KR102507437B1 - Image Based Damage Localization Estimation Method and Device With the Group Velocity Estimated From an Experiment and Transfer Matrix Method(TMM) in Structure Health Monitoring Based on Guided Elastic Wave - Google Patents

Image Based Damage Localization Estimation Method and Device With the Group Velocity Estimated From an Experiment and Transfer Matrix Method(TMM) in Structure Health Monitoring Based on Guided Elastic Wave Download PDF

Info

Publication number
KR102507437B1
KR102507437B1 KR1020220139876A KR20220139876A KR102507437B1 KR 102507437 B1 KR102507437 B1 KR 102507437B1 KR 1020220139876 A KR1020220139876 A KR 1020220139876A KR 20220139876 A KR20220139876 A KR 20220139876A KR 102507437 B1 KR102507437 B1 KR 102507437B1
Authority
KR
South Korea
Prior art keywords
group velocity
signal
damage
elastic wave
feature vector
Prior art date
Application number
KR1020220139876A
Other languages
Korean (ko)
Inventor
강연철
지영범
공인철
Original Assignee
주식회사 솔리드아이티
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 솔리드아이티 filed Critical 주식회사 솔리드아이티
Priority to KR1020220139876A priority Critical patent/KR102507437B1/en
Application granted granted Critical
Publication of KR102507437B1 publication Critical patent/KR102507437B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0654Imaging
    • G01N29/069Defect imaging, localisation and sizing using, e.g. time of flight diffraction [TOFD], synthetic aperture focusing technique [SAFT], Amplituden-Laufzeit-Ortskurven [ALOK] technique
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/041Analysing solids on the surface of the material, e.g. using Lamb, Rayleigh or shear waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2437Piezoelectric probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/36Detecting the response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/42Detecting the response signal, e.g. electronic circuits specially adapted therefor by frequency filtering or by tuning to resonant frequency
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/4409Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison
    • G01N29/4436Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison with a reference signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/50Processing the detected response signal, e.g. electronic circuits specially adapted therefor using auto-correlation techniques or cross-correlation techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/01Indexing codes associated with the measuring variable
    • G01N2291/011Velocity or travel time
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/023Solids
    • G01N2291/0231Composite or layered materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

The present invention relates to a method for estimating the location of damage by using elastic waves generated from a piezoelectric module attached to a structure. The method, which can estimate an accurate location of damage, comprises: a step a) of measuring a signal based on elastic waves from a piezoelectric module; a step b) of removing noise included in the measured signal; a step c) of calculating a plurality of first group velocities of the elastic wave by using a transfer matrix method (TMM); a step d) of measuring a second group velocity of the elastic wave by calculating a cross-correlation of an input signal generated from the piezoelectric module and the signal, in which the noise is removed, and acquiring a compensation group velocity based on the first group velocity and the second group velocity; a step e) of extracting a scattered signal through comparison between the compensation group velocity and a baseline signal; a step f) of calculating a one-dimensional feature vector based on the Hilbert transform; a step g) of calculating a two-dimensional feature vector by using the compensation group velocity information and mapping the one-dimensional feature vector in two dimensions; a step h) of defining a damage index, a scalar value that weights the degree of damage, in a frequency domain; and a step i) of estimating the location of damage by performing visualization based on the two-dimensional feature vector and the damage index.

Description

손상탐지를 위해 측정한 유도 탄성파의 군속도와 TMM 기법으로 계산한 군속도를 사용하여, 이미지 기반으로 손상의 위치를 추정하는 방법 및 장치{Image Based Damage Localization Estimation Method and Device With the Group Velocity Estimated From an Experiment and Transfer Matrix Method(TMM) in Structure Health Monitoring Based on Guided Elastic Wave}A method and apparatus for estimating the location of damage based on an image using the group velocity of the guided elastic wave measured for damage detection and the group velocity calculated by the TMM technique {Image Based Damage Localization Estimation Method and Device With the Group Velocity Estimated From an Experiment and Transfer Matrix Method(TMM) in Structure Health Monitoring Based on Guided Elastic Wave}

본 발명은 손상탐지를 위해 측정한 유도 탄성파의 군속도와 Transfer Matrix Method(이하 TMM)으로 계산한 군속도를 이용하여 이미지 기반으로 손상의 위치를 추정하는 방법 및 장치에 관한 것이다.The present invention relates to a method and apparatus for estimating the location of damage based on an image using the group velocity of a guided acoustic wave measured for damage detection and the group velocity calculated by a transfer matrix method (hereinafter referred to as TMM).

보잉 747기에 사용되는 복합재가 무게 대비 50% 이상 차지할 만큼, 최근 항공기에 사용되는 복합재의 사용비중은 다른 재료에 비해 크게 늘어나고 있다. 복합재는 제작과정, 항공기의 운용 과정에서 다양한 하중을 받기 때문에 주기적인 비파괴 검사를 필요로 한다.Composites used in the Boeing 747 account for more than 50% of the weight, so the proportion of composites used in aircraft has increased significantly compared to other materials. Composite materials require periodic non-destructive testing because they are subjected to various loads during the manufacturing process and the operation of aircraft.

비파괴검사의 대표적인 예로써 방사선 투과검사(X-ray), 초음파 탐상검사 및 와전류 탐상검사 등이 있다. 하지만 기존의 이러한 방법은 복합재 검사에 적합하지 않은 경우도 있고, 항공기를 분해하거나 추가적인 장비를 필요로 하기 때문에 검사 비용을 증가시킨다.Representative examples of non-destructive inspection include radiographic inspection (X-ray), ultrasonic inspection, and eddy current inspection. However, these existing methods are not suitable for inspecting composite materials in some cases, and increase inspection costs because they disassemble the aircraft or require additional equipment.

앞서 일 예로 설명한 비파괴 검사 방법들보다 상대적으로 비용과 검사시간이 적고 검사 효율을 높일 수 있는 유도 초음파(탄성파)를 이용한 검사 방법에 대한 연구가 진행되고 있다. Research is being conducted on an inspection method using guided ultrasound (elastic wave), which can increase inspection efficiency with relatively low cost and inspection time compared to the nondestructive inspection methods described as examples above.

유도 탄성파를 이용한 손상 검사는 신호 데이터를 가시화하기 위하여, 탄성파의 군속도 정보를 사용한다. 따라서 대상체에 부착한 센서로부터 획득한 신호를 분석하여, 탄성파의 군속도를 측정한다. 그러나 복합재 구조물에서 탄성파의 속도는 방향별로 상이하기 때문에, 방향별로 달라지는 탄성파의 군속도를 추정하기 위해서는 다양한 방위로 센서를 부착해야 한다. 하지만 대상체의 내부 구조물의 배치에 따라 센서를 배치하는데 제약이 발생할 수 있으며, 모든 방위별로 센서를 부착하는 것은 현실적으로 불가능하다.Damage inspection using guided elastic waves uses group velocity information of elastic waves to visualize signal data. Therefore, the group velocity of the elastic wave is measured by analyzing the signal obtained from the sensor attached to the object. However, since the velocity of the elastic wave in the composite structure is different for each direction, sensors must be attached in various orientations in order to estimate the group velocity of the elastic wave that varies for each direction. However, restrictions may occur in arranging sensors according to the arrangement of internal structures of the target object, and it is practically impossible to attach sensors for all orientations.

한국 공개특허공보 제10-2009-0012818호("비파괴 검사장치", 공개일 2009.02.04.)Korean Patent Laid-open Publication No. 10-2009-0012818 ("Non-destructive inspection device", published on 2009.02.04.)

본 발명은 상기한 문제점을 해결하기 위하여, TMM 기법으로 계산한 군속도를 실험으로 측정한 탄성파의 군속도로 보상하고, 복합재의 방향별로 달라지는 군속도를 계산하여, 이미지 기반의 손상의 위치를 추정하는 방법을 제공하는 것이다.In order to solve the above problems, the present invention compensates for the group velocity calculated by the TMM technique with the group velocity of elastic waves measured experimentally, calculates the group velocity that varies for each direction of the composite material, and provides a method for estimating the location of damage based on an image. is to provide

또한, 본 발명은, 상기 방법을 이용한 장치를 제공하는데 목적이 있다.In addition, an object of the present invention is to provide a device using the above method.

본 발명의 과제들은 이상에서 언급한 과제들로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.The tasks of the present invention are not limited to the tasks mentioned above, and other tasks not mentioned will be clearly understood by those skilled in the art from the following description.

상기 과제를 달성하기 위하여, 본 발명의 실시예에 따른 방법은, 전달 행렬 방법(TMM: Transfer Matrix Method) 기법으로 군속도를 계산하고, 신호로부터 탄성파의 군속도를 측정하고 이를 이용하여 이론적으로 계산한 군속도를 보상하며, 탄성파의 진행방향을 고려한 보상된 군속도 정보를 이용하여 1차원 특성벡터를 2차원으로 사상하여 2차원 특성벡터를 계산하는 단계에서 정의한다.In order to achieve the above object, the method according to an embodiment of the present invention calculates the group velocity using a transfer matrix method (TMM) technique, measures the group velocity of an elastic wave from a signal, and theoretically calculates the group velocity using the group velocity. is compensated for, and it is defined in the step of calculating the 2D feature vector by mapping the 1D feature vector to 2D using the compensated group velocity information considering the traveling direction of the elastic wave.

본 발명의 실시예에 따른 방법은, 구조물에 부착된 압전 모듈에서 생성된 탄성파를 사용하여 손상의 위치를 추정하는 방법에 있어서, a) 압전 모듈로부터의 탄성파에 기초한 신호를 측정하는 단계; b) 측정된 신호에 포함되는 잡음을 제거하는 단계; c) 전달 행렬 방법 (TMM : Transfer Matrix Method)를 이용하여, 탄성파의 복수의 제1 군속도(Group Velocity)를 계산하는 단계; d) 압전 모듈에서 발생된 입력 신호와 잡음이 제거된 신호의 교차상관관계(Cross-Correlation)를 계산하여 탄성파의 제2 군속도를 측정하고, 상기 제1 군속도 및 상기 제2 군속도에 기초하여 보상 군속도를 획득하는 단계; e) 상기 보상 군속도 및 기준 신호(Baseline Signal)와의 비교를 통해, 손상 신호(Scattered signal)를 추출하는 단계; f) 힐버트 변환(Hilbert Transform)에 기초하여 1차원 특성 벡터(Feature Vector)를 계산하는 단계; g) 상기 보상 군속도 정보를 이용하여 상기 1차원 특성벡터를 2차원으로 사상하여(Mapping) 2차원 특성 벡터를 계산하는 단계; h) 손상 정도에 가중치를 부여하는 스칼라 값인 손상 지수(Damage Index)를 주파수 영역에서 정의하는 단계; 및 i) 상기 2차원 특성 벡터 및 상기 손상 지수에 기초한 가시화를 수행하여, 손상 위치를 추정하는 단계;를 포함한다.According to an embodiment of the present invention, a method for estimating a location of a damage using an elastic wave generated from a piezoelectric module attached to a structure includes: a) measuring a signal based on the elastic wave from the piezoelectric module; b) removing noise included in the measured signal; c) calculating a plurality of first group velocities of elastic waves using a transfer matrix method (TMM); d) Calculate the cross-correlation between the input signal generated by the piezoelectric module and the noise-removed signal to measure the second group velocity of the elastic wave, and compensate the compensated group velocity based on the first group velocity and the second group velocity. obtaining; e) extracting a scattered signal through comparison with the compensated group velocity and a baseline signal; f) calculating a one-dimensional feature vector based on the Hilbert Transform; g) calculating a 2-dimensional feature vector by mapping the 1-dimensional feature vector to a 2-dimensional feature using the compensated group velocity information; h) defining a damage index, which is a scalar value that weights the degree of damage, in the frequency domain; and i) estimating a damage location by performing visualization based on the 2D feature vector and the damage index.

상기 c) 단계는, 아래 수학식을 이용해 상기 제1 군속도를 계산한다.In step c), the first group velocity is calculated using the following equation.

[수학식][mathematical expression]

Figure 112022113574830-pat00001
Figure 112022113574830-pat00001

Figure 112022113574830-pat00002
Figure 112022113574830-pat00002

Figure 112022113574830-pat00003
Figure 112022113574830-pat00003

여기서,

Figure 112022113574830-pat00004
는 제1 군속도(Group Velocity),here,
Figure 112022113574830-pat00004
Is the first group velocity (Group Velocity),

Figure 112022113574830-pat00005
는 위상 속도(Phase Velocity),
Figure 112022113574830-pat00005
is the phase velocity,

Figure 112022113574830-pat00006
는 경계조건을 만족하는 파수(Wave Number),
Figure 112022113574830-pat00006
is the wave number that satisfies the boundary condition,

Figure 112022113574830-pat00007
는 경계조건을 만족하는 주파수 임
Figure 112022113574830-pat00007
is the frequency that satisfies the boundary condition

Figure 112022113574830-pat00008
는 Slowness Curve에서 제1 군속도 벡터와 Slowness Curve 관계의 각도를 의미함.
Figure 112022113574830-pat00008
means the angle of the relationship between the first group velocity vector and the Slowness Curve in the Slowness Curve.

상기 경계조건을 만족하는 파수 및 주파수는 아래 수학식 1 및 수학식 2를 이용해 계산한다.The wave number and frequency satisfying the boundary conditions are calculated using Equations 1 and 2 below.

[수학식 1][Equation 1]

Figure 112022113574830-pat00009
Figure 112022113574830-pat00009

[수학식 2][Equation 2]

Figure 112022113574830-pat00010
Figure 112022113574830-pat00010

여기서,

Figure 112022113574830-pat00011
는 변위,
Figure 112022113574830-pat00012
응력,
Figure 112022113574830-pat00013
는 응력과 변위가 각 층으로 전달되는 과정에서 만들어지는 전달 행렬(Transfer Matrix), 하첨자 top은 복합재 평판의 상단을 의미하고, mid는 복합재 layer의 중간층을 의미하고,here,
Figure 112022113574830-pat00011
is the displacement,
Figure 112022113574830-pat00012
stress,
Figure 112022113574830-pat00013
is a transfer matrix created in the process of transferring stress and displacement to each layer, the subscript top means the top of the composite material plate, mid means the middle layer of the composite material layer,

Figure 112022113574830-pat00014
는 응력(Stress)과 변형률(Strain) 관계를 정의하는데 사용되는 구성방정식 행렬(Constitutive Matrix),
Figure 112022113574830-pat00015
는 파수,
Figure 112022113574830-pat00016
는 주파수,
Figure 112022113574830-pat00017
는 파의 진행 방향 각도 임.
Figure 112022113574830-pat00014
is a constitutive matrix used to define the relationship between stress and strain,
Figure 112022113574830-pat00015
is the watchman,
Figure 112022113574830-pat00016
is the frequency,
Figure 112022113574830-pat00017
is the angle of the propagation direction of the wave.

상기 c) 단계는, 탄성파의 모드 및 탄성파의 진행 방향을 기준으로 정리된 테이블을 생성하는 단계를 포함한다.The step c) includes generating a table arranged based on the mode of the elastic wave and the propagation direction of the elastic wave.

상기 d) 단계는, 상기 테이블에서 상기 제2 군속도의 진행 방향을 기준으로 복수의 제1 군속도 중 오차가 작게 발생되는 두 개를 선택하는 단계; 및 상기 두 개의 제1 군속도와 상기 제2 군속도를 선형조합으로 보상 군속도를 생성 단계;를 포함한다.The step d) may include selecting two of the plurality of first group velocities having a small error based on the traveling direction of the second group velocity from the table; and generating a compensated group velocity by linearly combining the two first group velocities and the second group velocity.

상기 h) 단계는, 아래 수학식을 더 이용해 손상 지수를 정의하는 방법.Step h) further uses the following equation to define the damage index.

Figure 112022113574830-pat00018
Figure 112022113574830-pat00018

Figure 112022113574830-pat00019
Figure 112022113574830-pat00019

Figure 112022113574830-pat00020
Figure 112022113574830-pat00020

여기서,

Figure 112022113574830-pat00021
는 기준신호
Figure 112022113574830-pat00022
의 이산화된 시간에서의 푸리에 변환,here,
Figure 112022113574830-pat00021
is the reference signal
Figure 112022113574830-pat00022
Fourier transform in discretized time of ,

Figure 112022113574830-pat00023
은 측정신호
Figure 112022113574830-pat00024
의 이산화된 시간에서의 푸리에 변환을 의미함.
Figure 112022113574830-pat00023
silver measurement signal
Figure 112022113574830-pat00024
Means the Fourier transform in discretized time of .

기타 실시예들의 구체적인 사항들은 상세한 설명 및 도면들에 포함되어 있다.Details of other embodiments are included in the detailed description and drawings.

본 발명에 따르면 다음과 같은 효과가 하나 혹은 그 이상 있다.According to the present invention, there is one or more of the following effects.

이론적 식으로부터 군속도 계산하하고, 이를 측정한 군속도로 보상하고, 방향에 따라 달라지는 군속도를 사용함으로써, 정확한 손상 위치를 추정하는 효과가 있다.By calculating the group velocity from the theoretical equation, compensating for it with the measured group velocity, and using the group velocity that varies depending on the direction, there is an effect of estimating the exact location of the damage.

본 발명의 효과들은 이상에서 언급한 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 청구범위의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.The effects of the present invention are not limited to the effects mentioned above, and other effects not mentioned will be clearly understood by those skilled in the art from the description of the claims.

도 1a는 본 발명의 실시예에서 판재 구조물에 부착된 압전기에서 생성된 탄성파를 사용하여 손상의 중심위치를 추정하는 방법을 설명하는데 참조되는 플로우 차트이다.
도 1b는 본 발명의 실시예에서 판재 구조물에 부착된 압전기에서 생성된 탄성파를 사용하여 손상의 중심위치를 추정하는 장치를 설명하는데 참조되는 도면이다.
도 2는 군속도를 계산하는 단계를 설명하는데 참조되는 도면이다.
도 3 내지 도 4는 본 발명의 실시예에 따른 신호 측정 단계를 설명하는데 참조되는 도면이다.
도 5는 도 1a의 S101의 상세 플로우 차트이다.
도 6은 탄성파의 모드를 설명하는데 참조되는 도면이다.
도 7은 이론적으로 계산한 군속도를 진행방향(각도)와 탄성파의 모드에 따라 테이블 형태로 정리하는 방법을 설명하는데 참조되는 도면이다.
도 8내지 도 9은 본 발명의 실시예에 따른 탄성파 군속도 측정 단계를 설명하는데 참조되는 도면이다.
도 10 내지 도 12는 본 발명의 실시예에 따른 손상 신호 추출 단계를 설명하는데 참조되는 도면이다.
도 13 내지 도 15는 본 발명의 실시예에 따른 1차원 특성 벡터 계산 단계를 설명하는데 참조되는 도면이다.
도 16 내지 도 17는 본 발명의 실시예에 따른 손상탐지의 수행 결과를 설명하는데 참조되는 도면이다.
1A is a flowchart referenced to describe a method of estimating the center position of a damage using elastic waves generated from a piezoelectric device attached to a plate structure in an embodiment of the present invention.
FIG. 1B is a diagram referenced to explain an apparatus for estimating the location of the center of damage using an elastic wave generated from a piezoelectric device attached to a plate material structure in an embodiment of the present invention.
2 is a reference diagram for explaining a step of calculating group velocity.
3 and 4 are diagrams referenced to describe a signal measurement step according to an embodiment of the present invention.
5 is a detailed flow chart of S101 in FIG. 1A.
6 is a reference diagram for explaining the mode of an elastic wave.
7 is a reference diagram for explaining a method of arranging theoretically calculated group velocities in a table form according to a traveling direction (angle) and a mode of an elastic wave.
8 to 9 are diagrams referenced to describe a step of measuring the group velocity of an elastic wave according to an embodiment of the present invention.
10 to 12 are diagrams referenced to describe a damaged signal extraction step according to an embodiment of the present invention.
13 to 15 are diagrams referenced to describe a one-dimensional feature vector calculation step according to an embodiment of the present invention.
16 and 17 are diagrams referenced to describe results of damage detection according to an embodiment of the present invention.

이하, 첨부된 도면을 참조하여 본 명세서에 개시된 실시 예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 이하의 설명에서 사용되는 구성요소에 대한 접미사 "모듈" 및 "부"는 명세서 작성의 용이함만이 고려되어 부여되거나 혼용되는 것으로서, 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다. 또한, 본 명세서에 개시된 실시 예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 명세서에 개시된 실시 예의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 명세서에 개시된 실시 예를 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되지 않으며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.Hereinafter, the embodiments disclosed in this specification will be described in detail with reference to the accompanying drawings, but the same or similar elements are given the same reference numerals regardless of reference numerals, and redundant description thereof will be omitted. The suffixes "module" and "unit" for components used in the following description are given or used together in consideration of ease of writing the specification, and do not have meanings or roles that are distinct from each other by themselves. In addition, in describing the embodiments disclosed in this specification, if it is determined that a detailed description of a related known technology may obscure the gist of the embodiment disclosed in this specification, the detailed description thereof will be omitted. In addition, the accompanying drawings are only for easy understanding of the embodiments disclosed in this specification, the technical idea disclosed in this specification is not limited by the accompanying drawings, and all changes included in the spirit and technical scope of the present invention , it should be understood to include equivalents or substitutes.

제1, 제2 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되지는 않는다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.Terms including ordinal numbers, such as first and second, may be used to describe various components, but the components are not limited by the terms. These terms are only used for the purpose of distinguishing one component from another.

어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.It is understood that when an element is referred to as being "connected" or "connected" to another element, it may be directly connected or connected to the other element, but other elements may exist in the middle. It should be. On the other hand, when an element is referred to as “directly connected” or “directly connected” to another element, it should be understood that no other element exists in the middle.

단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. Singular expressions include plural expressions unless the context clearly dictates otherwise.

본 출원에서, "포함한다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.In this application, terms such as "comprise" or "have" are intended to designate that there is a feature, number, step, operation, component, part, or combination thereof described in the specification, but one or more other features It should be understood that the presence or addition of numbers, steps, operations, components, parts, or combinations thereof is not precluded.

도 1a는 본 발명의 실시예에서 판재 구조물에 부착된 압전기에서 생성된 탄성파를 사용하여 손상의 중심위치를 추정하는 방법을 설명하는데 참조되는 플로우 차트이다.1A is a flowchart referenced to describe a method of estimating the center position of a damage using elastic waves generated from a piezoelectric device attached to a plate structure in an embodiment of the present invention.

도면을 참조하면, 본발명의 실시예에 따른 방법(S10)은, 판재 구조물에 부착된 압전 모듈에서 생성된 탄성파를 사용하여 손상의 위치를 추정하기 위한 것이다. 방법(S10)은, 압전기(Actuator)에서 탄성파를 생성하고 압전센서에서 이를 수신하는 능동적 손상 탐지 방법(Active Sensing Method)을 사용한다. 방법(S10)은, 압전기(도 1b의 110)와 센서(도 1b의 120)를 판재 구조물에 부착하고, 압전기에서 생성한 탄성파가 손상에서 반사되어 센서에서 측정되면 이를 사용하여 손상 위치를 탐지할 수 있다.Referring to the drawings, a method (S10) according to an embodiment of the present invention is for estimating a location of damage using an elastic wave generated by a piezoelectric module attached to a plate structure. The method S10 uses an active sensing method in which elastic waves are generated by a piezoelectric actuator and received by a piezoelectric sensor. In the method S10, the piezoelectric (110 in FIG. 1B) and the sensor (120 in FIG. 1B) are attached to the plate structure, and when the elastic wave generated by the piezoelectric is reflected from the damage and measured by the sensor, the location of the damage can be detected using it. can

실시예에 따라, 방법(S10)은, 손상 위치를 정량적으로 탐지하는 소프트웨어로 구현될 수 있다. 실시예에 따라, 방법(S10)의 각각의 단계는, 적어도 하나의 프로세서(도 1b의 170)에 의해 구현될 수 있다. Depending on the embodiment, the method (S10) may be implemented in software that quantitatively detects the damaged location. According to embodiments, each step of the method S10 may be implemented by at least one processor ( 170 in FIG. 1B ).

방법(S10)은, 판재 구조물에 부착된 압전기에서 생성된 탄성파를 사용하여 손상의 위치를 추정할 수 있다.In the method S10, the location of the damage may be estimated using elastic waves generated from the piezoelectric attached to the plate structure.

방법(S10)은, 압전기로부터의 탄성파에 기초한 신호를 측정하는 단계(S100), 측정된 신호에 포함되는 잡음을 제거하는 단계(S101), Transfer Matrix Method(TMM)을 이용하여 이론적인 방법으로 군속도를 계산하는 단계(S102), 압전 모듈에서 발생된 입력 신호와 잡음이 제거된 신호의 교차상관관계(Cross-Correlation)를 계산하여 탄성파의 군속도(Group Velocity)를 측정하고 이론적인 방법으로 계산한 군속도를 보상하는 단계(S103), 상기 군속도 및 기준 신호(Baseline Signal)와의 비교를 통해, 손상 신호(Scattered signal)를 추출하는 단계(S104), 상기 손상 신호에 대한 힐버트 변환(Hilbert Transform)에 기초하여 1차원 특성 벡터(Feature Vector)를 계산하는 단계(S105), 탄성파의 진행방향을 고려한 보상된 군속도 정보를 이용하여 상기 1차원 특성벡터를 2차원으로 사상하여(Mapping) 2차원 특성 벡터를 계산하는 단계 (S106), 손상 정도에 가중치를 부여하는 스칼라 값인 손상 지수(Damage Index)를 정의하는 단계(S107) 및 상기 2차원 특성 벡터와 상기 손상 지수에 기초한 가시화를 수행하여, 손상 위치를 추정하는 단계(S108)를 포함할 수 있다.The method (S10) includes a step of measuring a signal based on elastic waves from a piezoelectric unit (S100), a step of removing noise included in the measured signal (S101), and a group velocity in a theoretical manner using a transfer matrix method (TMM). Step of calculating (S102), the cross-correlation between the input signal generated by the piezoelectric module and the noise-removed signal is calculated to measure the group velocity of the elastic wave, and the group velocity calculated by a theoretical method Compensating for (S103), extracting a scattered signal through comparison with the group velocity and a baseline signal (S104), based on the Hilbert transform for the damaged signal Calculating a 1-dimensional feature vector (S105), calculating the 2-dimensional feature vector by mapping the 1-dimensional feature vector into 2 dimensions using the compensated group velocity information considering the traveling direction of the elastic wave Step (S106), defining a damage index, which is a scalar value that gives weight to the degree of damage (S107), and estimating a damage location by performing visualization based on the two-dimensional feature vector and the damage index (S108) may be included.

S102 단계는, 아래의 수학식을 이용해 군속도를 계산할 수 있다.In step S102, the group velocity can be calculated using the following equation.

[수학식][mathematical expression]

Figure 112022113574830-pat00025
Figure 112022113574830-pat00025

Figure 112022113574830-pat00026
Figure 112022113574830-pat00026

Figure 112022113574830-pat00027
Figure 112022113574830-pat00027

Figure 112022113574830-pat00028
Figure 112022113574830-pat00028

Figure 112022113574830-pat00029
Figure 112022113574830-pat00029

Figure 112022113574830-pat00030
Figure 112022113574830-pat00030

Figure 112022113574830-pat00031
는 Transfer Matrix Method를 이용하여 구성한 운동방정식,
Figure 112022113574830-pat00031
is the equation of motion constructed using the Transfer Matrix Method,

Figure 112022113574830-pat00032
는 운동방정식에 부여하는 경계조건을 만족하는 해를 찾을때 사용하는 식,
Figure 112022113574830-pat00032
is an expression used to find a solution that satisfies the boundary condition given to the equation of motion,

Figure 112022113574830-pat00033
는 경계조건을 만족하는 파수(Wave Number),
Figure 112022113574830-pat00033
is the wave number that satisfies the boundary condition,

Figure 112022113574830-pat00034
는 경계조건을 만족하는 주파수,
Figure 112022113574830-pat00034
is the frequency that satisfies the boundary condition,

Figure 112022113574830-pat00035
는 파의 진행 방향 각도,
Figure 112022113574830-pat00035
is the angle of propagation of the wave,

Figure 112022113574830-pat00036
는 응력(Stress)과 변형률(Strain) 관계를 정의하는데 사용되는 구성방정식 행렬(Constitutive Matrix),
Figure 112022113574830-pat00036
is a constitutive matrix used to define the relationship between stress and strain,

Figure 112022113574830-pat00037
는 위상 속도(Phase Velocity),
Figure 112022113574830-pat00037
is the phase velocity,

Figure 112022113574830-pat00038
는 위상 속도 벡터,
Figure 112022113574830-pat00038
is the phase velocity vector,

Figure 112022113574830-pat00039
는 Slowness Vector,
Figure 112022113574830-pat00039
is the Slowness Vector,

Figure 112022113574830-pat00040
는 군속도(Group Velocity),
Figure 112022113574830-pat00040
is the group velocity,

Figure 112022113574830-pat00041
는 Slowness Curve에서 군속도 벡터와 Slowness Curve 관계의 각도,
Figure 112022113574830-pat00041
is the angle between the group velocity vector and the slowness curve in the slowness curve,

S100 내지 S108 단계는 프로세서(170)에 의해 동작될 수 있다.Steps S100 to S108 may be operated by the processor 170 .

도 1b는 본 발명의 실시예에서 판재 구조물에 부착된 압전기에서 생성된 탄성파를 사용하여 손상의 중심위치를 추정하는 장치를 설명하는데 참조되는 플로우 차트이다.FIG. 1B is a flowchart referenced to explain an apparatus for estimating the center position of a damage using elastic waves generated from a piezoelectric device attached to a plate structure in an embodiment of the present invention.

도면을 참조하면, 장치(100)는, 압전기(110), 센서(120) 및 프로세서(170)를 포함할 수 있다. 장치(100)는, 본 발명의 실시예에 따른 방법(S10)을 구현할 수 있다.Referring to the drawing, the device 100 may include a piezoelectric 110, a sensor 120, and a processor 170. Apparatus 100 may implement method S10 according to an embodiment of the present invention.

압전기(110)는, 판재 구조물에 부착될 수 있다. The piezoelectric 110 may be attached to a plate structure.

압전기(110)는, 탄성파(Lamb wave)를 발생시킬 수 있다. 탄성파는 비선형 특성을 가진다. 이러한 특성으로 인해, 압전기(110)에서 하나의 탄성파를 발생시킨 경우에도 센서(120)는, 여러개의 중첩된 신호를 감지하게 된다.The piezoelectric 110 may generate a lamb wave. Elastic waves have nonlinear characteristics. Due to this characteristic, even when one elastic wave is generated by the piezoelectric 110, the sensor 120 detects several overlapping signals.

센서(120)는, 탄성파를 감지하여 전기적 신호로 전환할 수 있다. 센서(120)는, 전기적 신호를 프로세서(170)에 제공할 수 있다.The sensor 120 may detect an elastic wave and convert it into an electrical signal. The sensor 120 may provide an electrical signal to the processor 170 .

한편, 실시예에 따라, 압전기(110)와 센서(120)는 일체로 형성될 수 있다. 압전기(110)와 센서(120)가 일체로 형성된 구성 요소는, 압전 모듈로 명명될 수 있다. Meanwhile, according to embodiments, the piezoelectric 110 and the sensor 120 may be integrally formed. A component in which the piezoelectric 110 and the sensor 120 are integrally formed may be referred to as a piezoelectric module.

프로세서(170)는, 센서(120)로부터 수신된 전기적 신호에 기초하여, 손상의 위치를 추정할 수 있다. 프로세서(170)는, 도 1a에서 설명된 각 단계를 수행할 수 있다.The processor 170 may estimate the location of the damage based on the electrical signal received from the sensor 120 . The processor 170 may perform each step described in FIG. 1A.

프로세서(170)는, ASICs (application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서(processors), 제어기(controllers), 마이크로 컨트롤러(micro-controllers), 마이크로 프로세서(microprocessors), 기타 기능 수행을 위한 전기적 유닛 중 적어도 하나를 이용하여 구현될 수 있다.The processor 170 includes application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), processors, and controllers. It may be implemented using at least one of controllers, micro-controllers, microprocessors, and electrical units for performing other functions.

도 3 내지 도 4는 본 발명의 실시예에 따른 신호 측정 단계를 설명하는데 참조되는 도면이다.3 and 4 are diagrams referenced to describe a signal measurement step according to an embodiment of the present invention.

프로세서(170)는, 압전 모듈로부터의 탄성파에 기초한 신호를 측정할 수 있다(S100). 도면을 참조하면, 신호 측정 단계(S100)는, 다음과 같은 순서를 갖는다. 판재 구조물에 부착된 압전기(Actuator)에서 생성한 입력 신호(Input Signal)에 따라 압전기가 진동하고, 압전기의 진동으로 인해 판재 구조물이 진동하게 된다. 판재 구조물이 진동함에 따라 전파되는 파형을 탄성파(Elastic Wave)라 한다. 이렇게 전파된 탄성파를 센서(Sensor)에서 수신함으로써 신호 측정이 종료되고, 이 때 센서에서 수신된 신호를 측정 신호(Measured Signal)라 한다. The processor 170 may measure a signal based on elastic waves from the piezoelectric module (S100). Referring to the figure, the signal measurement step (S100) has the following sequence. The piezoelectric vibrates according to the input signal generated by the piezoelectric actuator attached to the plate structure, and the plate structure vibrates due to the vibration of the piezoelectric. The wave propagating as the plate structure vibrates is called an elastic wave. Signal measurement is terminated by receiving the propagated acoustic wave at the sensor, and at this time, the signal received by the sensor is referred to as a measured signal.

측정 신호는 판재 구조물에 손상이 있는 경우 손상을 경유하지 않고 측정되는 신호일 수도 있고, 손상을 경유하고 측정된 신호일 수도 있다. 판재 구조물에 손상이 없는 경우에, 센서에서 측정된 신호도 측정 신호로 분류될 수 있다.The measurement signal may be a signal measured without passing through the damage when there is damage to the plate structure, or a signal measured through the damage. When there is no damage to the plate structure, the signal measured by the sensor may also be classified as a measurement signal.

도 3에서 압전기(Actuator)에서 발생시키는 탄성파는 아래의 수식으로 정의된다.In FIG. 3, the elastic wave generated by the piezoelectric actuator is defined by the following formula.

Figure 112022113574830-pat00042
Figure 112022113574830-pat00042

여기서,

Figure 112022113574830-pat00043
는 시간,
Figure 112022113574830-pat00044
는 반송파(Carrier Signal)의 주파수[Hz],
Figure 112022113574830-pat00045
는 신호파(Signal Wave)의 한 주기에 포함되는 반송파의 개수,
Figure 112022113574830-pat00046
는 진폭,
Figure 112022113574830-pat00047
는 압전기에서 발생시키는 입력 신호(Input Signal)의 크기임.here,
Figure 112022113574830-pat00043
time,
Figure 112022113574830-pat00044
is the frequency of the carrier signal [Hz],
Figure 112022113574830-pat00045
is the number of carriers included in one cycle of the signal wave,
Figure 112022113574830-pat00046
is the amplitude,
Figure 112022113574830-pat00047
is the magnitude of the input signal generated by the piezoelectric.

샘플링 주파수(Sampling Frequency)

Figure 112022113574830-pat00048
[Hz]는 일정하기 때문에, 입력 신호의 정의역(Domain)을 시간이 아니라, 데이터의 순서를 나타내는 색인(Index)
Figure 112022113574830-pat00049
으로 표현할 수 있으며, 입력 신호는 아래의 수학식으로 표현된다.Sampling Frequency
Figure 112022113574830-pat00048
Since [Hz] is constant, the domain of the input signal is not time, but an index indicating the order of data.
Figure 112022113574830-pat00049
It can be expressed as , and the input signal is expressed by the following equation.

Figure 112022113574830-pat00050
Figure 112022113574830-pat00050

색인은 0부터 시작하는 값이며, 색인

Figure 112022113574830-pat00051
은 시간(Time)
Figure 112022113574830-pat00052
와 아래의 수학식과 같은 관계를 갖는다.index is a value starting from 0, index
Figure 112022113574830-pat00051
is Time
Figure 112022113574830-pat00052
and has the same relationship as the equation below.

Figure 112022113574830-pat00053
Figure 112022113574830-pat00053

도 4는 입력 신호를 구성하는 반송파와 신호파를 도시한다.4 shows a carrier wave and a signal wave constituting an input signal.

도 5는 도 1a의 S101의 상세 플로우 차트이다.5 is a detailed flow chart of S101 in FIG. 1A.

프로세서(170)는, 측정된 신호에 포함되는 잡음을 제거할 수 있다. 도면을 참조하면, 잡음 제거 단계(S101)는 측정한 신호(Measured Signal)에 포함되어 있는 잡음을 제거하는 단계이다. 실시예에 따라, 잡음 제거 단계(S101)는, 생략될 수 있다.The processor 170 may remove noise included in the measured signal. Referring to the figure, the noise removal step (S101) is a step of removing noise included in the measured signal (Measured Signal). Depending on the embodiment, the noise removal step ( S101 ) may be omitted.

잡음은 손상 탐지에 사용되는 신호에서 원치 않는 주파수를 갖고 있는 모든 신호를 통칭한다. 잡음 제거 단계(S101)는, S200 단계 내지 S202 단계를 포함할 수 있다. S200 단계 내지 S202 단계는, 프로세서(170)에 의해 동작될 수 있다.Noise collectively refers to all signals with unwanted frequencies in signals used for damage detection. The noise removal step ( S101 ) may include steps S200 to S202 . Steps S200 to S202 may be operated by the processor 170 .

측정 신호 획득 단계(S200)는, 신호측정(S100) 단계에서 센서에 도달한 탄성파를 측정한 신호(Measured Signal)을 획득하는 단계이다.The step of acquiring the measured signal (S200) is a step of obtaining a measured signal obtained by measuring the elastic wave reaching the sensor in the step of measuring the signal (S100).

신호에 잡음이 있다고 판단되는 경우, 프로세서(170)는, 고속 이산 푸리에 변환(Fast Fourier Transform)을 이용하여 측정 신호의 중심 주파수를 계산한다(S201). When it is determined that the signal has noise, the processor 170 calculates the center frequency of the measured signal using a fast discrete Fourier transform (S201).

프로세서(170)는, 중심 주파수를 이용하여 대역 통과 주파수의 하한과 상한을 결정하고, 측정된 신호에 대역 통과 필터(Band-Pass Filter)를 적용하여 필터링된 신호

Figure 112022113574830-pat00054
를 생성한다(S202). The processor 170 determines the lower limit and the upper limit of the band pass frequency using the center frequency, and applies a band-pass filter to the measured signal to filter the signal.
Figure 112022113574830-pat00054
is generated (S202).

이와 같은 방법을 이용하면, 잡음이 없고 원하는 주파수를 갖는 신호를 재구성할 수 있다. 만약 잡음 제거가 필요하지 않는다면, 측정된 신호를 필터링을 수행한 신호

Figure 112022113574830-pat00055
로 간주할 수 있다.Using this method, a signal without noise and having a desired frequency can be reconstructed. If noise removal is not required, the measured signal is filtered
Figure 112022113574830-pat00055
can be regarded as

도 2는 군속도를 계산하는 단계를 설명하는데 참조되는 도면이다.2 is a reference diagram for explaining a step of calculating group velocity.

프로세서(170)는, 탄성파의 제1 군속도를 탄성체(Elastic Material)의 운동방정식을 이용하여 계산할 수 있다. The processor 170 may calculate the first group velocity of the elastic wave using an equation of motion of an elastic material.

프로세서(170)는 복합재를 구성하는 각 층(Lamina)에 대한 운동방정식을 세우고, Transfer Matrix Method 기법으로 복합재 평판에 대한 운동방정식을 생성할 수 있다. 여기서, 각 층의 경계면에서의 응력과 변위가 같다는 가정이 이용될 수 있다.The processor 170 may establish an equation of motion for each layer (lamina) constituting the composite material and generate an equation of motion for the composite material flat plate using a transfer matrix method. Here, the assumption that stress and displacement at the interface of each layer are the same may be used.

복합재 평판에 대한 운동방정식은 아래와 같다. 아래 수학식은 Transfer Matrix Method를 이용하여 구성한 운동방정식이다.The equation of motion for the composite plate is as follows. The equation below is an equation of motion constructed using the Transfer Matrix Method.

Figure 112022113574830-pat00056
Figure 112022113574830-pat00056

여기서,

Figure 112022113574830-pat00057
는 변위,
Figure 112022113574830-pat00058
응력,
Figure 112022113574830-pat00059
는 응력과 변위가 각 층으로 전달되는 과정에서 만들어지는 전달 행렬(Transfer Matrix)임. 하첨자 top은 복합재 평판의 상단을 의미하고, mid는 복합재 layer의 중간층을 의미함.here,
Figure 112022113574830-pat00057
is the displacement,
Figure 112022113574830-pat00058
stress,
Figure 112022113574830-pat00059
is a transfer matrix created in the process of transferring stress and displacement to each layer. The subscript top means the top of the composite plate, and mid means the middle layer of the composite layer.

프로세서(170)는, 경계조건이 부여된 아래의 수학식을 이용하여, 경계 조건에서의 파수 및 주파수를 계산할 수 있다. 아래의 수학식은 운동방정식에 부여하는 경계조건을 만족하는 해를 찾을 때 사용하는 수학식이다.The processor 170 may calculate the wave number and frequency under the boundary condition using the following equation to which the boundary condition is assigned. The equation below is used to find a solution that satisfies the boundary condition given to the equation of motion.

Figure 112022113574830-pat00060
Figure 112022113574830-pat00060

여기서,

Figure 112022113574830-pat00061
는 전달 행렬로
Figure 112022113574830-pat00062
는 응력(Stress)과 변형률(Strain) 관계를 정의하는데 사용되는 구성방정식 행렬(Constitutive Matrix), 파수
Figure 112022113574830-pat00063
, 주파수
Figure 112022113574830-pat00064
, 파의 진행방향을 나타내는 각도
Figure 112022113574830-pat00065
로 구성됨. here,
Figure 112022113574830-pat00061
is the transfer matrix
Figure 112022113574830-pat00062
is the constitutive matrix used to define the relationship between stress and strain, wavenumber
Figure 112022113574830-pat00063
, frequency
Figure 112022113574830-pat00064
, the angle representing the direction of propagation of the wave
Figure 112022113574830-pat00065
Consists of.

프로세서(170)는, 경계조건을 만족하는 운동방정식 계산을 통해 경계조건을 만족하는 파수

Figure 112022113574830-pat00066
, 주파수
Figure 112022113574830-pat00067
, 파의 진행방향 각도
Figure 112022113574830-pat00068
를 구할 수 있다. The processor 170 calculates the wave number that satisfies the boundary condition through the calculation of the equation of motion that satisfies the boundary condition.
Figure 112022113574830-pat00066
, frequency
Figure 112022113574830-pat00067
, the angle of propagation of the wave
Figure 112022113574830-pat00068
can be obtained.

프로세서(170)는, 파수

Figure 112022113574830-pat00069
와 주파수
Figure 112022113574830-pat00070
를 사용하여 위상 속도(Phase Velocity)
Figure 112022113574830-pat00071
를 아래의 식으로 계산할 수 있다.Processor 170, wave number
Figure 112022113574830-pat00069
and frequency
Figure 112022113574830-pat00070
Use Phase Velocity
Figure 112022113574830-pat00071
can be calculated with the formula below.

Figure 112022113574830-pat00072
Figure 112022113574830-pat00072

프로세서(170)는, 계산한 위상 속도를 이용하여, Slowness Curve를 구할 수 있다. Slowness Curve는 파의 진행 각도에 따라 달라지는 속도 그래프를 기하학적인 관점에서 역으로 도시한 Curve이며, 이를 통하여 평면상에서 전파되는 군속도를 계산할 수 있다. 프로세서(17)는, Slowness Curve위의 점을 나타내는 위치 벡터인 Slowness Vector

Figure 112022113574830-pat00073
를 아래의 수식으로 계산할 수 있다.The processor 170 may obtain a slowness curve using the calculated phase speed. The slowness curve is a curve that reverses the speed graph that varies depending on the propagation angle of the wave from a geometric point of view, and through this, the group velocity propagating on a plane can be calculated. The processor 17 is a slowness vector, which is a position vector representing a point on the slowness curve.
Figure 112022113574830-pat00073
can be calculated with the formula below.

Figure 112022113574830-pat00074
Figure 112022113574830-pat00074

Slowness Curve는 도 2에 도시되어 있다.The slowness curve is shown in FIG. 2 .

프로세서(170)는, Slowness Curve와 군속도(Group Velocity)

Figure 112022113574830-pat00075
, 위상속도
Figure 112022113574830-pat00076
의 기하적인 관계를 이용하여 제1 군속도를 계산할 수 있다. 프로세서(170)는, 아래의 수학식을 통해 제1 군속도를 계산할 수 있다.The processor 170 determines the slowness curve and the group velocity.
Figure 112022113574830-pat00075
, phase velocity
Figure 112022113574830-pat00076
The first group velocity can be calculated using the geometric relationship of The processor 170 may calculate the first group velocity through the following equation.

Figure 112022113574830-pat00077
Figure 112022113574830-pat00077

Figure 112022113574830-pat00078
Figure 112022113574830-pat00078

Figure 112022113574830-pat00079
는 Slowness Curve에서 제1 군속도 벡터와 Slowness Curve 관계의 각도를 의미함.
Figure 112022113574830-pat00079
means the angle of the relationship between the first group velocity vector and the Slowness Curve in the Slowness Curve.

이렇게 계산을 하면, 제1 군속도는 각 주파수 마다 단일 또는 다양한 파형의 형태(모드)를 갖는다. 즉, 프로세서(170)는, 탄성파의 모드에 따라 주파수별로 다양한 제1 군속도를 계산할 수 있다. 프로세서(170)는, 계산된 제1 군속도 결과를, 탄성파의 모드별로 파의 진행 방향(각도) 및 군속도 데이터를 테이블 형태로 정리할 수 있다. When calculated in this way, the first group velocity has a single or various waveform shapes (modes) for each frequency. That is, the processor 170 may calculate various first group velocities for each frequency according to the mode of the elastic wave. The processor 170 may organize the calculated first group velocity results in the form of a table in which wave propagation directions (angles) and group velocity data for each mode of the elastic wave.

도 6은 탄성파가 전달될 때, 매개물에서 관측되는 변형의 고유한 형태를 나타내는 모드를 설명하는데 참조되는 도면이다. 일반적으로 모드는 판재 구조물의 중립면을 기준으로 구조물이 대칭 형상으로 변화하면서 파가 전달되는 대칭모드(S Mode 또는 Symmetry Mode), 중립면을 기준으로 비대칭 형상으로 변화하면서 파가 전달되는 비대칭모드(A Mode 또는 Anti-Symmetry Mode), 판재 구조물의 면내에서의 형상이 변화하면서 탄성파가 전달되는 쉐어 호리존탈 모드(SH 모드 또는 Shear - Horizontal Mode)로 구분할 수 있다. 그리고 각각의 모드의 개수는 무한대이며, 만약 관심 모드 차수가 N차까지라면, 0차 모드부터 N차 모드까지 확인하게 된다.6 is a diagram referenced to explain a mode representing a unique form of deformation observed in a medium when an elastic wave is transmitted. In general, the mode is a symmetric mode (S Mode or Symmetry Mode) in which waves are transmitted while the structure changes to a symmetrical shape based on the neutral plane of the plate structure, and an asymmetric mode in which waves are transmitted while changing to an asymmetric shape based on the neutral plane ( A Mode or Anti-Symmetry Mode), and Shear Horizontal Mode (SH Mode or Shear-Horizontal Mode) in which elastic waves are transmitted while the shape of the plate structure changes in plane. The number of each mode is infinite, and if the order of the mode of interest is up to the Nth order, the 0th to Nth order modes are identified.

도 7에는 이론적으로 계산한 군속도를 진행 방향(각도)와 모드에 따라 테이블 형태로 정리하는 방법을 설명하는데 참조되는 도면이다. 테이블에는 예로써 각도는 1도씩 변화시켜가면서 360도까지 확인하고, 각각의 모드는 0차부터 N차까지 정리하는 형태로 나타내었다.7 is a reference diagram for explaining a method of arranging theoretically calculated group velocities in the form of a table according to the traveling direction (angle) and mode. In the table, as an example, the angle is changed by 1 degree and checked up to 360 degrees, and each mode is shown in the form of organizing from 0th to Nth order.

도 8 내지 도 9은 본 발명의 실시예에 따른 탄성파 군속도 측정 및 보상 단계를 설명하는데 참조되는 도면이다.8 to 9 are diagrams referenced to describe a step of measuring and compensating for the group velocity of an elastic wave according to an embodiment of the present invention.

프로세서(170)는, 압전 모듈에서 발생된 입력 신호와 잡음이 제거된 신호의 교차상관관계(Cross-Correlation)를 계산하여 탄성파의 군속도(Group Velocity)를 측정할 수 있다(S102). 도면을 참조하면, 탄성파 군속도 측정 단계(S102)는 잡음 제거 단계(S101)에서 특정 주파수만 갖고 있는 필터링 된 신호

Figure 112022113574830-pat00080
와 신호 측정 단계(S100)에서 압전기(110)에서 발생시킨 입력 신호
Figure 112022113574830-pat00081
를 이용하여, 교차상관관계(Cross-Correlation)을 계산함으로써 탄성파의 군속도를 측정한다.The processor 170 may calculate a cross-correlation between the input signal generated by the piezoelectric module and the noise-removed signal to measure the group velocity of the elastic wave (S102). Referring to the figure, the elastic wave group velocity measurement step (S102) is a filtered signal having only a specific frequency in the noise removal step (S101).
Figure 112022113574830-pat00080
and the input signal generated by the piezoelectric 110 in the signal measuring step (S100)
Figure 112022113574830-pat00081
Using , the group velocity of the elastic wave is measured by calculating the cross-correlation.

두 신호의 교차상관관계는 두 신호가 정량적으로 유사한 정도를 계산하기 위한 방법이다. 정의역을 색인으로 갖는 신호

Figure 112022113574830-pat00082
와 신호
Figure 112022113574830-pat00083
의 교차상관관계는 아래의 수학식으로 표현된다. Cross-correlation of two signals is a method for calculating the degree of quantitative similarity between two signals. Signals with Domain as Index
Figure 112022113574830-pat00082
and signal
Figure 112022113574830-pat00083
The cross-correlation of is expressed by the following equation.

Figure 112022113574830-pat00084
Figure 112022113574830-pat00084

여기서,

Figure 112022113574830-pat00085
는 신호
Figure 112022113574830-pat00086
이 평행 이동한 정도를 나타내는 색인이며,
Figure 112022113574830-pat00087
는 신호
Figure 112022113574830-pat00088
Figure 112022113574830-pat00089
만큼 평행 이동한 신호와 신호
Figure 112022113574830-pat00090
과의 교차상관관계 계산 결과를 의미함.here,
Figure 112022113574830-pat00085
signal
Figure 112022113574830-pat00086
It is an index indicating the degree of translation,
Figure 112022113574830-pat00087
signal
Figure 112022113574830-pat00088
go
Figure 112022113574830-pat00089
signals and signals translated by
Figure 112022113574830-pat00090
It means the result of cross-correlation calculation with

도 8은 교차상관관계의 의미를 가시적으로 나타낸다.8 visually shows the meaning of cross-correlation.

도 8의 지시부호 510는 신호

Figure 112022113574830-pat00091
, 지시부호 520는 신호
Figure 112022113574830-pat00092
, 지시부호 530는
Figure 112022113574830-pat00093
이 +5만큼 평행 이동한
Figure 112022113574830-pat00094
Figure 112022113574830-pat00095
을 도시한다. 지시부호 540은
Figure 112022113574830-pat00096
계산 결과와 지시부호 530에서 파란색 사각형 안에 포함되는 두 신호의 곱의 결과를 화살표 및 좌표로 표시한다. 도 8에서
Figure 112022113574830-pat00097
이 +5만큼 평행 이동하면, 신호
Figure 112022113574830-pat00098
과 가장 많이 겹치는 것을 확인할 수 있다. 이처럼 교차상관관계의 의미는 정량적으로 두 신호의 유사성을 계산하는 것이다. 교차상관관계 값이 최대가 될 때 두 신호가 가장 유사하다고 할 수 있고, 교차상관관계 값이 최대가 되기 위해 신호
Figure 112022113574830-pat00099
이 얼마나 평행이동 해야 하는지 계산을 통해 확인 가능하다.Indicator 510 in FIG. 8 is a signal
Figure 112022113574830-pat00091
, indicator 520 is a signal
Figure 112022113574830-pat00092
, the indicator 530 is
Figure 112022113574830-pat00093
translated by +5
Figure 112022113574830-pat00094
and
Figure 112022113574830-pat00095
shows Indicator 540 is
Figure 112022113574830-pat00096
The calculation result and the multiplication result of the two signals included in the blue rectangle at indicator 530 are indicated by arrows and coordinates. in Figure 8
Figure 112022113574830-pat00097
If this parallel shifts by +5, the signal
Figure 112022113574830-pat00098
It can be seen that the most overlap with . As such, the meaning of cross-correlation is to quantitatively calculate the similarity between two signals. Two signals can be said to be most similar when the cross-correlation value is maximized, and the signal for the cross-correlation value to be maximum
Figure 112022113574830-pat00099
It is possible to check how much this should be translated through calculation.

따라서 교차상관관계의 이러한 특성을 이용하면 잡음 제거 단계(S101)에서 특정 주파수만 갖고 있는 필터링 된 신호

Figure 112022113574830-pat00100
에서 신호 측정 단계(S100)에서 압전기(110)에서 발생시킨 입력 신호
Figure 112022113574830-pat00101
가 위치한 색인을 계산할 수 있다. 잡음 제거 단계(S101)에서 특정 주파수만 갖고 있는 필터링 된 신호
Figure 112022113574830-pat00102
와 신호 측정 단계(S100)에서 압전기(110)에서 발생시킨 입력 신호
Figure 112022113574830-pat00103
의 교차상관관계는 아래의 수학식으로 표현할 수 있다.Therefore, using this characteristic of cross-correlation, the filtered signal having only a specific frequency in the noise removal step (S101)
Figure 112022113574830-pat00100
In the signal measurement step (S100), the input signal generated by the piezoelectric 110
Figure 112022113574830-pat00101
The index at which is located can be calculated. The filtered signal having only a specific frequency in the noise removal step (S101)
Figure 112022113574830-pat00102
and the input signal generated by the piezoelectric 110 in the signal measuring step (S100)
Figure 112022113574830-pat00103
The cross-correlation of can be expressed by the following equation.

Figure 112022113574830-pat00104
Figure 112022113574830-pat00104

Figure 112022113574830-pat00105
가 위치한 색인
Figure 112022113574830-pat00106
Figure 112022113574830-pat00107
값이 최대가 될 때,
Figure 112022113574830-pat00108
가 평행 이동한 색인과 동일하다. 이를 수학식으로 표현하면 아래와 같다.
Figure 112022113574830-pat00105
the index at which
Figure 112022113574830-pat00106
Is
Figure 112022113574830-pat00107
When the value is maximum,
Figure 112022113574830-pat00108
is equal to the translated index. Expressing this mathematically, it is as follows.

Figure 112022113574830-pat00109
Figure 112022113574830-pat00109

하지만 교차상관관계는 도 8에서 확인되는 바와 같이, 두 신호의 진폭(Amplitude)를 곱함으로써 계산된다. 따라서 잡음 제거 단계(S101)에서 특정 주파수만 갖는 필터링 된 신호

Figure 112022113574830-pat00110
에서 신호 측정 단계(S100)에서 압전기(110)에서 발생시킨 입력 신호
Figure 112022113574830-pat00111
가 위치한 색인을 올바르게 계산하기 위해서는 두 신호의 진폭을 정규화(Normalization) 해야 한다. 두 신호의 정규화는 각 신호의 양의 무한대 Norm을 이용할 수 있다. 이를 수학식으로 표현하면 아래와 같다.However, as shown in FIG. 8, the cross-correlation is calculated by multiplying the amplitudes of the two signals. Therefore, in the noise removal step (S101), the filtered signal having only a specific frequency
Figure 112022113574830-pat00110
In the signal measurement step (S100), the input signal generated by the piezoelectric 110
Figure 112022113574830-pat00111
In order to correctly calculate the index where is located, the amplitudes of the two signals must be normalized. Normalization of two signals can use the positive infinity norm of each signal. Expressing this mathematically, it is as follows.

Figure 112022113574830-pat00112
Figure 112022113574830-pat00112

Figure 112022113574830-pat00113
Figure 112022113574830-pat00113

정규화 된 두 신호를 이용하여 계산한 교차상관관계는 아래의 수학식과 같다.The cross-correlation calculated using the two normalized signals is as follows.

Figure 112022113574830-pat00114
Figure 112022113574830-pat00114

그리고

Figure 112022113574830-pat00115
가 위치한 색인
Figure 112022113574830-pat00116
은 아래의 수학식으로 계산할 수 있다.and
Figure 112022113574830-pat00115
the index at which
Figure 112022113574830-pat00116
can be calculated by the formula below.

Figure 112022113574830-pat00117
Figure 112022113574830-pat00117

그리고 샘플링 주파수

Figure 112022113574830-pat00118
가 일정하기 때문에
Figure 112022113574830-pat00119
가 위치한 색인
Figure 112022113574830-pat00120
은 은 아래의 수학식을 이용하여 입력 신호
Figure 112022113574830-pat00121
가 위치한 시간
Figure 112022113574830-pat00122
을 계산할 수 있다.and the sampling frequency
Figure 112022113574830-pat00118
because is constant
Figure 112022113574830-pat00119
the index at which
Figure 112022113574830-pat00120
is the input signal using the equation below
Figure 112022113574830-pat00121
time at which
Figure 112022113574830-pat00122
can be calculated.

Figure 112022113574830-pat00123
Figure 112022113574830-pat00123

Figure 112022113574830-pat00124
의 의미는 잡음 제거 단계(S101)에서 특정 주파수만 갖고 있는 필터링 된 신호
Figure 112022113574830-pat00125
에서 입력 신호
Figure 112022113574830-pat00126
가 위치한 시간이며, 즉 이는 센서에서 입력 신호를 측정한 시간이 된다. 따라서
Figure 112022113574830-pat00127
번째 경로에서 압전기(110)와 센서(120) 사이의 거리
Figure 112022113574830-pat00128
를 알고,
Figure 112022113574830-pat00129
번째 경로에서 입력 신호
Figure 112022113574830-pat00130
가 센서에서 측정된
Figure 112022113574830-pat00131
을 알면
Figure 112022113574830-pat00132
번째 경로에서의 탄성파의 군속도(Group Velocity)
Figure 112022113574830-pat00133
를 아래의 수학식으로 계산할 수 있다.
Figure 112022113574830-pat00124
The meaning of is the filtered signal having only a specific frequency in the noise removal step (S101)
Figure 112022113574830-pat00125
input signal from
Figure 112022113574830-pat00126
is the time at which is located, that is, the time at which the input signal is measured by the sensor. thus
Figure 112022113574830-pat00127
The distance between the piezoelectric 110 and the sensor 120 in the th path
Figure 112022113574830-pat00128
know,
Figure 112022113574830-pat00129
input signal in the second path
Figure 112022113574830-pat00130
is measured at the sensor
Figure 112022113574830-pat00131
if you know
Figure 112022113574830-pat00132
Group Velocity of Elastic Wave in the th Path
Figure 112022113574830-pat00133
can be calculated with the formula below.

Figure 112022113574830-pat00134
Figure 112022113574830-pat00134

프로세서(170)는, p번째 경로의 신호로부터 측정한 제2 군속도

Figure 112022113574830-pat00135
와 운동방정식을 이용하여 계산한 제1 군속도
Figure 112022113574830-pat00136
를 이용하여 보상 군속도를 획득할 수 있다. The processor 170 measures the second group velocity from the signal of the p-th path.
Figure 112022113574830-pat00135
and the first group velocity calculated using the equation of motion
Figure 112022113574830-pat00136
The compensated group velocity can be obtained using

프로세서(170)는, 테이블에서 상기 제2 군속도의 진행 방향을 기준으로 복수의 제1 군속도 중 오차가 작게 발생되는 두 개를 선택하는 단계 및 상기 두 개의 제1 군속도와 상기 제2 군속도를 선형조합으로 보상 군속도를 생성 단계를 포함할 수 있다.The processor 170 selects two of a plurality of first group velocities having a small error from among a plurality of first group velocities based on the traveling direction of the second group velocity in the table, and linearly combines the two first group velocities and the second group velocity. A step of generating a compensated group velocity may be included.

프로세서(170)는, 측정한 제2 군속도

Figure 112022113574830-pat00137
와 탄성파의 모드에 따라 탄성파의 진행방향 vs. 탄성파의 군속도를 정리한 테이블을 참조하여, 테이블에서 신호로부터 측정한 군속도
Figure 112022113574830-pat00138
와 오차가 작게 계산되는 두 개의 모드를 선택하고, 해당 모드에서
Figure 112022113574830-pat00139
의 진행 방향과 동일한 방향으로 전파되는 군속도를 각 모드에서 선택한 다음, 이를 선형조합으로 보상할 수 있다.The processor 170 measures the second group velocity.
Figure 112022113574830-pat00137
and the propagation direction of the elastic wave according to the mode of the elastic wave vs. Referring to the table summarizing the group velocities of elastic waves, the group velocities measured from the signals in the table
Figure 112022113574830-pat00138
and select two modes in which the error is calculated small, and in that mode
Figure 112022113574830-pat00139
After selecting the group velocity propagating in the same direction as the propagation direction in each mode, it can be compensated with a linear combination.

한편, 선형조합에 사용하는 가중치는 측정한 군속도별로 따라 달라질 수 있다. 이렇게 보상한 군속도는

Figure 112022113574830-pat00140
로 표현될 수 있다.Meanwhile, the weight used for the linear combination may vary depending on the measured group velocity. The military speed compensated in this way is
Figure 112022113574830-pat00140
can be expressed as

도 9에 도시된 바와 같이 판재 구조물에 손상이 있는 경우,

Figure 112022113574830-pat00141
번째 경로에서 입력신호
Figure 112022113574830-pat00142
가 손상이 발생한 위치
Figure 112022113574830-pat00143
를 경유하고 센서에서 측정되었을 때의 시간
Figure 112022113574830-pat00144
를 계산하면,
Figure 112022113574830-pat00145
번째 경로에서 보상된 탄성파의 군속도
Figure 112022113574830-pat00146
를 이용하여, 손상이 발생한 위치
Figure 112022113574830-pat00147
까지의 거리
Figure 112022113574830-pat00148
를 계산할 수 있다. 이를 수학식으로 표현하면 아래와 같다.As shown in FIG. 9, if there is damage to the plate structure,
Figure 112022113574830-pat00141
input signal in the th path
Figure 112022113574830-pat00142
where the damage occurred
Figure 112022113574830-pat00143
Time when measured by the sensor via
Figure 112022113574830-pat00144
If you calculate
Figure 112022113574830-pat00145
The group velocity of the compensated elastic wave in the th path
Figure 112022113574830-pat00146
Using , the location where the damage occurred
Figure 112022113574830-pat00147
distance to
Figure 112022113574830-pat00148
can be calculated. Expressing this mathematically, it is as follows.

Figure 112022113574830-pat00149
Figure 112022113574830-pat00149

그리고 위의 수학식은 아래의 수학식과 같이 다시 표현이 가능하다.And the above equation can be re-expressed as the following equation.

Figure 112022113574830-pat00150
Figure 112022113574830-pat00150

즉, 보상된 탄성파의 군속도

Figure 112022113574830-pat00151
와 작동기에서 임의의 위치
Figure 112022113574830-pat00152
사이의 거리와 임의의 위치
Figure 112022113574830-pat00153
와 센서 사이의 거리의 합
Figure 112022113574830-pat00154
을 알면, 시간
Figure 112022113574830-pat00155
에 대응되는 신호를 공간으로 사상(Mapping)시킬 수 있다. 그리고 신호에는 손상을 거쳐온 신호, 구조물의 경계에서 반사된 신호 등 다양한 신호가 복합적으로 측정되기 때문에, 보다 정확한 손상 위치를 추정하기 위해서는 다음과 같은 과정을 거쳐야 한다.That is, the group velocity of the compensated elastic wave
Figure 112022113574830-pat00151
and any position in the actuator
Figure 112022113574830-pat00152
Random position with distance between
Figure 112022113574830-pat00153
the sum of the distances between and the sensor
Figure 112022113574830-pat00154
Knowing the time
Figure 112022113574830-pat00155
A signal corresponding to may be mapped into space. In addition, since various signals such as a signal passing through damage and a signal reflected from the boundary of a structure are measured in a complex manner, the following process should be performed in order to more accurately estimate the location of damage.

도 10 내지 도 12는 본 발명의 실시예에 따른 손상 신호 추출 단계를 설명하는데 참조되는 도면이다.10 to 12 are diagrams referenced to describe a damaged signal extraction step according to an embodiment of the present invention.

프로세서(170)는, 군속도 및 기준 신호(Baseline Signal)와의 비교를 통해, 손상 신호(Scattered signal)를 추출할 수 있다(S104). 도면을 참조하면, 손상 신호(Scattered Signal)는 신호 측정 단계(S100)에서 입력 신호(Input Signal)에 따라 판재에 부착된 압전기(110)가 진동하여, 구조물이 진동함에 따라 전파되는 탄성파를 센서(120)에서 수신한 신호들을 이용하여 정의된다. The processor 170 may extract a scattered signal through comparison with the group velocity and a baseline signal (S104). Referring to the drawing, in the signal measuring step (S100), the piezoelectric 110 attached to the plate material vibrates according to the input signal in the signal measuring step (S100), and the elastic wave propagated as the structure vibrates to the sensor ( 120) is defined using the signals received.

기준 신호(Baseline Signal)

Figure 112022113574830-pat00156
는 유도 탄성파를 이용하여 구조물의 손상을 탐지하는 기술에서는 구조물에 손상이 없는 상태에서 센서에서 수신한 탄성파 신호로 정의된다.Baseline Signal
Figure 112022113574830-pat00156
is defined as an elastic wave signal received by a sensor in a state in which there is no damage to a structure in the technique of detecting damage to a structure using an induced elastic wave.

측정 신호(Measured Signal)

Figure 112022113574830-pat00157
는 구조물의 손상 유/무에 무관하게 센서에서 수신한 탄성파 신호로 정의된다. Measured Signal
Figure 112022113574830-pat00157
is defined as the elastic wave signal received from the sensor regardless of whether or not the structure is damaged.

여기서, n은 데이터의 순서를 나타내는 색인(Index)를 의미하며, 0부터 시작하고 최대값으로 N-1을 갖는다. N은 신호 데이터의 성분(Component)의 개수를 의미한다.Here, n means an index indicating the order of data, starting from 0 and having N-1 as the maximum value. N means the number of components of signal data.

만약 구조물에 손상이 없는 경우에는 기준 신호

Figure 112022113574830-pat00158
과 측정 신호
Figure 112022113574830-pat00159
은 동일하기 때문에 두 신호의 차는 0이지만, 만약 구조물에 손상이 있는 경우에는 기준 신호
Figure 112022113574830-pat00160
과 측정 신호
Figure 112022113574830-pat00161
이 다르기 때문에 두 신호의 차가 발생하며, 이렇게 두 신호의 차이로 발생된 신호를 손상 신호(Scattered Signal)이라고 정의한다. If there is no damage to the structure, the reference signal
Figure 112022113574830-pat00158
and measuring signal
Figure 112022113574830-pat00159
Since is the same, the difference between the two signals is 0, but if there is damage to the structure, the reference signal
Figure 112022113574830-pat00160
and measuring signal
Figure 112022113574830-pat00161
Because of the difference, the difference between the two signals occurs, and the signal generated by the difference between the two signals is defined as a Scattered Signal.

이를 수학식으로 표현하면 아래와 같다.Expressing this mathematically, it is as follows.

Figure 112022113574830-pat00162
Figure 112022113574830-pat00162

여기서, N은 신호 데이터의 성분(Component)의 총 개수를 의미한다. Here, N means the total number of components of signal data.

도 10은 기준 신호(Baseline Signal), 측정 신호(Measured Signal), 손상 신호(Scattered Signal)를, 도 11는 센서 네트워크를, 도 12은 윈도우 창 함수를 예시한다.10 illustrates a baseline signal, a measured signal, and a scattered signal, FIG. 11 illustrates a sensor network, and FIG. 12 illustrates a window function.

Figure 112022113574830-pat00163
번째 경로에서 센서에서 계측된 입력 신호의 도달 시간
Figure 112022113574830-pat00164
을 색인
Figure 112022113574830-pat00165
와 샘플링 주파수
Figure 112022113574830-pat00166
로 표현하면 아래의 식과 같다.
Figure 112022113574830-pat00163
Arrival time of the input signal measured by the sensor in the th path
Figure 112022113574830-pat00164
to index
Figure 112022113574830-pat00165
and sampling frequency
Figure 112022113574830-pat00166
Expressed as , it is as follows.

Figure 112022113574830-pat00167
Figure 112022113574830-pat00167

도 11에 예시된 바와 같이, 압전기(110), 제1 센서(120a), 제2 센서(120b) 및 제3 센서(120c)를 이용하는 경우, 최대 6개의 경로가 형성된다. 이경우, 손상 탐지 영역은 사각형 내부가 된다. 타원 방정식을 사용하면, 사각형 내부를 포함하는 타원의 최대거리는 압전기(110)에서 제2 센서(120b)를 경유하여 제1 센서(120a)로 유입되는 경로이거나 제3 센서(120c)를 거치는 경로이다.As illustrated in FIG. 11 , when the piezoelectric 110, the first sensor 120a, the second sensor 120b, and the third sensor 120c are used, up to six paths are formed. In this case, the damage detection area is inside the rectangle. Using the elliptic equation, the maximum distance of an ellipse including the inside of a rectangle is a path flowing from the piezoelectric 110 to the first sensor 120a via the second sensor 120b or a path passing through the third sensor 120c. .

프로세서(170)는, 압전기(110) 및 제1 내지 제3 센서(120a, 120b, 120c)의 위치 정보를 이용하여 사각형을 포함하는 타원의 최대거리를 구할 수 있다. 프로세서(170)는, 구해진 타원의 최대거리와 계산된 탄성파의 군속도를 사용하여 신호의 최대 도달시간을 구할 수 있다. 프로세서(170)는, 시간에 따라 계측된 신호의 추출 구간을 정의할 수 있다. 예를 들면, 프로세서(170)는, 아래 수학식과 같이 윈도우 창함수를 구성하여 손상신호의 구간을 추출할 수 있다.The processor 170 may obtain a maximum distance of an ellipse including a quadrangle using positional information of the piezoelectric 110 and the first to third sensors 120a, 120b, and 120c. The processor 170 may obtain the maximum arrival time of the signal using the maximum distance of the ellipse and the calculated group velocity of the elastic wave. The processor 170 may define an extraction section of the measured signal according to time. For example, the processor 170 may configure a window function as shown in the following equation to extract a section of the damage signal.

Figure 112022113574830-pat00168
Figure 112022113574830-pat00168

n은 데이터의 순서를 나타내는 색인(Index)를 의미하며, 0부터 시작하고 최대값으로 N-1을 갖는다. N은 신호 데이터의 성분(Component)의 개수를 의미한다. a,b,c,d는 윈도우 함수를 구성하는 상수 값이다.n means an index indicating the order of data, starting from 0 and having N-1 as the maximum value. N means the number of components of signal data. a, b, c, d are constant values constituting the window function.

압전기(110)와 센서(120a, 120b, 120c)를 초점으로 하는 타원방정식으로 탐지영역이 결정되므로, 프로세서(170)는, 타원방정식의 최단거리에 해당하는 계산된 첫 번째 도달신호를 기준으로 a와 b의 값을 결정한다. 프로세서(170)는, 사각형 탐지영역을 포함하는 타원의 최대 도달거리를 기준으로 c와 d의 값을 결정한다.Since the detection area is determined by an elliptic equation having the piezoelectric 110 and the sensors 120a, 120b, and 120c as the focus, the processor 170, based on the calculated first arrival signal corresponding to the shortest distance of the elliptic equation, a and determine the values of b. The processor 170 determines the values of c and d based on the maximum reach of an ellipse including a rectangular detection area.

도 12에 예시된 바와 같이, a,b,c,d가 정해지면 윈도우 함수를 생성할 수 있다. 도 12에 예시된 바와 같이, 기준신호와 측정신호의 차이 값에서는 불필요한 신호가 남아 있으나, 윈도우 함수를 적용하여 불필요한 정보를 제거할 수 있다. As illustrated in FIG. 12, when a, b, c, and d are determined, a window function may be generated. As illustrated in FIG. 12, unnecessary signals remain in the difference between the reference signal and the measurement signal, but unnecessary information can be removed by applying a window function.

윈도우 함수

Figure 112022113574830-pat00169
를 생성하면 특정 구간의 손상 신호
Figure 112022113574830-pat00170
을 추출할 수 있으며, 특정 구간에서 추출된 손상 신호
Figure 112022113574830-pat00171
는 아래의 수학식과 같이 표현할 수 있다.window function
Figure 112022113574830-pat00169
, the damage signal in a specific section
Figure 112022113574830-pat00170
can be extracted, and the damage signal extracted from a specific section
Figure 112022113574830-pat00171
can be expressed as in the equation below.

Figure 112022113574830-pat00172
Figure 112022113574830-pat00172

위 식에서 연산자

Figure 112022113574830-pat00173
(Asterisk)는 각 신호 데이터의 성분(Component)간의 곱을 의미한다.operators in the above expression.
Figure 112022113574830-pat00173
(Asterisk) means multiplication between components of each signal data.

프로세서(170)는, 힐버트 변환(Hilbert Transform)에 기초하여 1차원 특성 벡터(Feature Vector)를 계산할 수 있다(S105). 도면을 참조하면, 특성 벡터(Feature Vector)는 구조물의 손상이 발생되었을 곳으로 추정되는 위치들을 가시화하기 위해 사용하는 벡터이다. 본 발명에서 사용한 특성 벡터

Figure 112022113574830-pat00174
는 누적함수 기반의 특성 벡터를 사용한다. 특성 벡터를 생성하기 위해, 손상 신호 추출 단계(S104)에서 추출한 손상 신호
Figure 112022113574830-pat00175
가 이용될 수 있다. 이를 수학식으로 표현하면 아래와 같다.The processor 170 may calculate a one-dimensional feature vector based on the Hilbert Transform (S105). Referring to the drawing, a feature vector is a vector used to visualize locations estimated to be where damage to a structure has occurred. Feature vectors used in the present invention
Figure 112022113574830-pat00174
uses a feature vector based on a cumulative function. In order to generate a feature vector, the damage signal extracted in the damage signal extraction step (S104)
Figure 112022113574830-pat00175
can be used Expressing this mathematically, it is as follows.

Figure 112022113574830-pat00176
Figure 112022113574830-pat00176

Figure 112022113574830-pat00177
는 손상 신호 추출 단계(S104)에서 추출한 손상 신호
Figure 112022113574830-pat00178
에 대한 힐버트 변환(Hilbert Transform)을 수행한 결과를 의미한다. 힐버트 변환을 명료하게 표현하기 위해, 손상 신호 추출(S104) 단계에서 추출한 손상 신호
Figure 112022113574830-pat00179
을 데이터의 순서를 나타내는 색인n이 아니라, 시간 t를 이용하여 표현한다. 특성 벡터는 아래와 같은 수학식으로 표현된다.
Figure 112022113574830-pat00177
Is the damage signal extracted in the damage signal extraction step (S104)
Figure 112022113574830-pat00178
It means the result of performing the Hilbert Transform on . In order to clearly express the Hilbert transform, the damage signal extracted in the damage signal extraction step (S104)
Figure 112022113574830-pat00179
is expressed using time t, not index n, which indicates the order of data. The feature vector is expressed by the following equation.

Figure 112022113574830-pat00180
Figure 112022113574830-pat00180

Figure 112022113574830-pat00181
Figure 112022113574830-pat00181

여기서,

Figure 112022113574830-pat00182
는 손상 신호 추출(S104) 단계에서 추출한 손상 신호
Figure 112022113574830-pat00183
의 힐버트 변환을 사용한 해석적 신호(Analytical Signal)를 의미하며,
Figure 112022113574830-pat00184
은 손상 신호 추출 단계(S104)에서 추출한 손상 신호
Figure 112022113574830-pat00185
의 힐버트 변환을 사용한 해석적 신호를 의미한다. 그리고 특성 벡터를 수학식으로 표현하면 아래와 같다here,
Figure 112022113574830-pat00182
Is the damage signal extracted in the damage signal extraction step (S104)
Figure 112022113574830-pat00183
It means an analytical signal using the Hilbert transform of
Figure 112022113574830-pat00184
The damage signal extracted in the damage signal extraction step (S104)
Figure 112022113574830-pat00185
means an analytic signal using the Hilbert transform of And if the feature vector is expressed as a mathematical expression, it is as follows

Figure 112022113574830-pat00186
Figure 112022113574830-pat00186

여기서,

Figure 112022113574830-pat00187
은 해석적 신호
Figure 112022113574830-pat00188
의 절대값을 의미하며, 이는 기하적으로 포락선(Envelope)의 의미를 갖는다. 도 13에는 손상 신호 추출 단계(S104)에서 추출한 손상 신호
Figure 112022113574830-pat00189
Figure 112022113574830-pat00190
가 도시된다.here,
Figure 112022113574830-pat00187
is an analytic signal
Figure 112022113574830-pat00188
It means the absolute value of , which has the meaning of an envelope geometrically. 13 shows the damage signal extracted in the damage signal extraction step (S104)
Figure 112022113574830-pat00189
and
Figure 112022113574830-pat00190
is shown

Figure 112022113574830-pat00191
을 이용하여 특성 벡터
Figure 112022113574830-pat00192
을 나타내면, 아래의 수학식으로 표현된다.
Figure 112022113574830-pat00191
feature vector using
Figure 112022113574830-pat00192
When it is represented, it is expressed by the following equation.

Figure 112022113574830-pat00193
Figure 112022113574830-pat00193

여기서,

Figure 112022113574830-pat00194
은 색인이 m인 곳에서 특성 벡터의 값을 의미하며, N은 신호 데이터의 성분(Component)의 개수를 의미한다. 도 14는 특성 벡터
Figure 112022113574830-pat00195
을 도시한다.here,
Figure 112022113574830-pat00194
means the value of the feature vector where the index is m, and N means the number of components of the signal data. 14 is a feature vector
Figure 112022113574830-pat00195
shows

탄성파 군속도 측정 및 보상 단계(S103)에서 계산한

Figure 112022113574830-pat00196
를 이용하여 아래의 수학식으로 특성 벡터
Figure 112022113574830-pat00197
을 재구성할 수 있다.Calculated in the elastic wave group velocity measurement and compensation step (S103)
Figure 112022113574830-pat00196
Using the following formula, the feature vector
Figure 112022113574830-pat00197
can be reconstructed.

Figure 112022113574830-pat00198
Figure 112022113574830-pat00198

Figure 112022113574830-pat00199
Figure 112022113574830-pat00199

구조물의 손상이 발생되었을 곳으로 추정되는 위치들을 가시화하기 위해, 특성 벡터

Figure 112022113574830-pat00200
을 아래와 같이 구성할 수 있다.In order to visualize the estimated locations where damage to the structure may have occurred, the feature vector
Figure 112022113574830-pat00200
can be configured as follows.

Figure 112022113574830-pat00201
Figure 112022113574830-pat00201

여기서,

Figure 112022113574830-pat00202
는 특성 벡터
Figure 112022113574830-pat00203
의 정규화(L2 Norm)을 의미한다.
Figure 112022113574830-pat00204
번째 경로에서 계산된 특성 벡터는 아래의 수학식으로 정의된다.here,
Figure 112022113574830-pat00202
is the feature vector
Figure 112022113574830-pat00203
means the normalization (L2 Norm) of
Figure 112022113574830-pat00204
The feature vector calculated in the th path is defined by the following equation.

Figure 112022113574830-pat00205
Figure 112022113574830-pat00205

프로세서(170)는, 1차원 특성 벡터를 2차원으로 사상(Mapping)하여 2차원 특성 벡터를 계산할 수 있다(S106).The processor 170 may calculate a 2D feature vector by mapping the 1D feature vector to a 2D feature vector (S106).

1차원 특성 벡터는 손상 분포를 1차원 상에서 손상이 발생할 것으로 추정되는 위치를 그래프로 도시한 것이다. 따라서 1차원 상에서 추정한 손상 위치를 구조물의 손상 분포로 가시화하기 위해서는 특성 벡터

Figure 112022113574830-pat00206
을 2차원으로 사상(Mapping)해야 한다.The one-dimensional feature vector is a graph showing a location where damage is estimated to occur on a one-dimensional distribution of damage. Therefore, in order to visualize the damage location estimated in one dimension as the damage distribution of the structure, the feature vector
Figure 112022113574830-pat00206
should be mapped to two dimensions.

프로세서(170)는 도 15처럼 아래의 수학식을 이용하여 색인

Figure 112022113574830-pat00207
을 계산할 수 있다.As shown in FIG. 15, the processor 170 uses the following equation to index
Figure 112022113574830-pat00207
can be calculated.

Figure 112022113574830-pat00208
Figure 112022113574830-pat00208

여기서

Figure 112022113574830-pat00209
는 이산화 된 평판의 좌표,
Figure 112022113574830-pat00210
는 작동기(Actuator)의 좌표,
Figure 112022113574830-pat00211
는 센서(Sensor)의 좌표,
Figure 112022113574830-pat00212
는 샘플링 주파수(Sampling Frequency),
Figure 112022113574830-pat00213
는 작동기에서 임의의 좌표
Figure 112022113574830-pat00214
로 향하는 탄성파의 보상된 군속도,
Figure 112022113574830-pat00215
는 임의의 좌표
Figure 112022113574830-pat00216
에서 센서까지 향하는 탄성파의 보상된 군속도를 의미한다.here
Figure 112022113574830-pat00209
are the coordinates of the discretized plate,
Figure 112022113574830-pat00210
are the coordinates of the actuator,
Figure 112022113574830-pat00211
is the coordinates of the sensor,
Figure 112022113574830-pat00212
Is the sampling frequency (Sampling Frequency),
Figure 112022113574830-pat00213
is an arbitrary coordinate in the actuator
Figure 112022113574830-pat00214
The compensated group velocity of the elastic wave towards ,
Figure 112022113574830-pat00215
is an arbitrary coordinate
Figure 112022113574830-pat00216
It means the compensated group velocity of the elastic wave from to the sensor.

위 식의 물리적 의미는

Figure 112022113574830-pat00217
번째 경로의 작동기(Actuator)에서 발생된 입력신호가 판재 구조물에 놓여있는 임의의 점
Figure 112022113574830-pat00218
에 탄성파가 거쳐, 센서에서 측정된 시간, 즉 색인을 의미한다.The physical meaning of the above expression is
Figure 112022113574830-pat00217
Any point where the input signal generated from the actuator of the th path lies on the plate structure
Figure 112022113574830-pat00218
It means the time, that is, the index, that the elastic wave passes through and is measured by the sensor.

판재 구조물을 유한한 이산화 된 점

Figure 112022113574830-pat00219
들에 대응되는 색인
Figure 112022113574830-pat00220
을 계산하고,
Figure 112022113574830-pat00221
번째 경로에서 계산된 특성 벡터
Figure 112022113574830-pat00222
을 계산하면, 보간(Interpolation) 방법을 이용하여 판재 구조물을 유한한 이산화된 점
Figure 112022113574830-pat00223
들에 대응되는 색인
Figure 112022113574830-pat00224
마다 특성 벡터
Figure 112022113574830-pat00225
의 값을 부여할 수 있다.A finite discretization of a plate structure
Figure 112022113574830-pat00219
index corresponding to
Figure 112022113574830-pat00220
calculate,
Figure 112022113574830-pat00221
The feature vector computed from the th path
Figure 112022113574830-pat00222
Calculating , using the interpolation method, the plate structure is a finite discretized point
Figure 112022113574830-pat00223
index corresponding to
Figure 112022113574830-pat00224
per feature vector
Figure 112022113574830-pat00225
value can be assigned.

그리고 프로세서(170)는, 손상 정도에 가중치를 부여하는 스칼라 값인 손상 지수(Damage Index)를 정의할 수 있다(S107). 손상 지수(Damage Index)의 수학적인 의미는 신호의 차이이며, 가시화 측면에서는 구조물의 손상정도에 가중치를 부여하는 스칼라 값이다. 손상 지수는 추출한 손상 신호(유효 신호)로부터 손상의 크기를 계산하기 위한 스칼라값으로 설명될 수 있다.In addition, the processor 170 may define a damage index, which is a scalar value for assigning a weight to the degree of damage (S107). The mathematical meaning of the damage index is the signal difference, and in terms of visualization, it is a scalar value that gives weight to the degree of damage to the structure. The damage index may be described as a scalar value for calculating the size of damage from the extracted damage signal (valid signal).

프로세서(170)는, 유도 탄성파들로 획득한 신호를 가공하여, 손상의 크기를 나타내기 위해 주파수 영역에서 정의한 손상지수를 이용할 수 있으며, 아래의 수학식을 이용해 손상 지수를 계산할 수 있다.The processor 170 may use a damage index defined in the frequency domain to indicate the size of damage by processing a signal obtained as guided acoustic waves, and may calculate the damage index using the following equation.

Figure 112022113574830-pat00226
Figure 112022113574830-pat00226

여기서,

Figure 112022113574830-pat00227
Figure 112022113574830-pat00228
번째 경로에서 계산한 손상 지수,
Figure 112022113574830-pat00229
는 손상이 없는 상태에서 측정한 신호(기준신호
Figure 112022113574830-pat00230
)의 이산화된 주파수 영역에서 k번째 주파수 성분에 대응되는 푸리에 급수의 크기,
Figure 112022113574830-pat00231
는 손상 유무에 무관하게 측정한 신호(측정신호
Figure 112022113574830-pat00232
)의 이산화된 주파수 영역에서 k번째 주파수 성분에 대응되는 푸리에 급수의 크기,
Figure 112022113574830-pat00233
은 이산화된 주파수의 개수를 의미한다.here,
Figure 112022113574830-pat00227
Is
Figure 112022113574830-pat00228
The damage index calculated in the th path,
Figure 112022113574830-pat00229
is the signal measured in the absence of damage (reference signal
Figure 112022113574830-pat00230
), the magnitude of the Fourier series corresponding to the kth frequency component in the discretized frequency domain,
Figure 112022113574830-pat00231
is the measured signal regardless of whether or not it is damaged (measurement signal
Figure 112022113574830-pat00232
), the magnitude of the Fourier series corresponding to the kth frequency component in the discretized frequency domain,
Figure 112022113574830-pat00233
denotes the number of discretized frequencies.

프로세서(170)는, 아래 수학식을 더 이용해 손상 지수를 정의할 수 있다.The processor 170 may further use the following equation to define the damage index.

Figure 112022113574830-pat00234
Figure 112022113574830-pat00234

Figure 112022113574830-pat00235
Figure 112022113574830-pat00235

Figure 112022113574830-pat00236
Figure 112022113574830-pat00236

여기서,

Figure 112022113574830-pat00237
는 기준신호
Figure 112022113574830-pat00238
의 이산화된 시간에서의 푸리에 변환,
Figure 112022113574830-pat00239
은 측정신호
Figure 112022113574830-pat00240
의 이산화된 시간에서의 푸리에 변환을 나타낸다.here,
Figure 112022113574830-pat00237
is the reference signal
Figure 112022113574830-pat00238
Fourier transform in discretized time of ,
Figure 112022113574830-pat00239
silver measurement signal
Figure 112022113574830-pat00240
represents the Fourier transform in discretized time of

프로세서(170)는, 2차원 특성 벡터 및 손상 지수에 기초한 가시화를 수행하여, 손상 위치를 추정할 수 있다(S108).The processor 170 may estimate the damage location by performing visualization based on the 2D feature vector and the damage index (S108).

손상 위치 추정 단계(S108)는 손상 위치를 이미지 기반으로 추정한다. 이를 위해, 2차원 특성 벡터 계산 단계(S106)에서

Figure 112022113574830-pat00241
번째 경로에서 계산된 특성 벡터
Figure 112022113574830-pat00242
와 손상 지수 정의 단계(S107)에서
Figure 112022113574830-pat00243
번째 경로에서 계산된 손상 지수
Figure 112022113574830-pat00244
의 곱을 이용하여 가시화를 수행한다. 이는 아래와 같은 수학식으로 정의된다. The damage location estimation step (S108) estimates the damage location based on the image. To this end, in the 2D feature vector calculation step (S106)
Figure 112022113574830-pat00241
The feature vector computed from the th path
Figure 112022113574830-pat00242
And in the damage index definition step (S107)
Figure 112022113574830-pat00243
Damage index calculated from the th path
Figure 112022113574830-pat00244
Visualization is performed using the product of This is defined by the following equation.

Figure 112022113574830-pat00245
Figure 112022113574830-pat00245

여기서,

Figure 112022113574830-pat00246
는 평판 구조물의 이산화 된 점
Figure 112022113574830-pat00247
에 대응되는 색인
Figure 112022113574830-pat00248
을 특성 벡터
Figure 112022113574830-pat00249
에 보간(Interpolation)하여 구성한 2차원 특성 벡터,
Figure 112022113574830-pat00250
Figure 112022113574830-pat00251
번째 경로에서 계산한 손상 지수를 의미하며,
Figure 112022113574830-pat00252
는 중첩된 이미지 결과를 의미한다. 따라서 중첩된 이미지 결과의 최대값에서 손상의 중심 위치
Figure 112022113574830-pat00253
는 아래의 수학식으로 찾을 수 있다.here,
Figure 112022113574830-pat00246
is the discretized point of the plate structure
Figure 112022113574830-pat00247
index corresponding to
Figure 112022113574830-pat00248
the feature vector
Figure 112022113574830-pat00249
A two-dimensional feature vector constructed by interpolation on
Figure 112022113574830-pat00250
Is
Figure 112022113574830-pat00251
It means the damage index calculated in the th path,
Figure 112022113574830-pat00252
means a superimposed image result. Therefore, the location of the center of damage at the maximum of the superimposed image results.
Figure 112022113574830-pat00253
can be found by the following equation.

Figure 112022113574830-pat00254
Figure 112022113574830-pat00254

계산된 손상 위치

Figure 112022113574830-pat00255
을 명확히 표시하기 위해, 아래의 수학식과 같이 이미지 결과를 아래의 수학식을 이용해 후처리한다.Calculated Damage Location
Figure 112022113574830-pat00255
In order to display clearly, the image result is post-processed using the following equation as shown below.

Figure 112022113574830-pat00256
Figure 112022113574830-pat00256

Figure 112022113574830-pat00257
Figure 112022113574830-pat00257

여기서,

Figure 112022113574830-pat00258
는 손상위치
Figure 112022113574830-pat00259
을 중심으로 반경
Figure 112022113574830-pat00260
인 원형 윈도우 함수를 의미하며,
Figure 112022113574830-pat00261
는 후처리한 이미지 결과를 의미한다.here,
Figure 112022113574830-pat00258
is the damage location
Figure 112022113574830-pat00259
centered radius
Figure 112022113574830-pat00260
is a circular window function,
Figure 112022113574830-pat00261
denotes the post-processed image result.

도 16 내지 도 17는 본 발명의 실시예에 따른 손상탐지의 수행 결과를 설명하는데 참조되는 도면이다. 도 16는 본 발명의 결과물을 적용하기전에 손상탐지 수행 결과, 도 17는 본 발명의 결과물을 적용한 손상탐지 수행 결과를 나타낸다. 여기서 흰색 점선은 실제 손상이 있는 위치를 나타내며, 검은색 실선은 손상을 탐지한 결과를 나타낸다.16 and 17 are diagrams referenced to describe results of damage detection according to an embodiment of the present invention. 16 shows the result of performing damage detection before applying the result of the present invention, and FIG. 17 shows the result of performing damage detection using the result of the present invention. Here, the white dotted line indicates the location of actual damage, and the black solid line indicates the result of detecting damage.

전술한 본 발명은, 프로그램이 기록된 매체에 컴퓨터가 읽을 수 있는 코드로서 구현하는 것이 가능하다. 컴퓨터가 읽을 수 있는 매체는, 컴퓨터 시스템에 의하여 읽혀질 수 있는 데이터가 저장되는 모든 종류의 기록장치를 포함한다. 컴퓨터가 읽을 수 있는 매체의 예로는, HDD(Hard Disk Drive), SSD(Solid State Disk), SDD(Silicon Disk Drive), ROM, RAM, CD-ROM, 자기 테이프, 플로피 디스크, 광 데이터 저장 장치 등이 있다. 또한, 상기 컴퓨터는 프로세서 또는 제어부를 포함할 수도 있다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.The above-described present invention can be implemented as computer readable code on a medium on which a program is recorded. The computer-readable medium includes all types of recording devices in which data that can be read by a computer system is stored. Examples of computer-readable media include Hard Disk Drive (HDD), Solid State Disk (SSD), Silicon Disk Drive (SDD), ROM, RAM, CD-ROM, magnetic tape, floppy disk, optical data storage device, etc. there is Also, the computer may include a processor or a control unit. Accordingly, the above detailed description should not be construed as limiting in all respects and should be considered illustrative. The scope of the present invention should be determined by reasonable interpretation of the appended claims, and all changes within the equivalent scope of the present invention are included in the scope of the present invention.

S10 : 손상의 위치를 추정하는 방법
100 : 손상의 위치를 추정하는 장치
S10: How to estimate the location of damage
100: device for estimating the location of damage

Claims (6)

구조물에 부착된 압전 모듈에서 생성된 탄성파를 사용하여 손상의 위치를 추정하는 방법에 있어서,
a) 압전 모듈로부터의 탄성파에 기초한 신호를 측정하는 단계;
b) 측정된 신호에 포함되는 잡음을 제거하는 단계;
c) 전달 행렬 방법 (TMM : Transfer Matrix Method)를 이용하여, 탄성파의 복수의 제1 군속도(Group Velocity)를 계산하는 단계;
d) 압전 모듈에서 발생된 입력 신호와 잡음이 제거된 신호의 교차상관관계(Cross-Correlation)를 계산하여 탄성파의 제2 군속도를 측정하고, 상기 제1 군속도 및 상기 제2 군속도에 기초하여 보상 군속도를 획득하는 단계;
e) 상기 보상 군속도 및 기준 신호(Baseline Signal)와의 비교를 통해, 손상 신호(Scattered signal)를 추출하는 단계;
f) 힐버트 변환(Hilbert Transform)에 기초하여 1차원 특성 벡터(Feature Vector)를 계산하는 단계;
g) 상기 보상 군속도 정보를 이용하여 상기 1차원 특성벡터를 2차원으로 사상하여(Mapping) 2차원 특성 벡터를 계산하는 단계;
h) 손상 정도에 가중치를 부여하는 스칼라 값인 손상 지수(Damage Index)를 주파수 영역에서 정의하는 단계; 및
i) 상기 2차원 특성 벡터 및 상기 손상 지수에 기초한 가시화를 수행하여, 손상 위치를 추정하는 단계;를 포함하고,
상기 c) 단계는,
아래 수학식을 이용해 상기 제1 군속도를 계산하는 방법.
[수학식]
Figure 112023005520281-pat00262

Figure 112023005520281-pat00263

Figure 112023005520281-pat00264

여기서,
Figure 112023005520281-pat00265
는 제1 군속도(Group Velocity),
Figure 112023005520281-pat00266
는 위상 속도(Phase Velocity),
Figure 112023005520281-pat00267
는 경계조건을 만족하는 파수(Wave Number),
Figure 112023005520281-pat00268
는 경계조건을 만족하는 주파수 임
Figure 112023005520281-pat00269
는 Slowness Curve에서 제1 군속도 벡터와 Slowness Curve 관계의 각도를 의미함.
A method for estimating a location of damage using an elastic wave generated from a piezoelectric module attached to a structure,
a) measuring a signal based on elastic waves from a piezoelectric module;
b) removing noise included in the measured signal;
c) calculating a plurality of first group velocities of elastic waves using a transfer matrix method (TMM);
d) Calculate the cross-correlation between the input signal generated by the piezoelectric module and the noise-removed signal to measure the second group velocity of the elastic wave, and compensate the compensated group velocity based on the first group velocity and the second group velocity. obtaining;
e) extracting a scattered signal through comparison with the compensated group velocity and a baseline signal;
f) calculating a one-dimensional feature vector based on the Hilbert Transform;
g) calculating a 2-dimensional feature vector by mapping the 1-dimensional feature vector to a 2-dimensional feature using the compensated group velocity information;
h) defining a damage index, which is a scalar value that weights the degree of damage, in the frequency domain; and
i) estimating a damage location by performing visualization based on the two-dimensional feature vector and the damage index;
In step c),
A method of calculating the first group velocity using the equation below.
[mathematical expression]
Figure 112023005520281-pat00262

Figure 112023005520281-pat00263

Figure 112023005520281-pat00264

here,
Figure 112023005520281-pat00265
Is the first group velocity (Group Velocity),
Figure 112023005520281-pat00266
is the phase velocity,
Figure 112023005520281-pat00267
is the wave number that satisfies the boundary condition,
Figure 112023005520281-pat00268
is the frequency that satisfies the boundary condition
Figure 112023005520281-pat00269
means the angle of the relationship between the first group velocity vector and the Slowness Curve in the Slowness Curve.
삭제delete 제 1항에 있어서,
상기 경계조건을 만족하는 파수 및 주파수는 아래 수학식 1 및 수학식 2를 이용해 계산하는 방법.
[수학식 1]
Figure 112023005520281-pat00270

[수학식 2]
Figure 112023005520281-pat00271

여기서,
Figure 112023005520281-pat00272
는 변위,
Figure 112023005520281-pat00273
응력,
Figure 112023005520281-pat00274
는 응력과 변위가 각 층으로 전달되는 과정에서 만들어지는 전달 행렬(Transfer Matrix), 하첨자 top은 복합재 평판의 상단을 의미하고, mid는 복합재 layer의 중간층을 의미하고,
Figure 112023005520281-pat00275
는 응력(Stress)과 변형률(Strain) 관계를 정의하는데 사용되는 구성방정식 행렬(Constitutive Matrix),
Figure 112023005520281-pat00276
는 파수,
Figure 112023005520281-pat00277
는 주파수,
Figure 112023005520281-pat00278
는 파의 진행 방향 각도 임.
According to claim 1,
A method of calculating the wave number and frequency satisfying the boundary condition using Equation 1 and Equation 2 below.
[Equation 1]
Figure 112023005520281-pat00270

[Equation 2]
Figure 112023005520281-pat00271

here,
Figure 112023005520281-pat00272
is the displacement,
Figure 112023005520281-pat00273
stress,
Figure 112023005520281-pat00274
is a transfer matrix created in the process of transferring stress and displacement to each layer, the subscript top means the top of the composite material plate, mid means the middle layer of the composite material layer,
Figure 112023005520281-pat00275
is a constitutive matrix used to define the relationship between stress and strain,
Figure 112023005520281-pat00276
is the watchman,
Figure 112023005520281-pat00277
is the frequency,
Figure 112023005520281-pat00278
is the angle of the propagation direction of the wave.
제 1항에 있어서,
상기 c) 단계는,
탄성파의 모드 및 탄성파의 진행 방향을 기준으로 정리된 테이블을 생성하는 단계를 포함하는 방법.
According to claim 1,
In step c),
A method comprising generating a table arranged based on the mode of the elastic wave and the traveling direction of the elastic wave.
제 4항에 있어서,
상기 d) 단계는,
상기 테이블에서 상기 제2 군속도의 진행 방향을 기준으로 복수의 제1 군속도 중 오차가 작게 발생되는 두 개를 선택하는 단계; 및
상기 두 개의 제1 군속도와 상기 제2 군속도를 선형조합으로 보상 군속도를 생성 단계;를 포함하는 방법.
According to claim 4,
In step d),
selecting two of the plurality of first group velocities with a small error based on the traveling direction of the second group velocity from the table; and
and generating a compensated group velocity by a linear combination of the two first group velocities and the second group velocity.
제 5항에 있어서,
상기 h) 단계는,
아래 수학식을 더 이용해 손상 지수를 정의하는 방법.
Figure 112022113574830-pat00279

Figure 112022113574830-pat00280

Figure 112022113574830-pat00281

여기서,
Figure 112022113574830-pat00282
는 기준신호
Figure 112022113574830-pat00283
의 이산화된 시간에서의 푸리에 변환,
Figure 112022113574830-pat00284
은 측정신호
Figure 112022113574830-pat00285
의 이산화된 시간에서의 푸리에 변환.
According to claim 5,
In step h),
How to define the damage index further using the equation below.
Figure 112022113574830-pat00279

Figure 112022113574830-pat00280

Figure 112022113574830-pat00281

here,
Figure 112022113574830-pat00282
is the reference signal
Figure 112022113574830-pat00283
Fourier transform in discretized time of ,
Figure 112022113574830-pat00284
silver measurement signal
Figure 112022113574830-pat00285
Fourier transform in discretized time of .
KR1020220139876A 2022-10-27 2022-10-27 Image Based Damage Localization Estimation Method and Device With the Group Velocity Estimated From an Experiment and Transfer Matrix Method(TMM) in Structure Health Monitoring Based on Guided Elastic Wave KR102507437B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220139876A KR102507437B1 (en) 2022-10-27 2022-10-27 Image Based Damage Localization Estimation Method and Device With the Group Velocity Estimated From an Experiment and Transfer Matrix Method(TMM) in Structure Health Monitoring Based on Guided Elastic Wave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220139876A KR102507437B1 (en) 2022-10-27 2022-10-27 Image Based Damage Localization Estimation Method and Device With the Group Velocity Estimated From an Experiment and Transfer Matrix Method(TMM) in Structure Health Monitoring Based on Guided Elastic Wave

Publications (1)

Publication Number Publication Date
KR102507437B1 true KR102507437B1 (en) 2023-03-08

Family

ID=85508189

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220139876A KR102507437B1 (en) 2022-10-27 2022-10-27 Image Based Damage Localization Estimation Method and Device With the Group Velocity Estimated From an Experiment and Transfer Matrix Method(TMM) in Structure Health Monitoring Based on Guided Elastic Wave

Country Status (1)

Country Link
KR (1) KR102507437B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117147706A (en) * 2023-11-01 2023-12-01 浙江大学 Composite material anisotropic imaging method based on quasi-longitudinal wave group velocity

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090012818A (en) 2007-07-31 2009-02-04 한국전력공사 Non-destruction apparatus
KR102391019B1 (en) * 2021-11-30 2022-04-27 주식회사 솔리드아이티 Image Based Damage Localization Estimation Method With Definition of Damage from Signal for a Curved Structure in Structure Health Monitoring Based on Guided Elastic Wave

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090012818A (en) 2007-07-31 2009-02-04 한국전력공사 Non-destruction apparatus
KR102391019B1 (en) * 2021-11-30 2022-04-27 주식회사 솔리드아이티 Image Based Damage Localization Estimation Method With Definition of Damage from Signal for a Curved Structure in Structure Health Monitoring Based on Guided Elastic Wave

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Barski, Marek, and Piotr Pająk. "Analytical and numerical identification of lamb waves modes for hybrid composites." Journal of KONES 24 (2017).* *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117147706A (en) * 2023-11-01 2023-12-01 浙江大学 Composite material anisotropic imaging method based on quasi-longitudinal wave group velocity
CN117147706B (en) * 2023-11-01 2024-01-30 浙江大学 Composite material anisotropic imaging method based on quasi-longitudinal wave group velocity

Similar Documents

Publication Publication Date Title
Ebrahimkhanlou et al. Acoustic emission source localization in thin metallic plates: A single-sensor approach based on multimodal edge reflections
KR102391019B1 (en) Image Based Damage Localization Estimation Method With Definition of Damage from Signal for a Curved Structure in Structure Health Monitoring Based on Guided Elastic Wave
Kannusamy et al. Accurate baseline-free damage localization in plates using refined Lamb wave time-reversal method
Shlivinski et al. Defect imaging with elastic waves in inhomogeneous–anisotropic materials with composite geometries
CN108872393B (en) Nonlinear ultrasonic frequency mixing method for detecting structural fatigue crack direction
Benstock et al. The influence of surface roughness on ultrasonic thickness measurements
KR102507437B1 (en) Image Based Damage Localization Estimation Method and Device With the Group Velocity Estimated From an Experiment and Transfer Matrix Method(TMM) in Structure Health Monitoring Based on Guided Elastic Wave
US20150160169A1 (en) Method and system for multi-path active defect detection, localization and characterization with ultrasonic guided waves
Livani et al. Identification of multiple flaws in 2D structures using dynamic extended spectral finite element method with a universally enhanced meta-heuristic optimizer
CN104142326A (en) Attenuation coefficient detection method
Gupta et al. Identifying the arrival of extensional and flexural wave modes using wavelet decomposition of ultrasonic signals
Reyes et al. A numerical study on baseline-free damage detection using frequency steerable acoustic transducers
KR102560865B1 (en) Damage Localization Estimation Method and Damage Localization Estimation Device
WO2014144774A1 (en) Method and apparatus for three dimensional wavenumber-frequency analysis
KR20190037912A (en) Method of Non-destructive Test
de Castro et al. Baseline-free damage imaging algorithm using spatial frequency domain virtual time reversal
Levine et al. Guided wave localization of damage via sparse reconstruction
Schaal et al. Experimental investigation of lamb wave-based edge detection methods
Ebrahimkhanlou et al. A guided ultrasonic imaging approach in isotropic plate structures using edge reflections
Harley et al. Broadband localization in a dispersive medium through sparse wavenumber analysis
Hong et al. Reverse engineering stiffened plates using guided wave-based nondestructive testing methods
Neubeck et al. Matrix techniques for Lamb-wave damage imaging in metal plates
KR102476477B1 (en) Image Based Damage Localization Estimation Method and Device With the Feature Vector Based on Energy Dissipation in Structure Health Monitoring Based on Guided Elastic Wave
KR102476479B1 (en) Image Based Damage Localization Estimation Method and Device With the Damage Index Defined in Frequency Domain in Structure Health Monitoring Based on Guided Elastic Wave
Zhou et al. Damage detection in plate structures based on baseline construction of ultrasonic Lamb wave using designed mobile transducer set

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant