KR102511126B1 - Estimation method of cement amount of concrete using hydrochloric acid dissolution heat - Google Patents

Estimation method of cement amount of concrete using hydrochloric acid dissolution heat Download PDF

Info

Publication number
KR102511126B1
KR102511126B1 KR1020210086264A KR20210086264A KR102511126B1 KR 102511126 B1 KR102511126 B1 KR 102511126B1 KR 1020210086264 A KR1020210086264 A KR 1020210086264A KR 20210086264 A KR20210086264 A KR 20210086264A KR 102511126 B1 KR102511126 B1 KR 102511126B1
Authority
KR
South Korea
Prior art keywords
concrete
amount
hydrochloric acid
unit cement
unit
Prior art date
Application number
KR1020210086264A
Other languages
Korean (ko)
Other versions
KR20230005493A (en
Inventor
이강길
김태청
김상민
Original Assignee
주식회사 이안구조기술사건축사사무소
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 이안구조기술사건축사사무소 filed Critical 주식회사 이안구조기술사건축사사무소
Priority to KR1020210086264A priority Critical patent/KR102511126B1/en
Publication of KR20230005493A publication Critical patent/KR20230005493A/en
Application granted granted Critical
Publication of KR102511126B1 publication Critical patent/KR102511126B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/20Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity
    • G01N25/48Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on solution, sorption, or a chemical reaction not involving combustion or catalytic oxidation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/38Concrete; Lime; Mortar; Gypsum; Bricks; Ceramics; Glass
    • G01N33/383Concrete or cement

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Ceramic Engineering (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Preparation Of Clay, And Manufacture Of Mixtures Containing Clay Or Cement (AREA)

Abstract

본 발명은 염산용해열을 이용한 콘크리트의 단위시멘트량 추정방법을 개시한다.
본 발명에 따르는 염산용해열을 이용한 콘크리트의 단위시멘트량 추정방법은 파쇄한 콘크리트를 물과 희석한 희석액과 상기 희석액과 염산 용액과 혼합한 반응액과의 온도 차이(△Τ)는 상기 콘크리트에 사용된 단위시멘트량과 비례하는 것을 특징으로 하는데, 이에 의할 때, 염산용해열법을 활용하여 경화콘크리트의 단위시멘트량 추정이 가능하여 온도 차이를 통하여 배합시 단위시멘트량을 추정할 수 있다.
The present invention discloses a method for estimating the unit cement amount of concrete using hydrochloric acid dissolution heat.
According to the method for estimating the unit cement amount of concrete using the heat of dissolution of hydrochloric acid according to the present invention, the temperature difference (ΔΤ) between the diluted solution obtained by diluting the crushed concrete with water and the reaction solution mixed with the diluted solution and the hydrochloric acid solution is It is characterized in that it is proportional to the unit cement amount, and according to this, it is possible to estimate the unit cement amount of hardened concrete using the hydrochloric acid melting heat method, so that the unit cement amount can be estimated at the time of mixing through the temperature difference.

Description

염산용해열을 이용한 콘크리트의 단위시멘트량 추정방법{Estimation method of cement amount of concrete using hydrochloric acid dissolution heat}Estimation method of cement amount of concrete using hydrochloric acid dissolution heat}

본 발명은 염산용해열을 이용한 콘크리트의 단위시멘트량 추정방법에 관한 것으로, 더욱 상세하게는 경화 콘크리트의 단위시멘트량을 확인하는 방법으로서, The present invention relates to a method for estimating the unit cement amount of concrete using hydrochloric acid dissolution heat, and more particularly, as a method for confirming the unit cement amount of hardened concrete,

염산용해열법을 활용하여 경화콘크리트의 단위시멘트량 추정이 가능하여 온도 차이를 통하여 배합시 단위시멘트량을 추정할 수 있는 염산용해열을 이용한 콘크리트의 단위시멘트량 추정방법에 관한 것이다.It relates to a method for estimating the unit cement amount of concrete using the heat of hydrochloric acid dissolution, which can estimate the unit cement amount of hardened concrete using the heat of hydrochloric acid dissolution method, and thus estimate the unit cement amount when mixing through the temperature difference.

콘크리트의 배합설계에 있어서 단위시멘트량의 설정은 경제성 측면과 콘크리트의 내구성 확보 및 재료분리, 강도저하와 같은 안전성 측면에서도 매우 중요한 요소이다.Setting the unit cement amount in the mixing design of concrete is a very important factor in terms of economic feasibility, ensuring durability of concrete, and safety such as material separation and strength reduction.

하지만, 최근 국내에서는 시멘트량이 납품 계약보다 적게 들어가는 대신 혼화재가 적정량 이상으로 치환되는 등의 문제로 인하여 레미콘의 품질 저하가 우려되고 있으며 요구 품질을 충족시키지 못한 불량 레미콘이 건설현장에 반입되는 사례가 각종 언론매체를 통하여 보도되고 있는 등, 이러한 콘크리트의 부실 공사로 인해 레미콘의 품질관리의 중요성이 크게 부각되고 있는 실정이다.However, recently, in Korea, there are concerns about the quality of ready-mixed concrete due to problems such as the substitution of more than an appropriate amount of admixture instead of less cement than the supply contract, and there are various cases in which defective ready-mixed concrete that does not meet the required quality is brought to the construction site. The importance of quality control of ready-mixed concrete is greatly highlighted due to poor construction of concrete, such as being reported through the media.

또한, 향후 콘크리트용 골재 수급 불균형 문제가 지속적으로 제기될 것으로 예상되고 있으며, 콘크리트 구조물의 고품질화에 대한 요구 또한 지속적으로 증가되고 있어 이와 같은 불량 레미콘의 문제점을 해결하고 내구성이 우수한 고품질의 콘크리트 구조물을 구축하기 위해서는 레미콘의 품질관리가 강화되어야 할 필요성이 크게 대두되고 있다.In addition, it is expected that the imbalance in the supply and demand of concrete aggregates will continue to be raised in the future, and the demand for high quality of concrete structures is also continuously increasing. In order to do this, the need to strengthen the quality control of ready-mixed concrete is emerging.

한편, 지금까지 건설생산현장에서 타설되는 레미콘의 품질관리는 KS F 4009에 준하여 굳지 않은 콘크리트의 슬럼프, 공기량 및 염화물 이온량을 평가한 후, 시방서에 규정된 강도관리 재령에서 표준양생 공시체를 이용하여 콘크리트의 압축강도를 측정함으로써 품질 확보 여부를 판단하고 있다.On the other hand, the quality control of ready-mixed concrete cast at construction production sites so far has evaluated the slump, air volume, and chloride ion amount of unhardened concrete in accordance with KS F 4009, and then used a standard curing specimen for concrete at the strength management age specified in the specification. The quality assurance is determined by measuring the compressive strength.

콘크리트의 강도를 판정하는 방법은 아래 표 1 경화콘크리트의 강도 확인 방법, 표 2 굳지 않은 콘크리트의 조기강도 및 단위시멘트량 측정의 원리 및 특성에서 볼 수 있듯이, 코어 공시체 등을 이용한 파괴실험부터 슈미트해머, 초음파 측정을 이용하는 것과 적산온도 등을 이용한 비파괴시험 방법까지 다양한 강도측정 방법이 실무에서 사용되어지고 있으나, 경화 콘크리트의 단위시멘트량을 확인하는 방법은 거의 보고된 바가 없는 실정이다.The method for determining the strength of concrete is as shown in Table 1 Strength confirmation method of hardened concrete and Table 2 Principles and characteristics of measuring early strength and unit cement amount of unhardened concrete. A variety of strength measurement methods, including ultrasonic measurement and non-destructive testing using integrated temperature, are used in practice, but methods for confirming the unit cement amount of hardened concrete have hardly been reported.

강도시험종류Strength test type 시험 방법Test Methods 슈미트해머법Schmidt hammer method 콘크리트가 표면에 타격시 반발의 정도로 강도를 추정Estimating the strength of concrete by the degree of repulsion when hitting the surface 공진법Resonance method 물체간 고유진동 주기를 이용하여 동적 측정치로 강도를 측정Strength is measured as a dynamic measurement value using the period of natural vibration between objects 음속법sonic law 음파의 속도에 의해 강도를 추정Intensity is estimated by the speed of the sound wave 복합법compound method 반발법과 음속법을 병행하여 강도를 추정Estimation of strength by combining the repulsion method and the speed of sound method 인발법drawing method 콘크리트에 묻힌 볼트나 강판 중에서 강도를 측정Measure the strength of bolts or steel plates buried in concrete 코어 채취법core picking 시험하고자 하는 콘크리트 부분을 코어 드릴을 이용하여 채취하고 강도시험 등 재시험을 함The concrete part to be tested is collected using a core drill and re-tested such as strength test 관입 저항법penetration resistance method 화약 또는 스프링을 사용하여 콘크리트에 핀을 박아 그 깊이로부터 강도를 평가A pin is driven into concrete using gunpowder or a spring to evaluate its strength from its depth. 초음파법sonography 콘크리트 내부를 통과하는 초음파의 속도로 강도 측정Strength measurement at the speed of ultrasonic waves passing through the concrete

실험 방법Experiment method 원리principle 특성characteristic 염산용해열법hydrochloric acid dissolution method 염산을 콘크리트로부터 체가름한 굳지않은 모르터에 사용할 때의 용해열 측정 Determination of heat of dissolution when hydrochloric acid is applied to fresh mortar sieved from concrete 석회 조성물이 응집되어 있으면 불가능하고 열은 단열용기에서 측정This is not possible if the lime composition is agglomerated and the heat is measured in an insulated container. 역적정법back titration 콘크리트로부터 걸러진 모르터의 시멘트량에 비례하는 것에 상대적인 염산에 따른 시멘트의 수산화 나트륨 적정량Sodium hydroxide titer in cement as a function of hydrochloric acid relative to that in proportion to the amount of cement in mortar leached from concrete 예비실험으로 결정하며 보정곡성이 필요 Determined by preliminary experiment and requires correction curve 간이 역적정법simple back titration 상기의 방법이지만 측정 장치에 의한 시멘트량을 간단하게 검사Although it is the above method, the amount of cement is simply inspected by the measuring device. 콘크리트로부터 모르터를 취하며, 비교시 5%의 정밀도로 15분간 수행된 색변화로 분석Mortar is taken from concrete and analyzed by color change performed in 15 minutes with a precision of 5% for comparison. 자동세척 시험기 방법Auto-cleaning tester method CaCO2 영향이 없지만 시멘트만 용해시키며 혼합물의 킬레이트 화합물을 검출CaCO 2 has no effect, but dissolves only cement and detects chelate compounds in the mixture 콘크리트 시료를 포함한 조각이나 석회석인 경우에 실험 실시Experiments carried out in the case of fragments or limestone containing concrete samples 비중계법hydrometer 모르터 현탁액과 부가된 물의 비중은 굳지 않은 콘크리트로부터 걸러진 모르터 시멘트량과 비례The specific gravity of the mortar suspension and the added water is proportional to the amount of mortar cement leached from the fresh concrete. 측정된 예비실험은 보정 곡선이 필요하고 미분말첨가시에는 불가능Measured preliminary experiments require calibration curves and are not possible when fine powder is added. 색차계법color difference method 부가된 물에 따른 굳지 않은 콘크리트 시료를 색채화하여 색차를 시멘트량의 보정곡선과 비료By colorizing the unhardened concrete sample according to the added water, the color difference was calculated using the calibration curve of the amount of cement and the fertilizer. 실험은 간단하나 고가 장비 필요The experiment is simple, but requires expensive equipment 가열 패쇄법heat closure 굳지않은 콘크리트로부터 모르터 시료를 가열 및 파쇄하여 체가름을 통해 시멘트 조성물 추정Prediction of cement composition through sieving by heating and crushing mortar samples from unhardened concrete 실헝 장비 및 방법 간단Simple practical equipment and method 배합 분석 장치 방법Formulation analyzer method 세척된 슬러리 내의 시멘트 조성에 대한 시멘트량의 계산Calculation of Cement Amount for Cement Composition in Washed Slurry 콘크리트의 직접 측정 가능Direct measurement of concrete possible

따라서, 본 발명이 해결하고자 하는 기술적 과제는 실구조물에서 경화 콘크리트의 단위시멘트량을 확인하는 방법으로서, 염산용해열법을 활용하여 경화콘크리트의 단위시멘트량 추정이 가능하여 온도 차이를 통하여 배합시 단위시멘트량을 추정할 수 있는 염산용해열을 이용한 경화 콘크리트의 단위시멘트량 추정방법을 제공하는 것이다.Therefore, the technical problem to be solved by the present invention is a method of confirming the unit cement amount of hardened concrete in an actual structure, and it is possible to estimate the unit cement amount of hardened concrete using the hydrochloric acid melting heat method, so that the unit cement when mixing through the temperature difference It is to provide a method for estimating the unit cement amount of hardened concrete using hydrochloric acid dissolution heat that can estimate the amount.

본 발명은 상술한 기술적 과제를 해결하기 위하여, 파쇄한 콘크리트를 물과 희석한 희석액과 상기 희석액과 염산 용액과 혼합한 반응액과의 온도 차이(△Τ)는 상기 콘크리트에 사용된 단위시멘트량과 비례하는 것을 특징으로 하는 염산용해열을 이용한 콘크리트의 단위시멘트량 추정방법을 제공한다.The present invention, in order to solve the above-mentioned technical problem, the temperature difference (ΔΤ) between the diluted solution of crushed concrete diluted with water and the reaction solution mixed with the diluted solution and hydrochloric acid solution is the amount of unit cement used in the concrete and It provides a method for estimating the unit cement amount of concrete using hydrochloric acid dissolution heat, characterized in that it is proportional.

본 발명의 다른 실시예에 의하면, 상기 희석액과 염산 용액과 혼합한 반응액과의 온도 차이(△Τ)는 수학식 1에 의하는 것일 수 있다. According to another embodiment of the present invention, the temperature difference (ΔΤ) between the dilution solution and the reaction solution mixed with the hydrochloric acid solution may be according to Equation 1.

<수학식 1><Equation 1>

△Τ=Τ-(0.8Τc+0.2ΤH)△Τ=Τ-(0.8Τc+0.2Τ H )

(△Τ : 온도차(℃), Τ : 반응 최고 온도(℃), Τc : 반응전 콘크리트 희석액 온도(℃), ΤH : 반응전 염산 온도(℃))(ΔΤ: temperature difference (℃), Τ: maximum reaction temperature (℃), Τc: temperature of concrete diluent before reaction (℃), Τ H : temperature of hydrochloric acid before reaction (℃))

본 발명의 다른 실시예에 의하면, 상기 반응 최고 온도는 반응 개시후 10분 이내에 형성되는 것일 수 있다.According to another embodiment of the present invention, the maximum reaction temperature may be formed within 10 minutes after initiation of the reaction.

본 발명의 다른 실시예에 의하면, 상기 콘크리트가 파쇄된 평균 입도는 10㎜ 이하인 것일 수 있다.According to another embodiment of the present invention, the average particle size of the crushed concrete may be 10 mm or less.

본 발명의 다른 실시예에 의하면, 상기 콘크리트의 경화 전의 단위시멘트량에 따르는 SP제량은 조절할 수 있는 것일 수 있다.According to another embodiment of the present invention, the amount of SP agent according to the amount of unit cement before hardening of the concrete may be adjustable.

본 발명의 다른 실시예에 의하면, 상기 콘크리트의 경화 전의 단위시멘트량에 따르는 단위용적질량은 변화가 없는 것일 수 있다.According to another embodiment of the present invention, the unit volume mass according to the unit cement amount before hardening of the concrete may be unchanged.

본 발명의 다른 실시예에 의하면, 상기 콘크리트의 압축강도는 사용된 단위시멘트량이 증가함에 따라 증가하는 것일 수 있다.According to another embodiment of the present invention, the compressive strength of the concrete may increase as the amount of unit cement used increases.

따라서, 본 발명에 따르는 염산용해열을 이용한 콘크리트의 단위시멘트량 추정방법에 의하면, 경화 콘크리트의 단위시멘트량을 확인하는 방법으로서, 염산용해열법을 활용하여 경화콘크리트의 단위시멘트량 추정이 가능하여 온도 차이를 통하여 배합시 단위시멘트량을 추정할 수 있는 효과를 발휘한다.Therefore, according to the method for estimating the unit cement amount of concrete using the heat of hydrochloric acid dissolution according to the present invention, as a method of confirming the unit cement amount of hardened concrete, it is possible to estimate the unit cement amount of hardened concrete by utilizing the hydrochloric acid heat of dissolution method, and thus the temperature difference Through this, it exerts the effect of estimating the amount of unit cement when mixing.

도 1은 본 발명에 따르는 굳지 않은 콘크리트의 단위시멘트량에 따른 슬럼프 및 SP제량을 나타낸 그래프이고,
도 2는 본 발명에 따르는 굳지 않은 콘크리트의 단위시멘트량에 따른 공기량 및 단위용적질량을 나타낸 그래프이며,
도 3은 본 발명에 따르는 경화 콘크리트의 단위시멘트량에 따른 압축강도단위시멘트량에 따른 압축강도를 나타낸 그래프이고,
도 4는 본 발명에 따르는 단위시멘트량 변화에 따른 콘크리트 및 모르타르의 온도를 나타낸 그래프이며,
도 5는 본 발명에 따르는 경화 콘크리트 온도차와 단위시멘트량의 상관관계를 나타낸 그래프이다.
1 is a graph showing the slump and SP amount according to the unit cement amount of unhardened concrete according to the present invention,
Figure 2 is a graph showing the amount of air and unit volume mass according to the unit cement amount of unhardened concrete according to the present invention,
Figure 3 is a graph showing the compressive strength according to the unit cement amount of the compressive strength according to the unit cement amount of the hardened concrete according to the present invention,
4 is a graph showing the temperature of concrete and mortar according to the change in unit cement amount according to the present invention,
5 is a graph showing the correlation between the temperature difference and unit cement amount of hardened concrete according to the present invention.

이하, 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명의 이해를 돕기 위하여 실시예를 들어 상세하게 설명하며, 다만 하기의 실시예는 본 발명의 내용을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. In order to help the understanding of the present invention, examples are described in detail, but the following examples are only illustrative of the contents of the present invention, and the scope of the present invention is not limited to the following examples.

본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.The embodiments of the present invention are provided to more completely explain the present invention to those skilled in the art.

또한, 본 발명은 특정한 부분을 상세히 기술하나, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. In addition, although the present invention describes specific parts in detail, it will be clear to those skilled in the art that these specific descriptions are only preferred embodiments, and the scope of the present invention is not limited thereby. .

따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.Accordingly, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

도 1은 본 발명에 따르는 굳지 않은 콘크리트의 단위시멘트량에 따른 슬럼프 및 SP제량을 나타낸 그래프이고, 도 2는 본 발명에 따르는 굳지 않은 콘크리트의 단위시멘트량에 따른 공기량 및 단위용적질량을 나타낸 그래프이며, 도 3은 본 발명에 따르는 경화 콘크리트의 단위시멘트량에 따른 압축강도단위시멘트량에 따른 압축강도를 나타낸 그래프이고, 도 4는 본 발명에 따르는 단위시멘트량 변화에 따른 콘크리트 및 모르타르의 온도를 나타낸 그래프이며, 도 5는 본 발명에 따르는 경화 콘크리트 온도차와 단위시멘트량의 상관관계를 나타낸 그래프인데 이를 참고한다.1 is a graph showing slump and SP amount according to unit cement amount of unhardened concrete according to the present invention, and FIG. 2 is a graph showing air volume and unit volume mass according to unit cement amount of unhardened concrete according to the present invention. , Figure 3 is a graph showing the compressive strength according to the unit cement amount according to the unit cement amount of hardened concrete according to the present invention, Figure 4 shows the temperature of concrete and mortar according to the change in unit cement amount according to the present invention It is a graph, and FIG. 5 is a graph showing the correlation between the temperature difference and unit cement amount of hardened concrete according to the present invention.

본 발명에 따르는 염산용해열을 이용한 콘크리트의 단위시멘트량 추정방법은 파쇄한 콘크리트를 물과 희석한 희석액과 상기 희석액과 염산 용액과 혼합한 반응액과의 온도 차이(△Τ)는 상기 콘크리트에 사용된 단위시멘트량과 비례하는 것을 특징으로 한다.According to the method for estimating the unit cement amount of concrete using the heat of dissolution of hydrochloric acid according to the present invention, the temperature difference (ΔΤ) between the diluted solution obtained by diluting the crushed concrete with water and the reaction solution mixed with the diluted solution and the hydrochloric acid solution is It is characterized in that it is proportional to the unit cement amount.

여기서, 상기 콘크리트는 시멘트, 물, 모레, 골재 등을 배합하여 사용하는 일반적으로 사용되는 콘크리트로서 골재는 굵은 골재, 잔골재를 포함할 수 있다.Here, the concrete is a commonly used concrete in which cement, water, sand, aggregate, etc. are mixed and used, and the aggregate may include coarse aggregate and fine aggregate.

상기 시멘트는 보통 포틀랜드 시멘트를 사용할 수 있으며, 그 특성은 아래 표 3과 같이 나타낼 수 있다.Ordinary Portland cement can be used as the cement, and its properties are shown in Table 3 below.

밀도
(g/cm3)
density
(g/cm 3 )
분말도
(cm2/g)
fineness
(cm 2 /g)
안정도
(%)
stability
(%)
응결시간(분)Condensation time (minutes) 압축강도(MPa)Compressive strength (MPa)
초결first resolution 종결closing 3일3 days 7일7 days 28일28 days 3.103.10 35203520 0.50.5 305305 340340 31.431.4 39.939.9 53.053.0

또한, 상기 골재는 골재콘크리트의 제조시 일정한 품질과 균등질의 골재를 사용하여야 하며, 그 특성은 아래 표 4, 5와 같이 나타낼 수 있다.In addition, the aggregate must be of constant quality and uniform quality when manufacturing aggregate concrete, and its characteristics can be shown in Tables 4 and 5 below.

구분division 밀도
(g/cm3)
density
(g/cm 3 )
조립률assembly rate 흡수율absorption rate 0.08mm체
통과량(%)
0.08mm sieve
Passing amount (%)
입형판정 실적율(%)Standing decision performance rate (%)
석산 굵은골재Stone Coarse Aggregate 2.632.63 6.206.20 0.820.82 -- 56.556.5

구분division 밀도
(g/cm3)
density
(g/cm 3 )
조립률assembly rate 흡수율absorption rate 0.08mm체
통과량(%)
0.08mm sieve
Passing amount (%)
입형판정 실적율(%)Standing decision performance rate (%)
석산 잔골재quarry fine aggregate 2.622.62 2.752.75 1.311.31 4.604.60 --

아울러, 상기 염산 용액은 염산과 물이 혼합된 용액으로서 아래 표 6과 같은 특성을 가질 수 있다. In addition, the hydrochloric acid solution is a mixture of hydrochloric acid and water, and may have characteristics shown in Table 6 below.

구분division 밀도
(g/cm3)
density
(g/cm 3 )
증기비중vapor specific gravity 분자량Molecular Weight
염산Hydrochloric acid 1.191.19 1.31.3 36.536.5

한편, 상기 희석액과 염산 용액과 혼합한 반응액과의 온도 차이(△Τ)는 수학식 1에 의하는 것일 수 있다. Meanwhile, the temperature difference (ΔΤ) between the diluted solution and the reaction solution mixed with the hydrochloric acid solution may be according to Equation 1.

<수학식 1><Equation 1>

△Τ=Τ-(0.8Τc+0.2ΤH)△Τ=Τ-(0.8Τc+0.2Τ H )

(△Τ : 온도차(℃), Τ : 반응 최고 온도(℃), Τc : 반응전 콘크리트 희석액 온도(℃), ΤH : 반응전 염산 온도(℃))(ΔΤ: temperature difference (℃), Τ: maximum reaction temperature (℃), Τc: temperature of concrete diluent before reaction (℃), Τ H : temperature of hydrochloric acid before reaction (℃))

상기 Τ는 반응 최고 온도(℃)로서, 희석액과 염산용액이 혼합되며, 희석액의 유효성분과 염산이 화학반응하며 발열하는 결과로 나타나는 온도 중 최고로 높은 온도를 의미하며, 반응 개시후 10분 이내에 형성되는 특징이 있다.Τ is the maximum reaction temperature (℃), which means the highest temperature among the temperatures resulting from the dilution solution and the hydrochloric acid solution being mixed, and the active ingredient of the dilution solution and the hydrochloric acid chemically reacting and generating heat, which is formed within 10 minutes after the start of the reaction. It has a characteristic.

바람직하게는 반응 개시 후 2분 정도에 반응 최고 온도(℃)에 다다를 수 있다.Preferably, the maximum reaction temperature (° C.) can be reached in about 2 minutes after the reaction starts.

상기 Τc는 반응전 콘크리트 희석액 온도(℃)이다.The Τc is the temperature of the concrete dilution solution before reaction (℃).

상기 ΤH는 반응전 염산 용액의 실측 온도이다.Τ H is the measured temperature of the hydrochloric acid solution before the reaction.

또한, 상기 콘크리트가 파쇄된 평균 입도는 10㎜ 이하인 것일 수 있는데, 만일 10 ㎜를 초과하면, 입자 내의 유효성분들이 염산과 화학반응에 참여하기 어려워서 반응 최고 온도 측정의 편차가 발생할 수 있으며, 최소 입도는 작을 수록 온도 측정에 유리한 면이 있으나, 콘크리트 배합 공정의 균일성이 그리 높지 않아 1 ㎜ 미만에서는 온도 측정 편차가 거의 없으므로 1 ㎜ 이상이 바람직하다 할 것이다.In addition, the average particle size at which the concrete is crushed may be 10 mm or less. If it exceeds 10 mm, it is difficult for the active ingredients in the particles to participate in the chemical reaction with hydrochloric acid, which may cause deviations in the measurement of the maximum reaction temperature, and the minimum particle size The smaller the is, the more advantageous it is to measure the temperature. However, since the uniformity of the concrete mixing process is not so high, there is almost no deviation in temperature measurement when it is less than 1 mm, so 1 mm or more is preferable.

아울러, 상기 콘크리트의 경화 전의 단위시멘트량에 따르는 SP제량은 조절할 수 있어 SP제의 사용량을 감소시킬 수 있는데, 이는 단위시멘트량이 증가할수록 동일 W/C에서는 콘크리트 내부의 물이 많아져 유동성이 증가하므로 감소량으로 조절할 수 있는 것이다.In addition, the amount of SP agent according to the amount of unit cement before hardening of the concrete can be adjusted, so that the amount of SP agent used can be reduced. It can be adjusted by reducing the amount.

상기 SP제는 수퍼 플라스틱사이져(Super Plasticizer)의 약어로 감수제의 일종이며, 일반적인 감수제의 기능을 강화시켜서 시멘트를 효과적으로 분산시키고, 응결지연 및 지나친 공기연행, 강도저하 등의 악영향 없이 높은 첨가율로 사용하여 단위수량을 대폭 감소시킬수 있는 혼화제를 말한다.The SP agent is an abbreviation of Super Plasticizer and is a type of water reducing agent. It effectively disperses cement by strengthening the function of a general water reducing agent, and is used at a high addition rate without adverse effects such as delay in setting, excessive air entrainment, and reduction in strength. It refers to an admixture that can drastically reduce the unit quantity.

또한, 상기 콘크리트의 경화 전의 단위시멘트량에 따르는 단위용적질량은 변화가 없는 것일 수 있으며, 경화 전의 단위시멘트량의 공기량은 단위시멘트량이 증가함에 다소 증감하는 경향을 보이는데, 이는 단위시멘트량 증가에 따른 충전성 향상에 기인한 것으로 보이고, 단위용적질량은 변화가 거의 없을 수 있다.In addition, the unit volume mass according to the unit cement amount before hardening of the concrete may be unchanged, and the air amount of the unit cement amount before hardening tends to increase or decrease slightly as the unit cement amount increases, which is due to the increase in the unit cement amount It seems to be due to the improvement of fillability, and there may be little change in unit volume mass.

한편, 상기 콘크리트의 압축강도는 사용된 단위시멘트량이 증가함에 따라 증가하는 것일 수 있는데, 이는 단위시멘트량이 증가함에 따른 충전효과 및 공기량 감소에 기인한 것으로 보인다.On the other hand, the compressive strength of the concrete may increase as the amount of unit cement used increases, which seems to be due to the filling effect and the decrease in the amount of air as the unit cement amount increases.

실시예Example

아래 표 7과 같이, 본 발명에 따르는 실험 실시예를 실시하였다.As shown in Table 7 below, experimental examples according to the present invention were carried out.

콘크리트의 배합요인은 W/C(물/시멘트 중량비) 45%, 목표 슬럼프 150±25mm, 목표 공기량은 4.5±1.5%, 단위시멘트량(kg/m3)을 6개 군으로 하여 각각 356, 366, 378, 389, 400 및 411로 맞추었으며, 실험항목으로는 굳지 아니한 콘크리트와 경화 콘크리트로 진행된다. 굳지 않은 콘크리트에 대하여 4개 항목으로 각각 슬럼프, 슬럼프 플로우, 공기량 및 단위용적질량을 측정하고 경화 콘크리트에서는 2개 항목으로 각각 압축강도 측정, 염산용해열법으로 온도를 측정하였으며, 압축강도는 3일, 7일, 28일의 압축강도를 측정하고 공시체를 제조하고, 수중양생 후 경화된 공시체를 사용하여 염산용해열법을 실시하였으며, 또한, 콘크리트는 표 8과 같이, 시멘트, 모래, 자갈을 포함하고 있다.Mixing factors of concrete were W/C (water/cement weight ratio) 45%, target slump 150±25mm, target air volume 4.5±1.5%, unit cement volume (kg/m 3 ) were divided into 6 groups, 356 and 366, respectively. , 378, 389, 400 and 411, and the test items are unhardened concrete and hardened concrete. For unhardened concrete, slump, slump flow, air volume, and unit volume mass were measured as four items, respectively, and for hardened concrete, compressive strength was measured as two items, respectively, and temperature was measured by the hydrochloric acid dissolution method. The compressive strength of 7 days and 28 days was measured, specimens were prepared, and the hydrochloric acid dissolution heat method was performed using the specimens cured after curing in water. In addition, as shown in Table 8, concrete contains cement, sand, and gravel .

구분division 실험요인experimental factor 실험인자experimental factor 실험수준level of experimentation 배합요인mixing factor W/C(%)W/C(%) 1One 4545 목표 슬럼프(mm)Target slump (mm) 150±25150±25 목표 공기량(%)Target air volume (%) 1One 4.5±1.54.5±1.5 단위 시멘트량(kg/m3)Unit cement amount (kg/m 3 ) 66 356 366
378 389
400 411
356 366
378 389
400 411
실험항목Experiment item 굳지 않은 콘크리트fresh concrete 44 슬럼프, 슬럼프 플로우
공기량, 단위용적질량
slump, slump flow
air volume, unit volume mass
경화 콘크리트hardened concrete 22 압축강도(3, 7, 28일)
염산용해열법(28일)
Compressive strength (3, 7, 28 days)
Hydrochloric acid dissolving heat method (28 days)

W/B
(%)
W/B
(%)
단위시멘트량
(kg/㎥)
Unit cement amount
(kg/㎥)
단위
수량
(kg/㎥)
unit
quantity
(kg/㎥)
S/a
(%)
S/a
(%)
SP/C
(%)
SP/C
(%)
AE/C
(%)
AE/C
(%)
단위질량배합 (kg/㎥)Unit mass mixing (kg/㎥) 단위용적배합(ℓ/㎥)Unit volume mixing (ℓ/㎥)
CC SS GG CC SS GG 4545 356356 160160 4646 0.220.22 0.0230.023 356356 832832 894894 113113 327327 355355 366366 165165 0.190.19 0.0230.023 367367 787787 917917 116116 310310 364364 378378 170170 0.150.15 0.0230.023 378378 777777 905905 120120 306306 359359 389389 175175 0.150.15 0.0170.017 389389 767767 893893 123123 302302 355355 400400 180180 0.100.10 0.0120.012 400400 757757 882882 127127 298298 350350 411411 185185 0.100.10 0.0230.023 411411 747747 870870 131131 294294 345345 * S/a : 잔골재율 C : 시멘트, S : 모래, G : Gravel* S/a: Fine aggregate ratio C: Cement, S: Sand, G: Gravel

상기 염산용해열법은 구체적으로, (1) 콘크리트 최대치수 3mm 이하로 분쇄한 200 g의 시료를 준비하고, (2) 콘크리트 200 g 시료를 삼각플라스크에 넣고 미리 준비해둔 물 800ml과 함께 혼합한 혼합물을 단열용기에 넣고, (4) 열전대 온도계로 혼합물의 온도를 측정하고, (5) 미리 계량한 100ml 염산의 온도를 측정하며, (6) 혼합물과 염산을 30 초정도 균일하게 혼합하여 단열용기에 넣고, (7) 혼합물과 염산의 화학반응으로 발생되는 반응열의 최대온도를 열전대와 데이터로거를 연동하여 측정하여, (8) 온도 차이를 구하였다(△Τ=Τ-(0.8Τc+0.2ΤH))The hydrochloric acid dissolving heat method is specifically, (1) preparing a 200 g sample crushed to a maximum concrete size of 3 mm or less, and (2) putting the 200 g sample of concrete in an Erlenmeyer flask and mixing it with 800 ml of water prepared in advance. Put it in an insulated container, (4) measure the temperature of the mixture with a thermocouple thermometer, (5) measure the temperature of 100ml hydrochloric acid weighed in advance, (6) mix the mixture and hydrochloric acid uniformly for about 30 seconds and put it in an insulated container , (7) The maximum temperature of the reaction heat generated by the chemical reaction between the mixture and hydrochloric acid was measured by interlocking the thermocouple and the data logger, and (8) the temperature difference was obtained (ΔΤ=Τ-(0.8Τc+0.2Τ H ) )

실험예 1 굳지 않은 콘크리트의 단위시멘트량에 따른 슬럼프 및 SP제량Experimental Example 1 Slump and SP amount according to unit cement amount of unhardened concrete

굳지 않은 콘크리트의 유동성 평가를 위한 슬럼프 시험은 KS F 2402(굳지 않은 콘크리트의 슬럼프 시험방법) 규정에 의거 슬럼프 콘을 채운 콘크리트의 윗면을 슬럼프 콘 상단에 맞춘 뒤 슬럼프 콘을 연직 방향으로 들어올리고, 콘크리트의 움직임이 멈춘 후에 퍼짐이 최대라고 생각된 지름과 그 직교한 방향의 지름을 측정한다.The slump test for evaluating the fluidity of unhardened concrete is performed in accordance with KS F 2402 (Slump test method for unhardened concrete). After aligning the upper surface of the filled concrete with the top of the slump cone, lift the slump cone vertically, and After the movement of the stop, measure the diameter thought to be the maximum spread and the diameter in the orthogonal direction.

도 1은 본 발명에 따르는 굳지 않은 콘크리트의 단위시멘트량에 따른 슬럼프 및 SP제량을 나타낸 그래프로서, 이를 참고하면, 단위시멘트량이 증가함에 따라 슬럼프는 미미하게 증가하지만 SP제량은 감소하는 것으로 나타나며, 이는 단위시멘트량이 증가할수록 동일 W/C에서는 콘크리트 내부의 물이 많아져 유동성이 증가한 것으로 판단된다. 1 is a graph showing the slump and SP amount according to the unit cement amount of unhardened concrete according to the present invention. Referring to this, as the unit cement amount increases, the slump slightly increases, but the SP amount decreases. As the amount of unit cement increases, it is judged that the fluidity increased because the water inside the concrete increased in the same W/C.

실험예 2 굳지 않은 콘크리트의 단위시멘트량에 따른 공기량 및 단위용적질량Experimental Example 2 Amount of air and unit volume mass according to unit cement amount of unhardened concrete

공기량 시험은 KS F 2421(굳지 않은 콘크리트의 압력법에 의한 공기량 함유량 시험방법)규정에 의거 측정하며 공기량은 4.5±1.5%의 오차범위를 통과하는 콘크리트를 사용하여 공시체를 제작하고, 오차범위가 벗어나는 경우에는 목표로 하는 배합의 콘크리트와 다른 것으로 판단하여 공시체를 성형하지 않고 폐기하였고, 단위용적질량 시험은 KS F 2409의 규정에 의거 측정하며 시료를 1/3 까지 넣고, 손가락으로 윗면을 고른 다음 다짐봉으로 균등하게 25회를 다지고, 콘크리트 표면에 기포가 보이지 않을 때까지 용기의 바깥쪽을 10 내지 15회 고무망치로 가격하고 용기의 2/3 까지 시료를 넣고 앞과 똑같은 횟수를 다지며 마지막으로 용기에서 넘칠 때까지 넣고 전회와 같은 횟수로 다지고, 그 후 표면을 고른 후 용기 안의 질량을 측정한다.The air content test is measured in accordance with KS F 2421 (Air content test method by the pressure method of unhardened concrete). In this case, it was judged to be different from the target mixture and discarded without molding the specimen, and the unit volume mass test was measured in accordance with the regulations of KS F 2409. Evenly compact 25 times with a rod, hit the outside of the container with a rubber mallet 10 to 15 times until no air bubbles are visible on the concrete surface, put samples up to 2/3 of the container, compact the same number of times as before, and finally Add it until it overflows and compact it the same number of times as the previous time. After that, measure the mass inside the container after leveling the surface.

도 2는 본 발명에 따르는 굳지 않은 콘크리트의 단위시멘트량에 따른 공기량 및 단위용적질량을 나타낸 그래프로서, 이를 참고하면 공기량은 단위시멘트량이 증가함에 다소 증감하는 경향으로 나타나며, 이는 단위시멘트량 증가에 따른 충전성 향상에 기인한 것으로 판단되며 단위용적질량은 변화가 거의 없는 것으로 확인되었다. Figure 2 is a graph showing the amount of air and unit volume mass according to the amount of unit cement of unhardened concrete according to the present invention. Referring to this, the amount of air tends to increase or decrease slightly as the amount of unit cement increases. It was judged to be due to the improvement in filling ability, and it was confirmed that there was little change in unit volume mass.

실험예 3 경화 콘크리트의 단위시멘트량에 따른 압축강도Experimental Example 3 of hardened concrete Compressive strength according to unit cement amount

공시체 압축강도 측정 실험은 KS F 2405(콘크리트 압축강도 시험방법)의 규정에 따라 UTM(Universal Testing Machine)로 측정하였는데, 순서는 먼저 공시체의 상하 끝면 및 상하의 가압판의 압축면을 청소하고, 공시체를 공시체 지름의 1% 이내의 오차에서 그 중심축이 가압판의 중심과 일치하도록 배치하며, 시험기의 가압판과 공시체의 끝면은 직접 밀착시키고(그 사이에 쿠션재를 넣지 않음), 공시체에 충격을 주지 않도록 똑같은 속도로 하중을 가하며 공시체가 급격한 변형을 시작한 후에는 하중을 가하는 속도의 조정을 중지하고 하중을 계속 가하고, 공시체가 파괴될 때까지 시험기가 나타내는 최대 하중을 유효 숫자 3자리까지 읽고, 아래 압축강도식을 이용하여 구한다.The specimen compressive strength measurement experiment was measured with UTM (Universal Testing Machine) according to the regulations of KS F 2405 (Concrete compressive strength test method). Arrange the central axis so that it coincides with the center of the platen within an error of 1% of the diameter, and the platen of the tester and the end face of the specimen are directly brought into close contact (no cushioning material is inserted between them), and the same speed so as not to impact the specimen. After the load is applied and the specimen starts to deform rapidly, stop adjusting the speed of applying the load and continue to apply the load, read the maximum load indicated by the tester to three significant digits until the specimen is destroyed, and calculate save by using

<압축강도식><Compressive strength formula>

Figure 112021075976843-pat00001
Figure 112021075976843-pat00001

여기에서 fc : 압축강도(MPa), P : 최대하중(N), n : 원주율(π), d : 공시체의 지름(mm)임where f c : compressive strength (MPa), P : maximum load (N), n : circumferential rate (π), d : diameter of specimen (mm)

도 3은 본 발명에 따르는 경화 콘크리트의 단위시멘트량에 따른 압축강도단위시멘트량에 따른 압축강도를 나타낸 그래프로서 이를 참고하면, 단위시멘트량이 증가할수록 압축강도는 증가하였으며, 재령 28일에서 단위시멘트 356kg/m3 보다 단위시멘트 411 kg/m3 콘크리트의 압축강도가 약 22% 높게 나타났다. 이는 단위시멘트량이 증가함에 따른 충전효과 및 공기량 감소에 기인한 것으로 판단된다.3 is a cured concrete according to the present invention Compressive strength according to unit cement amount This is a graph showing the compressive strength according to unit cement amount. Referring to this graph, the compressive strength increased as the unit cement amount increased. 3 The compressive strength of concrete was about 22% higher. It is believed that this is due to the filling effect and the decrease in air volume as the amount of unit cement increases.

실험예 4 경화 콘크리트 단위시멘트량의 경과시간에 따른 온도이력 압축강도Experimental Example 4 Temperature history compressive strength according to elapsed time of unit cement amount of hardened concrete

콘크리트 최대치수 3mm 이하로 분쇄한 200 g의 콘크리트 시료와 물 800ml과 함께 혼합한 혼합물을 단열용기에 넣고, 여기에 100ml 염산을 추가로 넣고, 30초 정도 균일하게 혼합한 뒤 단열용기에 넣고, 반응열의 온도를 열전대와 데이터로거를 연동하여 측정한다.Put a mixture of 200 g of concrete sample crushed to a maximum concrete size of 3 mm or less and 800 ml of water into an insulated container, add 100 ml of hydrochloric acid to it, mix it uniformly for about 30 seconds, put it into an insulated container, and heat the reaction The temperature of is measured by linking the thermocouple and the data logger.

도 4는 본 발명에 따르는 단위시멘트량 변화에 따른 콘크리트 및 모르타르의 온도를 나타낸 그래프인데, 이를 참고하면, 먼저 대부분의 콘크리트 시료는 60초가 지난 시점에서의 반응온도가 급격히 상승하는 것을 확인할 수 있었고, 그 이후부터는 미미하게 온도가 증감하는 것으로 나타났다. 또한, 90초가 지난 시점에서 최고 반응 온도가 나타났다.4 is a graph showing the temperature of concrete and mortar according to the change in the unit cement amount according to the present invention. Referring to this, it was confirmed that the reaction temperature of most concrete samples increased rapidly after 60 seconds, After that, it was found that the temperature increased and decreased slightly. In addition, the highest reaction temperature appeared after 90 seconds.

실험예 5 경화 콘크리트 온도차와 단위시멘트량의 상관관계Experimental Example 5 Cured Concrete Correlation between temperature difference and unit cement amount

실험예 4에서 측정된 반응 최고온도를 이용하여 식 △Τ=Τ-(0.8Τc+0.2ΤH)(△Τ : 온도차(℃), Τ : 반응 최고 온도(℃), Τc : 반응전 콘크리트 희석액 온도(℃), ΤH : 반응전 염산 온도(℃))를 이용하여 온도차를 측정하였다. 이를 단위시멘트량에 따라 상관관계를 도출하였다.Equation using the maximum reaction temperature measured in Experimental Example 4 △Τ=Τ-(0.8Τc+0.2Τ H ) (△Τ: temperature difference (℃), Τ: maximum reaction temperature (℃), Τc: concrete dilution temperature before reaction (℃), Τ H : hydrochloric acid temperature before reaction ( ℃)) was used to measure the temperature difference. A correlation was derived according to the amount of unit cement.

도 5는 본 발명에 따르는 경화 콘크리트 온도차와 단위시멘트량의 상관관계를 나타낸 그래프로서, 이를 참고하면, 임의의 온도차를 확인시 단위시멘트량을 추정할 수 있는데, 예를 들어 도 5와 같이 12℃ 차이일 경우, 단위시멘트량은 362kg/m3, 14℃차이일 경우, 단위시멘트량은 408 kg/m3 으로 추정할 수 있다.5 is hardened concrete according to the present invention It is a graph showing the correlation between temperature difference and unit cement amount. Referring to this, the unit cement amount can be estimated when checking an arbitrary temperature difference. For example, in the case of a difference of 12 ° C as shown in FIG. /m 3 , in the case of a difference of 14℃, the unit cement amount can be estimated as 408 kg/m 3 .

따라서 앞서 설명한 바와 같이, 본 발명은 콘크리트 시료의 염산용해열 상승량을 확인하여 단위시멘트량을 추정할 수 있다.Therefore, as described above, the present invention can estimate the unit cement amount by checking the increase in the heat of dissolution of hydrochloric acid in the concrete sample.

Claims (7)

파쇄한 콘크리트를 물과 희석한 희석액과 상기 희석액과 염산 용액과 혼합한 반응액과의 온도 차이(△Τ)는 상기 콘크리트에 사용된 단위시멘트량과 비례하는 것이고,
상기 콘크리트의 경화 전의 단위시멘트량이 증가할수록 동일 W/C에서는 콘크리트 내부의 물이 많아져 유동성이 증가하여 SP제량은 감소하며,
상기 콘크리트의 경화 전의 단위시멘트량에 따르는 단위용적질량은 변화가 없는 것이고,
공기량은 단위시멘트량이 증가함에 따라, 단위시멘트량 증가에 따른 충전성 향상으로 인해 증감하는 것이며,
단위시멘트량은 다음 수학식 2에 따라 추정되는 것을 특징으로 하는 염산용해열을 이용한 콘크리트의 단위시멘트량 추정방법.
<수학식 2>
y=82.27+23.31x
(y : 단위시멘트량, x : 희석액과 염산 용액과 혼합한 반응액과의 온도 차이)
The temperature difference (ΔΤ) between the dilution solution obtained by diluting the crushed concrete with water and the reaction solution obtained by mixing the dilution solution and the hydrochloric acid solution is proportional to the amount of unit cement used in the concrete,
As the amount of unit cement before hardening of the concrete increases, the amount of water in the concrete increases in the same W / C, so the fluidity increases and the amount of SP decreases,
The unit volume mass according to the unit cement amount before hardening of the concrete is unchanged,
As the amount of unit cement increases, the amount of air increases and decreases due to the improvement in the filling property according to the increase in the amount of unit cement,
A method for estimating the unit cement amount of concrete using hydrochloric acid dissolution heat, characterized in that the unit cement amount is estimated according to Equation 2 below.
<Equation 2>
y=82.27+23.31x
(y: unit cement amount, x: temperature difference between the diluted solution and the reaction solution mixed with the hydrochloric acid solution)
제 1 항에 있어서,
상기 희석액과 염산 용액과 혼합한 반응액과의 온도 차이(△Τ)는 수학식 1에 의하는 것을 특징으로 하는 염산용해열을 이용한 콘크리트의 단위시멘트량 추정방법.
<수학식 1>
△Τ=Τ-(0.8Τc+0.2ΤH)
(△Τ : 온도차(℃), Τ : 반응 최고 온도(℃), Τc : 반응전 콘크리트 희석액 온도(℃), ΤH : 반응전 염산 온도(℃))
According to claim 1,
The temperature difference (ΔΤ) between the diluted solution and the reaction solution mixed with the hydrochloric acid solution is a method for estimating the unit cement amount of concrete using hydrochloric acid dissolution heat, characterized in that according to Equation 1.
<Equation 1>
△Τ=Τ-(0.8Τc+0.2Τ H )
(ΔΤ: temperature difference (℃), Τ: maximum reaction temperature (℃), Τc: temperature of concrete diluent before reaction (℃), Τ H : temperature of hydrochloric acid before reaction (℃))
제 2 항에 있어서,
상기 반응 최고 온도는 반응 개시후 10분 이내에 형성되는 것을 특징으로 하는 염산용해열을 이용한 콘크리트의 단위시멘트량 추정방법.
According to claim 2,
The method of estimating the unit cement amount of concrete using hydrochloric acid dissolution heat, characterized in that the maximum reaction temperature is formed within 10 minutes after the start of the reaction.
제 1 항에 있어서,
상기 콘크리트가 파쇄된 평균 입도는 10㎜ 이하인 것을 특징으로 하는 염산용해열을 이용한 콘크리트의 단위시멘트량 추정방법.
According to claim 1,
Method for estimating unit cement amount of concrete using hydrochloric acid dissolution heat, characterized in that the average particle size of the concrete crushed is 10 mm or less.
삭제delete 삭제delete 제 1 항에 있어서,
상기 콘크리트의 압축강도는 사용된 단위시멘트량이 증가함에 따라 증가하는 것을 특징으로 하는 염산용해열을 이용한 콘크리트의 단위시멘트량 추정방법.
According to claim 1,
The method of estimating the unit cement amount of concrete using hydrochloric acid melting heat, characterized in that the compressive strength of the concrete increases as the amount of unit cement used increases.
KR1020210086264A 2021-07-01 2021-07-01 Estimation method of cement amount of concrete using hydrochloric acid dissolution heat KR102511126B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210086264A KR102511126B1 (en) 2021-07-01 2021-07-01 Estimation method of cement amount of concrete using hydrochloric acid dissolution heat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210086264A KR102511126B1 (en) 2021-07-01 2021-07-01 Estimation method of cement amount of concrete using hydrochloric acid dissolution heat

Publications (2)

Publication Number Publication Date
KR20230005493A KR20230005493A (en) 2023-01-10
KR102511126B1 true KR102511126B1 (en) 2023-03-16

Family

ID=84893455

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210086264A KR102511126B1 (en) 2021-07-01 2021-07-01 Estimation method of cement amount of concrete using hydrochloric acid dissolution heat

Country Status (1)

Country Link
KR (1) KR102511126B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230063734A (en) * 2021-11-02 2023-05-09 (주)대성씨엠건축사사무소 Method of estimating the compression strength at early age of hardened concrete using strength meter
KR20230063735A (en) * 2021-11-02 2023-05-09 (주)대성씨엠건축사사무소 Method of estimating the compression strength at early age of hardened concrete and the surface finish time using hybrid meter

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102190604B1 (en) 2019-01-31 2020-12-14 충남대학교산학협력단 A curing method of concrete specimens and an evaluation method of early concrete solidity that is using thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102190604B1 (en) 2019-01-31 2020-12-14 충남대학교산학협력단 A curing method of concrete specimens and an evaluation method of early concrete solidity that is using thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
‘염산용해열법을 이용한 콘크리트의 단위 시멘트량 추정’, 김상민 등, 한국건축시공학회눈문집, 20(2), 2020.11, 102-103*
‘재생골재를 사용한 콘크리트의 강도발현특성 및 내구성에 관한 연구’, 정재동, 대한건축학회 논문집, 119-126, 2004*
‘콘크리트 강도의 단기추정에 관한 실험적 연구’, 오중식 등, 대한건축학회학술발표논문집, 7(2), 591-594, 1987*

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230063734A (en) * 2021-11-02 2023-05-09 (주)대성씨엠건축사사무소 Method of estimating the compression strength at early age of hardened concrete using strength meter
KR20230063735A (en) * 2021-11-02 2023-05-09 (주)대성씨엠건축사사무소 Method of estimating the compression strength at early age of hardened concrete and the surface finish time using hybrid meter
KR102561287B1 (en) 2021-11-02 2023-07-31 (주)대성씨엠건축사사무소 Method of estimating the compression strength at early age of hardened concrete using strength meter
KR102561288B1 (en) 2021-11-02 2023-07-31 (주)대성씨엠건축사사무소 Method of estimating the compression strength at early age of hardened concrete and the surface finish time using hybrid meter

Also Published As

Publication number Publication date
KR20230005493A (en) 2023-01-10

Similar Documents

Publication Publication Date Title
Lai et al. Dilatancy mitigation of cement powder paste by pozzolanic and inert fillers
KR102511126B1 (en) Estimation method of cement amount of concrete using hydrochloric acid dissolution heat
Brough et al. Sodium silicate-based, alkali-activated slag mortars: Part I. Strength, hydration and microstructure
De Brito et al. Mechanical behaviour of non-structural concrete made with recycled ceramic aggregates
US20070125272A1 (en) Geopolymer concrete and method of preparation and casting
Azeiteiro et al. Development of grouts for consolidation of old renders
Nikbin et al. Influence of mineral powder content on the fracture behaviors and ductility of self-compacting concrete
KR102190604B1 (en) A curing method of concrete specimens and an evaluation method of early concrete solidity that is using thereof
Lapidus et al. The study of the calibration dependences used when testing the concrete strength by nondestructive methods
Arora et al. Evaluation of modulus of elasticity for normal and high strength concrete with granite and calc‐granulite aggregate
Naganathan et al. Effect of water temperature on concrete properties
Xie et al. Effect of fine aggregate type on early-age performance, cracking analysis and engineering applications of C50 concrete
Güçlüer An investigation of the effect of different aggregate types on concrete properties with thin section and nondestructive methods.
Jiang et al. Effects of Cement Content, Curing Period, Gradation, and Compaction Degree on Mechanical Behavior of Cement‐Stabilized Crushed Gravel Produced via Vertical Vibration Test Method
Hamiruddin et al. The Effect of Different Sand Gradation with Ultra High Performance Concrete (UHPC)
KR102473301B1 (en) manufacturing method for formed concrete for cast-in-site with enhanced sound insulation
Shirzadi Javid et al. The Comparison and introduction of plate test and electrical resistance methods of determining the setting time and thixotropy of self-consolidating concrete
Oyelade et al. Effect of elevated temperature on the compressive strength of concrete produced with pulverized steel mill scale
De Freitas Macedo Concrete made with fine recycled concrete aggregate (FRCA): A feasibility study
Naderi et al. Effects of Concrete Constituent Materials on the Penetration of Surface Water
Yuan et al. The shear strength of the interface between artificial rock and printed concrete at super-early ages
Daczko et al. ‘Self consolidating concrete (SCC)
KR102455699B1 (en) manufacturing method for formed concrete for cast-in-site with enhanced sound insulation
CN115691717B (en) Crack self-repairing concrete mix proportion design method and application thereof
Selvam et al. Effect of Coarse Aggregate Grading on the Fresh and Hardened Properties of High Strength Concrete

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant