BAlq, Bphen, NBphen, BCP, TAZ, NTAZ, TpPyPB, TmPPPyTz, PFNBr, and/or TPQ, but The invention is not limited thereto.

전자주입층(280)은 제 2 전극(220)과 전자수송층(270) 사이에 위치한다. 전자주입층(280)의 소재로는 LiF, CsF, NaF, BaF2 등의 알칼리 할라이드계 물질 및/또는 Liq, 리튬 벤조에이트, 소듐 스테아레이트 등의 유기금속계 물질이 사용될 수 있지만, 본 발명이 이에 한정되는 것은 아니다. The electron injection layer 280 is positioned between the second electrode 220 and the electron transport layer 270 . Alkali halide-based materials such as LiF, CsF, NaF, and BaF 2 and/or organometallic materials such as Liq, lithium benzoate, and sodium stearate may be used as the material of the electron injection layer 280, but the present invention It is not limited.

한편, 정공이 발광물질층(260)을 제 2 전극(220)으로 이동하거나, 전자가 발광물질층(260)을 지나 제 1 전극(210)으로 가는 경우, 소자의 수명과 효율에 감소를 가져올 수 있다. 이를 방지하기 위하여, 본 발명의 예시적인 제 2 실시형태에 따른 유기발광다이오드(200)는 발광물질층(260)에 인접하여 적어도 1개의 엑시톤 차단층이 위치한다. On the other hand, when holes move through the light emitting material layer 260 to the second electrode 220 or when electrons pass through the light emitting material layer 260 and go to the first electrode 210, the lifetime and efficiency of the device may be reduced. can To prevent this, in the organic light emitting diode 200 according to the second exemplary embodiment of the present invention, at least one exciton blocking layer is positioned adjacent to the light emitting material layer 260 .

예를 들어, 본 발명의 제 2 실시형태에 따른 유기발광다이오드(200)는 정공수송층(250)과 발광물질층(260) 사이에 전자의 이동을 제어, 방지할 수 있는 전자차단층(electron blocking layer, EBL, 255)이 위치한다. For example, the organic light emitting diode 200 according to the second embodiment of the present invention has an electron blocking layer capable of controlling or preventing the movement of electrons between the hole transport layer 250 and the light emitting material layer 260. layer, EBL, 255) is located.

일례로, 전자차단층(255)은 TCTA, 트리스[4-(디에틸아미노)페닐]아민(tris[4-(diethylamino)phenyl]amine), N-(바이페닐-4-일)-9,9-디메틸-N-(4-(9-페닐-9H-카바졸-3-일)페닐)-9H-플루오렌-2-아민, TAPC, MTDATA, mCP, mCBP, CuPC, N,N'-비스[4-[비스(3-메틸페닐)아미노]페닐]-N,N'-디페닐-[1,1'-바이페닐]-4,4'-디아민(N,N'-bis[4-[bis(3-methylphenyl)amino]phenyl]-N,N'-diphenyl-[1,1'-biphenyl]-4,4'-diamine; DNTPD) 및/또는 TDAPB 등으로 이루어질 수 있다. For example, the electron blocking layer 255 is TCTA, tris [4- (diethylamino) phenyl] amine (tris [4- (diethylamino) phenyl] amine), N- (biphenyl-4-yl) -9, 9-dimethyl-N-(4-(9-phenyl-9H-carbazol-3-yl)phenyl)-9H-fluoren-2-amine, TAPC, MTDATA, mCP, mCBP, CuPC, N,N'- Bis[4-[bis(3-methylphenyl)amino]phenyl]-N,N'-diphenyl-[1,1'-biphenyl]-4,4'-diamine (N,N'-bis[4- [bis(3-methylphenyl)amino]phenyl]-N,N'-diphenyl-[1,1'-biphenyl]-4,4'-diamine; DNTPD) and/or TDAPB.

또한, 발광물질층(260)과 전자수송층(270) 사이에 제 2 엑시톤 차단층으로서 정공차단층(265)이 위치하여 발광물질층(260)과 전자수송층(270) 사이에 정공의 이동을 방지한다. 하나의 예시적인 실시형태에서, 정공차단층의 소재로서 전자수송층(270)에 사용될 수 있는 옥사디아졸(oxadiazole), 트리아졸(triazole), 페난트롤린(phenanthroline), 벤족사졸(benzoxazole), 벤조티아졸(benzothiazole), 벤즈이미다졸, 트리아진 등의 유도체가 사용될 수 있다. In addition, a hole blocking layer 265 is positioned as a second exciton blocking layer between the light emitting material layer 260 and the electron transport layer 270 to prevent movement of holes between the light emitting material layer 260 and the electron transport layer 270 do. In one exemplary embodiment, as a material for the hole blocking layer, oxadiazole, triazole, phenanthroline, benzoxazole, and benzo that may be used in the electron transport layer 270 may be used. Derivatives such as benzothiazole, benzimidazole, and triazine may be used.

예를 들어 정공차단층(265)은 발광물질층(260)에 사용된 소재와 비교해서 HOMO(highest occupied molecular orbital; 최고점유분자궤도) 에너지 준위가 낮은 BCP, BAlq, Alq3, PBD, 스파이로-PBD, Liq 및/또는 비스-4,6-(3,5-디-3-피리딜페닐)-2-메틸피리미딘(bis-4,6-(3,5-di-3-pyridylphenyl)-2-methylpyrimidine; B3PYMPM) 및 이들의 조합으로 구성되는 군에서 선택되는 화합물로 이루어질 수 있다. For example, the hole blocking layer 265 may be formed of BCP, BAlq, Alq3, PBD, or spiro- which has a lower HOMO (highest occupied molecular orbital) energy level compared to the material used in the light emitting material layer 260. PBD, Liq and/or bis-4,6-(3,5-di-3-pyridylphenyl)-2-methylpyrimidine (bis-4,6-(3,5-di-3-pyridylphenyl)- 2-methylpyrimidine; B3PYMPM) and combinations thereof.

본 발명의 제 2 실시형태에 따른 유기발광다이오드(200)는 발광물질층(160)에 지연 형광 특성을 가지는 화학식 1 내지 화학식 5로 표시되는 유기 화합물인 도펀트를 가지고 있다. 화학식 1 내지 화학식 5로 표시되는 유기 화합물은 1분자 내에 전자주개 모이어티와 전자받개 모이어티가 공존하여 쌍극자 모멘트가 증가하고, HOHO와 LUMO가 쉽게 분리되며, 쌍극자 모멘트가 증가할 수 있는 구조를 가지기 때문에, 지연 형광 특성을 가진다. 또한, 전자주개 모이어티를 구성하는 인데노인덴 고리와, 전자받개 모이어티를 구성하는 이미다졸 고리 또는 티아졸 고리의 입체 구조가 제한된다. 따라서, 화학식 1 내지 화학식 5로 표시되는 유기 화합물을 발광 소자의 도펀트로 사용하면, 발광 효율이 향상되고, 양호한 색순도를 가지는 유기발광다이오드(200)를 제조할 수 있다. The organic light emitting diode 200 according to the second embodiment of the present invention has a dopant, which is an organic compound represented by Chemical Formulas 1 to 5 having delayed fluorescence characteristics, in the light emitting material layer 160 . The organic compounds represented by Formulas 1 to 5 have a structure in which an electron donor moiety and an electron acceptor moiety coexist in one molecule to increase the dipole moment, easily separate HOHO and LUMO, and increase the dipole moment. Therefore, it has delayed fluorescence properties. In addition, the three-dimensional structure of the indenoindene ring constituting the electron donor moiety and the imidazole ring or thiazole ring constituting the electron acceptor moiety is limited. Accordingly, when the organic compounds represented by Chemical Formulas 1 to 5 are used as dopants of the light emitting device, the light emitting efficiency is improved and the organic light emitting diode 200 having good color purity can be manufactured.

높은 삼중항 에너지와 넓은 밴드갭을 가지는 유기 호스트를 사용할 필요가 없기 때문에, 발광다이오드(200)의 구동 전압을 낮춰서 소비 전력을 감소시킬 수 있고, 소자의 수명을 향상시킬 수 있다. 아울러, 본 발명의 제 2 실시형태에 따른 유기발광다이오드(200)는 적어도 하나의 엑시톤 차단층(255, 265)을 포함하고 있기 때문에, 발광물질층(260)과 인접한 전하수송층(250, 270)과의 계면에서 발광을 방지함으로써, 유기발광다이오드(200)의 발광 효율과 수명을 더욱 향상시킬 수 있다.Since there is no need to use an organic host having high triplet energy and a wide bandgap, power consumption can be reduced by lowering the driving voltage of the light emitting diode 200 and lifespan of the device can be improved. In addition, since the organic light emitting diode 200 according to the second embodiment of the present invention includes at least one exciton blocking layer 255 or 265, the charge transport layers 250 or 270 adjacent to the light emitting material layer 260 By preventing light emission at the interface with the organic light emitting diode 200, the light emitting efficiency and lifetime of the organic light emitting diode 200 can be further improved.

본 발명에 따른 유기발광다이오드는 유기발광다이오드 표시장치 또는 전술한 유기발광다이오드를 적용한 조명 장치 등의 유기발광장치에 적용될 수 있다. 일례로, 본 발명의 유기발광다이오드를 적용한 표시장치에 대해서 설명한다. 도 5는 본 발명의 예시적인 실시형태에 따른 유기발광다이오드 표시장치의 개략적인 단면도이다.The organic light emitting diode according to the present invention may be applied to an organic light emitting device such as an organic light emitting diode display device or a lighting device to which the above organic light emitting diode is applied. As an example, a display device to which the organic light emitting diode of the present invention is applied will be described. 5 is a schematic cross-sectional view of an organic light emitting diode display device according to an exemplary embodiment of the present invention.

도 5에 도시한 바와 같이, 유기발광다이오드 표시장치(300)는 구동 소자인 구동 박막트랜지스터(Td)와, 구동 박막트랜지스터(Td)를 덮는 평탄화층(360)과, 평탄화층(360) 상에 위치하며 구동 소자인 구동 박막트랜지스터(Td)에 연결되는 유기발광다이오드(400)를 포함한다. 구동 박막트랜지스터(Td)는, 반도체층(310)과, 게이트 전극(330)과, 소스 전극(352)과, 드레인 전극(354)을 포함하는데, 도 3에서는 코플라나(coplanar) 구조의 구동 박막트랜지스터(Td)를 나타낸다. As shown in FIG. 5 , the organic light emitting diode display 300 includes a driving thin film transistor Td as a driving element, a planarization layer 360 covering the driving thin film transistor Td, and a planarization layer 360 on and an organic light emitting diode 400 connected to the driving thin film transistor Td as a driving element. The driving thin film transistor (Td) includes a semiconductor layer 310, a gate electrode 330, a source electrode 352, and a drain electrode 354. In FIG. 3, the driving thin film has a coplanar structure. Indicates the transistor Td.

기판(302)은 유리 기판, 얇은 플렉서블(flexible) 기판 또는 고분자 플라스틱 기판일 수 있다. 예를 들어, 플렉서블 기판은 폴리이미드(polyimide; PI), 폴리에테르술폰(Polyethersulfone; PES), 폴리에틸렌나프탈레이트(polyethylenenaphthalate; PEN), 폴리에틸렌테레프탈레이트(polyethylene Terephthalate; PET) 및 폴리카보네이트(polycarbonate; PC) 중 어느 하나로 형성될 수 있다. 구동 소자인 구동 박막트랜지스터(Td)와, 유기발광다이오드(400)가 위치하는 기판(302)은 어레이 기판을 이룬다. The substrate 302 may be a glass substrate, a thin flexible substrate, or a polymeric plastic substrate. For example, flexible substrates include polyimide (PI), polyethersulfone (PES), polyethylenenaphthalate (PEN), polyethylene terephthalate (PET) and polycarbonate (PC). It can be formed by any one of them. The driving thin film transistor (Td), which is a driving element, and the substrate 302 on which the organic light emitting diode 400 are positioned form an array substrate.

기판(302) 상부에 반도체층(310)이 형성된다. 예를 들어, 반도체층(310)은 산화물 반도체 물질로 이루어질 수 있다. 이 경우 반도체층(310) 하부에는 차광패턴(미도시)과 버퍼층(미도시)이 형성될 수 있으며, 차광패턴은 반도체층(310)으로 빛이 입사되는 것을 방지하여 반도체층(310)이 빛에 의해 열화되는 것을 방지한다. 이와 달리, 반도체층(310)은 다결정 실리콘으로 이루어질 수도 있으며, 이 경우 반도체층(310)의 양 가장자리에 불순물이 도핑되어 있을 수 있다. A semiconductor layer 310 is formed on the substrate 302 . For example, the semiconductor layer 310 may be made of an oxide semiconductor material. In this case, a light-shielding pattern (not shown) and a buffer layer (not shown) may be formed under the semiconductor layer 310, and the light-shielding pattern prevents light from entering the semiconductor layer 310 so that the semiconductor layer 310 is not exposed to light. prevent degradation by Alternatively, the semiconductor layer 310 may be made of polycrystalline silicon, and in this case, both edges of the semiconductor layer 310 may be doped with impurities.

반도체층(310) 상부에는 절연물질로 이루어진 게이트 절연막(320)이 기판(302) 전면에 형성된다. 게이트 절연막(320)은 실리콘산화물(SiO2) 또는 실리콘질화물(SiNx)과 같은 무기절연물질로 이루어질 수 있다. A gate insulating film 320 made of an insulating material is formed on the entire surface of the substrate 302 on the semiconductor layer 310 . The gate insulating layer 320 may be formed of an inorganic insulating material such as silicon oxide (SiO 2 ) or silicon nitride (SiNx).

게이트 절연막(320) 상부에는 금속과 같은 도전성 물질로 이루어진 게이트 전극(330) 반도체층(310)의 중앙에 대응하여 형성된다. 또한, 게이트 절연막(320) 상부에는 게이트 배선(미도시)과 제 1 캐패시터 전극(미도시)이 형성될 수 있다. 게이트 배선은 제 1 방향을 따라 연장되고, 제 1 캐패시터 전극은 게이트 전극(330)에 연결될 수 있다. 한편, 게이트 절연막(320)이 기판(302) 전면에 형성되어 있으나, 게이트 절연막(320)은 게이트 전극(330)과 동일한 모양으로 패터닝 될 수도 있다. A gate electrode 330 made of a conductive material such as metal is formed on the top of the gate insulating film 320 to correspond to the center of the semiconductor layer 310 . In addition, a gate wiring (not shown) and a first capacitor electrode (not shown) may be formed on the gate insulating layer 320 . The gate wiring may extend along the first direction, and the first capacitor electrode may be connected to the gate electrode 330 . Meanwhile, although the gate insulating film 320 is formed on the entire surface of the substrate 302 , the gate insulating film 320 may be patterned in the same shape as the gate electrode 330 .

게이트 전극(330) 상부에는 절연물질로 이루어진 층간 절연막(340)이 기판(302) 전면에 형성된다. 층간 절연막(340)은 실리콘산화물(SiO2) 또는 실리콘질화물(SiNx)과 같은 무기절연물질로 형성되거나, 벤조사이클로부텐(benzocyclobutene)이나 포토 아크릴(photo-acryl)과 같은 유기절연물질로 형성될 수 있다. An interlayer insulating film 340 made of an insulating material is formed on the entire surface of the substrate 302 above the gate electrode 330 . The interlayer insulating film 340 may be formed of an inorganic insulating material such as silicon oxide (SiO 2 ) or silicon nitride (SiNx), or an organic insulating material such as benzocyclobutene or photo-acryl. there is.

층간 절연막(340)은 반도체층(310)의 양측 상면을 노출하는 제 1 및 제 2 반도체층 컨택홀(342, 344)을 갖는다. 제 1 및 제 2 반도체층 컨택홀(342, 344)은 게이트 전극(330)의 양측에서 게이트 전극(330)과 이격되어 위치한다. 여기서, 제 1 및 제 2 반도체층 컨택홀(342, 344)은 게이트 절연막(320) 내에도 형성된다. 이와 달리, 게이트 절연막(320)이 게이트 전극(330)과 동일한 모양으로 패터닝 될 경우, 제 1 및 제 2 반도체층 컨택홀(342, 344)은 층간 절연막(340) 내에만 형성된다. The interlayer insulating film 340 has first and second semiconductor layer contact holes 342 and 344 exposing top surfaces of both sides of the semiconductor layer 310 . The first and second semiconductor layer contact holes 342 and 344 are spaced apart from the gate electrode 330 on both sides of the gate electrode 330 . Here, the first and second semiconductor layer contact holes 342 and 344 are also formed in the gate insulating layer 320 . In contrast, when the gate insulating film 320 is patterned in the same shape as the gate electrode 330, the first and second semiconductor layer contact holes 342 and 344 are formed only in the interlayer insulating film 340.

층간 절연막(340) 상부에는 금속과 같은 도전성 물질로 이루어진 소스 전극(352)과 드레인 전극(354)이 형성된다. 또한, 층간 절연막(340) 상부에는 제 2 방향을 따라 연장되는 데이터 배선(미도시)과 전원 배선(미도시) 및 제 2 캐패시터 전극(미도시)이 형성될 수 있다. A source electrode 352 and a drain electrode 354 made of a conductive material such as metal are formed on the interlayer insulating film 340 . In addition, a data wire (not shown), a power supply wire (not shown), and a second capacitor electrode (not shown) may be formed on the interlayer insulating film 340 and extend along the second direction.

소스 전극(352)과 드레인 전극(354)은 게이트 전극(330)을 중심으로 이격되어 위치하며, 각각 제 1 및 제 2 반도체층 컨택홀(342, 344)을 통해 반도체층(310)의 양측과 접촉한다. 도시하지 않았지만, 데이터 배선은 제 2 방향을 따라 연장되고 게이트 배선과 교차하여 화소영역을 정의하며, 고전위 전압을 공급하는 전원 배선은 데이터 배선과 이격되어 위치한다. 제 2 캐패시터 전극은 드레인 전극(354)과 연결되고 제 1 캐패시터 전극과 중첩함으로써, 제 1 및 제 2 캐패시터 전극 사이의 층간 절연막(340)을 유전체층으로 하여 스토리지 캐패시터를 이룬다. The source electrode 352 and the drain electrode 354 are spaced apart from each other with respect to the gate electrode 330, and both sides of the semiconductor layer 310 and each other through the first and second semiconductor layer contact holes 342 and 344, respectively. make contact Although not shown, the data line extends along the second direction and intersects the gate line to define a pixel area, and the power line supplying a high potential voltage is spaced apart from the data line. The second capacitor electrode is connected to the drain electrode 354 and overlaps the first capacitor electrode, so that the interlayer insulating film 340 between the first and second capacitor electrodes serves as a dielectric layer to form a storage capacitor.

한편, 반도체층(310), 게이트 전극(330), 소스 전극(352) 및 드레인 전극(354)은 구동 박막트랜지스터(Td)를 이룬다. 도 5에 예시된 구동 박막트랜지스터(Td)는 반도체층(310)의 상부에 게이트 전극(330), 소스 전극(352) 및 드레인 전극(354)이 위치하는 코플라나(coplanar) 구조를 가진다. 이와 달리, 구동 박막트랜지스터(Td)는 반도체층의 하부에 게이트 전극이 위치하고, 반도체층의 상부에 소스 전극과 드레인 전극이 위치하는 역 스태거드(inverted staggered) 구조를 가질 수 있다. 이 경우, 반도체층은 비정질 실리콘으로 이루어질 수 있다. Meanwhile, the semiconductor layer 310, the gate electrode 330, the source electrode 352, and the drain electrode 354 form a driving thin film transistor Td. The driving thin film transistor Td illustrated in FIG. 5 has a coplanar structure in which a gate electrode 330 , a source electrode 352 , and a drain electrode 354 are positioned on a semiconductor layer 310 . Alternatively, the driving thin film transistor Td may have an inverted staggered structure in which a gate electrode is positioned below the semiconductor layer and a source electrode and a drain electrode are positioned above the semiconductor layer. In this case, the semiconductor layer may be made of amorphous silicon.

또한, 구동 박막트랜지스터(Td)와 실질적으로 동일한 구조의 스위칭 소자인 스위칭 박막트랜지스터(미도시)가 기판(302) 상에 더 형성된다. 구동 박막트랜지스터(Td)의 게이트 전극(330)은 스위칭 박막트랜지스터(미도시)의 드레인 전극(미도시)에 연결되고 구동 박막트랜지스터(Td)의 소스 전극(352)은 전원 배선(미도시)에 연결된다. 또한, 스위칭 박막트랜지스터(미도시)의 게이트 전극(미도시)과 소스 전극(미도시)은 게이트 배선 및 데이터 배선과 각각 연결된다.In addition, a switching thin film transistor (not shown), which is a switching element having substantially the same structure as the driving thin film transistor Td, is further formed on the substrate 302 . The gate electrode 330 of the driving thin film transistor (Td) is connected to the drain electrode (not shown) of the switching thin film transistor (not shown), and the source electrode 352 of the driving thin film transistor (Td) is connected to a power wiring (not shown). Connected. In addition, the gate electrode (not shown) and the source electrode (not shown) of the switching thin film transistor (not shown) are respectively connected to the gate wiring and the data wiring.

한편, 유기발광다이오드 표시장치(300)는 유기발광다이오드(400)에서 생성된 빛을 흡수하는 컬러 필터(미도시)를 포함할 수 있다. 예를 들어, 컬러 필터(미도시)는 적색(R), 녹색(G), 청색(B) 및 백색(W) 광을 흡수할 수 있다. 이 경우, 광을 흡수하는 적색, 녹색 및 청색의 컬러 필터 패턴이 각각의 화소영역 별로 분리되어 형성될 수 있으며, 이들 각각의 컬러 필터 패턴은 흡수하고자 하는 파장 대역의 빛을 방출하는 유기발광다이오드(400) 중의 유기발광층(430)과 각각 중첩되게 배치될 수 있다. 컬러 필터(미도시)를 채택함으로써, 유기발광다이오드 표시장치(300)는 풀-컬러를 구현할 수 있다. Meanwhile, the organic light emitting diode display 300 may include a color filter (not shown) absorbing light generated by the organic light emitting diode 400 . For example, a color filter (not shown) may absorb red (R), green (G), blue (B), and white (W) light. In this case, red, green, and blue color filter patterns that absorb light may be separately formed for each pixel area, and each of these color filter patterns is an organic light emitting diode (OLED) that emits light of a wavelength band to be absorbed. 400) may be disposed to overlap each other with the organic light emitting layer 430. By adopting a color filter (not shown), the organic light emitting diode display 300 can implement full-color.

예를 들어, 유기발광다이오드 표시장치(300)가 하부 발광 타입인 경우, 유기발광다이오드(400)에 대응하는 층간 절연막(340) 상부에 광을 흡수하는 컬러 필터(미도시)가 위치할 수 있다. 선택적인 실시형태에서, 유기발광다이오드 표시장치(300)가 상부 발광 타입인 경우, 컬러 필터는 유기발광다이오드(400)의 상부, 즉 제 2 전극(420) 상부에 위치할 수도 있다. For example, when the organic light emitting diode display device 300 is a bottom emission type, a color filter (not shown) absorbing light may be positioned above the interlayer insulating layer 340 corresponding to the organic light emitting diode 400. . In an optional embodiment, when the organic light emitting diode display device 300 is a top emission type, the color filter may be positioned above the organic light emitting diode 400, that is, above the second electrode 420.

소스 전극(352)과 드레인 전극(354) 상부에는 평탄화층(360)이 기판(302) 전면에 형성된다. 평탄화층(360)은 상면이 평탄하며, 구동 박막트랜지스터(Td)의 드레인 전극(354)을 노출하는 드레인 컨택홀(362)을 갖는다. 여기서, 드레인 컨택홀(362)은 제 2 반도체층 컨택홀(344) 바로 위에 형성된 것으로 도시되어 있으나, 제 2 반도체층 컨택홀(344)과 이격되어 형성될 수도 있다. A planarization layer 360 is formed on the entire surface of the substrate 302 on the source electrode 352 and the drain electrode 354 . The planarization layer 360 has a flat upper surface and has a drain contact hole 362 exposing the drain electrode 354 of the driving thin film transistor Td. Here, the drain contact hole 362 is illustrated as being formed right above the second semiconductor layer contact hole 344, but may be formed spaced apart from the second semiconductor layer contact hole 344.

발광다이오드(400)는 평탄화층(360) 상에 위치하며 구동 박막트랜지스터(Td)의 드레인 전극(354)에 연결되는 제 1 전극(410)과, 제 1 전극(410) 상에 순차 적층되는 유기발광층(430) 및 제 2 전극(420)을 포함한다. The light emitting diode 400 includes a first electrode 410 positioned on the planarization layer 360 and connected to the drain electrode 354 of the driving thin film transistor Td, and an organic layer sequentially stacked on the first electrode 410. A light emitting layer 430 and a second electrode 420 are included.

1 전극(410)은 각 화소영역 별로 분리되어 형성된다. 제 1 전극(410)은 양극(anode)일 수 있으며, 일함수 값이 비교적 큰 도전성 물질로 이루어질 수 있다. 예를 들어, 상기 제 1 전극(410)은 ITO, IZO, ITZO, SnO, ZnO, ICO 및 AZO 등과 같은 투명 도전성 물질로 이루어질 수 있다.One electrode 410 is formed separately for each pixel area. The first electrode 410 may be an anode and may be made of a conductive material having a relatively high work function value. For example, the first electrode 410 may be made of a transparent conductive material such as ITO, IZO, ITZO, SnO, ZnO, ICO, and AZO.

한편, 본 발명의 유기발광다이오드 표시장치(300)가 상부 발광 방식(top-emission type)인 경우, 상기 제 1 전극(310) 하부에는 반사전극 또는 반사층이 더욱 형성될 수 있다. 예를 들어, 상기 반사전극 또는 상기 반사층은 알루미늄-팔라듐-구리(aluminum-palladium-copper: APC) 합금으로 이루어질 수 있다.Meanwhile, when the organic light emitting diode display 300 of the present invention is a top-emission type, a reflective electrode or a reflective layer may be further formed below the first electrode 310 . For example, the reflective electrode or the reflective layer may be made of an aluminum-palladium-copper (APC) alloy.

또한, 상기 평탄화층(360) 상에는 상기 제 1 전극(410)의 가장자리를 덮는 뱅크층(370)이 형성된다. 상기 뱅크층(370)은 상기 화소영역에 대응하여 상기 제 1 전극(410)의 중앙을 노출한다.In addition, a bank layer 370 covering an edge of the first electrode 410 is formed on the planarization layer 360 . The bank layer 370 exposes the center of the first electrode 410 corresponding to the pixel area.

상기 제 1 전극(410) 상에는 유기발광층(430)이 형성된다. 하나의 예시적인 실시형태에서, 상기 유기발광층(430)은, 발광물질층의 단층 구조를 가질 수 있다. 이와 달리, 유기발광층(430)은 도 2 및/또는 도 4에 도시한 바와 같이, 정공주입층, 정공수송층, 전자차단층, 발광물질층, 정공차단층, 전자수송층 및/또는 전자주입층과 같은 다수의 유기물층으로 이루어질 수도 있다. An organic emission layer 430 is formed on the first electrode 410 . In one exemplary embodiment, the organic light-emitting layer 430 may have a single-layer structure of light-emitting material layers. Alternatively, as shown in FIGS. 2 and/or 4 , the organic light emitting layer 430 includes a hole injection layer, a hole transport layer, an electron blocking layer, a light emitting material layer, a hole blocking layer, an electron transport layer, and/or an electron injection layer. It may also consist of a plurality of organic material layers.

유기발광층(430)이 형성된 상기 기판(302) 상부로 제 2 전극(420)이 형성된다. 상기 제 2 전극(420)은 표시영역의 전면에 위치하며 일함수 값이 비교적 작은 도전성 물질로 이루어져 음극(cathode)으로 이용될 수 있다. 예를 들어, 상기 제 2 전극(420)은 알루미늄(Al), 마그네슘(Mg), 칼슘(ca), 은(Ag) 또는 알루미늄-마그네슘 합금(AlMg)과 같은 이들의 합금이나 조합 중 어느 하나로 이루어질 수 있다. A second electrode 420 is formed on the substrate 302 on which the organic light emitting layer 430 is formed. The second electrode 420 is located on the front surface of the display area and is made of a conductive material having a relatively low work function value and can be used as a cathode. For example, the second electrode 420 is made of any one of aluminum (Al), magnesium (Mg), calcium (ca), silver (Ag), or an alloy or combination thereof such as an aluminum-magnesium alloy (AlMg). can

제 2 전극(420) 상에는, 외부 수분이 유기발광다이오드(400)로 침투하는 것을 방지하기 위해, 인캡슐레이션 필름(encapsulation film, 380)이 형성된다. 상기 인캡슐레이션 필름(380)은 제 1 무기 절연층(382)과, 유기 절연층(384)과 제 2 무기 절연층(386)의 적층 구조를 가질 수 있으나, 이에 한정되지 않는다.An encapsulation film 380 is formed on the second electrode 420 to prevent penetration of external moisture into the organic light emitting diode 400 . The encapsulation film 380 may have a stacked structure of a first inorganic insulating layer 382, an organic insulating layer 384, and a second inorganic insulating layer 386, but is not limited thereto.

전술한 바와 같이, 유기발광다이오드(400)는 유기발광층(430)에 화학식 1 내지 화학식 5로 표시되며 지연 형광 특성을 가지는 유기 화합물이 도펀트로 사용되어 발광 효율이 향상된다. As described above, the organic light emitting diode 400 is represented by Chemical Formulas 1 to 5 in the organic light emitting layer 430 and an organic compound having delayed fluorescence is used as a dopant to improve light emitting efficiency.

화학식 1 내지 화학식 5로 표시되는 유기 화합물은 1분자 내에 전자주개 모이어티와 전자받개 모이어티가 공존하므로 지연 형광 특성을 갖는다. 또한, 전자주개 모이어티를 구성하는 인데노인덴 고리와, 전자받개 모이어티를 구성하는 이미다졸 고리 또는 티아졸 고리의 입체 구조가 제한된다. 따라서, 화학식 1 내지 화학식 5로 표시되는 유기 화합물을 발광 소자의 도펀트로 사용하면, 발광 효율이 향상되고, 양호한 색순도를 가지는 유기발광다이오드(400)를 제조할 수 있다. 높은 삼중항 에너지와 넓은 밴드갭을 가지는 유기 호스트를 사용할 필요가 없기 때문에, 발광다이오드(400) 및 이를 포함하는 유기발광다이오드 표시장치(300)의 구동 전압을 낮춰서 소비 전력을 감소시킬 수 있고, 소자의 수명을 향상시킬 수 있다.Organic compounds represented by Chemical Formulas 1 to 5 have delayed fluorescence characteristics because an electron donor moiety and an electron acceptor moiety coexist in one molecule. In addition, the three-dimensional structure of the indenoindene ring constituting the electron donor moiety and the imidazole ring or thiazole ring constituting the electron acceptor moiety is limited. Therefore, when the organic compounds represented by Chemical Formulas 1 to 5 are used as dopants of the light emitting device, the light emitting efficiency is improved and the organic light emitting diode 400 having good color purity can be manufactured. Since there is no need to use an organic host having high triplet energy and a wide bandgap, power consumption can be reduced by lowering the driving voltage of the light emitting diode 400 and the organic light emitting diode display device 300 including the same. can improve the lifespan of

이하, 예시적인 실시형태를 통하여 본 발명을 설명하지만, 본 발명이 하기 실시예에 기재된 기술사상으로 한정되지 않는다. Hereinafter, the present invention will be described through exemplary embodiments, but the present invention is not limited to the technical idea described in the following examples.

합성예 1: 화합물 1의 합성Synthesis Example 1: Synthesis of Compound 1

(1) 2-(4-bromophenyl)-1,4,5-triphenyl-1H-imidazole(A1) 합성(1) Synthesis of 2-(4-bromophenyl)-1,4,5-triphenyl-1H-imidazole (A1)

Figure 112017118505170-pat00010
Figure 112017118505170-pat00010

500 mL 2-neck flask에 4-Bromobenzaldehyde(5.00 g, 27.03 mmol), Aniline (12.58 g, 135.13 mmol), Benzil(1,2-diphenylethane-1,2-dione, 5.68 g, 27.03 mmol), Ammonium acetate(8.33 g, 108.10 mmol)을 넣고 acetic acid 250 mL로 녹인다. 그리고 나서 3시간 동안 환류 교반시킨다. 반응종료 후 석출된 고체를 filter하고, acetic acid: water(1:1) 용액으로 씻는다. 흰색 고체 A1 9.15 g(수율: 75%)를 얻었다.In a 500 mL 2-neck flask, 4-Bromobenzaldehyde (5.00 g, 27.03 mmol), Aniline (12.58 g, 135.13 mmol), Benzil (1,2-diphenylethane-1,2-dione, 5.68 g, 27.03 mmol), Ammonium acetate (8.33 g, 108.10 mmol) and dissolved in 250 mL of acetic acid. Then stirred under reflux for 3 hours. After completion of the reaction, the precipitated solid is filtered and washed with acetic acid:water (1:1) solution. 9.15 g (yield: 75%) of white solid A1 was obtained.

(2) 1,4,5-triphenyl-2-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-1H-imidazole(A-2) 합성(2) 1,4,5-triphenyl-2-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-1H-imidazole (A-2) synthesis

Figure 112017118505170-pat00011
Figure 112017118505170-pat00011

500 mL 2-neck flask A-1(5.00 g, 11.08 mmol), Bis(pinacolato)diboran(8.44 g, 33.23 mmol), Pd2(dba)3 (Tris(dibenzylideneacetone)dipalladium(0), 0.30 g, 0.33 mmol), XPhos(2-Dicyclohexylphosphino-2',4′',6'-triisopropylbiphenyl, 0.32 g, 0.66 mmol), KOAc(Potassium acetate, 3.81 g, 38.77 mmol)을 넣고 1,4-Dioxane 200 mL로 녹인다. 그리고 나서 12시간 동안 환류 교반시킨다. 반응종료 후 hexane: ethyl acetate(10:1)로 column하여 고체 A-2 4.80 g(수율: 88.07%)를 얻었다. 500 mL 2-neck flask A-1 (5.00 g, 11.08 mmol), Bis (pinacolato) diboran (8.44 g, 33.23 mmol), Pd 2 (dba) 3 (Tris (dibenzylideneacetone) dipalladium (0), 0.30 g, 0.33 mmol), XPhos (2-Dicyclohexylphosphino-2',4'',6'-triisopropylbiphenyl, 0.32 g, 0.66 mmol), KOAc (Potassium acetate, 3.81 g, 38.77 mmol) and dissolve in 200 mL of 1,4-Dioxane. . Then stirred under reflux for 12 hours. After completion of the reaction, column with hexane: ethyl acetate (10: 1) to obtain 4.80 g of solid A-2 (yield: 88.07%).

(3) 7-bromo-5,5,10,10-tetramethyl-N,N-diphenyl-5,10-dihydroindeno[2,1-a]inden-2-amine(B-2) 합성(3) Synthesis of 7-bromo-5,5,10,10-tetramethyl-N,N-diphenyl-5,10-dihydroindeno[2,1-a]inden-2-amine (B-2)

Figure 112017118505170-pat00012
Figure 112017118505170-pat00012

250 mL 2-neck flask에 B-1(5.00 g, 11.96 mmol), diphenyamine (2.43 g, 14.35 mmol), Pd2(dba)3 (0.33 g, 0.36 mmol), potassium tert-butoxide (0.07 g, 0.36 mmol), sodium tert-butoxide (2.30 g, 23.91 mmol)을 넣고 1,4-Dioxane 200 mL로 녹인다. 그리고 나서 12시간 동안 환류 교반 시킨다. 반응종료 후 hexane: ethyl acetate(10:1)로 column하여 고체 B-2 3.0 g(수율: 49.5%)를 얻었다. In a 250 mL 2-neck flask, B-1 (5.00 g, 11.96 mmol), diphenyamine (2.43 g, 14.35 mmol), Pd 2 (dba) 3 (0.33 g, 0.36 mmol), potassium tert-butoxide (0.07 g, 0.36 mmol) mmol) and sodium tert-butoxide (2.30 g, 23.91 mmol) and dissolve in 200 mL of 1,4-Dioxane. Then, it was stirred under reflux for 12 hours. After completion of the reaction, column with hexane: ethyl acetate (10: 1) to obtain 3.0 g of solid B-2 (yield: 49.5%).

(4) 1,4,5-triphenyl-2-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-1H-imidazole(화합물 1) 합성 (4) Synthesis of 1,4,5-triphenyl-2-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-1H-imidazole (Compound 1)

Figure 112017118505170-pat00013
Figure 112017118505170-pat00013

250 mL 2-neck flask에 B-2(1.00 g, 1.97 mmol), A-2(1.18 g, 2.37 mmol), K2CO3 (1.36 g, 9.87 mmol), Pd(PPh3)4(Tetrakis(triphenylphosphine)palladium(0), 0.07 g, 0.06 mmol)를 넣고 THF: water(3:1)의 혼합 용매 80 mL로 녹인다. 그리고 나서 12시간 동안 환류 교반 시킨다. 반응종료 후 MC:hexane으로 column하여 화합물 1의 고체 1.0 g(수율: 63.47%)를 얻었다.B-2 (1.00 g, 1.97 mmol), A-2 (1.18 g, 2.37 mmol), K 2 CO 3 (1.36 g, 9.87 mmol), Pd(PPh 3 ) 4 (Tetrakis ( triphenylphosphine) palladium (0), 0.07 g, 0.06 mmol) and dissolved in 80 mL of a mixed solvent of THF: water (3:1). Then, it was stirred under reflux for 12 hours. After completion of the reaction, column with MC: hexane to obtain 1.0 g of compound 1 solid (yield: 63.47%).

합성예 2: 화합물 2의 합성Synthesis Example 2: Synthesis of Compound 2

(1) 4,5-diphenyl-2-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)thiazole(C-1) 합성(1) Synthesis of 4,5-diphenyl-2-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)thiazole (C-1)

Figure 112017118505170-pat00014
Figure 112017118505170-pat00014

500 mL 2-neck flask에 2-(4-bromophenyl)-4,5-diphenylthiazole(3.30 g, 8.41 mmol), Bis(pinacolato)diboran(6.41 g, 25.24 mmol), Pd2(dba)3(0.23 g, 0.25 mmol), XPhos (0.24 g, 0.50 mmol), KOAc(2.89 g, 29.44 mmol)을 넣고 1,4-Dioxane 100 mL로 녹인다. 그리고 나서 12시간 동안 환류 교반 시킨다. 반응종료 후 hexane: ethyl acetate(10:1)로 column하여 고체 C-1 2.72 g(수율: 73.5%)를 얻었다. In a 500 mL 2-neck flask, 2-(4-bromophenyl)-4,5-diphenylthiazole (3.30 g, 8.41 mmol), Bis(pinacolato)diboran (6.41 g, 25.24 mmol), Pd 2 (dba) 3 (0.23 g) , 0.25 mmol), XPhos (0.24 g, 0.50 mmol), and KOAc (2.89 g, 29.44 mmol) were added and dissolved in 100 mL of 1,4-Dioxane. Then, it was stirred under reflux for 12 hours. After completion of the reaction, column with hexane: ethyl acetate (10: 1) to obtain 2.72 g of solid C-1 (yield: 73.5%).

(2) 7-(4-(4,5-diphenylthiazol-2-yl)phenyl)-5,5,10,10-tetramethyl-N,N-diphenyl-5,10-dihydroindeno[2,1-a]inden-2-amine (화합물 2) 합성 (2) 7-(4-(4,5-diphenylthiazol-2-yl)phenyl)-5,5,10,10-tetramethyl-N,N-diphenyl-5,10-dihydroindeno[2,1-a] Synthesis of inden-2-amine (Compound 2)

Figure 112017118505170-pat00015
Figure 112017118505170-pat00015

250 mL 2-neck flask에 B-2(1.00 g, 1.97 mmol), C-1 (1.04 g, 2.37 mmol), K2CO3(1.36 g, 9.87 mmol), Pd(PPh3)4 (0.07 g, 0.06 mmol)를 넣고 THF: water(3:1) 혼합 용매 80 mL로 녹인다. 그리고 나서 12시간 동안 환류 교반 시킨다. 반응종료 후 MC: hexane으로 column하여 화합물의 고체 1.1 g(수율: 75.3%)를 얻었다. In a 250 mL 2-neck flask, B-2 (1.00 g, 1.97 mmol), C-1 (1.04 g, 2.37 mmol), K 2 CO 3 (1.36 g, 9.87 mmol), Pd(PPh 3 ) 4 (0.07 g , 0.06 mmol) and dissolved in 80 mL of a THF:water (3:1) mixed solvent. Then, it was stirred under reflux for 12 hours. After completion of the reaction, column with MC: hexane to obtain 1.1 g (yield: 75.3%) of the solid compound.

실시예 1: 발광다이오드 제작Example 1: Manufacturing of Light-Emitting Diodes

합성예 1에서 합성한 화합물 1을 발광물질층의 도펀트로 적용한 유기발광다이오드를 제작하였다. 먼저 40 mm x 40 mm x 두께 0.5 mm의 ITO(반사판 포함) 전극 부착 유리 기판을 이소프로필알코올, 아세톤, DI Water로 5분 동안 초음파 세정을 진행한 후 100℃ Oven에 건조하였다. 기판 세정 후 진공상태에서 2분 동안 O2 플라즈마 처리하고 상부에 다른 층들을 증착하기 위하여 증착 챔버로 이송하였다. 약 10-7 Torr 진공 하에 가열 보트로부터 증발에 의해 다음과 같은 순서로 유기물층을 증착하였다. An organic light emitting diode was manufactured by applying Compound 1 synthesized in Synthesis Example 1 as a dopant of the light emitting material layer. First, a 40 mm x 40 mm x 0.5 mm thick ITO (including reflector) electrode-attached glass substrate was ultrasonically cleaned with isopropyl alcohol, acetone, and DI water for 5 minutes, and then dried in an oven at 100 °C. After cleaning the substrate, it was treated with O 2 plasma for 2 minutes in a vacuum state and transferred to a deposition chamber to deposit other layers thereon. Organic layers were deposited in the following order by evaporation from a heating boat under a vacuum of about 10 −7 Torr.

정공주입층(HAT-CN, 7 nm), 정공수송층(NPB, 55 nm), 전자차단층(mCBP, 10 nm), 발광물질층(4-(3-(트리페닐렌-2-일)페닐)디벤조[b,d]티오펜을 호스트로 사용하고, 화합물 1이 5 중량% 도핑, 25 nm), 정공차단층(B3PYMPM, 10 nm), 전자수송층(TPBi, 20 nm), 전자주입층(LiF), 음극(Al). Hole injection layer (HAT-CN, 7 nm), hole transport layer (NPB, 55 nm), electron blocking layer (mCBP, 10 nm), light emitting material layer (4-(3-(triphenylen-2-yl)phenyl ) Dibenzo [b, d] thiophene is used as a host, Compound 1 is 5 wt% doped, 25 nm), hole blocking layer (B3PYMPM, 10 nm), electron transport layer (TPBi, 20 nm), electron injection layer (LiF), cathode (Al).

CPL(capping layer)을 성막한 뒤에 유리로 인캡슐레이션 하였다. 이러한 층들의 증착 후 피막 형성을 위해 증착 챔버에서 건조 박스 내로 옮기고 후속적으로 UV 경화 에폭시 및 수분 게터(getter)를 사용하여 인캡슐레이션 하였다. After forming a capping layer (CPL), it was encapsulated with glass. After deposition of these layers, they were transferred from the deposition chamber into a dry box for film formation and subsequently encapsulated using UV curing epoxy and a moisture getter.

실시예 2: 발광다이오드 제작Example 2: Fabrication of light emitting diode

발광물질층의 도펀트로서 화합물 1을 대신하여 합성예 2에서 합성한 화합물 2를 사용한 것을 제외하고 실시예 1의 절차를 반복하여 발광다이오드를 제작하였다. A light emitting diode was manufactured by repeating the procedure of Example 1, except that Compound 2 synthesized in Synthesis Example 2 was used instead of Compound 1 as the dopant of the light emitting material layer.

비교예: 발광다이오드 제작Comparative Example: Fabrication of Light-Emitting Diodes

발광물질층의 도펀트로서 화합물 1을 대신하여 TBP(2,5,8,11-Tetral-tert-butylphenylene)를 사용한 것을 제외하고 실시예 1의 절차를 반복하여 발광다이오드를 제작하였다.A light emitting diode was manufactured by repeating the procedure of Example 1 except for using TBP (2,5,8,11-Tetral-tert-butylphenylene) as a dopant of the light emitting material layer instead of Compound 1.

실험예: 유기발광다이오드의 발광 특성 측정Experimental Example: Measurement of Light Emission Characteristics of Organic Light-Emitting Diodes

실시예 1 내지 실시예 2와 비교예에서 각각 제작된 유기발광다이오드를 대상으로 물성을 측정하였다. 9 ㎟의 방출 영역을 갖는 각각의 유기발광다이오드를 외부전력 공급원에 연결하였으며, 전류 공급원(KEITHLEY) 및 광도계(PR 650)를 사용하여 실온에서 소자 특성을 평가하였다. 10 ㎃/㎠의 전류밀도에서 측정한 각각의 발광다이오드의 구동 전압(V), 전류효율(cd/A), 전력효율(lm/W), 외부양자효율(External Quantum Efficiency, EQE, %), CIE 색좌표 측정 결과를 하기 표 1에 나타낸다. Physical properties were measured for the organic light emitting diodes manufactured in Examples 1 to 2 and Comparative Example, respectively. Each organic light emitting diode having an emission area of 9 mm 2 was connected to an external power source, and device characteristics were evaluated at room temperature using a current source (KEITHLEY) and a photometer (PR 650). Driving voltage (V), current efficiency (cd/A), power efficiency (lm/W), external quantum efficiency (EQE, %) of each light emitting diode measured at a current density of 10 ㎃/㎠, The CIE color coordinate measurement results are shown in Table 1 below.

발광다이오드의 발광 특성 평가Evaluating light emitting characteristics of light emitting diodes 샘플Sample VV cd/Acd/A lm/Wlm/W EQE (%)EQE (%) CIExCIEx CIEyCIEy 비교예comparative example 5.915.91 12.4912.49 6.646.64 6.926.92 0.1720.172 0.2940.294 실시예 1Example 1 4.704.70 9.029.02 6.036.03 5.875.87 0.1590.159 0.23060.2306 실시예 2Example 2 4.484.48 10.7710.77 7.557.55 6.546.54 0.1670.167 0.2550.255

표 1에 나타낸 바와 같이, 비교예의 유기 화합물을 발광물질층의 도펀트로 사용한 경우와 비교해서, 본 발명에 따라 합성된 유기 화합물을 발광물질층의 도펀트로 사용한 경우, 구동 전압은 최대 24.2% 감소하였으며, 전력효율은 최대 13.7% 향상되었다. 또한, 전류효율과 외부양자효율은 비교예에 버금가는 정도의 효율을 보여주었다. 색좌표 측정에서도 본 발명에 따라 합성된 유기 화합물을 사용하면 고색 순도의 청색 발광을 구현할 수 있다. 결국, 본 발명의 유기 화합물을 발광층에 적용하여 구동 전압을 크게 낮출 수 있으며, 발광 효율이 양호한 유기발광다이오드를 제작할 수 있다. 따라서 본 발명의 유기 화합물이 적용된 유기발광다이오드를 이용하여, 유기발광다이오드 표시장치 및/또는 조명 장치 등에 활용될 수 있다. As shown in Table 1, compared to the case where the organic compound of Comparative Example was used as the dopant of the light emitting material layer, when the organic compound synthesized according to the present invention was used as the dopant of the light emitting material layer, the driving voltage was reduced by up to 24.2% , the power efficiency was improved by up to 13.7%. In addition, the current efficiency and the external quantum efficiency showed an efficiency comparable to that of the comparative example. Even in color coordinate measurement, blue light emission of high color purity can be realized by using the organic compound synthesized according to the present invention. As a result, by applying the organic compound of the present invention to the light emitting layer, the driving voltage can be significantly lowered, and an organic light emitting diode with good light emitting efficiency can be manufactured. Therefore, the organic light emitting diode to which the organic compound of the present invention is applied can be used for an organic light emitting diode display device and/or a lighting device.

상기에서는 본 발명의 예시적인 실시형태 및 실시예에 기초하여 본 발명을 설명하였으나, 본 발명이 상기 실시형태 및 실시예에 기재된 기술사상으로 한정되는 것은 아니다. 오히려 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 전술한 실시형태 및 실시예를 토대로 다양한 변형과 변경을 용이하게 추고할 수 있다. 하지만, 이러한 변형과 변경은 모두 본 발명의 권리범위에 속한다는 점은, 첨부하는 청구범위에서 분명하다. In the above, the present invention has been described based on exemplary embodiments and examples of the present invention, but the present invention is not limited to the technical idea described in the above embodiments and examples. Rather, those skilled in the art to which the present invention belongs can easily make various modifications and changes based on the above-described embodiments and examples. However, it is clear from the appended claims that all of these modifications and changes fall within the scope of the present invention.

100, 200, 400: 유기발광다이오드
110, 210, 410: 제 1 전극 120, 220, 420: 제 2 전극
130, 230, 430: 유기발광층 140, 240: 정공주입층
150, 250: 정공수송층 160, 260: 발광물질층
170, 270: 전자수송층 180, 280: 전자주입층
255, 265: 엑시톤 차단층 300: 유기발광다이오드 표시장치
100, 200, 400: organic light emitting diode
110, 210, 410: first electrode 120, 220, 420: second electrode
130, 230, 430: organic light emitting layer 140, 240: hole injection layer
150, 250: hole transport layer 160, 260: light emitting material layer
170, 270: electron transport layer 180, 280: electron injection layer
255, 265: exciton blocking layer 300: organic light emitting diode display

Claims (14)

하기 화학식 1로 표시되는 유기 화합물.
화학식 1
Figure 112023012526094-pat00016

(화학식 1에서, R1 내지 R4는 각각 독립적으로 수소, 중수소, 삼중수소 및 C1~C20 알킬기로 구성되는 군에서 선택됨; R5는 하기 화학식 2로 표시됨; Ar1 및 Ar2는 각각 독립적으로 치환되지 않거나 C1~C20 알킬 치환된 C6~C30 호모 아릴기임)
화학식 2
Figure 112023012526094-pat00017

(화학식 2에서 R6 및 R7은 각각 독립적으로 치환되지 않거나 C1~C20 알킬 치환된 C6~C30 호모 아릴기임; X는 S 또는 NR8이고, R8은 치환되지 않거나 C1~C20 알킬 치환된 C6~C30 호모 아릴기임; L1은 치환되지 않거나 C1~C20 알킬 치환된 C6~C30 호모 아릴렌기임)
An organic compound represented by Formula 1 below.
Formula 1
Figure 112023012526094-pat00016

(In Formula 1, R 1 to R 4 are each independently selected from the group consisting of hydrogen, heavy hydrogen, tritium, and C 1 ~ C 20 alkyl groups; R 5 is represented by Formula 2 below; Ar 1 and Ar 2 are each independently unsubstituted or C 1 ~C 20 alkyl substituted C 6 ~C 30 homo aryl group)
Formula 2
Figure 112023012526094-pat00017

(In Formula 2, R 6 and R 7 are each independently an unsubstituted or C 1 ~ C 20 alkyl-substituted C 6 ~ C 30 homoaryl group; X is S or NR 8 , and R 8 is unsubstituted or C 1 ~ C 20 alkyl substituted C 6 ~ C 30 homo aryl group; L 1 is unsubstituted or C 1 ~ C 20 alkyl substituted C 6 ~ C 30 homo arylene group)
제 1항에 있어서,
상기 유기 화합물은 하기 화학식 3으로 표시되는 유기 화합물을 포함하는 유기 화합물.
화학식 3
Figure 112022113971291-pat00018

(화학식 3에서 R1 내지 R4는 각각 화학식 1에서 정의된 것과 동일함; R9 및 R10은 각각 독립적으로 수소, 중수소, 삼중수소 및 C1~C20 알킬기로 구성되는 군에서 선택됨; R11은 하기 화학식 4로 표시됨)
화학식 4
Figure 112022113971291-pat00019

(화학식 4에서 X는 화학식 2에서 정의된 것과 동일함)
According to claim 1,
The organic compound includes an organic compound represented by Formula 3 below.
Formula 3
Figure 112022113971291-pat00018

(In Formula 3, R 1 to R 4 are each the same as defined in Formula 1; R 9 and R 10 are each independently selected from the group consisting of hydrogen, deuterium, tritium, and C 1 to C 20 alkyl; R 11 is represented by Formula 4 below)
formula 4
Figure 112022113971291-pat00019

(X in Formula 4 is the same as defined in Formula 2)
제 1항에 있어서,
상기 유기 화합물은 하기 화학식 5로 표시되는 어느 하나의 유기 화합물인 유기 화합물.
화학식 5
Figure 112022113971291-pat00037

Figure 112022113971291-pat00038

Figure 112022113971291-pat00022

Figure 112022113971291-pat00023

According to claim 1,
The organic compound is any organic compound represented by Formula 5 below.
Formula 5
Figure 112022113971291-pat00037

Figure 112022113971291-pat00038

Figure 112022113971291-pat00022

Figure 112022113971291-pat00023

서로 마주하는 제 1 전극 및 제 2 전극;
상기 제 1 전극과 상기 제 2 전극 사이에 위치하는 유기발광층을 포함하고,
상기 유기발광층은 하기 화학식 1로 표시되는 유기 화합물을 포함하는 유기발광다이오드.
화학식 1
Figure 112023012526094-pat00024

(화학식 1에서, R1 내지 R4는 각각 독립적으로 수소, 중수소, 삼중수소 및 C1~C20 알킬기로 구성되는 군에서 선택됨; R5는 하기 화학식 2로 표시됨; Ar1 및 Ar2는 각각 독립적으로 치환되지 않거나 C1~C20 알킬 치환된 C6~C30 호모 아릴기임)
화학식 2
Figure 112023012526094-pat00025

(화학식 2에서 R6 및 R7은 각각 독립적으로 치환되지 않거나 C1~C20 알킬 치환된 C6~C30 호모 아릴기임; X는 S 또는 NR8이고, R8은 치환되지 않거나 C1~C20 알킬 치환된 C6~C30 호모 아릴기임; L1은 치환되지 않거나 C1~C20 알킬 치환된 C6~C30 호모 아릴렌기임)
a first electrode and a second electrode facing each other;
An organic light emitting layer positioned between the first electrode and the second electrode,
The organic light emitting layer is an organic light emitting diode including an organic compound represented by Formula 1 below.
Formula 1
Figure 112023012526094-pat00024

(In Formula 1, R 1 to R 4 are each independently selected from the group consisting of hydrogen, heavy hydrogen, tritium, and C 1 ~ C 20 alkyl groups; R 5 is represented by Formula 2 below; Ar 1 and Ar 2 are each independently unsubstituted or C 1 ~C 20 alkyl substituted C 6 ~C 30 homo aryl group)
Formula 2
Figure 112023012526094-pat00025

(In Formula 2, R 6 and R 7 are each independently an unsubstituted or C 1 ~ C 20 alkyl-substituted C 6 ~ C 30 homoaryl group; X is S or NR 8 , and R 8 is unsubstituted or C 1 ~ C 20 alkyl substituted C 6 ~ C 30 homo aryl group; L 1 is unsubstituted or C 1 ~ C 20 alkyl substituted C 6 ~ C 30 homo arylene group)
제 4항에 있어서,
상기 유기 화합물은 하기 화학식 3으로 표시되는 유기 화합물을 포함하는 유기발광다이오드.
화학식 3
Figure 112022113971291-pat00026

(화학식 3에서 R1 내지 R4는 각각 화학식 1에서 정의된 것과 동일함; R9 및 R10은 각각 독립적으로 수소, 중수소, 삼중수소 및 C1~C20 알킬기로 구성되는 군에서 선택됨; R11은 하기 화학식 4로 표시됨)
화학식 4
Figure 112022113971291-pat00027

(화학식 4에서 X는 화학식 2에서 정의된 것과 동일함)
According to claim 4,
The organic light emitting diode including an organic compound represented by the following formula (3).
Formula 3
Figure 112022113971291-pat00026

(In Formula 3, R 1 to R 4 are each the same as defined in Formula 1; R 9 and R 10 are each independently selected from the group consisting of hydrogen, deuterium, tritium, and C 1 to C 20 alkyl; R 11 is represented by Formula 4 below)
formula 4
Figure 112022113971291-pat00027

(X in Formula 4 is the same as defined in Formula 2)
제 4항에 있어서,
상기 유기 화합물은 하기 화학식 5로 표시되는 어느 하나의 유기 화합물인 발광다이오드.
화학식 5
Figure 112022113971291-pat00039

Figure 112022113971291-pat00040

Figure 112022113971291-pat00030

Figure 112022113971291-pat00031

According to claim 4,
The organic compound is any one organic compound represented by the following formula (5) light emitting diode.
Formula 5
Figure 112022113971291-pat00039

Figure 112022113971291-pat00040

Figure 112022113971291-pat00030

Figure 112022113971291-pat00031

제 4항에 있어서,
상기 유기 화합물은, 발광물질층의 도펀트로 사용되는 유기발광다이오드.
According to claim 4,
The organic compound is an organic light emitting diode used as a dopant of a light emitting material layer.
제 7항에 있어서,
상기 발광물질층은 호스트를 더욱 포함하는 유기발광다이오드.
According to claim 7,
The light emitting material layer further comprises a host organic light emitting diode.
제 8항에 있어서,
상기 호스트의 최고준위점유분자궤도 에너지 준위(HOMOH)와 상기 도펀트의 최고준위점유분자궤도 에너지 준위(HOMOD)의 차이(|HOMOH-HOMOD|) 또는 상기 호스트의 최저준위비점유분자궤도 에너지 준위(LUMOH)와 상기 도펀트의 최저준위비점유분자궤도 에너지 준위(LUMOD)의 차이(|LUMOH-LUMOD|)는 0.5 eV 이하인 유기발광다이오드.
According to claim 8,
The difference between the highest occupied molecular orbital energy level (HOMO H ) of the host and the highest occupied molecular orbital energy level (HOMO D ) of the dopant (|HOMO H -HOMO D |) or the lowest unoccupied molecular orbital of the host An organic light-emitting diode having a difference (|LUMO H -LUMO D |) between an energy level (LUMO H ) and a lowest unoccupied molecular orbital energy level (LUMO D ) of the dopant is 0.5 eV or less.
제 4항에 있어서,
상기 유기 화합물의 단일항 에너지 준위(S1)와 삼중항 에너지 준위(T1)의 차이(ΔEST)는 0.3 eV 이하인 유기발광다이오드.
According to claim 4,
A difference (ΔE ST ) between a singlet energy level (S 1 ) and a triplet energy level (T 1 ) of the organic compound is 0.3 eV or less.
기판;
상기 기판 상에 위치하며, 제 4항 내지 제 10항 중 어느 하나의 항에 기재된 유기발광다이오드; 및
상기 기판 상에 위치하며 상기 유기발광다이오드의 제 1 전극과 연결되는 구동 소자
를 포함하는 유기발광장치.
Board;
Located on the substrate, the organic light emitting diode according to any one of claims 4 to 10; and
A driving element located on the substrate and connected to the first electrode of the organic light emitting diode
An organic light emitting device comprising a.
제 11항에 있어서,
상기 유기발광장치는 유기발광다이오드 표시장치를 포함하는 유기발광장치.
According to claim 11,
The organic light emitting device includes an organic light emitting diode display device.
삭제delete 삭제delete
KR1020170160426A 2017-11-28 2017-11-28 Organic compounds, organic light emitting diode and organic light emittid device having the compounds KR102515819B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170160426A KR102515819B1 (en) 2017-11-28 2017-11-28 Organic compounds, organic light emitting diode and organic light emittid device having the compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170160426A KR102515819B1 (en) 2017-11-28 2017-11-28 Organic compounds, organic light emitting diode and organic light emittid device having the compounds

Publications (2)

Publication Number Publication Date
KR20190061747A KR20190061747A (en) 2019-06-05
KR102515819B1 true KR102515819B1 (en) 2023-03-29

Family

ID=66844754

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170160426A KR102515819B1 (en) 2017-11-28 2017-11-28 Organic compounds, organic light emitting diode and organic light emittid device having the compounds

Country Status (1)

Country Link
KR (1) KR102515819B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102515820B1 (en) * 2017-11-28 2023-03-29 엘지디스플레이 주식회사 Organic compounds, organic light emitting diode and organic light emittid device having the compounds
CN113861044B (en) * 2021-09-29 2023-10-10 陕西莱特迈思光电材料有限公司 Organic compound, and electronic component and electronic device including the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102515820B1 (en) * 2017-11-28 2023-03-29 엘지디스플레이 주식회사 Organic compounds, organic light emitting diode and organic light emittid device having the compounds

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KR10-2019-0061748A.*

Also Published As

Publication number Publication date
KR20190061747A (en) 2019-06-05

Similar Documents

Publication Publication Date Title
KR102157756B1 (en) Organic compounds and organic light emitting diode and organic light emittind display device having the same
KR101944851B1 (en) Organic compound and organic light emitting diode and organic light emittid display device having the compound
US11800732B2 (en) Organic light emitting diode and organic light emitting device having the same
KR102635062B1 (en) Organic compound and light emitting diode and organic light emitting diode display device using the same
US10700290B2 (en) Organic compound, and organic light-emitting diode and organic light-emitting diode display device including the same
KR102639854B1 (en) Organic compounds and litht emitting diode and organic light emittig diode display device using the compounds
KR20210039565A (en) Organic light emitting diode and organic light emitting device having the same
CN111081888A (en) Organic light emitting diode and organic light emitting device having the same
KR20230062533A (en) Organic compound, organic light emitting diode and organic light emiting device having the compound
KR20200077777A (en) Organic compounds, light emitting diode and light emitting device havint the compounds
KR102326304B1 (en) Organic compounds having improved light emitting property, organic light emitting diode and orgnic light emitting device having the compounds
KR20190063923A (en) Organic compounds, organic light emitting diode and orgnic light emitting device having the compounds
KR102515819B1 (en) Organic compounds, organic light emitting diode and organic light emittid device having the compounds
KR20230078620A (en) Organic compounds, organic light emitting diode and organic light emittid device having the compounds
KR102413121B1 (en) Organic compounds, organic light emitting diode and orgnic light emitting device having the compounds
KR102598478B1 (en) Organic compounds and litht emitting diode and organic light emittig diode display device using the compounds
KR102515820B1 (en) Organic compounds, organic light emitting diode and organic light emittid device having the compounds
KR102642605B1 (en) Organic compound, organic light emitting diode and organic light emiting device having the compound
CN112457200A (en) Organic compound, organic light emitting diode including the same, and organic light emitting device
KR102645608B1 (en) Organic compounds, organic light emitting diode and organic light emittid device having the compounds
KR102451310B1 (en) Organic compounds, organic light emitting diode and organic light emittid device having the compounds
KR102577042B1 (en) Organic compounds, organic light emitting diode and organic light emittid device having the compounds
KR102505168B1 (en) Organic compounds, organic light emitting diode and orgnic light emitting device having the compounds
KR20230098748A (en) Organic compounds, organic light emitting diode and organic light emittid device having the compounds
KR102493805B1 (en) Organic compound, organic light emitting diode and organic light emiting device having the compound

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant