KR102512544B1 - 배터리 등가회로 생성방법 및 그 장치 - Google Patents

배터리 등가회로 생성방법 및 그 장치 Download PDF

Info

Publication number
KR102512544B1
KR102512544B1 KR1020220102179A KR20220102179A KR102512544B1 KR 102512544 B1 KR102512544 B1 KR 102512544B1 KR 1020220102179 A KR1020220102179 A KR 1020220102179A KR 20220102179 A KR20220102179 A KR 20220102179A KR 102512544 B1 KR102512544 B1 KR 102512544B1
Authority
KR
South Korea
Prior art keywords
equivalent circuit
impedance data
action
compensation
battery
Prior art date
Application number
KR1020220102179A
Other languages
English (en)
Inventor
송창희
Original Assignee
모나 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 모나 주식회사 filed Critical 모나 주식회사
Priority to KR1020220102179A priority Critical patent/KR102512544B1/ko
Application granted granted Critical
Publication of KR102512544B1 publication Critical patent/KR102512544B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/374Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] with means for correcting the measurement for temperature or ageing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

배터리 등가회로 생성방법 및 그 장치가 개시된다. 등가회로생성장치는 강화학습모델의 에이전트를 통해 적어도 하나 이상의 등가회로를 생성하는 액션 과정과 등가회로를 통해 파악한 예측임피던스데이터와 배터리의 실측임피던스데이터를 비교하여 파악한 오차를 기반으로 보상하는 과정을 기 정의된 조건까지 반복수행한 후 보상이 가장 큰 액션에서 생성한 등가회로를 배터리의 등가회로로 출력한다.

Description

배터리 등가회로 생성방법 및 그 장치{Battery equivalent circuit generation method and apparatus}
본 발명의 실시 예는 배터리의 등가회로를 생성하는 방법 및 그 장치에 관한 것으로, 보다 상세하게는 강화학습(reinforcement learning)을 이용한 배터리 등가회로 생성 방법 및 그 장치에 관한 것이다.
전기자동차, 에너지저장시스템(ESS, energy storage system) 등 다양한 분야에서 배터리가 활용되고 있다. 충전하여 사용이 가능한 배터리(예를 들어, 2차 전지)는 사용기간이나 사용환경 등 다양한 요인에 의해 열화가 발생한다. 일정 이상의 열화가 발생한 배터리는 교체가 필요하다. 배터리의 상태를 파악하기 위하여 배터리의 임피던스를 측정하는 방법이 있다. 그러나 임피던스만으로 배터리의 전기화학적 특성을 모두 파악하는데 한계가 있다. 배터리의 등가회로(equivalent circuit)를 구할 수 있다면 그 등가회로를 통해 배터리의 여러 특성을 용이하게 분석 가능하다. 그러나 배터리의 등가회로를 만들기 위해서는 배터리의 여러 전기화학적 특성을 측정하여야 하는 불편함이 존재한다.
본 발명의 실시 예가 이루고자 하는 기술적 과제는, 배터리의 실측임피던스를 이용하여 배터리 등가회로를 자동으로 생성할 수 있는 방법 및 그 장치를 제공하는 데 있다.
상기의 기술적 과제를 달성하기 위한, 본 발명의 실시 예에 따른 배터리 등가회로 생성방법의 일 예는, 등가회로생성장치가 수행하는 배터리 등가회로 생성방법에 있어서, 배터리의 실측임피던스데이터를 입력받는 단계; 강화학습모델의 에이전트가 적어도 하나 이상의 등가회로를 생성하는 액션을 수행하는 단계; 상기 강화학습모델의 환경에서 상기 등가회로를 통해 파악한 예측임피던스데이터와 상기 실측임피던스데이터를 비교하여 파악한 오차를 기반으로 생성한 보상을 상기 에이전트에게 제공하는 단계; 상기 액션을 수행하는 단계와 상기 보상을 제공하는 단계를 기 정의된 조건까지 반복수행하는 단계; 및 보상이 가장 큰 액션에서 생성한 등가회로를 출력하는 단계;를 포함한다.
상기의 기술적 과제를 달성하기 위한, 본 발명의 실시 예에 따른 등가회로생성장치의 일 예는, 배터리의 실측임피던스데이터를 입력받는 입력부; 적어도 하나 이상의 등가회로를 생성하는 액션을 수행하는 에이전트; 강화학습모델의 환경에서, 상기 등가회로를 통해 생성한 예측임피던스데이터와 상기 실측임피던스데이터의 오차를 기반으로 보상을 산정하는 보상산정부; 및 보상이 가장 큰 액션에서 생성한 등가회로를 출력하는 출력부;를 포함한다.
본 발명의 실시 예에 따르면, 배터리의 실측임피던스 값으로 배터리의 등가회로를 구할 수 있다. 미리 정해진 몇몇 등가회로 템플릿에 회로소자의 값을 결정하는 것이 아니라 배터리의 특성에 맞는 최적의 구조(아키텍처)와 최적의 회로소자의 값을 가진 등가회로를 생성할 수 있다. 새로운 배터리가 양산될 때마다 별도의 등가회로 템플릿을 정의할 필요없이 자동으로 배터리에 맞는 최적의 등가회로를 생성할 수 있다.
도 1은 본 발명의 실시 예에 따른 등가회로생성장치의 일 예를 도시한 도면,
도 2는 본 발명의 실시 예에 따른 실측임피던스데이터를 도시한 그래프,
도 3은 본 발명의 실시 예에 따른 강화학습모델의 일 예를 도시한 도면,
도 4는 본 발명의 실시 예에 따른 등가회로생성방법의 일 예를 도시한 흐름도, 그리고,
도 5는 본 발명의 실시 예에 따른 등가회로생성장치의 일 예의 구성을 도시한 도면이다.
이하에서, 첨부된 도면들을 참조하여 본 발명의 실시 예에 따른 배터리 등가회로 생성방법 및 그 장치에 대해 상세히 살펴본다.
도 1은 본 발명의 실시 예에 따른 등가회로생성장치의 일 예를 도시한 도면이다.
도 1을 참조하면, 등가회로생성장치(100)는 배터리의 실측임피던스데이터(110)를 입력받으면 강화학습모델을 통해 배터리의 등가회로(120)를 생성하여 출력한다.
실측임피던스데이터(110)는 배터리에 교류전압을 인가하여 측정한 임피던스값을 포함한다. 일 실시 예로, 실측임피던스데이터(110)는 복수의 주파수를 배터리에 인가한 후 각 주파수에 대하여 측정한 복수의 임피던스값을 포함할 수 있다. 여기서 주파수는 교류전압의 주파수를 의미한다. 예를 들어, 실측임피던스데이터(110)는 제1 주파수의 교류전압을 인가하여 측정한 제1 임피던스값, 제2 주파수의 교류전압을 인가하여 측정한 제2 임피던스값,.. 제n 주파수의 교류전압을 인가하여 측정한 제n 임피던스값을 포함할 수 있다. 이 외에도, 실측임피던스데이터(110)는 종래의 다양한 방법을 통해 측정한 배터리의 임피던스값을 포함할 수 있으며 특정한 임피던스값으로 한정되는 것은 아니다.
등가회로(120)는 배터리의 물리화학적 특성을 모사하는 전기회로이다. 일 실시 예로, 복수의 등가회로 템플릿을 미리 정의한 후 배터리의 종류나 용량 등에 따라 특정 등가회로 템플릿을 선택하고, 선택한 등가회로 템플릿에 존재하는 적어도 하나 이상의 회로소자(예를 들어, 저항, 코일, 축전기, CPE(constant phase element), 와버그(warburg) 확산 요소 등)의 값을 실측임피던스데이터를 이용하여 결정하는 방법이 있다. 그러나 미리 정의된 일정 개수의 등가회로 템플릿으로는 배터리의 종류나 소재, 용량 등 다양한 원인에 의해 배터리마다 서로 다른 물리화학적 특성을 정확하게 반영하는데 어려움이 있을 수 있다. 예를 들어, 서로 다른 두 종류의 배터리에 대하여 동일한 등가회로 템플릿이 선택될 경우에, 등가회로는 두 배터리의 물리화학적 특성의 차이를 정확하게 나타내지 못할 수 있다.
이에 본 실시 예는 미리 정의된 등가회로 템플릿이 아니라 강화학습모델을 이용하여 배터리별 등가회로(120)의 구조(아키텍처)를 생성하고, 등가회로(120)의 구조에 존재하는 적어도 하나 이상의 회로소자의 값을 결정하는 방법을 제시한다. 강화학습모델을 이용하여 등가회로를 생성하는 방법에 대하여 도 3에서 살펴본다.
도 2는 본 발명의 실시 예에 따른 실측임피던스데이터를 도시한 그래프이다.
도 2를 참조하면, 실측임피던스데이터는 임피던스 분광법(EIS, Electrochemical Impedance Spectroscopy)을 통해 측정될 수 있다. 본 실시 예는 임피던드 분광법을 통해 0.1Hz에서 1000Hz 사이의 다양한 주파수의 교류전압을 복수의 배터리에 인가하여 측정한 임피던스값을 실수축과 허수축으로 구성된 복소평면에 나타낸 그래프이다. 복수의 주파수에 대하여 측정한 각 임피던스값을 서로 연결하여 곡선 형태로 나타낼 수 있다.
도 3은 본 발명의 실시 예에 따른 강화학습모델의 일 예를 도시한 도면이다.
도 3을 참조하면, 등가회로생성장치(100)는 강화학습모델을 이용하여 배터리의 등가회로를 생성한다. 강화학습모델은 크게 에이전트(agent)(300)와 환경(environment)(310)으로 구성된다. 에이전트(300)는 현재의 상태(state)에서 액션(action)을 수행하는 컴퓨터 프로그램이다. 강화학습모델은 환경(310)에서 액션(300)의 타당성을 검토하여 보상(reward)을 평가한다. 강화학습에서는 에이전트(300)과 환경(310)의 반복적인 상호작용을 통해 점진적으로 학습이 이루어진다. 에이전트(300)와 환경(310)으로 구성된 강화학습모델 그 자체는 이미 알려진 내용이므로 이하에서는 강화학습모델을 활용하여 본 실시 예의 배터리 등가회로를 어떻게 생성하는지에 대하여 주로 설명한다.
에이전트(300)는 실측임피던스데이터(즉, 강화학습의 상태(state))를 입력받으면 등가회로(320)를 생성하는 액션을 수행한다. 종래의 지도학습방법은 정답지(ground truth)를 미리 라벨링한 학습데이터를 이용하여 지도학습모델의 출력값이 정답지에 일치하도록 훈련시키는 방법이다. 그러나 본 실시 예의 강화학습모델에서는 정답지가 미리 존재하지 않는다. 에이전트(300)는 실측임피던스데이터를 기반으로 등가회로(320)를 생성한다.
일 실시 예로, 에이전트(300)는 등가회로(320)의 구조(아키텍처)를 결정하는 제1 액션과 등가회로(320)의 구조에 존재하는 적어도 하나 이상의 회로소자의 값을 결정하는 제2 액션을 수행할 수 있다. 등가회로(320)의 구조는 적어도 하나 이상의 회로소자의 배치와 연결 구조 등을 나타낼 수 있다. 예를 들어, 에이전트(300)는 여러 회로소자를 직렬 및/또는 병렬로 연결하는 등가회로를 생성할 수 있다. 본 실시 예는 이해를 돕기 위하여 제1 액션과 제2 액션을 구분하여 설명하고 있으나, 이는 하나의 예일 뿐 반드시 두 번의 액션이 수행되어야 하는 것은 아니며, 에이전트는 한 번의 액션으로 적어도 하나 이상의 등가회로(320)를 생성할 수 있다.
등가회로생성장치(100)는 강화학습모델의 환경(310)에서 에이전트가 생성한 등가회로(320)의 보상(reward)을 평가한다. 본 실시 예의 환경(310)은 임피던스를 비교하여 파악한 오차를 기반으로 보상을 평가하도록 정의된다. 임피던스 오차를 파악하기 위하여, 먼저 등가회로생성장치(100)는 에이전트(300)가 생성한 등가회로(320)를 통해 예측임피던스데이터를 생성한다. 예를 들어, 실측임피던스데이터(330)가 제1 주파수에 대하여 측정한 임피던스값을 포함하면, 등가회로생성장치(100)는 등가회로(320)에 제1 주파수를 인가하여 분석한 임피더스값을 예측임피던스데이터로 생성한다. 즉, 등가회로생성장치(100)는 실측임피던스데이터(330)의 측정에 사용한 주파수성분과 동일한 주파수성분을 등가회로(320)에 입력하여 예측임피던스데이터를 획득할 수 있다. 등가회로(320)에 다양한 주파수를 인가하여 임피던스값을 구하는 방법 그 자체는 이미 널리 알려진 기술이므로, 종래의 다양한 회로분석방법이 본 실시 예에 적용될 수 있다.
등가회로생성장치(100)는 강화학습모델의 환경(310)에서 실측임피던스데이터(330)와 예측임피던스데이터를 비교하여 파악한 오차를 기반으로 보상을 평가한다. 예를 들어, 등가회로생성장치(100)는 실측임피던스데이터(330)와 예측임피던스데이터 사이의 오차를 평균제곱오차(MSE, Mean Squared Error, L2 loss) 또는 평균절대오차(MAE, Mean Absolute Error, L1 loss)로 구할 수 있다. 복수의 주파수에 대한 임피던스값이 존재하면, 등가회로생성장치는 실측임피던스데이터의 각 주파수별 임피던스값과 예측임피던스데이터의 각 주파수별 임피던스값 사이의 차이를 기반으로 오차를 구할 수 있다.
등가회로생성장치(100)는 오차에 마이너스 부호를 추가한 값을 보상으로 평가할 수 있다. 이 경우에 오차가 작아질수록 보상의 크기가 커진다. 이 외에도, 실시 예에 따라 보상은 다양한 형태로 정의될 수 있다. 다만 본 실시 예는 보상이 높은 방향으로 에이전트가 학습되는 강화학습의 정의에 부합하도록 오차에 마이너스 부호를 부가한 값을 보상으로 가정하여 설명한다.
에이전트(300)는 강화학습모델의 환경(310)으로부터 전달받은 보상을 기반으로 다시 등가회로를 생성하는 액션을 수행한다. 에이전트(300)는 새롭게 생성한 등가회로(320)를 강화학습모델의 환경(310)에 제공하고, 다시 환경(310)으로부터 보상을 수신하면 등가회로(320)를 다시 생성하는 과정을 반복 수행한다. 강화학습은 보상이 큰 방향으로 액션을 수행하는 학습방법이므로, 에이전트(300)는 반복 수행을 통해 실측임피던스데이터와 일치하거나 거의 유사한 예측임피던스데이터를 출력하는 등가회로를 생성할 수 있다.
등가회로생성장치(100)는 에이전트(300)의 액션과 환경(310)에서의 보상 평가를 기 정의된 횟수만큼 반복 수행할 수 있다. 예를 들어, 등가회로생성장치(100)는 보상이 연속하여 감소하거나, 보상이 기 정의된 횟수 동안 연속하여 일정 임계값 이상으로 증가하지 않는 경우에 반복 수행을 종료할 수 있다. 이 외에도 반복 수행의 종료를 위한 조건 등은 실시 예에 따라 다양하게 정의될 수 있다.
다른 실시 예로, 등가회로생성장치(100)는 에이전트(300)가 생성하는 등가회로(320)가 정상적으로 동작 가능한 전기회로인지 평가하여 필터링하는 구성을 더 포함할 수 있다. 에이전트(300)가 생성한 등가회로에 단락이 존재하거나 회로소자의 극성이 잘못 연결되어 있는 등 정상적인 전기회로에 해당하지 아니하면, 등가회로생성장치(100)는 환경(310)에서 등가회로(320)를 평가하기 전에 에이전트(300)가 생성한 등가회로를 필터링할 수 있다. 다시 말해, 등가회로생성장치(100)는 에이전트(300)가 생성한 등가회로(320)가 정상적으로 동작하는 회로에 해당하면 이를 환경(310)에 전달하고, 등가회로(320)가 정상적인 전기회로에 해당하지 아니하면 등가회로(320)를 환경(310)에 전달하지 않고 해당 등가회로(320)를 폐기한 후 에이전트(300)에게 등가회로(320)를 생성하는 액션을 다시 요청할 수 있다. 정상적인 등가회로인지 여부는 종래의 다양한 회로분석 알고리즘을 이용할 수 있다. 등가회로 필터링을 통해 정상적인 등가회로만을 환경(310)에 전달하므로 환경(310)에서의 보상 파악에 소용되는 시간을 줄일 수 있고, 따라서 전체 강화학습 시간을 줄일 수 있다.
또 다른 실시 예로, 에이전트(300)는 한 번의 액션에 하나의 등가회로(320)가 아닌 복수의 서로 다른 등가회로를 생성할 수 있다. 예를 들어, 에이전트(300)가 한 번에 10개의 등가회로를 생성할 수 있다. 등가회로생성장치(100)는 강화학습모델의 환경(310)에서 복수의 등가회로에 대한 평가를 수행한다. 예를 들어, 등가회로생성장치(100)는 복수의 등가회로에 대한 각각의 예측임피던스데이터를 구하고, 각각의 등가회로에 대하여 실측임피던스데이터와 예측임피던스데이터 사이의 오차를 구한다. 그리고, 등가회로생성장치(100)는 각 등가회로에 대한 오차값의 평균을 기반으로 보상을 구한다. 에이전트(300)는 보상이 커지는 방향으로 다시 복수의 등가회로를 생성하는 과정을 반복 수행한다. 등가회로생성장치(100)는 기 정의된 조건을 만족할 때까지 액션과 보상을 반복 수행한 후 보상이 가장 큰 액션에서 생성한 복수의 등가회로 중 오차가 가장 작은 등가회로를 배터리의 등가회로로 출력한다. 예를 들어, N번째 액션에서 생성한 10개의 등가회로에 대한 보상이 가장 큰 경우에, 등가회로생성장치(100)는 N 번째 액션에서 생성한 10개의 등가회로 중 오차값이 가장 작은 등가회로를 배터리의 등가회로로 출력한다. 에이전트가 한 번에 복수의 등가회로를 생성하고 이들의 보상을 한꺼번에 평가하는 과정을 반복하므로, 한 번의 액션에 하나의 등가회로를 생성하는 경우와 비교하여 강화학습 시간을 줄일 수 있다.
도 4는 본 발명의 실시 예에 따른 등가회로생성방법의 일 예를 도시한 흐름도이다.
도 3 및 도 4를 함께 참조하면, 등가회로생성장치(100)는 배터리의 실측임피던스데이터를 입력받는다(S400). 실측임피던스데이터는 복수의 주파수를 배터리에 입력하여 측정한 복수의 임피던스를 포함할 수 있다. 배터리의 실측임피던스데이터는 임피던스 분광법을 통해 얻을 수 있으며 이에 대한 예가 도 2에 도시되어 있다.
등가회로생성장치(100)는 강화학습모델의 에이전트(300)의 액션을 통해 적어도 하나 이상의 등가회로를 생성한다(S410). 예를 들어, 에이전트(300)는 등가회로의 구조를 생성하고 등가회로의 구조에 포함된 각 회로요소에 값을 부여하는 액션을 수행할 수 있다. 다른 실시 예로, 에이전트(300)는 한 번의 액션에 하나의 등가회로를 생성하거나, 한 번의 액션에 복수의 등가회로를 생성할 수 있다. 다른 실시 예로, 등가회로생성장치(100)는 에이전트(300)가 생성한 등가회로가 정상적인 회로에 해당하는지 파악하여 정상적인 회로가 아니면 이를 폐기하고 에이전트(300)에 다시 액션을 요청하는 필터링 과정을 추가적으로 수행할 수 있다.
등가회로생성장치(100)는 강화학습모델의 환경(310)에서 에이전트(300)가 생성한 등가회로(320)를 통해 파악한 예측임피던스데이터와 실측임피던스데이터(330)를 비교하여 오차를 구하고, 그 오차를 기반으로 보상을 생성하여 에이전트(300)에게 제공한다(S420). 예측임피던스데이터와 실측임피던스데이터 사이의 오차는 평균제곱오차 또는 평균절대오차일 수 있다.
등가회로생성장치(100)는 에이전트(300)가 액션을 수행하는 단계(S410)와 환경(310)에서 보상을 평가하는 단계(S420)를 기 정의된 조건까지 반복수행할 수 있다. 예를 들어, 등가회로생성장치(100)는 보상이 기 정의된 횟수동안 연속하여 감소하거나, 보상이 기 정의된 횟수동안 연속하여 일정 임계값 이상으로 증가하지 않는 경우에 반복 수행을 종료할 수 있다.
등가회로생성장치(100)는 보상이 가장 큰 액션에서 생성한 등가회로를 배터리의 등가회로로 출력한다. 에이전트(300)가 한 번의 액션에서 복수의 등가회로를 생성하는 경우에, 등가회로생성장치(100)는 보상이 가장 큰 액션에서 생성한 복수 개의 등가회로 중 오차가 가장 작은 등가회로를 배터리의 등가회로로 출력할 수 있다.
도 5는 본 발명의 실시 예에 따른 등가회로생성장치의 일 예의 구성을 도시한 도면이다.
도 5를 참조하면, 등가회로생성장치(100)는 입력부(500), 보상산정부(510), 에이전트(520) 및 출력부(530)를 포함한다. 등가회로생성장치(100)는 메모리, 프로세서 및 입출력장치 등을 포함하는 컴퓨팅 장치로 구현될 수 있으며, 이 경우에 각 구성은 소프트웨어로 구현되어 메모리에 탑재된 후 프로세서에 의해 수행될 수 있다.
입력부(500)는 배터리의 실측임피던스데이터를 입력받는다. 실측임피던스데이터는 적어도 하나 이상의 서로 다른 주파수를 배터리에 인가하여 측정한 임피던스값을 포함한다.
에이전트(520)는 강화학습에서 적어도 하나 이상의 등가회로를 생성하는 액션을 수행한다. 예를 들어, 에이전트(520)는 한 번의 액션에서 복수의 등가회로를 생성할 수 있다.
보상산정부(510)는 강화학습의 환경에 정의된 내용을 기반으로, 등가회로를 통해 생성한 예측임피던스데이터와 실측임피던스데이터의 오차를 구하여 보상을 산정한다. 에이전트(520)가 한 번의 액션에서 복수의 등가회로를 생성하는 경우에, 보상산정부(510)는 복수의 등가회로를 통해 생성한 복수의 예측임피던스데이터의 각각과 실측임피던스데이터의 오차의 평균을 보상으로 산정할 수 있다.
출력부(530)는 보상이 가장 큰 액션에서 생성한 등가회로를 배터리의 등가회로 출력한다. 에이전트(520)가 한 번의 액션에서 복수의 등가회로를 생성한다면, 출력부(530)는 보상이 가장 큰 액션에서 생성한 복수 개의 등가회로 중 오차가 가장 작은 등가회로를 배터리의 등가회로로 출력할 수 있다.
본 발명은 또한 컴퓨터로 읽을 수 있는 기록매체에 컴퓨터가 읽을 수 있는 프로그램 코드로서 구현하는 것이 가능하다. 컴퓨터가 읽을 수 있는 기록매체는 컴퓨터 시스템에 의하여 읽혀질 수 있는 데이터가 저장되는 모든 종류의 기록장치를 포함한다. 컴퓨터가 읽을 수 있는 기록매체의 예로는 ROM, RAM, CD-ROM, 자기 테이프, 플로피디스크, 광데이터 저장장치 등이 있다. 또한 컴퓨터가 읽을 수 있는 기록매체는 네트워크로 연결된 컴퓨터 시스템에 분산되어 분산방식으로 컴퓨터가 읽을 수 있는 코드가 저장되고 실행될 수 있다.
이제까지 본 발명에 대하여 그 바람직한 실시 예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시 예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.

Claims (10)

  1. 등가회로생성장치가 수행하는 배터리 등가회로 생성방법에 있어서,
    배터리의 실측임피던스데이터를 입력받는 단계;
    강화학습모델의 에이전트가 적어도 하나 이상의 등가회로를 생성하는 액션을 수행하는 단계;
    상기 강화학습모델의 환경에서 상기 실측임피던스데이터의 측정에 사용한 주파수성분과 동일한 주파수성분을 상기 등가회로에 입력하여 예측임피던스데이터를 파악하고, 상기 예측임피던스데이터와 상기 실측임피던스데이터를 비교하여 파악한 오차를 기반으로 생성한 보상을 상기 에이전트에게 제공하는 단계;
    상기 액션을 수행하는 단계와 상기 보상을 제공하는 단계를 기 정의된 조건까지 반복수행하는 단계; 및
    보상이 가장 큰 액션에서 생성한 등가회로를 출력하는 단계;를 포함하고,
    상기 액션을 수행하는 단계는,
    상기 보상이 큰 방향으로 액션을 수행하는 학습방법을 통해 복수의 회로소자를 직렬 및/또는 병렬로 연결한 등가회로의 구조 및 각 회로소자의 값을 생성하는 단계;를 포함하는 것을 특징으로 하는 배터리 등가회로 생성방법.
  2. 제 1항에 있어서, 상기 입력받는 단계는,
    복수의 주파수를 상기 배터리에 입력하여 측정한 복수의 임피던스를 포함하는 실측임피던스데이터를 입력받는 단계;를 포함하는 것을 특징으로 하는 배터리 등가회로 생성방법.
  3. 삭제
  4. 제 1항에 있어서, 상기 보상을 제공하는 단계는,
    상기 예측임피던스데이터와 상기 실측임피던스데이터 사이의 평균제곱오차 또는 평균절대오차를 기반으로 보상을 산정하는 단계;를 포함하는 것을 특징으로 하는 배터리 등가회로 생성방법.
  5. 제 1항에 있어서, 상기 반복수행하는 단계는,
    상기 보상이 연속하여 감소하거나, 기 정의된 횟수 동안 연속하여 일정 임계값 이상으로 증가하지 않는 경우에 반복 수행을 종료하는 단계;를 포함하는 것을 특징으로 하는 배터리 등가회로 생성방법.
  6. 제 1항에 있어서,
    상기 액션을 수행하는 단계는, 복수 개의 등가회로를 생성하는 단계;를 포함하고,
    상기 보상을 제공하는 단계는, 복수 개의 등가회로의 각각에 대하여 구한 예측임피던스데이터와 상기 실측임피던스데이터의 오차의 평균을 보상으로 제공하는 단계;를 포함하는 것을 특징으로 하는 배터리 등가회로 생성방법.
  7. 제 6항에 있어서, 상기 출력하는 단계는,
    보상이 가장 큰 액션에서 생성한 복수 개의 등가회로 중 오차가 가장 작은 등가회로를 출력하는 단계;를 포함하는 것을 특징으로 하는 배터리 등가회로 생성방법.
  8. 배터리의 실측임피던스데이터를 입력받는 입력부;
    적어도 하나 이상의 등가회로를 생성하는 액션을 수행하는 에이전트;
    강화학습모델의 환경에서, 상기 실측임피던스데이터의 측정에 사용한 주파수성분과 동일한 주파수성분을 상기 등가회로에 입력하여 예측임피던스데이터를 파악하고, 상기 예측임피던스데이터와 상기 실측임피던스데이터의 오차를 기반으로 보상을 산정하는 보상산정부; 및
    보상이 가장 큰 액션에서 생성한 등가회로를 출력하는 출력부;를 포함하는 것을 특징으로 하는 등가회로생성장치.
  9. 제 8항에 있어서,
    상기 에이전트는, 복수의 등가회로를 생성하는 액션을 수행하고,
    상기 보상산정부는, 상기 복수의 등가회로를 통해 생성한 복수의 예측임피던스데이터의 각각과 상기 실측임피던스데이터의 오차의 평균을 보상으로 산정하고,
    상기 출력부는, 보상이 가장 큰 액션에서 생성한 복수 개의 등가회로 중 오차가 가장 작은 등가회로를 출력하는 것을 특징으로 하는 등가회로생성장치.
  10. 제 1항에 기재된 방법을 수행하기 위한 컴퓨터 프로그램을 기록한 컴퓨터로 읽을 수 있는 기록매체.
KR1020220102179A 2022-08-16 2022-08-16 배터리 등가회로 생성방법 및 그 장치 KR102512544B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220102179A KR102512544B1 (ko) 2022-08-16 2022-08-16 배터리 등가회로 생성방법 및 그 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220102179A KR102512544B1 (ko) 2022-08-16 2022-08-16 배터리 등가회로 생성방법 및 그 장치

Publications (1)

Publication Number Publication Date
KR102512544B1 true KR102512544B1 (ko) 2023-03-22

Family

ID=86006036

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220102179A KR102512544B1 (ko) 2022-08-16 2022-08-16 배터리 등가회로 생성방법 및 그 장치

Country Status (1)

Country Link
KR (1) KR102512544B1 (ko)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130014434A (ko) * 2011-07-28 2013-02-07 요코가와 덴키 가부시키가이샤 전지 셀의 임피던스를 연산하기 위한 디바이스 및 전지 임피던스 측정 시스템
KR102079745B1 (ko) * 2019-07-09 2020-04-07 (주) 시큐레이어 인공지능 에이전트의 훈련 방법, 이에 기반한 사용자 액션의 추천 방법 및 이를 이용한 장치

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130014434A (ko) * 2011-07-28 2013-02-07 요코가와 덴키 가부시키가이샤 전지 셀의 임피던스를 연산하기 위한 디바이스 및 전지 임피던스 측정 시스템
KR102079745B1 (ko) * 2019-07-09 2020-04-07 (주) 시큐레이어 인공지능 에이전트의 훈련 방법, 이에 기반한 사용자 액션의 추천 방법 및 이를 이용한 장치

Similar Documents

Publication Publication Date Title
JP4331210B2 (ja) 神経網を用いたバッテリ残存量推定装置及び方法
EP2345905B1 (en) Battery characteristic evaluator
Sjöberg et al. Initializing Wiener–Hammerstein models based on partitioning of the best linear approximation
JP6179305B2 (ja) 分類装置、分類方法及び電子設備
US11720818B2 (en) System and method to improve accuracy of regression models trained with imbalanced data
US10360283B2 (en) Noise and bound management for RPU array
CN112036051B (zh) 磁悬浮系统剩余使用寿命预测方法、装置、设备及介质
US11879945B2 (en) Battery diagnosis method and battery diagnosis apparatus
EP3896776A1 (en) Simulated battery construction method and simulated battery construction device
WO2021131957A1 (ja) 電池性能評価方法および電池性能評価装置
Röhm et al. Model-free inference of unseen attractors: Reconstructing phase space features from a single noisy trajectory using reservoir computing
Szabo et al. Honest Bayesian confidence sets for the L2-norm
CN115296984B (zh) 异常网络节点的检测方法及装置、设备、存储介质
KR102512544B1 (ko) 배터리 등가회로 생성방법 및 그 장치
KR101846970B1 (ko) 전자전 위협신호의 분류를 위한 딥 신경망 학습장치 및 방법
CN107918704A (zh) 电荷放大器贮存寿命预测方法、装置、存储介质和计算机设备
Li et al. Reliability assessment based on time waveform characteristics with small sample: A practice inspired by few-shot learnings in metric space
Rabe et al. ROC asymmetry is not diagnostic of unequal residual variance in gaussian signal detection theory
KR100552639B1 (ko) 미분 방정식 시스템에서 불일치에 관한 에러 정보를제공하는 방법
KR102297543B1 (ko) 전지 충전 상태 예측 장치 및 방법
JP2022167093A (ja) 情報処理装置、情報処理方法及びプログラム
KR102522683B1 (ko) 배터리진단방법 및 그 장치
Hsieh et al. Battery model based on cubic over‐potential differential equation
CN116859184B (zh) 电网故障检测方法、装置、电子设备和计算机可读介质
CN115986746B (zh) 基于软传感器的预测方法、装置、计算机设备和存储介质

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant