KR102503066B1 - A method and a TTS system for evaluating the quality of a spectrogram using scores of an attention alignment - Google Patents
A method and a TTS system for evaluating the quality of a spectrogram using scores of an attention alignment Download PDFInfo
- Publication number
- KR102503066B1 KR102503066B1 KR1020200158773A KR20200158773A KR102503066B1 KR 102503066 B1 KR102503066 B1 KR 102503066B1 KR 1020200158773 A KR1020200158773 A KR 1020200158773A KR 20200158773 A KR20200158773 A KR 20200158773A KR 102503066 B1 KR102503066 B1 KR 102503066B1
- Authority
- KR
- South Korea
- Prior art keywords
- score
- spectrogram
- scores
- attention
- encoder
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 19
- 230000015572 biosynthetic process Effects 0.000 description 45
- 238000003786 synthesis reaction Methods 0.000 description 45
- 239000013598 vector Substances 0.000 description 23
- 238000010586 diagram Methods 0.000 description 20
- 238000013528 artificial neural network Methods 0.000 description 14
- 238000005516 engineering process Methods 0.000 description 7
- 230000001537 neural effect Effects 0.000 description 6
- 230000002194 synthesizing effect Effects 0.000 description 6
- 238000013473 artificial intelligence Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 238000013527 convolutional neural network Methods 0.000 description 3
- 230000000306 recurrent effect Effects 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 238000001308 synthesis method Methods 0.000 description 3
- 230000001364 causal effect Effects 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000008451 emotion Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000000946 synaptic effect Effects 0.000 description 2
- 230000003190 augmentative effect Effects 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000002996 emotional effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000006403 short-term memory Effects 0.000 description 1
- 230000005236 sound signal Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 230000001755 vocal effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L25/00—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
- G10L25/48—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 specially adapted for particular use
- G10L25/51—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 specially adapted for particular use for comparison or discrimination
- G10L25/60—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 specially adapted for particular use for comparison or discrimination for measuring the quality of voice signals
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L13/00—Speech synthesis; Text to speech systems
- G10L13/02—Methods for producing synthetic speech; Speech synthesisers
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L17/00—Speaker identification or verification techniques
- G10L17/06—Decision making techniques; Pattern matching strategies
- G10L17/12—Score normalisation
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L25/00—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
- G10L25/03—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the type of extracted parameters
- G10L25/18—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the type of extracted parameters the extracted parameters being spectral information of each sub-band
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Multimedia (AREA)
- Health & Medical Sciences (AREA)
- Audiology, Speech & Language Pathology (AREA)
- Human Computer Interaction (AREA)
- Acoustics & Sound (AREA)
- Computational Linguistics (AREA)
- Signal Processing (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Quality & Reliability (AREA)
- Business, Economics & Management (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Game Theory and Decision Science (AREA)
- Machine Translation (AREA)
Abstract
일 측면에 따른 스펙트로그램에 대응하는 어텐션 얼라인먼트(attention alignment)의 스코어(score)를 연산하는 방법은, 상기 어텐션 얼라인먼트가 표현되는 제1 축(axis)을 구성하는 스텝들 각각에 대하여 스코어를 연산하고, 연산된 스코어들에 기초하여 제1 스코어를 획득하는 단계; 상기 어텐션 얼라인먼트가 표현되는 제2 축을 구성하는 스텝들 각각에 대하여 스코어를 연산하고, 연산된 스코어들에 기초하여 제2 스코어를 획득하는 단계; 및 상기 제1 스코어 및 상기 제2 스코어를 조합하여 상기 스펙트로그램에 대응하는 최종 스코어를 연산하는 단계;를 포함한다.A method for calculating a score of attention alignment corresponding to a spectrogram according to an aspect includes calculating a score for each of the steps constituting a first axis on which the attention alignment is expressed, , obtaining a first score based on the calculated scores; calculating scores for each of the steps constituting the second axis in which the attention alignment is expressed, and obtaining a second score based on the calculated scores; and calculating a final score corresponding to the spectrogram by combining the first score and the second score.
Description
어텐션 얼라인먼트의 스코어를 이용하여 스펙트로그램의 품질을 평가하는 방법 및 음성 합성 시스템에 관한다.A method for evaluating the quality of a spectrogram using an attention alignment score and a speech synthesis system.
최근 인공 지능 기술의 발달로 음성 신호를 활용하는 인터페이스가 보편화되고 있다. 이에 따라, 주어진 상황에 따라 합성된 음성을 발화할 수 있도록 하는 음성 합성(speech synthesis) 기술에 대한 연구가 활발히 진행되고 있다.Recently, with the development of artificial intelligence technology, an interface using a voice signal is becoming common. Accordingly, research on a speech synthesis technology capable of uttering a synthesized voice according to a given situation is being actively conducted.
음성 합성 기술은 인공 지능에 기반한 음성 인식 기술과 접목하여 가상 비서, 오디오북, 자동 통번역 및 가상 성우 등의 많은 분야에 적용되고 있다. Speech synthesis technology is applied to many fields, such as virtual assistants, audio books, automatic interpretation and translation, and virtual voice actors, in conjunction with artificial intelligence-based voice recognition technology.
종래의 음성 합성 방법으로는 연결 합성(Unit Selection Synthesis, USS) 및 통계 기반 파라미터 합성(HMM-based Speech Synthesis, HTS) 등의 다양한 방법이 있다. USS 방법은 음성 데이터를 음소 단위로 잘라서 저장하고 음성 합성 시 발화에 적합한 음편을 찾아서 이어붙이는 방법이고, HTS 방법은 음성 특징에 해당하는 파라미터들을 추출해 통계 모델을 생성하고 통계 모델에 기반하여 텍스트를 음성으로 재구성하는 방법이다. 그러나, 상술한 종래의 음성 합성 방법은 화자의 발화 스타일 또는 감정 표현 등을 반영한 자연스러운 음성을 합성하는 데 많은 한계가 있었다. Conventional speech synthesis methods include various methods such as Unit Selection Synthesis (USS) and HMM-based Speech Synthesis (HTS). The USS method is a method of cutting and storing voice data in phoneme units and searching for and attaching sound pieces suitable for speech during speech synthesis. way to reconstruct it. However, the conventional voice synthesis method described above has many limitations in synthesizing a natural voice reflecting a speaker's speech style or emotional expression.
이에 따라, 최근에는 인공 신경망(Artificial Neural Network)에 기반하여 텍스트로부터 음성을 합성하는 음성 합성 방법이 주목받고 있다. Accordingly, recently, a speech synthesis method for synthesizing speech from text based on an artificial neural network is attracting attention.
어텐션 얼라인먼트의 스코어를 이용하여 스펙트로그램의 품질을 평가하는 방법 및 음성 합성 시스템을 제공하는데 있다. 또한, 실제 발화자가 말하는 듯한 자연스러운 음성을 구현할 수 있는 인공 지능 기반의 음성 합성 기술을 제공하는 데 있다. 또한, 적은 양의 학습 데이터를 이용하는 고효율의 인공 지능 기반의 음성 합성 기술을 제공하는 데 있다.An object of the present invention is to provide a method for evaluating the quality of a spectrogram using an attention alignment score and a speech synthesis system. In addition, it is an object of the present invention to provide an artificial intelligence-based voice synthesis technology capable of realizing a natural voice as if a real speaker is speaking. In addition, it is to provide a high-efficiency artificial intelligence-based voice synthesis technology using a small amount of learning data.
해결하고자 하는 기술적 과제는 상기된 바와 같은 기술적 과제들로 한정되지 않으며, 또 다른 기술적 과제들이 유추될 수 있다.The technical problem to be solved is not limited to the technical problems as described above, and other technical problems can be inferred.
일 측면에 따른 스펙트로그램에 대응하는 어텐션 얼라인먼트(attention alignment)의 스코어(score)를 연산하는 방법은, 상기 어텐션 얼라인먼트가 표현되는 제1 축(axis)을 구성하는 스텝들 각각에 대하여 스코어를 연산하고, 연산된 스코어들에 기초하여 제1 스코어를 획득하는 단계; 상기 어텐션 얼라인먼트가 표현되는 제2 축을 구성하는 스텝들 각각에 대하여 스코어를 연산하고, 연산된 스코어들에 기초하여 제2 스코어를 획득하는 단계; 및 상기 제1 스코어 및 상기 제2 스코어를 조합하여 상기 스펙트로그램에 대응하는 최종 스코어를 연산하는 단계;를 포함한다.A method for calculating a score of attention alignment corresponding to a spectrogram according to an aspect includes calculating a score for each of the steps constituting a first axis on which the attention alignment is expressed, , obtaining a first score based on the calculated scores; calculating scores for each of the steps constituting the second axis in which the attention alignment is expressed, and obtaining a second score based on the calculated scores; and calculating a final score corresponding to the spectrogram by combining the first score and the second score.
상술한 방법에 있어서, 상기 최종 스코어를 이용하여 상기 스펙트로그램의 품질을 평가하는 단계;를 더 포함한다.The method described above further includes evaluating the quality of the spectrogram using the final score.
상술한 방법에 있어서, 상기 제1 스코어를 획득하는 단계는, 상기 연산된 스코어들 중 상위 n 개의 스코어를 조합하여 상기 제1 스코어를 연산하고, 상기 n은 1 이상의 자연수를 포함한다.In the method described above, in the obtaining of the first score, the first score is calculated by combining top n scores among the calculated scores, where n includes a natural number of 1 or greater.
상술한 방법에 있어서, 상기 제2 스코어를 획득하는 단계는, 상기 연산된 스코어들 중 하위 m 개의 스코어를 조합하여 상기 제2 스코어를 연산하고, 상기 m은 1 이상의 자연수를 포함한다.In the method described above, in the obtaining of the second score, the second score is calculated by combining m lower scores among the calculated scores, and m includes a natural number of 1 or greater.
상술한 방법에 있어서, 상기 최종 스코어를 연산하는 단계는, 소정의 가중치가 적용된 상기 제2 스코어와 상기 제1 스코어를 합산하여 상기 최종 스코어를 연산한다.In the method described above, in the step of calculating the final score, the final score is calculated by adding the second score and the first score to which a predetermined weight is applied.
다른 측면에 따른 컴퓨터로 읽을 수 있는 기록매체는 상술한 방법을 컴퓨터에서 실행시키기 위한 프로그램을 포함한다.A computer-readable recording medium according to another aspect includes a program for executing the above-described method on a computer.
또 다른 측면에 따른 음성 합성 시스템은, 화자 인코더; 합성기; 및 보코더;를 포함하고, 상기 합성기는, 스펙트로그램에 대응하는 어텐션 얼라인먼트(attention alignment)가 표현되는 제1 축(axis)을 구성하는 스텝들 각각에 대하여 스코어를 연산하고, 연산된 스코어들에 기초하여 제1 스코어를 획득하고, 상기 얼라인먼트가 표현되는 제2 축을 구성하는 스텝들 각각에 대하여 스코어를 연산하고, 연산된 스코어들에 기초하여 제2 스코어를 획득하고, 상기 제1 스코어 및 상기 제2 스코어를 조합하여 상기 스펙트로그램에 대응하는 최종 스코어를 연산한다.A speech synthesis system according to another aspect includes a speaker encoder; synthesizer; and a vocoder, wherein the synthesizer calculates a score for each of the steps constituting a first axis on which an attention alignment corresponding to the spectrogram is expressed, and based on the calculated scores. to obtain a first score, calculate scores for each of the steps constituting the second axis in which the alignment is expressed, obtain a second score based on the calculated scores, and obtain the first score and the second The scores are combined to calculate a final score corresponding to the spectrogram.
상술한 시스템에 있어서, 상기 합성기는, 상기 최종 스코어를 이용하여 상기 스펙트로그램의 품질을 평가한다.In the system described above, the synthesizer evaluates the quality of the spectrogram using the final score.
상술한 시스템에 있어서, 상기 합성기는, 상기 연산된 스코어들 중 상위 n 개의 스코어를 조합하여 상기 제1 스코어를 연산하고, 상기 n은 1 이상의 자연수를 포함한다.In the system described above, the synthesizer calculates the first score by combining top n scores among the calculated scores, where n includes a natural number of 1 or greater.
상술한 시스템에 있어서, 상기 합성기는, 상기 연산된 스코어들 중 하위 m 개의 스코어를 조합하여 상기 제2 스코어를 연산하고, 상기 m은 1 이상의 자연수를 포함한다.In the system described above, the synthesizer calculates the second score by combining m lower scores among the calculated scores, where m includes a natural number of 1 or greater.
상술한 시스템에 있어서, 상기 합성기는, 소정의 가중치가 적용된 상기 제2 스코어와 상기 제1 스코어를 합산하여 상기 최종 스코어를 연산한다.In the system described above, the synthesizer calculates the final score by summing the second score and the first score to which a predetermined weight is applied.
음성 합성 시스템이 어텐션 얼라인먼트의 스코어(인코더 스코어, 디코더 스코어, 최종 스코어)를 연산함에 따라, 어텐션 얼라인먼트에 대응하는 멜 스펙트로그램의 품질이 판단될 수 있다. 따라서, 음성 합성 시스템은 복수의 멜 스펙트로그램들 중 최고 품질의 멜 스펙트로그램을 선택할 수 있다. 이에 따라, 음성 합성 시스템은 최고 품질의 합성 음성을 출력할 수 있다.As the speech synthesis system calculates attention alignment scores (encoder score, decoder score, and final score), the quality of the Mel spectrogram corresponding to the attention alignment may be determined. Accordingly, the speech synthesis system may select a mel spectrogram of the highest quality from among a plurality of mel spectrograms. Accordingly, the speech synthesis system can output synthesized speech of the highest quality.
도 1은 음성 합성 시스템의 동작을 개략적으로 나타내는 도면이다.
도 2는 음성 합성 시스템의 일 실시예를 나타내는 도면이다.
도 3은 합성기를 통해 멜 스펙트로그램을 출력하는 일 실시예를 나타내는 도면이다.
도 4a 및 도 4b는 멜 스펙트로그램과 어텐션 얼라인먼트의 일 예를 도시한 도면들이다.
도 5a 및 도 5b는 어텐션 얼라인먼트의 품질을 설명하기 위한 도면들이다.
도 6은 어텐션 얼라인먼트를 나타내는 좌표 축들 및 어텐션 얼라인먼트의 품질을 설명하기 위한 도면이다.
도 7은 합성기가 인코더 스코어를 연산하는 예를 설명하기 위한 도면이다.
도 8은 합성기가 디코더 스코어를 연산하는 예를 설명하기 위한 도면이다.
도 9는 어텐션 얼라인먼트에서 유효한 의미를 갖는 부분을 추출하는 예를 설명하기 위한 도면이다.
도 10a 내지 도 10c는 어텐션 얼라인먼트의 품질과 인코더 스코어 및 디코더 스코어의 관계를 설명하기 위한 도면들이다.
도 11은 어텐션 얼라인먼트의 최종 스코어를 연산하는 방법의 일 예를 나타낸 흐름도이다.1 is a diagram schematically illustrating the operation of a speech synthesis system.
2 is a diagram illustrating an embodiment of a speech synthesis system.
3 is a diagram illustrating an embodiment of outputting a Mel spectrogram through a synthesizer.
4A and 4B are diagrams illustrating an example of a Mel spectrogram and attention alignment.
5A and 5B are diagrams for explaining the quality of attention alignment.
6 is a diagram for describing coordinate axes representing attention alignment and quality of attention alignment.
7 is a diagram for explaining an example in which a synthesizer calculates an encoder score.
8 is a diagram for explaining an example in which a synthesizer calculates a decoder score.
9 is a diagram for explaining an example of extracting a part having a valid meaning from attention alignment.
10A to 10C are diagrams for explaining the relationship between the quality of attention alignment and an encoder score and a decoder score.
11 is a flowchart illustrating an example of a method of calculating a final score of attention alignment.
본 실시예들에서 사용되는 용어는 본 실시예들에서의 기능을 고려하면서 가능한 현재 널리 사용되는 일반적인 용어들을 선택하였으나, 이는 당 분야에 종사하는 기술자의 의도 또는 판례, 새로운 기술의 출현 등에 따라 달라질 수 있다. 또한, 특정한 경우는 출원인이 임의로 선정한 용어도 있으며, 이 경우 해당되는 부분에서 상세히 그 의미를 기재할 것이다. 따라서, 본 실시예들에서 사용되는 용어는 단순한 용어의 명칭이 아닌, 그 용어가 가지는 의미와 본 실시예들 전반에 걸친 내용을 토대로 정의되어야 한다. The terms used in the present embodiments have been selected from general terms that are currently widely used as much as possible while considering the functions in the present embodiments, but these may vary depending on the intention of a person skilled in the art or a precedent, the emergence of new technologies, etc. there is. In addition, in a specific case, there are also terms arbitrarily selected by the applicant, and in this case, the meaning will be described in detail in the relevant part. Therefore, the term used in the present embodiments should be defined based on the meaning of the term and the general content of the present embodiment, not a simple name of the term.
본 실시예들은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는바, 일부 실시예들을 도면에 예시하고 상세하게 설명하고자 한다. 그러나, 이는 본 실시예들을 특정한 개시형태에 대해 한정하려는 것이 아니며, 본 실시예들의 사상 및 기술범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 명세서에서 사용한 용어들은 단지 실시예들의 설명을 위해 사용된 것으로, 본 실시예들을 한정하려는 의도가 아니다.Since the present embodiments can have various changes and various forms, some embodiments will be illustrated in the drawings and described in detail. However, this is not intended to limit the present embodiments to a specific disclosure, and should be understood to include all changes, equivalents, or substitutes included in the spirit and scope of the present embodiments. Terms used in this specification are only used for description of the embodiments, and are not intended to limit the embodiments.
본 실시예들에 사용되는 용어들은 다르게 정의되지 않는 한, 본 실시예들이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미가 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 실시예들에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않아야 한다.Terms used in the present embodiments have the same meaning as commonly understood by a person of ordinary skill in the art to which the present embodiments belong, unless otherwise defined. Terms such as those defined in commonly used dictionaries should be interpreted as having a meaning consistent with the meaning in the context of the related art, and unless explicitly defined in the present embodiments, in an ideal or excessively formal meaning. should not be interpreted.
후술하는 본 발명에 대한 상세한 설명은, 본 발명이 실시될 수 있는 특정 실시예를 예시로서 도시하는 첨부 도면을 참조한다. 이러한 실시예는 당업자가 본 발명을 실시할 수 있기에 충분하도록 상세히 설명된다. 본 발명의 다양한 실시예는 서로 다르지만 상호 배타적일 필요는 없음이 이해되어야 한다. 예를 들어, 본 명세서에 기재되어 있는 특정 형상, 구조 및 특성은 본 발명의 정신과 범위를 벗어나지 않으면서 일 실시예로부터 다른 실시예로 변경되어 구현될 수 있다. 또한, 각각의 실시예 내의 개별 구성요소의 위치 또는 배치도 본 발명의 정신과 범위를 벗어나지 않으면서 변경될 수 있음이 이해되어야 한다. 따라서, 후술하는 상세한 설명은 한정적인 의미로서 행하여지는 것이 아니며, 본 발명의 범위는 특허청구범위의 청구항들이 청구하는 범위 및 그와 균등한 모든 범위를 포괄하는 것으로 받아들여져야 한다. 도면에서 유사한 참조부호는 여러 측면에 걸쳐서 동일하거나 유사한 구성요소를 나타낸다.DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The detailed description of the present invention which follows refers to the accompanying drawings which illustrate, by way of illustration, specific embodiments in which the present invention may be practiced. These embodiments are described in sufficient detail to enable any person skilled in the art to practice the present invention. It should be understood that the various embodiments of the present invention are different from each other but are not necessarily mutually exclusive. For example, specific shapes, structures, and characteristics described herein may be implemented from one embodiment to another without departing from the spirit and scope of the present invention. It should also be understood that the location or arrangement of individual components within each embodiment may be changed without departing from the spirit and scope of the present invention. Therefore, the detailed description to be described later is not performed in a limiting sense, and the scope of the present invention should be taken as encompassing the scope claimed by the claims and all scopes equivalent thereto. Like reference numbers in the drawings indicate the same or similar elements throughout the various aspects.
한편, 본 명세서에서 하나의 도면 내에서 개별적으로 설명되는 기술적 특징은 개별적으로 구현될 수도 있고, 동시에 구현될 수도 있다.Meanwhile, technical features individually described in one drawing in this specification may be implemented individually or simultaneously.
본 명세서에서, “~부(unit)”는 프로세서 또는 회로와 같은 하드웨어 구성(hardware component), 및/또는 프로세서와 같은 하드웨어 구성에 의해 실행되는 소프트웨어 구성(software component)일 수 있다.In this specification, “~ unit” may be a hardware component such as a processor or a circuit, and/or a software component executed by the hardware component such as a processor.
이하에서는, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있도록 하기 위하여, 본 발명의 여러 실시예에 관하여 첨부된 도면을 참조하여 상세히 설명하기로 한다.Hereinafter, various embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art can easily practice the present invention.
도 1은 음성 합성 시스템의 동작을 개략적으로 나타내는 도면이다. 1 is a diagram schematically illustrating the operation of a speech synthesis system.
음성 합성(Speech Synthesis) 장치는 텍스트를 인위적으로 사람의 음성으로 변환하는 장치이다. A speech synthesis device is a device that artificially converts text into human voice.
예를 들어, 도 1의 음성 합성 시스템(100)은 인공 신경망(Artificial Neural Network) 기반의 음성 합성 시스템일 수 있다. 인공 신경망은 시냅스의 결합으로 네트워크를 형성한 인공 뉴런이 학습을 통해 시냅스의 결합 세기를 변화시켜, 문제 해결 능력을 가지는 모델 전반을 의미한다. For example, the voice synthesizing
음성 합성 시스템(100)은 PC(personal computer), 서버 디바이스, 모바일 디바이스, 임베디드 디바이스 등의 다양한 종류의 디바이스들로 구현될 수 있고, 구체적인 예로서 인공 신경망를 이용하여 음성 합성을 수행하는 스마트폰, 태블릿 디바이스, AR(Augmented Reality) 디바이스, IoT(Internet of Things) 디바이스, 자율주행 자동차, 로보틱스, 의료기기, 전자책 단말기 및 네비게이션 등에 해당될 수 있으나, 이에 제한되지 않는다. The
나아가서, 음성 합성 시스템(100)은 위와 같은 디바이스에 탑재되는 전용 하드웨어 가속기(HW accelerator)에 해당될 수 있다. 또는, 음성 합성 시스템(100)은 인공 신경망의 구동을 위한 전용 모듈인 NPU(neural processing unit), TPU(Tensor Processing Unit), Neural Engine 등과 같은 하드웨어 가속기일 수 있으나, 이에 제한되지 않는다.Furthermore, the
도 1을 참고하면, 음성 합성 시스템(100)은 텍스트 입력과 특정 화자 정보를 수신할 수 있다. 예를 들어, 음성 합성 시스템(100)은 텍스트 입력으로써 도 1에 도시된 바와 같이 “Have a good day!”를 수신할 수 있고, 화자 정보 입력으로써 “화자 1”을 수신할 수 있다. Referring to FIG. 1 , the
“화자 1”은 기 설정된 화자 1의 발화 특징을 나타내는 음성 신호 또는 음성 샘플에 해당할 수 있다. 예를 들어, 화자 정보는 음성 합성 시스템(100)에 포함된 통신부를 통해 외부 장치로부터 수신될 수 있다. 또는, 화자 정보는 음성 합성 시스템(100)의 사용자 인터페이스를 통해 사용자로부터 입력될 수 있고, 음성 합성 시스템(100)의 데이터 베이스에 미리 저장된 다양한 화자 정보들 중 하나로 선택될 수도 있으나, 이에 제한되는 것은 아니다. “Speaker 1” may correspond to a voice signal or a voice sample representing a preset speech characteristic of speaker 1. For example, speaker information may be received from an external device through a communication unit included in the
음성 합성 시스템(100)은 입력으로 수신한 텍스트 입력과 특정 화자 정보에 기초하여 음성(speech)를 출력할 수 있다. 예를 들어, 음성 합성 시스템(100)은 “Have a good day!” 및 “화자 1”을 입력으로 수신하여, 화자 1의 발화 특징이 반영된 “Have a good day!”에 대한 음성을 출력할 수 있다. 화자 1의 발화 특징은 화자 1의 음성, 운율, 음높이 및 감정 등 다양한 요소들 중 적어도 하나를 포함할 수 있다. 즉, 출력되는 음성은 화자 1이 “Have a good day!”를 자연스럽게 발음하는 듯한 음성일 수 있다. 음성 합성 시스템(100)의 구체적인 동작은 도 2 내지 도 4에서 후술한다. The
도 2는 음성 합성 시스템의 일 실시예를 나타내는 도면이다. 도 2의 음성 합성 시스템(200)은 도 1의 음성 합성 시스템(100)과 동일할 수 있다.2 is a diagram illustrating an embodiment of a speech synthesis system. The
도 2를 참조하면, 음성 합성 시스템(200)은 화자 인코더(speaker encoder)(210), 합성기(synthesizer)(220) 및 보코더(vocoder)(230)를 포함할 수 있다. 한편, 도 2에 도시된 음성 합성 시스템(200)에는 일 실시예와 관련된 구성요소들만이 도시되어 있다. 따라서, 음성 합성 시스템(200)에는 도 2에 도시된 구성요소들 외에 다른 범용적인 구성요소들이 더 포함될 수 있음은 당해 기술분야의 통상의 기술자에게 자명하다.Referring to FIG. 2 , a
도 2의 음성 합성 시스템(200)은 화자 정보 및 텍스트(text)를 입력으로 수신하여 음성(speech)를 출력할 수 있다. The
예를 들어, 음성 합성 시스템(200)의 화자 인코더(210)는 화자 정보를 입력으로 수신하여 화자 임베딩 벡터(embedding vector)를 생성할 수 있다. 화자 정보는 화자의 음성 신호 또는 음성 샘플에 해당할 수 있다. 화자 인코더(210)는 화자의 음성 신호 또는 음성 샘플을 수신하여, 화자의 발화 특징을 추출할 수 있으며 이를 임베딩 벡터로 나타낼 수 있다. For example, the
화자의 발화 특징은 발화 속도, 휴지 구간, 음높이, 음색, 운율, 억양 또는 감정 등 다양한 요소들 중 적어도 하나를 포함할 수 있다. 즉, 화자 인코더(210)는 화자 정보에 포함된 불연속적인 데이터 값을 연속적인 숫자로 구성된 벡터로 나타낼 수 있다. 예를 들어, 화자 인코더(210)는 pre-net, CBHG 모듈, DNN(Deep Neural Network), CNN(convolutional neural network), RNN(Recurrent Neural Network), LSTM(Long Short-Term Memory Network), BRDNN(Bidirectional Recurrent Deep Neural Network) 등 다양한 인공 신경망 모델 중 적어도 하나 또는 둘 이상의 조합에 기반하여 화자 임베딩 벡터를 생성할 수 있다. The speaker's speech characteristics may include at least one of various factors such as speech speed, pause period, pitch, timbre, prosody, intonation, or emotion. That is, the
예를 들어, 음성 합성 시스템(200)의 합성기(220)는 텍스트(text) 및 화자의 발화 특징을 나타내는 임베딩 벡터를 입력으로 수신하여 음성 데이터를 출력할 수 있다. For example, the
예를 들어, 합성기(220)는 텍스트 인코더(미도시) 및 디코더(미도시)를 포함할 수 있다. 한편, 합성기(220)에는 상술한 구성요소들 외에 다른 범용적인 구성요소들이 더 포함될 수 있음은 당해 기술분야의 통상의 기술자에게 자명하다.For example,
화자의 발화 특징을 나타내는 임베딩 벡터는 상술한 바와 같이 화자 인코더(210)로부터 생성될 수 있으며, 합성기(220)의 텍스트 인코더(미도시) 또는 디코더(미도시)는 화자 인코더(210)로부터 화자의 발화 특징을 나타내는 임베딩 벡터를 수신할 수 있다. An embedding vector representing speech characteristics of a speaker may be generated from the
합성기(220)의 텍스트 인코더(미도시)는 텍스트를 입력으로 수신하여 텍스트 임베딩 벡터를 생성할 수 있다. 텍스트는 특정 자연 언어로 된 문자들의 시퀀스를 포함할 수 있다. 예를 들어, 문자들의 시퀀스는 알파벳 문자들, 숫자들, 문장 부호들 또는 기타 특수 문자들을 포함할 수 있다. A text encoder (not shown) of
텍스트 인코더(미도시)는 입력된 텍스트를 자모 단위, 글자 단위 또는 음소 단위로 분리할 수 있고, 분리된 텍스트를 인공 신경망 모델에 입력할 수 있다. 예를 들어, 텍스트 인코더(미도시)는 pre-net, CBHG 모듈, DNN, CNN, RNN, LSTM, BRDNN 등 다양한 인공 신경망 모델 중 적어도 하나 또는 둘 이상의 조합에 기반하여 텍스트 임베딩 벡터를 생성할 수 있다. A text encoder (not shown) may divide input text into consonant units, character units, or phoneme units, and input the separated text into an artificial neural network model. For example, a text encoder (not shown) may generate a text embedding vector based on at least one or a combination of two or more of various artificial neural network models such as pre-net, CBHG module, DNN, CNN, RNN, LSTM, and BRDNN. .
또는, 텍스트 인코더(미도시)는 입력된 텍스트를 복수의 짧은 텍스트들로 분리하고, 짧은 텍스트들 각각에 대하여 복수의 텍스트 임베딩 벡터들을 생성할 수도 있다. Alternatively, the text encoder (not shown) may divide the input text into a plurality of short texts and generate a plurality of text embedding vectors for each of the short texts.
합성기(220)의 디코더(미도시)는 화자 인코더(210)로부터 화자 임베딩 벡터 및 텍스트 임베딩 벡터를 입력으로 수신할 수 있다. 또는, 합성기(220)의 디코더(미도시)는 화자 인코더(210)로부터 화자 임베딩 벡터를 입력으로 수신하고, 텍스트 인코더(미도시)로부터 텍스트 임베딩 벡터를 입력으로 수신할 수 있다. A decoder (not shown) of the
디코더(미도시)는 화자 임베딩 벡터와 텍스트 임베딩 벡터를 인공 신경망 모델에 입력하여, 입력된 텍스트에 대응되는 음성 데이터를 생성할 수 있다. 즉, 디코더(미도시)는 화자의 발화 특징이 반영된 입력 텍스트에 대한 음성 데이터를 생성할 수 있다. 예를 들면, 음성 데이터는 입력된 텍스트에 대응되는 스펙트로그램(spectrogram) 또는 멜 스펙트로그램(mel-spectrogram)에 해당할 수 있으나, 이에 제한되는 것은 아니다. 다시 말해, 스펙트로그램 또는 멜 스펙트로그램은 특정 자연 언어로 구성된 문자들의 시퀀스(sequence)의 구두 발화(verbal utterance)에 대응한다.A decoder (not shown) may generate voice data corresponding to the input text by inputting the speaker embedding vector and the text embedding vector to the artificial neural network model. That is, a decoder (not shown) may generate voice data for input text in which speech characteristics of a speaker are reflected. For example, the voice data may correspond to a spectrogram or a mel-spectrogram corresponding to input text, but is not limited thereto. In other words, a spectrogram or mel spectrogram corresponds to a verbal utterance of a sequence of characters composed of a particular natural language.
스펙트로그램은 음성 신호의 스펙트럼을 시각화하여 그래프로 표현한 것이다. 스펙트로그램의 x축은 시간, y축은 주파수를 나타내며 각 시간당 주파수가 가지는 값을 값의 크기에 따라 색으로 표현할 수 있다. 스펙토그램은 연속적으로 주어지는 음성 신호에 STFT(Short-time Fourier transform)를 수행한 결과물일 수 있다. A spectrogram is a graph that visualizes the spectrum of a voice signal. The x-axis of the spectrogram represents time, and the y-axis represents frequency, and the value of each frequency per time can be expressed in color according to the size of the value. The spectogram may be a result of performing short-time Fourier transform (STFT) on a continuously given audio signal.
STFT는 음성 신호를 일정한 길이의 구간들로 나누고 각 구간에 대하여 푸리에 변환을 적용하는 방법이다. 이 때, 음성 신호에 STFT를 수행한 결과물은 복소수 값이기 때문에, 복소수 값에 절대값을 취해 위상(phase) 정보를 소실시키고 크기(magnitude) 정보만을 포함하는 스펙트로그램을 생성할 수 있다. STFT is a method of dividing a speech signal into sections of a certain length and applying a Fourier transform to each section. At this time, since the result of performing the STFT on the voice signal is a complex value, it is possible to generate a spectrogram including only magnitude information by taking an absolute value of the complex value to lose phase information.
한편, 멜 스펙트로그램은 스펙트로그램의 주파수 간격을 멜 스케일(Mel Scale)로 재조정한 것이다. 사람의 청각기관은 고주파수(high frequency) 보다 저주파수(low frequency) 대역에서 더 민감하며, 이러한 특성을 반영해 물리적인 주파수와 실제 사람이 인식하는 주파수의 관계를 표현한 것이 멜 스케일이다. 멜 스펙트로그램은 멜 스케일에 기반한 필터 뱅크(filter bank)를 스펙트로그램에 적용하여 생성될 수 있다.Meanwhile, the mel spectrogram is obtained by re-adjusting the frequency interval of the spectrogram to a mel scale. The human auditory organ is more sensitive in the low frequency band than the high frequency band, and the Mel scale reflects this characteristic and expresses the relationship between the physical frequency and the frequency perceived by the actual person. The Mel spectrogram may be generated by applying a filter bank based on the Mel scale to the spectrogram.
한편, 도 2에는 도시되어 있지 않으나, 합성기(220)는 어텐션 얼라이먼트(attention alignment)를 생성하기 위한 어텐션 모듈을 더 포함할 수 있다. 어텐션 모듈은 디코더(미도시)의 특정 타임 스텝(time-step)의 출력이 텍스트 인코더(미도시)의 모든 타임 스텝의 출력 중 어떤 출력과 가장 연관이 있는가를 학습하는 모듈이다. 어텐션 모듈을 이용하여 더 고품질의 스펙트로그램 또는 멜 스펙트로그램을 출력할 수 있다. Meanwhile, although not shown in FIG. 2 , the
도 3은 합성기를 통해 멜 스펙트로그램을 출력하는 일 실시예를 나타내는 도면이다. 도 3의 합성기(300)는 도 2의 합성기(220)와 동일할 수 있다.3 is a diagram illustrating an embodiment of outputting a Mel spectrogram through a synthesizer. The
도 3을 참조하면, 합성기(300)는 입력 텍스트들과 이에 대응되는 화자 임베딩 벡터들을 포함하는 리스트를 수신할 수 있다. 예를 들어, 합성기(300)는 'first sentence'라는 입력 텍스트와 이에 대응되는 화자 임베딩 벡터인 embed_voice1, 'second sentence'라는 입력 텍스트와 이에 대응되는 화자 임베딩 벡터인 embed_voice2, 'third sentence'라는 입력 텍스트와 이에 대응되는 화자 임베딩 벡터인 embed_voice3을 포함하는 리스트(310)를 입력으로 수신할 수 있다.Referring to FIG. 3 , the
합성기(300)는 수신한 리스트(310)에 포함된 입력 텍스트의 개수만큼의 멜 스펙트로그램(310)을 생성할 수 있다. 도 3을 참고하면, 'first sentence', 'second sentence' 및 'third sentence' 각각의 입력 텍스트에 대응하는 멜 스펙트로그램들이 생성된 것을 알 수 있다.The
또는, 합성기(300)는 입력 텍스트의 개수만큼의 멜 스펙트로그램(320) 및 어텐션 얼라인먼트를 함께 생성할 수 있다. 도 3에는 도시되어 있지 않으나, 예를 들어 'first sentence', 'second sentence' 및 'third sentence' 각각의 입력 텍스트에 대응하는 어텐션 얼라인먼트가 추가적으로 생성될 수 있다. 또는, 합성기(300)는 입력 텍스트들 각각에 대하여 복수의 멜 스펙트로그램 및 복수의 어텐션 얼라인먼트를 생성할 수도 있다. Alternatively, the
다시 도 2를 참조하면, 음성 합성 시스템(200)의 보코더(230)는 합성기(220)에서 출력된 음성 데이터를 실제 음성(speech)으로 생성할 수 있다. 상술한 바와 같이 출력된 음성 데이터는 스펙트로그램 또는 멜 스펙트로그램일 수 있다. Referring back to FIG. 2 , the
예를 들어, 보코더(230)는 ISTFT(Inverse Short-Time Fourier Transform)를 이용하여 합성기(220)에서 출력된 음성 데이터를 실제 음성 신호로 생성할 수 있다. 그러나, 스펙트로그램 또는 멜 스펙트로그램은 위상 정보를 포함하고 있지 않으므로, ISTFT만으로는 실제 음성 신호를 완벽하게 복원할 수 없다. For example, the
이에 따라, 보코더(230)는 예를 들어 그리핀-림 알고리즘(Griffin-Lim algorithm)을 사용하여 합성기(220)에서 출력된 음성 데이터를 실제 음성 신호로 생성할 수 있다. 그리핀-림 알고리즘은 스펙트로그램 또는 멜 스펙트로그램의 크기 정보에서 위상 정보 추정하는 알고리즘이다. Accordingly, the
또는, 보코더(230)는 예를 들어 뉴럴 보코더(neural vocoder)에 기 초하여 합성기(220)에서 출력된 음성 데이터를 실제 음성 신호로 생성할 수 있다. Alternatively, the
뉴럴 보코더는 스펙트로그램 또는 멜 스펙트로그램을 입력으로 받아 음성 신호를 생성하는 인공 신경망 모델이다. 뉴럴 보코더는 스펙트로그램 또는 멜 스펙트로그램과 음성 신호 사이의 관계를 다량의 데이터를 통해 학습할 수 있고, 이를 통해 고품질의 실제 음성 신호를 생성할 수 있다. A neural vocoder is an artificial neural network model that generates a voice signal by receiving a spectrogram or a mel spectrogram as an input. The neural vocoder can learn a relationship between a spectrogram or a MEL spectrogram and a voice signal through a large amount of data, and through this, it can generate a real voice signal of high quality.
뉴럴 보코더는 WaveNet, Parallel WaveNet, WaveRNN, WaveGlow 또는 MelGAN 등과 같은 인공 신경망 모델에 기반한 보코더에 해당할 수 있으나, 이에 제한되는 것은 아니다. The neural vocoder may correspond to a vocoder based on an artificial neural network model such as WaveNet, Parallel WaveNet, WaveRNN, WaveGlow, or MelGAN, but is not limited thereto.
예를 들어, WaveNet 보코더는 여러 층의 dilated causal convolution layer들로 구성되며, 음성 샘플들 간의 순차적 특징을 이용하는 자기회귀(Autoregressive) 모델이다. 예를 들어, WaveRNN 보코더는 WaveNet의 여러 층의 dilated causal convolution layer를 GRU(Gated Recurrent Unit)로 대체한 자기회귀 모델이다.For example, a WaveNet vocoder is composed of several dilated causal convolution layers and is an autoregressive model using sequential features between voice samples. For example, the WaveRNN vocoder is an autoregressive model in which several dilated causal convolution layers of WaveNet are replaced with GRU (Gated Recurrent Unit).
예를 들어, WaveGlow 보코더는 가역성(invertible)을 지닌 변환 함수를 이용하여 음성 데이터셋(x)으로부터 가우시안 분포와 같이 단순한 분포가 나오도록 학습할 수 있다. WaveGlow 보코더는 학습이 끝난 후 변환 함수의 역함수를 이용하여 가우시안 분포의 샘플로부터 음성 신호를 출력할 수 있다. For example, the WaveGlow vocoder can learn to produce a simple distribution such as a Gaussian distribution from a voice dataset (x) using an invertible transform function. After learning, the WaveGlow vocoder can output a voice signal from Gaussian distribution samples using the inverse function of the conversion function.
도 2 및 도 3을 참조하여 상술한 바와 같이, 합성기(220, 300)는 어텐션 얼라인먼트를 생성할 수 있다. 구체적으로, 어텐션 얼라인먼트는 스펙트로그램(또는 멜 스펙트로그램)에 대응하여 생성될 수 있다. 예를 들어, 합성기(220, 300)가 총 x 개의 스펙트로그램(또는 멜 스펙트로그램)을 생성하는 경우, 어텐션 얼라인먼트는 x 개의 스펙트로그램들 각각에 대응하여 생성될 수 있다. 따라서, 어텐션 얼라인먼트를 통하여 이에 대응하는 스펙트로그램(또는 멜 스펙트로그램)의 품질이 판단될 수 있다.As described above with reference to FIGS. 2 and 3 , the
일 실시예에 따른 합성기(220, 300)는 입력 텍스트 및 화자 임베딩 벡터로 구성된 단일 입력 쌍(pair)에 대하여 복수의 스펙트로그램들(또는 멜 스펙트로그램들)을 생성할 수 있다. 또한, 합성기(220, 300)는 복수의 스펙트로그램들(또는 멜 스펙트로그램들) 각각에 대응하는 어텐션 얼라인먼트의 스코어를 연산할 수 있다. 이에 따라, 합성기(220, 300)는 연산된 스코어에 기초하여 복수의 스펙트로그램들(또는 멜 스펙트로그램들) 중 어느 하나를 선택할 수 있다. 여기에서, 선택된 스펙트로그램(또는 멜 스펙트로그램)은 단일 입력 쌍에 대하여 가장 높은 품질의 합성 음성을 나타내는 것일 수 있다.The
이하, 도 4 내지 도 11을 참조하여, 합성기(220, 300)가 어텐션 얼라인먼트의 스코어를 연산하는 예들을 설명한다. 이하에서, 합성기(220, 300)가 어텐션 얼라인먼트의 스코어를 연산하는 것으로 서술하나, 어텐션 얼라인먼트의 스코어를 연산하는 모듈은 합성기(220, 300)가 아닐 수도 있다. 예를 들어, 음성 합성 시스템(200)에 포함된 별도의 모듈 또는 음성 합성 시스템(200)과 분리된 다른 모듈에 의하여 어텐션 얼라인먼트의 스코어가 연산될 수도 있다.Hereinafter, examples in which the
또한, 이하에서, 스펙트로그램과 멜 스펙트로그램은 서로 혼용될 수 있는 용어로 기재한다. 다시 말해, 이하에서 스펙트로그램으로 기재되었다고 하더라도, 이는 멜 스펙트로그램으로 대체될 수도 있다. 또한, 이하에서, 멜 스펙트로그램으로 기재되었다고 하더라도, 이는 스펙트로그램으로 대체될 수도 있다.In addition, in the following, a spectrogram and a mel spectrogram are described as interchangeable terms. In other words, although described as a spectrogram below, it may be replaced with a Mel spectrogram. In addition, although it is described as a Mel spectrogram in the following, it may be replaced with a spectrogram.
도 4a 및 도 4b는 멜 스펙트로그램과 어텐션 얼라인먼트의 일 예를 도시한 도면들이다.4A and 4B are diagrams illustrating an example of a Mel spectrogram and attention alignment.
도 4a에는 어떤 입력 쌍(입력 텍스트 및 화자 임베딩 벡터)에 따라 합성기(220, 300)가 생성한 멜 스펙트로그램의 예가 도시되어 있다. 또한, 도 4b에는 도 4a의 멜 스펙트로그램에 대응하는 어텐션 얼라인먼트가 도시되어 있다.4A shows an example of a Mel spectrogram generated by the
예를 들어, 데이터의 양이 많지 않거나 충분한 학습이 되지 않을 경우 합성기(220, 300)는 고품질의 멜 스펙트로그램을 생성하지 못할 수도 있다. 어텐션 얼라인먼트는, 합성기(220, 300)가 멜 스펙트로그램을 생성할 때에 집중하는 매 순간마다의 히스토리로 해석될 수 있다. For example, if the amount of data is not large or sufficient learning is not performed, the
예를 들어, 어텐션 얼라인먼트를 나타내는 선이 진하고 노이즈가 적다면, 합성기(220, 300)가 멜 스펙트로그램을 생성하는 매 순간에서 자신감 있게 추론을 수행한 것으로 해석될 수 있다. 즉, 상술한 예의 경우, 합성기(220, 300)가 고품질의 멜 스펙트로그램을 생성했다고 판단될 수 있다. 따라서, 어텐션 얼라인먼트의 품질(예를 들어, 어텐션 얼라인먼트의 색이 진한 정도, 어텐션 얼라인먼트의 윤곽이 명확한 정도 등)은 합성기(220, 300)의 추론 품질을 추측하는데 있어서, 매우 중요한 지표로 활용될 수 있다.For example, if the line representing the attention alignment is thick and the noise is small, it can be interpreted that the
도 5a 및 도 5b는 어텐션 얼라인먼트의 품질을 설명하기 위한 도면들이다.5A and 5B are diagrams for explaining the quality of attention alignment.
도 5a 내지 도 5d에는 동일한 입력 쌍(입력 텍스트 및 화자 임베딩 벡터)에 대응하는 어텐션 얼라인먼트들이 도시되어 있다. 5A to 5D show attention alignments corresponding to the same input pair (input text and speaker embedding vector).
도 5a를 참조하면, 어텐션 얼라인먼트의 중간 부분(510)이 생성되지 않은 예가 도시되어 있다. 즉, 도 5a의 어텐션 얼라인먼트에 따르면, 이에 대응하는 멜 스펙트로그램의 품질이 낮은 것으로 해석될 수 있다. Referring to FIG. 5A , an example in which the
도 5b를 참조하면, 도 5a의 어텐션 얼라인먼트와 비교하여, 비교적 나은 품질의 어텐션 얼라인먼트가 도시되어 있다. 즉, 도 5b의 어텐션 얼라인먼트에 대응하는 멜 스펙트로그램은 도 5a의 어텐션 얼라인먼트에 대응하는 멜 스펙트로그램보다는 품질이 높은 것으로 해석될 수 있다. 다만, 도 5b의 어텐션 얼라인먼트의 경우에도, 중간 부분(520)에 명확하지 않은 부분이 포함되어 있는바, 멜 스펙트로그램의 품질이 매우 높지 않은 것으로 해석될 수 있다.Referring to FIG. 5B , compared to the attention alignment of FIG. 5A , attention alignment of relatively better quality is shown. That is, the Mel spectrogram corresponding to the attention alignment of FIG. 5B may be interpreted as having higher quality than the Mel spectrogram corresponding to the attention alignment of FIG. 5A. However, even in the case of the attention alignment of FIG. 5B, since an unclear portion is included in the
도 5a 및 도 5b에 도시된 어텐션 얼라인먼트들이 생성된 경우, 이에 대응하는 멜 스펙트로그램의 품질이 높지 않은 것으로 판단되어야 한다. 일 실시예에 따른 합성기(220, 300)는 어텐션 얼라인먼트의 스코어에 기초하여 어텐션 얼라인먼트의 품질을 판단한다. 즉, 합성기(220, 300)는 어텐션 얼라인먼트의 스코어에 따라 멜 스펙트로그램의 품질을 판단할 수 있다.When the attention alignments shown in FIGS. 5A and 5B are generated, it should be determined that the quality of the corresponding MEL spectrogram is not high. The
예를 들어, 합성기(220, 300)는 어텐션 얼라인먼트의 인코더 스코어(encoder score) 및 디코더 스코어(decoder score)를 연산할 수 있다. 그리고, 합성기(220, 300)는 인코더 스코어 및 디코더 스코어를 조합하여 어텐션 얼라인먼트의 전체 스코어(total score)를 연산할 수 있다.For example, the
인코더 스코어, 디코더 스코어 및 전체 스코어 중 어느 하나에 의하여 어텐션 얼라인먼트의 품질이 판단될 수 있다. 따라서, 합성기(220, 300)는 필요에 따라 인코더 스코어, 디코더 스코어 및 전체 스코어 중 어느 하나를 연산할 수 있다.The quality of attention alignment may be determined by any one of an encoder score, a decoder score, and a total score. Accordingly, the
도 6은 어텐션 얼라인먼트를 나타내는 좌표 축들 및 어텐션 얼라인먼트의 품질을 설명하기 위한 도면이다.6 is a diagram for describing coordinate axes representing attention alignment and quality of attention alignment.
도 6을 참조하면, 어텐션 얼라인먼트가 2차원 좌표에 도시되어 있다. 이 때, 2차원 좌표의 가로 축은 디코더 타임 스텝(decoder timestep), 세로 축은 인코더 타임 스텝(encoder timestep)을 의미한다. 즉, 어텐션 얼라인먼트가 표현되는 2차원 좌표는, 합성기(220, 300)가 멜 스펙트로그램을 생성할 때, 어떤 부분에 집중해야 하는지를 의미한다.Referring to FIG. 6 , attention alignment is shown in two-dimensional coordinates. At this time, the horizontal axis of the two-dimensional coordinates means a decoder time step, and the vertical axis means an encoder time step. That is, the two-dimensional coordinates representing the attention alignment mean which part should be focused when the
디코더 타임 스텝은 합성기(220, 300)가 입력 텍스트에 포함된 음소들 각각을 발화하기 위하여 투자한 시간을 의미한다. 디코더 타임 스텝은 단일 홉 사이즈에 대응하는 시간 간격으로 배열되어 있고, 단일 홉 사이즈는 1/80초를 의미한다.The decoder time step means the time invested by the
인코더 타임 스텝은 입력 텍스트에 포함된 음소에 대응한다. 예를 들어, 입력 텍스트가 'first sentence'인 경우, 인코더 타임 스텝은 'f', 'i', 'r', 's', 't', '', 's', 'e', 'n', 't', 'e', 'n', 'c', 'e'로 구성될 수 있다.Encoder time steps correspond to phonemes included in the input text. For example, if the input text is 'first sentence', the encoder time steps are 'f', 'i', 'r', 's', 't', '', 's', 'e', ' It may consist of n', 't', 'e', 'n', 'c', and 'e'.
도 6을 참조하면, 어텐션 얼라인먼트를 구성하는 포인트들 각각은 특정 컬러로 표현되어 있다. 여기에서, 컬러는 그에 대응하는 특정 값으로 매칭될 수 있다. 예를 들어, 어텐션 얼라인먼트를 구성하는 컬러들 각각은 확률 분포를 나타내는 값으로서, 0 ~ 1 사이의 값일 수 있다.Referring to FIG. 6 , each of the points constituting the attention alignment is represented by a specific color. Here, the color may be matched with a specific value corresponding thereto. For example, each of the colors constituting the attention alignment is a value representing a probability distribution, and may be a value between 0 and 1.
도 7은 합성기가 인코더 스코어를 연산하는 예를 설명하기 위한 도면이다.7 is a diagram for explaining an example in which a synthesizer calculates an encoder score.
도 7을 참조하면, 어텐션 얼라인먼트에서 디코더 타임 스텝의 '50'에 대응하는 값들(710)이 표시되어 있다. 어텐션 얼라인먼트는 각각의 softmax 결과 값을 기록하여 transpose 하였기 때문에, 디코더 타임 스텝을 구성하는 단일 스텝에 해당하는 값들을 모두 더하면 1이다. 즉, 도 7의 값들(710)을 모두 더하면 1이 된다. Referring to FIG. 7 ,
한편, 값들(710) 중 상위 a 개의 값들(720)을 참조하면, 합성기(220, 300)가 디코더 타임 스텝의 '50'에 대응하는 시점에 어느 음소에 집중하여 멜 스펙트로그램을 생성하고 있는지를 판단할 수 있다. 따라서, 합성기(220, 300)는 디코더 타임 스텝을 구성하는 각각의 스텝들에 대하여 인코더 스코어를 연산함으로써, 멜 스펙트로그램이 입력 텍스트를 적절하게 표현하였는지 여부(즉, 멜 스펙트로그램의 품질)를 확인할 수 있다.On the other hand, referring to the upper a number of
예를 들어, 합성기(220, 300)는 아래의 수학식 1에 기초하여 인코더 스코어를 연산할 수 있다.For example, the
수학식 1에서, 는 어텐션 얼라인먼트(aligndecoder)에서 디코더 타임 스텝을 기준으로 s 번째 스텝의 i번째 상위 값을 나타낸다(s 및 i는 1 이상의 자연수).In Equation 1, represents the i-th upper value of the s-th step based on the decoder time step in the attention alignment (align decoder ) (s and i are natural numbers greater than or equal to 1).
즉, 합성기(220, 300)는 디코더 타입 스텝의 제s 스텝에서의 값들 중에서 n 개의 값들을 추출한다(n은 2 이상의 자연수). 여기에서, n개의 값들은 제s 스텝에서의 상위 n개의 값들을 의미할 수 있다.That is, the
그리고, 합성기(220, 300)는 추출된 n 개의 값들을 이용하여 제s 스텝에서의 제s 스코어()를 연산한다. 예를 들어, 합성기(220, 300)는 추출된 n 개의 값들을 더하여 제s 스코어()를 연산할 수 있다.Then, the
이러한 방식으로, 합성기(220, 300)는 디코더 타임 스텝에서 스펙트로그램의 처음에 대응하는 스텝부터 마지막에 대응하는 스텝까지의 인코더 스코어를 각각 연산한다. 그리고, 합성기(220, 300)는 연산된 인코더 스코어와 소정의 값을 비교하여 멜 스펙트로그램의 품질을 평가할 수 있다. 합성기(220, 300)가 인코더 스코어에 기초하여 멜 스펙트로그램의 품질을 평가하는 예는 도 10을 참조하여 후술한다.In this way, the
도 8은 합성기가 디코더 스코어를 연산하는 예를 설명하기 위한 도면이다.8 is a diagram for explaining an example in which a synthesizer calculates a decoder score.
도 8을 참조하면, 어텐션 얼라인먼트에서 인코더 타임 스텝의 '10'에 대응하는 값들(810)이 표시되어 있다. 또한, 값들(810) 중에서 상위 b개의 값들(820)이 표시되어 있다.Referring to FIG. 8 ,
도 7을 참조하여 상술한 바와 같이, 인코더 스코어가 디코더 타임 스텝을 구성하는 각각의 스텝에서의 값들로 연산된다. 반면에, 디코더 스코어는 디코더 타임 스텝을 구성하는 각각의 스텝에서의 값들로 연산된다. 인코더 스코어와 디코더 스코어의 목적은 서로 다르다. 구체적으로, 인코더 스코어는 어텐션 모듈이 매 시간마다 집중해야 할 음소를 잘 결정하였는가를 판단하는 지표이다. 반면에, 디코더 스코어는 어텐션 모듈이 입력 텍스트를 구성하는 특정 음소에 대해서 시간 할당을 누락하지 않고 잘 집중하였는가를 판단하는 지표이다.As described above with reference to FIG. 7, the encoder score is calculated with values at each step constituting the decoder time step. On the other hand, the decoder score is calculated with the values at each step constituting the decoder time step. Encoder scores and decoder scores have different purposes. Specifically, the encoder score is an index for determining whether the attention module has well determined the phoneme to be focused on every hour. On the other hand, the decoder score is an indicator for determining whether the attention module has focused well on specific phonemes constituting the input text without missing time allocation.
수학식 2에서, 는 어텐션 얼라인먼트(alignencoder)에서 인코더 타임 스텝을 기준으로 s번째 스텝의 i번째 상위 값을 나타낸다(s 및 i는 1 이상의 자연수).In
즉, 합성기(220, 300)는 인코더 타입 스텝의 제s 스텝에서의 값들 중에서 m 개의 값들을 추출한다(m은 2 이상의 자연수). 여기에서, m 개의 값들은 제s 스텝에서의 상위 m개의 값들을 의미할 수 있다.That is, the
그리고, 합성기(220, 300)는 추출된 m 개의 값들을 이용하여 제s 스텝에서의 제s 스코어()를 연산한다. 예를 들어, 합성기(220, 300)는 추출된 m 개의 값들을 더하여 제s 스코어()를 연산할 수 있다.Then, the
이러한 방식으로, 합성기(220, 300)는 인코더 타임 스텝에서 스펙트로그램의 처음에 대응하는 스텝부터 마지막에 대응하는 스텝까지의 디코더 스코어를 각각 연산한다. 그리고, 합성기(220, 300)는 연산된 디코더 스코어와 소정의 값을 비교하여 멜 스펙트로그램의 품질을 평가할 수 있다. 합성기(220, 300)가 디코더 스코어에 기초하여 멜 스펙트로그램의 품질을 평가하는 예는 도 10을 참조하여 후술한다.In this way, the
즉, 디코더 스코어는, 어텐션 얼라인먼트에서 인코더 타임 스텝에서 상위 m개를 더한 값으로 연산된다. 이는, 음성 합성 시스템이 입력 텍스트를 구성하는 음소들 각각을 말하는데 얼마만큼의 에너지를 썼는지에 대한 지표가 될 수 있다.That is, the decoder score is calculated as a value obtained by adding the upper m number of encoder time steps in the attention alignment. This may be an indicator of how much energy the speech synthesis system uses to speak each phoneme constituting the input text.
도 9는 어텐션 얼라인먼트에서 유효한 의미를 갖는 부분을 추출하는 예를 설명하기 위한 도면이다.9 is a diagram for explaining an example of extracting a part having a valid meaning from attention alignment.
디코더 타임 스텝의 길이는 멜 스펙트럼의 길이와 동일하다. 따라서, 어텐션 얼라인먼트에서 유효한 의미를 갖는 부분은 멜 스펙트럼의 길이에 대응된다.The length of the decoder time step is equal to the length of the mel spectrum. Therefore, a part having a valid meaning in the attention alignment corresponds to the length of the Mel spectrum.
한편, 인코더 타임 스텝은 입력 텍스트를 구성하는 음소들의 길이이다. 따라서, 어텐션 얼라인먼트에서 유효한 의미를 갖는 부분은 텍스트를 음소로 분해한 결과에 대응하는 길이에 대응된다.Meanwhile, the encoder time step is the length of phonemes constituting the input text. Therefore, the part having a valid meaning in the attention alignment corresponds to the length corresponding to the result of decomposing the text into phonemes.
도 10a 내지 도 10c는 어텐션 얼라인먼트의 품질과 인코더 스코어 및 디코더 스코어의 관계를 설명하기 위한 도면들이다.10A to 10C are diagrams for explaining the relationship between the quality of attention alignment and an encoder score and a decoder score.
도 10a는 어텐션 얼라인먼트를 의미하고, 도 10b는 도 10a의 어텐션 얼라인먼트의 인코더 스코어를 의미하고, 도 10c는 도 10a의 어텐션 얼라인먼트의 디코더 스코어를 의미한다.FIG. 10A means attention alignment, FIG. 10B means attention alignment encoder score of FIG. 10A, and FIG. 10C means attention alignment decoder score of FIG. 10A.
도 10a를 참조하면, 제1 부분(1010) 및 제2 부분(1020)에서 어텐션 얼라인먼트의 품질이 낮음을 알 수 있다. 구체적으로, 제1 부분(1010)은 입력 텍스트에 포함된 특정 음소에 대하여 집중되지 못한 것으로 나타나고, 제2 부분(1020)은 멜 스펙트로그램이 생성되는 특정 시점에서 어느 음소에도 명확하게 집중되지 못한 것으로 나타난다.Referring to FIG. 10A , it can be seen that the quality of the attention alignment is low in the
한편, 도 10b를 참조하면, 제2 부분(1020)에 대응하는 인코더 스코어(1030)가 낮게 연산됨을 알 수 있다. 또한, 도 10c를 참조하면, 제1 부분(1010)에 대응하는 디코더 스코어(1040)가 낮게 연산됨을 알 수 있다. 즉, 합성기(220, 300)는 인코더 스코어 또는 디코더 스코어를 소정의 값(임계값)과 비교하여 멜 스펙트로그램의 품질을 평가할 수 있다.Meanwhile, referring to FIG. 10B , it can be seen that the
한편, 합성기(220, 300)는 인코더 스코어와 디코더 스코어를 조합하여 멜 스펙트로그램의 품질을 평가할 수 있다.Meanwhile, the
예를 들어, 합성기(220, 300)는 아래의 수학식 3에 따라 수학식 1의 인코더 스코어를 변형함으로써 최종 인코더 스코어()를 연산할 수 있다.For example, the
수학식 3에서, 은 멜 스펙트로그램의 길이(frame length)이고, s는 디코더 타임 스텝을 의미한다. 수학식 3을 구성하는 다른 변수들은 수학식 1에서 설명한 바와 동일하다.In Equation 3, is the length of the mel spectrogram (frame length), and s means the decoder time step. Other variables constituting Equation 3 are the same as those described in Equation 1.
또한, 합성기(220, 300)는 아래의 수학식 4에 따라 수학식 2의 인코더 스코어를 변형함으로써 최종 디코더 스코어()를 연산할 수 있다.In addition, the
수학식 4에서, 은 집합 x를 구성하는 값들 중에서 y번째로 작은 값(즉, 하위 y 번째 값)을 의미하고, 은 인코더 타임 스텝을 의미한다. 은 디코더 스코어의 길이를 의미하여, 하위 번째의 값까지 모두 더한 값이 된다. In Equation 4, Means the y-th smallest value (ie, the lower y-th value) among the values constituting the set x, denotes the encoder time step. means the length of the decoder score, It is the sum of all values up to the second value.
그리고, 합성기(220, 300)는 아래의 수학식 5에 따라 최종 스코어()를 연산할 수 있다.Then, the
수학식 5에서, 0.1은 가중치(weight)를 의미하고, 가중치는 필요에 따라 그 값이 변경될 수 있다.In
도 4 내지 도 10을 참조하여 상술한 바와 같이, 합성기(220, 300)가 어텐션 얼라인먼트의 스코어(인코더 스코어, 디코더 스코어, 최종 스코어)를 연산함에 따라, 어텐션 얼라인먼트에 대응하는 멜 스펙트로그램의 품질이 판단될 수 있다. 따라서, 음성 합성 시스템(100, 200)은 복수의 멜 스펙트로그램들 중 최고 품질의 멜 스펙트로그램을 선택할 수 있다. 이에 따라, 음성 합성 시스템(100, 200)는 최고 품질의 합성 음성을 출력할 수 있다.As described above with reference to FIGS. 4 to 10 , as the
도 11은 어텐션 얼라인먼트의 최종 스코어를 연산하는 방법의 일 예를 나타낸 흐름도이다.11 is a flowchart illustrating an example of a method of calculating a final score of attention alignment.
도 11을 참조하면, 최종 스코어를 연산하는 방법은 도 1 내지 도 3에 도시된 음성 합성 시스템(100, 200) 또는 합성기(220, 300)에서 시계열적으로 처리되는 단계들로 구성된다. 따라서, 이하에서 생략된 내용이라 하더라도 도 1 내지 도 3에 도시된 음성 합성 시스템(100, 200) 또는 합성기(220, 300)에 관하여 이상에서 기술된 내용은 도 11의 최종 스코어를 연산하는 방법에도 적용됨을 알 수 있다.Referring to FIG. 11 , the method for calculating the final score is composed of steps processed time-sequentially in the
1110 단계에서, 합성기(220, 300)는 어텐션 얼라인먼트가 표현되는 제1 축을 구성하는 스텝들 각각에 대하여 스코어를 연산하고, 연산된 스코어들에 기초하여 제1 스코어를 획득한다. 여기에서, 제1 축은 디코더 타임 스텝을 의미한다.In
합성기(220, 300)는 연산된 스코어들 중 상위 n 개의 스코어를 조합하여 제1 스코어를 연산할 수 있다. 여기에서, n은 1 이상의 자연수를 의미한다. 예를 들어, 합성기(220, 300)는 수학식 3에 기초하여 제1 스코어를 연산할 수 있다.The
1120 단계에서, 합성기(220, 300)는 어텐션 얼라인먼트가 표현되는 제2 축을 구성하는 스텝들 각각에 대하여 스코어를 연산하고, 연산된 스코어들에 기초하여 제2 스코어를 획득한다. 여기에서, 제2 축은 인코더 타임 스텝을 의미한다.In
합성기(220, 300)는 연산된 스코어들 중 하위 m 개의 스코어를 조합하여 제2 스코어를 연산할 수 있다. 여기에서, m은 1 이상의 자연수를 의미한다. 예를 들어, 합성기(220, 300)는 수학식 4에 기초하여 제2 스코어를 연산할 수 있다.The
1130 단계에서, 합성기(220, 300)는 제1 스코어 및 제2 스코어를 조합하여 스펙트로그램에 대응하는 최종 스코어를 연산한다.In
합성기(220, 300)는 소정의 가중치가 적용된 제2 스코어와 제1 스코어를 합산하여 최종 스코어를 연산할 수 있다. 예를 들어, 합성기(220, 300)는 수학식 5에 기초하여 최종 스코어를 연산할 수 있다.The
또한, 도 11에는 도시되지 않았으나, 합성기(220, 300)는 최종 스코어와 소정의 값을 비교하여 스펙트로그램의 품질을 평가할 수 있다.Also, although not shown in FIG. 11 , the
전술한 본 명세서의 설명은 예시를 위한 것이며, 본 명세서의 내용이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.The above description of this specification is for illustrative purposes, and those skilled in the art to which the contents of this specification pertain will understand that it can be easily modified into other specific forms without changing the technical spirit or essential features of the present invention. You will be able to. Therefore, the embodiments described above should be understood as illustrative in all respects and not limiting. For example, each component described as a single type may be implemented in a distributed manner, and similarly, components described as distributed may be implemented in a combined form.
본 실시예의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 포함되는 것으로 해석되어야 한다.The scope of the present embodiment is indicated by the appended claims rather than the detailed description above, and should be construed as including all changes or modifications derived from the meaning and scope of the claims and equivalent concepts thereof.
200: 음성 합성 시스템
210: 화자 인코더
220: 합성기
230: 보코더200: speech synthesis system
210: speaker encoder
220: synthesizer
230: Vocoder
Claims (5)
상기 어텐션 얼라인먼트가 표현되는 제1 축(axis)을 구성하는 스텝들 각각에 대하여 스코어를 연산하고, 연산된 스코어들에 기초하여 제1 스코어를 획득하는 단계;
상기 어텐션 얼라인먼트가 표현되는 제2 축을 구성하는 스텝들 각각에 대하여 스코어를 연산하고, 연산된 스코어들에 기초하여 제2 스코어를 획득하는 단계; 및
소정의 가중치가 적용된 상기 제2 스코어와 상기 제1 스코어를 합산하여 최종 스코어를 연산하는 단계;를 포함하되,
상기 제1 축은 디코더 타임 스텝을 의미하고,
상기 제2 축은 인코더 타임 스텝을 의미하는,
방법.A method for calculating an attention alignment score corresponding to a spectrogram for outputting the highest quality synthesized speech,
calculating scores for each of the steps constituting a first axis on which the attention alignment is expressed, and obtaining a first score based on the calculated scores;
calculating scores for each of the steps constituting the second axis in which the attention alignment is expressed, and obtaining a second score based on the calculated scores; and
Calculating a final score by summing the second score and the first score to which a predetermined weight is applied; including,
The first axis means a decoder time step,
The second axis means an encoder time step,
method.
상기 최종 스코어를 이용하여 상기 스펙트로그램의 품질을 평가하는 단계;를 더 포함하는 방법.According to claim 1,
Evaluating the quality of the spectrogram using the final score.
상기 제1 스코어를 획득하는 단계는,
상기 연산된 스코어들 중 상위 n 개의 스코어를 조합하여 상기 제1 스코어를 연산하고,
상기 n은 1 이상의 자연수를 포함하는 방법.According to claim 1,
The step of obtaining the first score,
Calculating the first score by combining the top n scores among the calculated scores;
Wherein n comprises a natural number greater than or equal to 1.
상기 제2 스코어를 획득하는 단계는,
상기 연산된 스코어들 중 하위 m 개의 스코어를 조합하여 상기 제2 스코어를 연산하고,
상기 m은 1 이상의 자연수를 포함하는 방법.According to claim 1,
The step of obtaining the second score,
Calculating the second score by combining the lower m scores among the calculated scores;
Wherein m comprises a natural number greater than or equal to 1.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020200158773A KR102503066B1 (en) | 2020-11-24 | 2020-11-24 | A method and a TTS system for evaluating the quality of a spectrogram using scores of an attention alignment |
US17/380,387 US20220165247A1 (en) | 2020-11-24 | 2021-07-20 | Method for generating synthetic speech and speech synthesis system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020200158773A KR102503066B1 (en) | 2020-11-24 | 2020-11-24 | A method and a TTS system for evaluating the quality of a spectrogram using scores of an attention alignment |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20220071525A KR20220071525A (en) | 2022-05-31 |
KR102503066B1 true KR102503066B1 (en) | 2023-03-02 |
Family
ID=81780343
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020200158773A KR102503066B1 (en) | 2020-11-24 | 2020-11-24 | A method and a TTS system for evaluating the quality of a spectrogram using scores of an attention alignment |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102503066B1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102057927B1 (en) | 2019-03-19 | 2019-12-20 | 휴멜로 주식회사 | Apparatus for synthesizing speech and method thereof |
KR102355042B1 (en) | 2020-11-24 | 2022-02-07 | 주식회사 자이냅스 | A method and a TTS system for calculating an encoder score of an attention alignment corresponded to a spectrogram |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20200015418A (en) * | 2018-08-02 | 2020-02-12 | 네오사피엔스 주식회사 | Method and computer readable storage medium for performing text-to-speech synthesis using machine learning based on sequential prosody feature |
-
2020
- 2020-11-24 KR KR1020200158773A patent/KR102503066B1/en active IP Right Grant
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102057927B1 (en) | 2019-03-19 | 2019-12-20 | 휴멜로 주식회사 | Apparatus for synthesizing speech and method thereof |
KR102355042B1 (en) | 2020-11-24 | 2022-02-07 | 주식회사 자이냅스 | A method and a TTS system for calculating an encoder score of an attention alignment corresponded to a spectrogram |
Non-Patent Citations (1)
Title |
---|
정기원 외, ‘Abnormal Respiratory Sound Classification Using Hierarchical Attention Networks’(이상 호흡음 분류를 위한 계층적 어텐션 네트워크 모델), 2020 대한산업공학회 추계학술대회, 2020.11.13.* |
Also Published As
Publication number | Publication date |
---|---|
KR20220071525A (en) | 2022-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102668866B1 (en) | Method and computer readable storage medium for performing text-to-speech synthesis using machine learning | |
JP7178028B2 (en) | Speech translation method and system using multilingual text-to-speech synthesis model | |
KR20200015418A (en) | Method and computer readable storage medium for performing text-to-speech synthesis using machine learning based on sequential prosody feature | |
KR102449209B1 (en) | A tts system for naturally processing silent parts | |
KR102528019B1 (en) | A TTS system based on artificial intelligence technology | |
KR102449223B1 (en) | Method and tts system for changing the speed and the pitch of the speech | |
US20220165247A1 (en) | Method for generating synthetic speech and speech synthesis system | |
KR20210059586A (en) | Method and Apparatus for Emotional Voice Conversion using Multitask Learning with Text-to-Speech | |
JP5807921B2 (en) | Quantitative F0 pattern generation device and method, model learning device for F0 pattern generation, and computer program | |
US11776528B2 (en) | Method for changing speed and pitch of speech and speech synthesis system | |
KR102532253B1 (en) | A method and a TTS system for calculating a decoder score of an attention alignment corresponded to a spectrogram | |
KR102568145B1 (en) | Method and tts system for generating speech data using unvoice mel-spectrogram | |
KR102503066B1 (en) | A method and a TTS system for evaluating the quality of a spectrogram using scores of an attention alignment | |
KR20220071523A (en) | A method and a TTS system for segmenting a sequence of characters | |
KR20220071522A (en) | A method and a TTS system for generating synthetic speech | |
KR102408638B1 (en) | Method and system for evaluating the quality of recordingas | |
KR102463589B1 (en) | Method and tts system for determining the reference section of speech data based on the length of the mel-spectrogram | |
KR102463570B1 (en) | Method and tts system for configuring mel-spectrogram batch using unvoice section | |
KR20240014250A (en) | A method and a TTS system for calculating an encoder score of an attention alignment corresponded to a spectrogram | |
JP2021085943A (en) | Voice synthesis device and program | |
CN118366430B (en) | Personification voice synthesis method, personification voice synthesis device and readable storage medium | |
US20230037541A1 (en) | Method and system for synthesizing speeches by scoring speeches | |
KR20230018312A (en) | Method and system for synthesizing speech by scoring speech | |
Nti | Studying dialects to understand human language | |
KR20240014256A (en) | Method and system for evaluating the quality of recordingas |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right |