KR102507408B1 - Rrepairing Airfoil Process of gas turbine blades by 3D printing - Google Patents

Rrepairing Airfoil Process of gas turbine blades by 3D printing Download PDF

Info

Publication number
KR102507408B1
KR102507408B1 KR1020220150683A KR20220150683A KR102507408B1 KR 102507408 B1 KR102507408 B1 KR 102507408B1 KR 1020220150683 A KR1020220150683 A KR 1020220150683A KR 20220150683 A KR20220150683 A KR 20220150683A KR 102507408 B1 KR102507408 B1 KR 102507408B1
Authority
KR
South Korea
Prior art keywords
airfoil
step process
brazing
less
gas turbine
Prior art date
Application number
KR1020220150683A
Other languages
Korean (ko)
Inventor
강현기
정택호
Original Assignee
터보파워텍(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 터보파워텍(주) filed Critical 터보파워텍(주)
Priority to KR1020220150683A priority Critical patent/KR102507408B1/en
Application granted granted Critical
Publication of KR102507408B1 publication Critical patent/KR102507408B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/005Repairing methods or devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/04Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of turbine blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3046Co as the principal constituent
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0068Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • F05D2230/23Manufacture essentially without removing material by permanently joining parts together
    • F05D2230/232Manufacture essentially without removing material by permanently joining parts together by welding
    • F05D2230/237Brazing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/60Assembly methods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/80Repairing, retrofitting or upgrading methods

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

The present invention relates to a gas turbine blade, which comprises a root portion coupled to a rotor of a gas turbine, a streamlined airfoil connected to the root portion to maximize and minimize drag toward a portion to which high-temperature and high-pressure gas directly hits, and a platform formed between the airfoil and the root portion to limit a flow path formed inside the airfoil. More specifically, the present invention relates to an airfoil repair process of the gas turbine blade by three-dimensional printing. The airfoil repair process of the gas turbine blade by three-dimensional printing comprises: a first step process (S1) of chemically stripping the turbine blade including a damaged airfoil; a second step process (S2) of inspecting the chemically stripped turbine blade by a fluorescent penetrant method; a third step process (S3) of cutting the damaged airfoil; a fourth step process (S4) of manufacturing an airfoil by three-dimensional printing; a fifth step process (S5) of injecting brazing filler into a groove portion formed in the root portion; a sixth step process (S6) of assembling the airfoil and the root portion to be bonded by spot welding; and a second step process (S7) of performing heat treatment by brazing. Therefore, the airfoil repair process of the gas turbine blade by three-dimensional printing can newly manufacture an airfoil by three-dimensional printing to bond the same to the root portion by brazing, thereby having a great effect of reusing a blade that may be discarded in an existing case and thus greatly saving costs, enhancing production efficiency, and shortening repair time.

Description

3D프린팅에 의한 가스터빈 블레이드의 에어포일 수리 공정{Rrepairing Airfoil Process of gas turbine blades by 3D printing}{Rrepairing Airfoil Process of gas turbine blades by 3D printing}

본 발명은 3D프린팅과 브레이징에 의해 가스터빈 블레이드의 구성품을 수리하는 것으로, 더욱 상세하게는 3D프린팅에 의한 가스터빈 블레이드의 에어포일 수리 공정에 관한 것이다.The present invention relates to repairing components of a gas turbine blade by 3D printing and brazing, and more particularly, to a process of repairing an airfoil of a gas turbine blade by 3D printing.

가스터빈은 압축공기와 연료가 함께 연소, 폭발시켜 나온 에너지를 통한 터빈을 운동에너지로 전환하는 열기관이다.A gas turbine is a heat engine that converts energy from combustion and explosion of compressed air and fuel into kinetic energy.

특히, 가스터빈은 연료의 연소열로 가스를 가열하여 얻은 고온고압의 가스를 터빈 블레이드로 분사하여 동력을 얻기 때문에 블레이드는 가스터빈기관에서 매우 중요한 구성품이며, 터빈 블레이드(10)는 도 1에 도시된 바와 같이 가스터빈의 로터에 결합되는 루트부(11)와, 상기 루트부(11)에 연결되어 고온고압의 가스가 직접 부딪히는 부분으로 양력을 최대화하고 항력을 최소화하도록 만든 유선형의 에어포일(13)과, 상기 에어포일(13)과 루트부(11) 사이에 형성되어 에어포일(13)의 내부에 형성되어 있는 유로를 제한하는 플랫폼(12)으로 이루어져 있다.In particular, since the gas turbine obtains power by injecting high-temperature, high-pressure gas obtained by heating gas with the combustion heat of fuel to the turbine blade, the blade is a very important component in the gas turbine engine, and the turbine blade 10 is shown in FIG. A root part 11 coupled to the rotor of a gas turbine as shown in the figure, and a streamlined airfoil 13 connected to the root part 11 to maximize lift and minimize drag as a part where high-temperature, high-pressure gas directly collides with and a platform 12 formed between the airfoil 13 and the root portion 11 to limit a flow path formed inside the airfoil 13.

상기 블레이드(10)의 구성은 관용의 구성이기에 상세한 설명은 생략하도록 한다.Since the configuration of the blade 10 is a conventional configuration, a detailed description thereof will be omitted.

상술한 바와 같이 가스터빈에 사용되는 블레이드는 고온·고압에 견뎌야 하기에 니켈계, 코발트계 또는 니켈-코발트계와 같은 초내열 합금으로 제작되어야 한다.As described above, blades used in gas turbines must withstand high temperatures and high pressures, so they must be made of superheat-resistant alloys such as nickel-based, cobalt-based, or nickel-cobalt-based.

이러한 초내열 합금은 고가의 합금이기에 블레이드의 파손에 따른 수리시 비용을 절감하기 위해 블레이드 일체를 신품으로 교체하는 것보다 파손 부분을 수리하여 재사용하는 것이 경제적이다.Since such a heat-resistant alloy is an expensive alloy, it is more economical to repair and reuse damaged parts than to replace an entire blade with a new one in order to reduce costs when repairing blade damage.

특히, 블레이드(10)의 구성 중 에어포일(13)은 루트부(11)와 플랫폼(12)에 비해 상대적으로 무게가 매우 가볍기 때문에 수리 및 제작이 용이하다.In particular, since the airfoil 13 of the blade 10 is relatively light in weight compared to the root portion 11 and the platform 12, it is easy to repair and manufacture.

대한민국 등록특허공보 제10-0509544호(블레이드 일체형 로터 에어포일의 제조 및 수리 방법, 등록일자 2005년 08월 12일)Republic of Korea Patent Registration No. 10-0509544 (Manufacturing and repair method of blade-integrated rotor airfoil, registration date: August 12, 2005) 대한민국 등록특허공보 제10-1997979호(블레이드 에어포일, 터빈 및 이를 포함하는 가스터빈, 등록일자 2019년 07월 02일)Republic of Korea Patent Registration No. 10-1997979 (blade airfoil, turbine and gas turbine including the same, registration date July 02, 2019) 대한민국 공개특허공보 제2021-0002709호(터빈 블레이드용 에어포일. 공개일자 2021년 01월 08일)Republic of Korea Patent Publication No. 2021-0002709 (airfoil for turbine blades. Publication date January 08, 2021) 대한민국 공개특허공보 제2022-0112656호(터빈 블레이드용 스퀼러 팁 냉각 시스템을 포함하는 에어포일, 터빈 블레이드, 터빈 블레이드 어셈블리, 가스 터빈, 및 제조 방법 공개일자 2022년 08월 11일)Republic of Korea Patent Publication No. 2022-0112656 (airfoil including squealer tip cooling system for turbine blade, turbine blade, turbine blade assembly, gas turbine, and manufacturing method published on August 11, 2022)

본 발명은 상술한 문제점을 해결하기 위하여 안출된 것으로, 손상이 없는 루트부는 재사용하고 수리가 불가능한 에어포일은 3D프린팅에 의해 제조하여 브레이징에 의해 접합함으로써 기존에 폐기시키는 블레이드를 재사용할 수 있으며, 또한 수리시간도 단축시킬 수 있는 3D프린팅에 의한 가스터빈의 에어포일 수리 및 브레이징 공정을 제공하고자 하는 데 그 목적이 있다.The present invention has been devised to solve the above-described problems, and the root portion without damage is reused, and the airfoil that cannot be repaired is manufactured by 3D printing and joined by brazing, so that previously discarded blades can be reused. The purpose is to provide a gas turbine airfoil repair and brazing process by 3D printing that can also shorten the repair time.

본 발명 3D프린팅에 의한 가스터빈 블레이드의 에어포일 수리 공정은 가스터빈의 로터에 결합되는 루트부와, 상기 루트부에 연결되어 고온고압의 가스가 직접 부딪히는 부분으로 양력을 최대화하고 항력을 최소화하도록 만든 유선형의 에어포일과, 상기 에어포일과 루트부 사이에 형성되어 에어포일의 내부에 형성되어 있는 유로를 제한하는 플랫폼으로 구성된 가스터빈 블레이드에 있어서, 손상된 에어포일이 포함된 터빈 블레이드를 화학 스트리핑 하는 1단계 공정(S1); 화학 스트리핑한 터빈 블레이드를 형광침투탐상 검사하는 2단계 공정(S2); 손상된 에어포일을 절단하는 3단계 공정(S3); 3D프린팅으로 에어포일을 제작하는 4단계 공정(S4); 루트부에 형성된 홈부에 브레이징 필러를 주입하는 5단계 공정(S5); 에어포일과 루트부 조립 및 스폿용접으로 접합하는 6단계 공정(S6); 브레이징에 의해 열처리하는 7단계 공정(S7);을 포함하여 수리되는 것이 특징이다.The airfoil repair process of a gas turbine blade by 3D printing of the present invention is a root part coupled to a rotor of a gas turbine, and a part connected to the root part and directly hit by high-temperature, high-pressure gas to maximize lift and minimize drag. In a gas turbine blade composed of a streamlined airfoil and a platform formed between the airfoil and the root portion to limit a flow path formed inside the airfoil, chemical stripping of the turbine blade including the damaged airfoil 1 step process (S1); A two-step process (S2) of inspecting the chemically stripped turbine blades by fluorescence penetrant inspection; A three-step process of cutting the damaged airfoil (S3); A 4-step process of manufacturing an airfoil by 3D printing (S4); A five-step process (S5) of injecting brazing filler into the groove formed in the root portion; A six-step process (S6) of assembling the airfoil and the root part and joining them by spot welding; It is characterized in that it is repaired, including; a 7-step process (S7) of heat treatment by brazing.

따라서, 본 발명 3D프린팅에 의한 가스터빈 블레이드의 에어포일 수리 공정은 3D프린팅에 의해 에어포일을 새로이 제작하여 루트부에 브레이징으로 접합함으로써 기존에 폐기시키는 블레이드를 재사용할 수 있으며, 이로 인한 막대한 비용절감 및 생산효율의 증대와 더불어 수리시간을 단축시킬 수 있다는 등의 현저한 효과가 있다.Therefore, in the airfoil repair process of gas turbine blades by 3D printing of the present invention, an airfoil is newly manufactured by 3D printing and bonded to the root part by brazing, so that the blades that are previously discarded can be reused, resulting in huge cost savings. And there are remarkable effects such as increasing production efficiency and shortening repair time.

도 1은 가스터빈 블레이드 구성도.
도 2는 에어포일을 일체로 제작시 본 발명 3D프린팅에 의한 가스터빈 블레이드의 에어포일 제작 및 브레이징 공정도
도 3은 에어포일을 분할 제작시 본 발명 3D프린팅에 의한 가스터빈 블레이드의 에어포일 제작 및 브레이징 공정도.
1 is a configuration diagram of a gas turbine blade.
2 is an airfoil production and brazing process diagram of a gas turbine blade by 3D printing of the present invention when an airfoil is integrally manufactured
3 is a process diagram of airfoil manufacturing and brazing of a gas turbine blade by 3D printing of the present invention when the airfoil is divided and manufactured.

본 발명 3D프린팅에 의한 가스터빈 블레이드의 에어포일 수리 및 브레이징 공정은 가스터빈의 로터에 결합되는 루트부(11)와, 상기 루트부(11)에 연결되어 고온고압의 가스가 직접 부딪히는 부분으로 양력을 최대화하고 항력을 최소화하도록 만든 유선형의 에어포일(13)과, 상기 에어포일(13)과 루트부(11) 사이에 형성되어 에어포일(13)의 내부에 형성되어 있는 유로를 제한하는 플랫폼(12)으로 구성된 가스터빈 블레이드에 있어서,The airfoil repair and brazing process of the gas turbine blade by the 3D printing of the present invention is a root part 11 coupled to the rotor of the gas turbine, and a part connected to the root part 11 and directly hit by high-temperature and high-pressure gas. A streamlined airfoil 13 made to maximize and minimize drag, and a platform formed between the airfoil 13 and the root portion 11 to limit the flow path formed inside the airfoil 13 ( In the gas turbine blade composed of 12),

손상된 에어포일(13)이 포함된 터빈 블레이드(10)를 화학 스트리핑 하는 1단계 공정(S1); 화학 스트리핑한 터빈 블레이드(10)를 형광침투탐상 검사하는 2단계 공정(S2); 손상된 에어포일(13)을 절단하는 3단계 공정(S3); 3D프린팅으로 에어포일(13)을 제작하는 4단계 공정(S4); 루트부(11)에 형성된 홈부에 브레이징 필러를 주입하는 5단계 공정(S5); 에어포일(13)과 루트부(11) 조립 및 스폿용접으로 접합하는 6단계 공정(S6); 브레이징에 의해 열처리하는 7단계 공정(S7);을 포함하여 수리되는 것이 특징이다.A first-step process (S1) of chemically stripping the turbine blade 10 including the damaged airfoil 13; A two-step process (S2) of inspecting the chemically stripped turbine blades 10 by fluorescence penetrant inspection; A three-step process of cutting the damaged airfoil 13 (S3); A four-step process (S4) of manufacturing the airfoil 13 by 3D printing; A five-step process (S5) of injecting a brazing filler into the groove formed in the root portion 11; A six-step process (S6) of assembling the airfoil 13 and the root portion 11 and joining them by spot welding; It is characterized in that it is repaired, including; a 7-step process (S7) of heat treatment by brazing.

상기 5단계 공정에서의 브레이징 필러는 중량비로 탄소(C) 0.05% 이하, 크롬(Cr) 28% 이하, 니켈(Ni) 40% 이하, 텅스텐(W) 2.5% 이하, 하프늄(Hf) 1.5% 이하, 알루미늄(Al) 5% 이하, 탄탈륨(Ta) 1.5% 이하, 실리콘(Si) 4% 이하 나머지는 코발트(Co)로 이루어진 것과, 중량비로 탄소(C) 0.03%, 크롬(Cr) 30% 이하, 니켈(Ni) 50% 이하, 텅스텐(W) 1% 이하, 탄탈륨(Ta) 2.5% 이하, 붕소(B) 4%, 나머지는 코발트(Co)인 Ni기반 초합금 조성으로 브레이징 필러 중 택일하여 주사기로 접합하고자 하는 부분에 주입하는 방법을 사용하는 것이 특징이다.The brazing filler in the 5-step process contains, by weight, carbon (C) 0.05% or less, chromium (Cr) 28% or less, nickel (Ni) 40% or less, tungsten (W) 2.5% or less, hafnium (Hf) 1.5% or less , 5% or less of aluminum (Al), 1.5% or less of tantalum (Ta), 4% or less of silicon (Si), and the remainder consisting of cobalt (Co), 0.03% of carbon (C), 30% or less of chromium (Cr) in weight ratio , Nickel (Ni) 50% or less, tungsten (W) 1% or less, tantalum (Ta) 2.5% or less, boron (B) 4%, the rest is cobalt (Co) Ni-based superalloy composition, choose one of the brazing fillers and syringe It is characterized by using a method of injecting into the part to be joined.

그리고 상기 7단계 공정의 브레이징은 온도 1200∼1450℃에서 30∼60분간 행한 후, 20분 동안 1023∼1350℃까지 온도를 내려서 150∼255분간 진공에서 확산 열처리하는 것이 특징이다.And the brazing of the seven-step process is characterized in that, after performing at a temperature of 1200 to 1450 ° C. for 30 to 60 minutes, lowering the temperature to 1023 to 1350 ° C. for 20 minutes and performing diffusion heat treatment in vacuum for 150 to 255 minutes.

또한, 상기 4단계 공정(S4)에서 에어포일(13)을 분할 제작하는 경우 4단계 공정은 3D 프린팅에 의해 에어포일(13)을 분할하여 제작하는 4-1단계 공정(S4-1); 분할 제작된 에어포일(13)의 홈부에 브레이징 필러를 주입하는 4-2단계 공정(S4-2); 분할 제작된 에어포일(13)을 조립 및 스폿용접으로 접합하는 4-3단계 공정(S4-3); 브레이징에 의해 열처리하는 4-4단계 공정(S4-4);으로 이루어지는 것이 특징이다.In addition, when the airfoil 13 is divided and manufactured in the above 4-step process (S4), the 4-step process includes a 4-1 step process (S4-1) of dividing and manufacturing the airfoil 13 by 3D printing; Step 4-2 of injecting a brazing filler into the groove of the airfoil 13 manufactured separately (S4-2); A 4-3 step process (S4-3) of assembling and bonding the airfoils 13 manufactured separately by spot welding; It is characterized by consisting of; 4-4 step process (S4-4) of heat treatment by brazing.

또한, 상기 4-4단계에서의 브레이징 열처리는 7단계 공정의 브레이징 열처리온도보다 0∼300℃ 정도 더 높은 온도에서 진행하고, 열처리 시간은 0∼100분 정도 더 진행하는 것이 특징이다.In addition, the brazing heat treatment in step 4-4 is characterized in that the brazing heat treatment temperature in step 7 is performed at a temperature higher than the brazing heat treatment temperature in step 7 by about 0 to 300 ° C, and the heat treatment time is about 0 to 100 minutes longer.

이하, 본 발명 3D프린팅에 의한 가스터빈 블레이드의 에어포일 수리 공정을 첨부한 도면에 의해 상세히 설명하면 다음과 같다.Hereinafter, an airfoil repair process of a gas turbine blade by 3D printing of the present invention will be described in detail with reference to the accompanying drawings.

도 1은 가스터빈 블레이드 구성도, 도 2는 에어포일을 일체로 제작시 본 발명 3D프린팅에 의한 에어포일 제작 및 브레이징 공정도이다.1 is a configuration diagram of a gas turbine blade, and FIG. 2 is an airfoil manufacturing and brazing process diagram by 3D printing of the present invention when an airfoil is integrally manufactured.

도 1에 도시된 바와 같이 일반적으로 가스터빈 블레이드(10)는 가스터빈의 로터에 결합되는 루트부(11)와, 상기 루트부(11)에 연결되어 고온고압의 가스가 직접 부딪히는 부분으로 양력을 최대화하고 항력을 최소화하도록 만든 유선형의 에어포일(13)과, 상기 에어포일(13)과 루트부(11) 사이에 형성되어 에어포일(13)의 내부에 형성되어 있는 유로를 제한하는 플랫폼(12)으로 구성되어 있다.As shown in FIG. 1, a gas turbine blade 10 generally has a root portion 11 coupled to a rotor of a gas turbine, and a part connected to the root portion 11 to which high-temperature, high-pressure gas directly collides, and generates lift. A streamlined airfoil 13 made to maximize and minimize drag, and a platform 12 formed between the airfoil 13 and the root portion 11 to limit the flow path formed inside the airfoil 13 ) is composed of

이때, 도 1에 도시된 바와 같이 에어포일(13)은 루트부(11)에 비해 상대적으로 그 중량이 매우 가볍기에 수리가 매우 용이한 구성품이다.At this time, as shown in FIG. 1, the airfoil 13 is a component that is very easy to repair because its weight is relatively light compared to the root portion 11.

이에, 도 2에 도시된 바와 같이 본 발명 3D프린팅에 의한 가스터빈 블레이드의 에어포일 수리 및 브레이징 공정은 손상된 에어포일(13)이 포함된 터빈 블레이드(10)를 화학 스트리핑 하는 1단계 공정(S1); 화학 스트리핑한 터빈 블레이드(10)를 형광침투탐상 검사하는 2단계 공정(S2); 손상된 에어포일(13)을 절단하는 3단계 공정(S3); 3D프린팅으로 에어포일(13)을 제작하는 4단계 공정(S4); 루트부(11)에 형성된 홈부에 브레이징 필러를 주입하는 5단계 공정(S5); 에어포일(13)과 루트부(11) 조립 및 스폿용접으로 접합하는 6단계 공정(S6); 브레이징에 의해 열처리하는 7단계 공정(S7);을 포함하여 수리되도록 이루어져 있다.Accordingly, as shown in FIG. 2, the airfoil repair and brazing process of the gas turbine blade by 3D printing of the present invention is a first-step process (S1) of chemical stripping the turbine blade 10 including the damaged airfoil 13 ; A two-step process (S2) of inspecting the chemically stripped turbine blades 10 by fluorescence penetrant inspection; A three-step process of cutting the damaged airfoil 13 (S3); A four-step process (S4) of manufacturing the airfoil 13 by 3D printing; A five-step process (S5) of injecting a brazing filler into the groove formed in the root portion 11; A six-step process (S6) of assembling the airfoil 13 and the root portion 11 and joining them by spot welding; It is made to be repaired, including; 7-step process (S7) of heat treatment by brazing.

더욱 상세하게는 1단계 공정(S1)으로 수리하고자 하는 에어포일(13)이 포함된 터빈 블레이드(10)의 표면에 코팅된 코팅층을 없애기 위해 화학 스트리핑 작업을 진행하도록 한다.More specifically, chemical stripping is performed to remove the coating layer coated on the surface of the turbine blade 10 including the airfoil 13 to be repaired in the first step (S1).

화학 스트리핑(Chemical Stripping) 작업은 용사 코팅된 고온내산화 본드 코팅층인 금속막 MCrAlY(M=Ni, Co)을 화학적으로 용해하여 제거하는 작업이다.The chemical stripping operation is an operation of chemically dissolving and removing the metal film MCrAlY (M=Ni, Co), which is a thermal spray-coated high-temperature oxidation-resistant bond coating layer.

2단계 공정(S2)으로는 화학 스트리핑한 터빈 블레이드(10)를 형광침투탐상 검사하는 것으로, 형상침투탐상이란 형광물질이 든 침투액을 사용하여 검사하고자 하는 재료 표면에 있는 균열과 같은 결함 부분에 형광액을 침투시켜 자외선을 조사하여 결함부분이 형광을 발하게 하여 그 결함을 검출하는 검사방법이다.In the second step (S2), the chemically stripped turbine blades 10 are inspected by fluorescence penetrant inspection. Form penetrant inspection uses a penetrant containing a fluorescent material to detect defects such as cracks on the surface of the material to be inspected. It is an inspection method that detects defects by penetrating the liquid and irradiating ultraviolet rays to cause the defective part to emit fluorescence.

3단계 공정(S3)으로는 2단계 공정(S2)의 형광침투탐상에 의해 에어포일(13)의 손상된 부분이 발견되면 손상된 에어포일(13)을 절단하는 것이다.In the third step (S3), when the damaged portion of the airfoil 13 is found by the fluorescent penetrant inspection of the second step (S2), the damaged airfoil 13 is cut.

이때, 에어포일(13)을 손상된 부분만 절단할 수도 있고, 루트부(11)까지 이어지는 에어포일(13) 전체를 절단할 수도 있다.At this time, only the damaged portion of the airfoil 13 may be cut, or the entire airfoil 13 leading to the root portion 11 may be cut.

절단된 에어포일(13)의 단면에 연마부재로 연마를 하는 것은 당연한 공정의 일부이기에 본 발명에서는 상세한 설명은 생략하였다.Since polishing the cross section of the cut airfoil 13 with an abrasive member is part of a natural process, detailed description is omitted in the present invention.

그리고 본 발명에서는 에어포일(13) 전체를 절단하여 새로운 에어포일(13)을 3D프린팅을 통해 제작하는 4단계 공정(S4)을 진행하도록 한다.In the present invention, the entire airfoil 13 is cut to proceed with a 4-step process (S4) of manufacturing a new airfoil 13 through 3D printing.

5단계 공정(S5)으로는 새롭게 제작된 에어포일(13)과의 접합성을 향상시키기 위하여 루트부(11)에 형성된 홈부에 브레이징 필러를 주입하게 된다.In the fifth step (S5), a brazing filler is injected into the groove formed in the root portion 11 to improve bonding with the newly manufactured airfoil 13.

상기 5단계 공정에서의 브레이징 필러는 중량비로 탄소(C) 0.05% 이하, 크롬(Cr) 28% 이하, 니켈(Ni) 40% 이하, 텅스텐(W) 2.5% 이하, 하프늄(Hf) 1.5% 이하, 알루미늄(Al) 5% 이하, 탄탈륨(Ta) 1.5% 이하, 실리콘(Si) 4% 이하 나머지는 코발트(Co)로 이루어진 것과, 중량비로 탄소(C) 0.03%, 크롬(Cr) 30% 이하, 니켈(Ni) 50% 이하, 텅스텐(W) 1% 이하, 탄탈륨(Ta) 2.5% 이하, 붕소(B) 4%, 나머지는 코발트(Co)인 Ni기반 초합금 조성으로 브레이징 필러 중 택일하여 주사기로 접합하고자 하는 부분에 주입하는 방법을 사용하도록 한다.The brazing filler in the 5-step process contains, by weight, carbon (C) 0.05% or less, chromium (Cr) 28% or less, nickel (Ni) 40% or less, tungsten (W) 2.5% or less, hafnium (Hf) 1.5% or less , 5% or less of aluminum (Al), 1.5% or less of tantalum (Ta), 4% or less of silicon (Si), and the remainder consisting of cobalt (Co), 0.03% of carbon (C), 30% or less of chromium (Cr) in weight ratio , Nickel (Ni) 50% or less, tungsten (W) 1% or less, tantalum (Ta) 2.5% or less, boron (B) 4%, the rest is cobalt (Co) Ni-based superalloy composition, choose one of the brazing fillers and syringe Use the method of injecting into the part to be joined.

상기 열거한 브레이징 필러는 고온부품인 가스터빈 블레이드를 이루는 금속성분과의 친화력 또는 친밀감과 접합력 및 접합후 견고함 유지 등을 고려하였다.The above-listed brazing fillers considered affinity or intimacy with metal components constituting a gas turbine blade, which is a high-temperature part, bonding strength, and maintaining robustness after bonding.

스폿용접된 에어포일(13)과 루트부(11) 사이의 틈새에 브레이징 필러 침투가 용이하게 하기 위해서 초음파 진동을 가할 수 있다.Ultrasonic vibration may be applied to facilitate penetration of the brazing filler into the gap between the spot-welded airfoil 13 and the root portion 11.

초음파 진동은 1KHz∼100MHz의 범위로 하되, 더욱 바람직하게는 20∼60℃ 내에서 진행되도록 한다.Ultrasonic vibration is in the range of 1 KHz to 100 MHz, more preferably within a range of 20 to 60 ° C.

5단계 공정(S5) 후에는 에어포일(13)과 루트부(11) 조립한 후, 스폿용접으로 접합하는 6단계 공정(S6)을 진행하도록 한다.After the 5-step process (S5), the 6-step process (S6) of assembling the airfoil 13 and the root portion 11 and then joining them by spot welding is performed.

끝으로, 6단계 공정에 의해 에어포일(13)과 루트부(11)를 스폿용접에 의해 접합한 후에는 브레이징에 의해 열처리하는 7단계 공정(S7)을 진행하여 더욱 견고한 접합관계를 이룰 수 있도록 한다.Finally, after joining the airfoil 13 and the root part 11 by spot welding in the 6-step process, proceed with the 7-step heat treatment process (S7) by brazing to achieve a more robust bonding relationship. do.

이때, 브레이징은 온도 1200∼1200℃에서 30∼60분간 행한 후, 20분 동안 1023∼1350℃까지 온도를 내려서 150∼255분간 진공에서 확산 열처리하도록 한다.At this time, brazing is performed at a temperature of 1200 to 1200 ° C for 30 to 60 minutes, then lowered to 1023 to 1350 ° C for 20 minutes, and diffusion heat treatment in vacuum for 150 to 255 minutes.

상술한 바와 같은 진행방법은 4단계 공정에서 알 수 있는 바와 같이 에어포일(13)을 3D프린팅을 통해 하나의 완성품으로 제작하는 것으로, 하기와 같이 에어포일(13)을 분할제작하여 분할제작된 에어포일(13)을 조립 또는 접합하여 진행할 수도 있다.The proceeding method as described above is to manufacture the airfoil 13 as one finished product through 3D printing, as can be seen in the 4-step process, and the airfoil 13 is divided and manufactured as follows. It is also possible to proceed by assembling or bonding the foil 13 .

도 3은 에어포일을 분할 제작시 본 발명 3D프린팅에 의한 에어포일 제작 및 브레이징 공정도이다.3 is a process diagram of airfoil manufacturing and brazing by 3D printing of the present invention when the airfoil is divided and manufactured.

도 3에 도시된 바와 같이 에어포일(13)을 분할 제작하는 경우에는 상기 4단계 공정(S4)에서 3D 프린팅에 의해 에어포일(13)을 분할하여 제작하는 4-1단계 공정(S4-1); 분할 제작된 에어포일(13)의 홈부에 브레이징 필러를 주입하는 4-2단계 공정(S4-2); 분할 제작된 에어포일(13)을 조립 및 스폿용접으로 접합하는 4-3단계 공정(S4-3); 브레이징에 의해 열처리하는 4-4단계 공정(S4-4);으로 세분화하여 진행할 수 있다.As shown in FIG. 3, in the case of dividing and manufacturing the airfoil 13, a 4-1 step process (S4-1) of dividing and manufacturing the airfoil 13 by 3D printing in the above 4-step process (S4) ; Step 4-2 of injecting a brazing filler into the groove of the airfoil 13 manufactured separately (S4-2); A 4-3 step process (S4-3) of assembling and bonding the airfoils 13 manufactured separately by spot welding; It can be subdivided into 4-4 steps of heat treatment by brazing (S4-4).

즉, 4단계 공정(S4)을 세분화하여 먼저 4-1단계 공정(S4-1)으로 3D 프린팅에 의해 에어포일(13)을 분할하여 제작하도록 한다.That is, the 4-step process (S4) is subdivided, and the airfoil 13 is divided and manufactured by 3D printing in the 4-1 step process (S4-1).

에어포일(13)은 상층과 하층으로 나뉘어지도록 제작할 수도 있으며, 길이방향으로 분할제작할 수도 있는 데 본 발명에서 제작의 용이성과 조립후 에어포일(13)에 가해지는 응력에 대한 저항력을 고려하여 길이방향으로 분할제작하도록 한다.The airfoil 13 may be manufactured to be divided into upper and lower layers, and may be manufactured separately in the longitudinal direction. In the present invention, considering the ease of manufacture and the resistance to the stress applied to the airfoil 13 after assembly, the longitudinal direction to be divided into

길이방향으로는 2분할 또는 2분할 이상으로 제작할 수도 있을 것이다.In the longitudinal direction, it may be produced in two or more than two divisions.

이때, 분할 제작된 에어포일(13) 간의 조립성이 용이하도록 에어포일(13) 중 분할제작된 어느 하나의 에어포일(13)의 단부면에는 외부로 돌출되는 돌출부를 형성하고, 분할제작된 다른 에어포일(13)의 단부면에는 상기 돌출부가 삽입되는 홈부를 형성함으로써 조립이 용이하도록 한다.At this time, to facilitate assembly between the divided airfoils 13, a protrusion protruding to the outside is formed on the end surface of any one of the airfoils 13 manufactured separately, and the other airfoils 13 manufactured separately are formed. An end face of the airfoil 13 is formed with a groove into which the protrusion is inserted, so assembling is facilitated.

즉, 분할제작되는 에어포일(13)을 각각 레고블록처럼 제작하여 서로 조립하며, 조립 시 브레이징을 통해 서로 접합되도록 함으로써 조립이 용이한 동시에 결속력도 매우 향상되도록 한 것이다.That is, each of the airfoils 13 to be manufactured separately is manufactured like a Lego block, assembled with each other, and bonded to each other through brazing during assembly, so that the assembly is easy and the binding force is greatly improved.

상기 에어포일(13)을 2분할 이상이 되게 제조하여 조립하되, 에어포일(13)에서 끝단부인 블레이드팁(14)은 별도로 제조하여 결합 또는 접합할 수도 있을 것이다.The airfoil 13 is manufactured and assembled to be divided into two or more, but the blade tip 14, which is the end of the airfoil 13, may be separately manufactured and combined or joined.

블레이드팁(14)은 주조 또는 3D프린팅 중 상황에 맞추어 택일하여 제작하면 된다.The blade tip 14 may be manufactured by selecting one according to the situation during casting or 3D printing.

다음 공정단계인 4-2단계 공정(S4-2)은 상술한 바와 같이 방식에 의해 분할 제작된 에어포일(13)의 홈부에 브레이징 필러를 주입하는 것이다.The next process step, the 4-2 step process (S4-2), is to inject the brazing filler into the groove of the airfoil 13 divided and manufactured by the method as described above.

브레이징 필러는 상기 5단계의 설명에 기술된 조성을 이용하도록 한다.The brazing filler uses the composition described in the description of step 5 above.

그리고 분할 제작된 에어포일(13)을 조립한 후, 스폿용접으로 조립된 에어포일(13)을 접합하는 4-3단계 공정(S4-3)을 진행하도록 한다.Then, after assembling the airfoils 13 manufactured separately, a 4-3 step process (S4-3) of joining the assembled airfoils 13 by spot welding is performed.

4-3단계 공정(S4-3)을 진행을 진행한 후에는 4-4단계 공정(S4-4)에 의해 스폿용접에 의해 접합되어 있는 에어포일(13)을 브레이징에 의해 열처리하도록 한다.After the 4-3 step process (S4-3) is performed, the airfoil 13 joined by spot welding in the 4-4 step process (S4-4) is heat treated by brazing.

이때의 브레이징의 온도는 7단계 공정에서 진행되는 브레이징의 온도보다는 상대적으로 동일하거나 높은 온도에서 진행하도록 한다.At this time, the brazing temperature is set to be relatively the same as or higher than the brazing temperature in the 7-step process.

더욱 상세하게는 4-4단계에서의 브레이징 열처리는 7단계 공정의 브레이징 열처리온도보다 0∼300℃ 정도 더 높은 온도에서 진행하고, 열처리 시간은 0∼100분 정도 더 진행하도록 한다.More specifically, the brazing heat treatment in step 4-4 is performed at a temperature about 0 to 300 ° C. higher than the brazing heat treatment temperature in step 7, and the heat treatment time is about 0 to 100 minutes longer.

따라서, 본 발명 3D프린팅에 의한 가스터빈 블레이드의 에어포일 수리 공정은 3D프린팅에 의해 에어포일을 새로이 제작하여 루트부에 브레이징으로 접합함으로써 기존에 폐기시키는 블레이드를 재사용할 수 있으며, 이로 인한 막대한 비용절감 및 생산효율의 증대와 더불어 수리시간을 단축시킬 수 있다는 등의 현저한 효과가 있다.Therefore, in the airfoil repair process of gas turbine blades by 3D printing of the present invention, an airfoil is newly manufactured by 3D printing and bonded to the root part by brazing, so that the blades that are previously discarded can be reused, resulting in huge cost savings. And there are remarkable effects such as increasing production efficiency and shortening repair time.

10. 터빈 블레이드
11. 루트부(Root)
12. 플랫폼
13. 에어포일
14. 블레이드팁
10. Turbine blades
11. Root
12. Platform
13. Airfoil
14. Blade tip

Claims (5)

가스터빈의 로터에 결합되는 루트부(11)와, 상기 루트부(11)에 연결되어 고온고압의 가스가 직접 부딪히는 부분으로 양력을 최대화하고 항력을 최소화하도록 만든 유선형의 에어포일(13)과, 상기 에어포일(13)과 루트부(11) 사이에 형성되어 에어포일(13)의 내부에 형성되어 있는 유로를 제한하는 플랫폼(12)으로 구성된 가스터빈 블레이드 수리 공정에 있어서,
손상된 에어포일(13)이 포함된 터빈 블레이드(10)를 화학 스트리핑 하는 1단계 공정(S1); 화학 스트리핑한 터빈 블레이드(10)를 형광침투탐상 검사하는 2단계 공정(S2); 손상된 에어포일(13)을 절단하는 3단계 공정(S3); 3D프린팅으로 에어포일(13)을 제작하는 4단계 공정(S4); 루트부(11)에 형성된 홈부에 브레이징 필러를 주입하는 5단계 공정(S5); 에어포일(13)과 루트부(11) 조립 및 스폿용접으로 접합하는 6단계 공정(S6); 브레이징에 의해 열처리하는 7단계 공정(S6);을 포함하여 수리되는 것으로,
상기 5단계 공정에서의 브레이징 필러는 중량비로 탄소(C) 0.05% 이하, 크롬(Cr) 28% 이하, 니켈(Ni) 40% 이하, 텅스텐(W) 2.5% 이하, 하프늄(Hf) 1.5% 이하, 알루미늄(Al) 5% 이하, 탄탈륨(Ta) 1.5% 이하, 실리콘(Si) 4% 이하 나머지는 코발트(Co)로 이루어진 것과, 중량비로 탄소(C) 0.03%, 크롬(Cr) 30% 이하, 니켈(Ni) 50% 이하, 텅스텐(W) 1% 이하, 탄탈륨(Ta) 2.5% 이하, 붕소(B) 4%, 나머지는 코발트(Co)인 Ni기반 초합금 조성으로 브레이징 필러 중 택일하여 주사기로 접합하고자 하는 부분에 주입하는 방법을 사용하는 것이며,
상기 7단계 공정의 브레이징은 온도 1200~1450℃에서 30∼60분간 행한 후, 20분 동안 1023∼1200℃까지 온도를 내려서 150∼255분간 진공에서 확산 열처리하는 것이며,
상기 4단계 공정(S4)에서 에어포일(13)을 분할 제작하는 경우 4단계 공정은 3D 프린팅에 의해 에어포일(13)을 분할하여 제작하는 4-1단계 공정(S4-1); 분할 제작된 에어포일(13)의 홈부에 브레이징 필러를 주입하는 4-2단계 공정(S4-2); 분할 제작된 에어포일(13)을 조립 및 스폿용접으로 접합하는 4-3단계 공정(S4-3); 브레이징에 의해 열처리하는 4-4단계 공정(S4-4);으로 이루어지는 것이 특징인 3D프린팅에 의한 가스터빈 블레이드의 에어포일 수리 공정.
A root part 11 coupled to the rotor of a gas turbine, and a streamlined airfoil 13 connected to the root part 11 to maximize lift and minimize drag as a part where high-temperature, high-pressure gas directly hits, In the gas turbine blade repair process composed of a platform 12 formed between the airfoil 13 and the root portion 11 to limit the flow path formed inside the airfoil 13,
A first-step process (S1) of chemically stripping the turbine blade 10 including the damaged airfoil 13; A two-step process (S2) of inspecting the chemically stripped turbine blades 10 by fluorescence penetrant inspection; A three-step process of cutting the damaged airfoil 13 (S3); A four-step process (S4) of manufacturing the airfoil 13 by 3D printing; A five-step process (S5) of injecting a brazing filler into the groove formed in the root portion 11; A six-step process (S6) of assembling the airfoil 13 and the root portion 11 and joining them by spot welding; To be repaired, including a 7-step process (S6) of heat treatment by brazing,
The brazing filler in the 5-step process contains, by weight, carbon (C) 0.05% or less, chromium (Cr) 28% or less, nickel (Ni) 40% or less, tungsten (W) 2.5% or less, hafnium (Hf) 1.5% or less , 5% or less of aluminum (Al), 1.5% or less of tantalum (Ta), 4% or less of silicon (Si), and the remainder consisting of cobalt (Co), 0.03% of carbon (C), 30% or less of chromium (Cr) in weight ratio , Nickel (Ni) 50% or less, tungsten (W) 1% or less, tantalum (Ta) 2.5% or less, boron (B) 4%, the rest is cobalt (Co) Ni-based superalloy composition, choose one of the brazing fillers and syringe It is to use the method of injecting into the part to be joined with
The brazing in the seven-step process is carried out at a temperature of 1200 to 1450 ° C for 30 to 60 minutes, then lowered to 1023 to 1200 ° C for 20 minutes, followed by diffusion heat treatment in vacuum for 150 to 255 minutes,
When the airfoil 13 is divided and manufactured in the 4-step process (S4), the 4-step process includes a 4-1 step process (S4-1) of dividing and manufacturing the airfoil 13 by 3D printing; Step 4-2 of injecting a brazing filler into the groove of the airfoil 13 manufactured separately (S4-2); A 4-3 step process (S4-3) of assembling and bonding the airfoils 13 manufactured separately by spot welding; 4-4 step process (S4-4) of heat treatment by brazing; airfoil repair process of gas turbine blade by 3D printing, characterized by consisting of.
삭제delete 삭제delete 삭제delete 제1항에 있어서,
상기 4-4단계에서의 브레이징 열처리는 7단계 공정의 브레이징 열처리온도보다 0∼300℃ 정도 더 높은 온도에서 진행하고, 열처리 시간은 0∼100분 정도 더 진행하는 것이 특징인 3D프린팅에 의한 가스터빈 블레이드의 에어포일 수리 공정.
According to claim 1,
The brazing heat treatment in step 4-4 proceeds at a temperature about 0 to 300 ° C higher than the brazing heat treatment temperature in step 7, and the heat treatment time is about 0 to 100 minutes longer. Gas turbine by 3D printing, characterized by Blade airfoil repair process.
KR1020220150683A 2022-11-11 2022-11-11 Rrepairing Airfoil Process of gas turbine blades by 3D printing KR102507408B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220150683A KR102507408B1 (en) 2022-11-11 2022-11-11 Rrepairing Airfoil Process of gas turbine blades by 3D printing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220150683A KR102507408B1 (en) 2022-11-11 2022-11-11 Rrepairing Airfoil Process of gas turbine blades by 3D printing

Publications (1)

Publication Number Publication Date
KR102507408B1 true KR102507408B1 (en) 2023-03-08

Family

ID=85508282

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220150683A KR102507408B1 (en) 2022-11-11 2022-11-11 Rrepairing Airfoil Process of gas turbine blades by 3D printing

Country Status (1)

Country Link
KR (1) KR102507408B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102602057B1 (en) * 2023-04-20 2023-11-14 터보파워텍(주) Method of manufacturing gas turbine vane using hybrid process with 3D printing and brazing
KR102631599B1 (en) * 2023-08-28 2024-02-01 터보파워텍(주) Method of repairing wide gap cracks in hot gas path parts for gas turbine using brazing

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100509544B1 (en) 2001-04-17 2005-08-23 유나이티드 테크놀로지스 코포레이션 Methods for fabrication and repair of integrally bladed rotor airfoil
JP2015055248A (en) * 2013-09-11 2015-03-23 ゼネラル・エレクトリック・カンパニイ Modification process and modified article
JP2018507340A (en) * 2014-12-04 2018-03-15 シーメンス アクティエンゲゼルシャフト Method for manufacturing a rotor blade and blade realized by such a method
KR101997979B1 (en) 2017-10-17 2019-07-08 두산중공업 주식회사 Blade airfoil, turbine and gas turbine comprising the same
KR20210002709A (en) 2018-05-04 2021-01-08 지멘스 악티엔게젤샤프트 Airfoil for turbine blade
KR20210039478A (en) * 2018-08-21 2021-04-09 지멘스 에너지, 인코포레이티드 Metal braze pre-sintered preform replaces section of turbine airfoil
KR20220112656A (en) 2021-02-04 2022-08-11 두산에너빌리티 주식회사 Airfoil with a squealer tip cooling system for a turbine blade, a turbine blade, a turbine blade assembly, a gas turbine and a manufacturing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100509544B1 (en) 2001-04-17 2005-08-23 유나이티드 테크놀로지스 코포레이션 Methods for fabrication and repair of integrally bladed rotor airfoil
JP2015055248A (en) * 2013-09-11 2015-03-23 ゼネラル・エレクトリック・カンパニイ Modification process and modified article
JP2018507340A (en) * 2014-12-04 2018-03-15 シーメンス アクティエンゲゼルシャフト Method for manufacturing a rotor blade and blade realized by such a method
KR101997979B1 (en) 2017-10-17 2019-07-08 두산중공업 주식회사 Blade airfoil, turbine and gas turbine comprising the same
KR20210002709A (en) 2018-05-04 2021-01-08 지멘스 악티엔게젤샤프트 Airfoil for turbine blade
KR20210039478A (en) * 2018-08-21 2021-04-09 지멘스 에너지, 인코포레이티드 Metal braze pre-sintered preform replaces section of turbine airfoil
KR20220112656A (en) 2021-02-04 2022-08-11 두산에너빌리티 주식회사 Airfoil with a squealer tip cooling system for a turbine blade, a turbine blade, a turbine blade assembly, a gas turbine and a manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102602057B1 (en) * 2023-04-20 2023-11-14 터보파워텍(주) Method of manufacturing gas turbine vane using hybrid process with 3D printing and brazing
KR102631599B1 (en) * 2023-08-28 2024-02-01 터보파워텍(주) Method of repairing wide gap cracks in hot gas path parts for gas turbine using brazing

Similar Documents

Publication Publication Date Title
KR102507408B1 (en) Rrepairing Airfoil Process of gas turbine blades by 3D printing
US10016853B2 (en) Deep trailing edge repair
US7824510B2 (en) Methods of repairing engine components
US9121282B2 (en) Methods for the controlled reduction of turbine nozzle flow areas and turbine nozzle components having reduced flow areas
US8870523B2 (en) Method for manufacturing a hot gas path component and hot gas path turbine component
KR102550572B1 (en) Replacing Sections of Turbine Airfoils with Metallic Brazed Presintered Preforms
EP2159371B1 (en) Gas turbine airfoil assemblies and methods of repair
US7699944B2 (en) Intermetallic braze alloys and methods of repairing engine components
US20050139581A1 (en) High-strength superalloy joining method for repairing turbine blades
EP3927943B1 (en) Tip repair of a turbine component using a composite tip boron base pre-sintered preform
JP5254116B2 (en) Damage repair method for high temperature parts and high temperature parts
RU2785029C1 (en) Repairment of end part of turbine component, using composite pre-sintered mold of boron-doped base
KR102302909B1 (en) Turbine blade repair method using additive manufacturing
KR102616606B1 (en) Method for repairing vane and manufacturing core plug of gas turbine by 3D printing
KR102602057B1 (en) Method of manufacturing gas turbine vane using hybrid process with 3D printing and brazing
JP7524200B2 (en) Welding and brazing techniques
Richter Laser material processing in the aero engine industry. Established, cutting-edge and emerging applications
US20090028707A1 (en) Apparatus and method for repairing airfoil tips
JPWO2020154453A5 (en)

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant