KR102502856B1 - Waste water treatment system with enhanced denitrification structure - Google Patents

Waste water treatment system with enhanced denitrification structure Download PDF

Info

Publication number
KR102502856B1
KR102502856B1 KR1020220084256A KR20220084256A KR102502856B1 KR 102502856 B1 KR102502856 B1 KR 102502856B1 KR 1020220084256 A KR1020220084256 A KR 1020220084256A KR 20220084256 A KR20220084256 A KR 20220084256A KR 102502856 B1 KR102502856 B1 KR 102502856B1
Authority
KR
South Korea
Prior art keywords
denitrification
unit
tank
treatment system
pretreatment tank
Prior art date
Application number
KR1020220084256A
Other languages
Korean (ko)
Inventor
강재봉
Original Assignee
거송종합건설 주식회사
주식회사 거성토건
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 거송종합건설 주식회사, 주식회사 거성토건 filed Critical 거송종합건설 주식회사
Priority to KR1020220084256A priority Critical patent/KR102502856B1/en
Application granted granted Critical
Publication of KR102502856B1 publication Critical patent/KR102502856B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/006Regulation methods for biological treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/0073Degasification of liquids by a method not covered by groups B01D19/0005 - B01D19/0042
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/10Packings; Fillings; Grids
    • C02F3/109Characterized by the shape
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/308Biological phosphorus removal
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/002Construction details of the apparatus
    • C02F2201/005Valves
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/04Oxidation reduction potential [ORP]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/08Chemical Oxygen Demand [COD]; Biological Oxygen Demand [BOD]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/10Solids, e.g. total solids [TS], total suspended solids [TSS] or volatile solids [VS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

The present invention relates to a sewage/wastewater treatment system having an enhanced denitrification structure, which is characterized by comprising: a pretreatment chamber (20) which causes nitrification in raw water flowing through a sedimentation tank (10); a first denitrification unit (30) which is connected to form a one-sided treatment path in the pretreatment chamber (20) and causes denitrification by sulfur contact; a second denitrification unit (40) which is connected to form an other-sided treatment path in the pretreatment chamber (20) and causes denitrification with a microbial carrier (45); and a controller (50) which controls the pretreatment unit (20), the first denitrification unit (30), and the second denitrification unit (40) using a set algorithm. Accordingly, in the process of treating sewage and wastewater through a series of processes, conditions for a denitrification process are quickly and accurately adjusted in response to a situation in which properties of raw water change. Therefore, the flexibility and reliability of the system can be improved.

Description

탈질 강화 구조의 오하수 처리 시스템{Waste water treatment system with enhanced denitrification structure}Waste water treatment system with enhanced denitrification structure}

본 발명은 오하수 처리 시스템에 관한 것으로서, 보다 구체적으로는 일련의 공정을 거쳐 오수와 하수의 위생적인 정화를 유도하는 탈질 강화 구조의 오하수 처리 시스템에 관한 것이다.The present invention relates to a sewage treatment system, and more particularly, to a sewage treatment system having a denitrification strengthening structure that induces sanitary purification of sewage and sewage through a series of processes.

일상생활 과정에서 화장실, 주방, 욕실 등에서 발생하는 오수와 하수를 비롯한 각종 폐수는 관련법의 규정에 따라 적절한 처리를 거쳐 방류 또는 재활용되고 있다. 폐수의 고도처리 과정에서 수중의 부영영화를 방지하기 위해 탈질 및 탈인 공정이 필수적으로 수반된다. 통상 질소 및 인의 제거를 위한 공정의 반응조는 탈질반응에 필요한 무산소조, 인의 방출을 위한 혐기성조 및 질산화/인의 흡수/유기물의 분해를 위한 호기성조 등을 포함한다.Various types of wastewater, including sewage and sewage, generated in toilets, kitchens, and bathrooms in the course of daily life are discharged or recycled after appropriate treatment in accordance with relevant laws and regulations. In the process of advanced wastewater treatment, denitrification and dephosphorization processes are essential to prevent eutrophication in water. In general, the reaction tank in the process for removing nitrogen and phosphorus includes an anoxic tank required for denitrification, an anaerobic tank for phosphorus release, and an aerobic tank for nitrification/phosphorus absorption/decomposition of organic matter.

이와 관련하여 참조할 수 있는 선행기술문헌으로서 한국 등록특허공보 제0433259호(선행문헌 1), 한국 등록특허공보 제1332849호(선행문헌 2) 등이 알려져 있다.Korean Patent Registration No. 0433259 (Prior Document 1) and Korean Patent Registration No. 1332849 (Prior Document 2) are known as prior art documents that can be referred to in this regard.

선행문헌 1은 침전지로부터 일부를 BAR(미생물 활성화 반응조)에 유입시켜 미생물의 활성을 촉진한 다음 NAR(질산화 미생물 활성화조), 담체가 설치된 질산화조, 막이 설치된 질산화조 및 인흡수조 중의 하나를 선택한다. 이에, 단일 공정에서 미생물을 분리하여 처리효율을 향상시키고, 운전의 용이성 및 초기설치 비용을 줄이는 효과를 기대한다.Prior Document 1 promotes the activity of microorganisms by introducing a part of the settling tank into a BAR (microbial activating tank), and then selecting one of NAR (nitrifying microorganism activating tank), a nitrifying tank with a carrier, a nitrifying tank with a membrane, and a phosphorus absorption tank. do. Accordingly, it is expected to improve treatment efficiency by separating microorganisms in a single process, and to reduce the ease of operation and initial installation cost.

선행문헌 2는 유입되는 하수를 여과하는 1차 여과유닛, 유입되는 하수의 질산화 및 탈질을 수행하는 반응조, 반응조에 설치되고, 유입되는 하수의 질소 및 인을 처리하는 전기분해유닛 및 반응조에서 배출되는 하수를 여과하는 2차 여과유닛을 포함한다. 이에, 하수 내 오염물질, 특히 질소, 인의 제거효율을 일정하게 유지하는 효과를 기대한다.Prior Document 2 is installed in a primary filtration unit for filtering the inflowing sewage, a reaction tank for performing nitrification and denitrification of the inflowing sewage, an electrolysis unit that is installed in the reaction tank and treats nitrogen and phosphorus in the inflowing sewage, and discharged from the reaction tank. It includes a secondary filtration unit for filtering sewage. Accordingly, the effect of maintaining a constant removal efficiency of pollutants in sewage, particularly nitrogen and phosphorus, is expected.

다만 상기한 선행문헌에 의하면 원수(폐수)의 물성 변동에 대응하도록 탈질의 공정 조건을 유연하게 맞추기 미흡하다는 점에서 개선이 요구된다.However, according to the above prior literature, improvement is required in that it is insufficient to flexibly adjust the denitrification process conditions to correspond to the change in physical properties of raw water (wastewater).

한국 등록특허공보 제0433259호 "미생물 활성화조를 포함하는 오하수 처리 시스템을 이용한 오하수의 처리방법" (공개일자 : .2004.03.31)Korean Registered Patent Publication No. 0433259 "Method for treating sewage using sewage treatment system including microorganism activation tank" (published date: .2004.03.31) 한국 등록특허공보 제1332849호 "질소, 인 처리장치 및 이를 이용한 하수 처리방법" (공개일자 : 2013.11.27.)Korean Patent Registration No. 1332849 "Nitrogen and phosphorus treatment device and sewage treatment method using the same" (Publication date: 2013.11.27.)

상기와 같은 종래의 문제점들을 개선하기 위한 본 발명의 목적은, 일련의 공정을 거쳐 오하수의 위생적인 정화를 유도하는 과정에서 유입되는 원수의 물성이 변동되는 상황에 대응하여 탈질의 공정 조건을 신속하고 정확하게 맞추기 위한 탈질 강화 구조의 오하수 처리 시스템을 제공하는 데 있다.The purpose of the present invention to improve the above conventional problems is to rapidly change the denitrification process conditions in response to the situation in which the physical properties of incoming raw water fluctuate in the process of inducing sanitary purification of sewage through a series of processes. It is to provide a sewage treatment system with a denitrification reinforcement structure to accurately fit the structure.

상기 목적을 달성하기 위하여, 본 발명은 탈질 기능이 강화된 구조를 갖춘 오하수 처리 시스템에 있어서: 침전조를 거쳐 유입되는 원수의 질산화를 유발하는 전처리조; 상기 전처리조에 일측 처리경로를 형성하도록 연결되고, 황접촉에 의한 탈질을 유발하는 제1탈질부; 상기 전처리조에 타측 처리경로를 형성하도록 연결되고, 미생물담체로 탈질을 유도하는 제2탈질부; 및 상기 전처리조, 제1탈질부, 제2탈질부를 설정된 알고리즘으로 제어하는 제어기;를 포함하여 이루어지는 것을 특징으로 한다.In order to achieve the above object, the present invention provides a sewage treatment system having an enhanced denitrification function: a pretreatment tank for causing nitrification of raw water flowing through a sedimentation tank; a first denitrification unit connected to the pretreatment tank to form a treatment path on one side and causing denitration by sulfur contact; a second denitrification unit connected to the pretreatment tank to form the other treatment path and inducing denitrification to the microbial carrier; and a controller for controlling the pretreatment tank, the first denitration unit, and the second denitration unit using a set algorithm.

본 발명의 세부 구성으로서, 상기 전처리조는 고정날개와 가동날개를 인접하게 배치하여 원수 고형분의 미세화를 유도하는 것을 특징으로 한다.As a detailed configuration of the present invention, the pretreatment tank is characterized in that the fixed blade and the movable blade are arranged adjacently to induce refinement of the raw water solid content.

본 발명의 세부 구성으로서, 상기 전처리조는 원수를 배출하는 관로에 기포제거기를 더 구비하는 것을 특징으로 한다.As a detailed configuration of the present invention, the pretreatment tank is characterized in that it further includes a bubble remover in a conduit for discharging raw water.

본 발명의 세부 구성으로서, 상기 제1탈질부는 반응조에 연계되는 온도조절기, 석회석공급기, 탄소원공급기를 구비하는 것을 특징으로 한다.As a detailed configuration of the present invention, the first denitrification unit is characterized by having a temperature controller connected to the reaction tank, a limestone supplier, and a carbon source supplier.

본 발명의 세부 구성으로서, 상기 제2탈질부는 반응조에 연계되는 온도조절기, pH조절기, 미생물담체를 수용한 가변통체를 구비하는 것을 특징으로 한다.As a detailed configuration of the present invention, the second denitrification unit is characterized by having a temperature controller connected to the reaction tank, a pH controller, and a variable cylinder accommodating the microbial carrier.

본 발명의 세부 구성으로서, 상기 가변통체는 교번적인 투입이 가능하도록 일측과 타측의 가이드레일에 승강 가능하게 지지되는 것을 특징으로 한다.As a detailed configuration of the present invention, the variable cylinder is characterized in that it is supported so as to be able to move up and down on one side and the other guide rail to enable alternate input.

본 발명의 세부 구성으로서, 상기 가이드레일은 가변통체의 승강 위치에 대응하여 통기공의 개도율 변동을 유발하도록 설치되는 것을 특징으로 한다.As a detailed configuration of the present invention, the guide rail is characterized in that it is installed to induce a change in the opening rate of the ventilation hole in response to the elevation position of the variable cylinder body.

본 발명의 세부 구성으로서, 상기 제어기는 BOD측정기, MLSS측정기, ORP측정기, 담체측정기의 입력 신호에 대응하여 유로전환밸브 그리고/또는 모션구동기의 출력을 결정하는 알고리즘을 포함하는 것을 특징으로 한다.As a detailed configuration of the present invention, the controller is characterized in that it includes an algorithm for determining the output of the flow path switching valve and/or the motion actuator in response to input signals from the BOD measuring device, the MLSS measuring device, the ORP measuring device, and the carrier measuring device.

이상과 같이 본 발명에 의하면, 일련의 공정을 거쳐 오하수를 처리하는 과정에서 유입되는 원수의 물성이 변동되는 상황에 대응하여 탈질의 공정 조건을 신속하고 정확하게 맞추므로 시스템의 유연성과 신뢰성을 향상하는 효과가 있다.As described above, according to the present invention, in the process of treating sewage water through a series of processes, the process conditions for denitrification are quickly and accurately matched in response to the situation in which the physical properties of the incoming raw water fluctuate, thereby improving the flexibility and reliability of the system. It works.

도 1은 본 발명에 따른 시스템의 주요부를 나타내는 모식도
도 2는 본 발명에 따른 시스템의 제2탈질부를 나타내는 모식도
도 3은 도 2의 미생물담체의 가동 상태를 나타내는 모식도
도 4는 본 발명에 따른 시스템의 제어 회로를 나타내는 블록도
1 is a schematic diagram showing the main parts of the system according to the present invention
Figure 2 is a schematic diagram showing a second denitrification unit of the system according to the present invention
Figure 3 is a schematic view showing the operating state of the microorganism carrier of Figure 2
4 is a block diagram showing a control circuit of a system according to the present invention;

이하, 첨부된 도면에 의거하여 본 발명의 실시예를 상세하게 설명하면 다음과 같다.Hereinafter, embodiments of the present invention will be described in detail based on the accompanying drawings.

본 발명은 탈질 기능이 강화된 구조를 갖춘 오하수 처리 시스템에 관하여 제안한다. 분뇨, 축산폐수, 공장폐수, 생활하수를 복합적으로 포함한 오하수 처리를 대상으로 하지만 반드시 이에 국한되는 것은 아니다. 폐수(오하수)의 고도처리 과정에서 하전, 호수 등의 수중 부영영화를 방지하도록 일련의 공정 중에서 탈질과 관련되는 기능의 개선을 요체로 한다.The present invention proposes a wastewater treatment system having a structure with enhanced denitrification function. Sewage treatment including manure, livestock wastewater, factory wastewater, and domestic sewage is targeted, but is not necessarily limited thereto. In the process of advanced treatment of wastewater (sewage), the main point is to improve the denitrification-related function in a series of processes to prevent eutrophication in rivers and lakes.

본 발명에 따르면 전처리조(20)가 침전조(10)를 거쳐 유입되는 원수의 질산화를 유발하는 구조를 이루고 있다.According to the present invention, the pretreatment tank 20 has a structure inducing nitrification of raw water flowing through the precipitation tank 10.

도 1을 참조하면, 침전조(10)의 하류측에 전처리조(20)가 연결된 상태를 나타낸다. 침전조(10)는 하폐수 원수에 포함되는 협잡물 등을 하측으로 포집하고 상측으로 상등수를 생성한다. 전처리조(20)는 원수에 존재하는 유기질소나 암모니아성 질소를 질산화반응을 통해 질산성 질소로 전환시킨다. 전처리조(20)는 바닥에 인접하여 세라믹 노즐과 블로워를 연결한 송풍산기기(25)를 구비한다. 이외에 질산화 과정에서 질산화 균의 성장률이 온도에 좌우되므로 전처리조(20)의 온도를 30~35℃ 범위로 유지하기 위한 온도조절기를 구비한다.Referring to FIG. 1, a state in which the pretreatment tank 20 is connected to the downstream side of the precipitation tank 10 is shown. The sedimentation tank 10 collects contaminants and the like included in raw wastewater downwardly and generates supernatant water upwardly. The pretreatment tank 20 converts organic nitrogen or ammonia nitrogen present in raw water into nitrate nitrogen through a nitrification reaction. The pretreatment tank 20 includes a blower 25 connected to a ceramic nozzle and a blower adjacent to the bottom. In addition, since the growth rate of nitrifying bacteria in the nitrification process depends on the temperature, a temperature controller is provided to maintain the temperature of the pretreatment tank 20 in the range of 30 to 35 ° C.

본 발명의 세부 구성으로서, 상기 전처리조(20)는 고정날개(21)와 가동날개(22)를 인접하게 배치하여 원수 고형분의 미세화를 유도하는 것을 특징으로 한다.As a detailed configuration of the present invention, the pretreatment tank 20 is characterized in that the fixed blade 21 and the movable blade 22 are arranged adjacently to induce refinement of the raw water solid content.

도 1에서, 전처리조(20)에 구성되는 고정날개(21)와 가동날개(22)가 나타난다. 고정날개(21)는 전처리조(20)의 내벽에 일정한 간격으로 부착되고, 가동날개(22)는 전처리조(20)의 중심에 회전 가능하게 장착된다. 날개구동기(23)는 가동날개(22)를 회전시키는 기능 외에 산기, pH 조절 등의 기능도 갖출 수 있다. 고정날개(21)와 가동날개(22)는 상하로 복수의 층을 이루도록 배치될 수 있다. 고정날개(21)와 가동날개(22)에 의해 원수의 고형분이 미세화되면 질산화 균의 성장에 의한 질산화반응에 유리하다.1, fixed blades 21 and movable blades 22 constituted in the pretreatment tank 20 are shown. The fixed blades 21 are attached to the inner wall of the pretreatment tank 20 at regular intervals, and the movable blades 22 are rotatably mounted at the center of the pretreatment tank 20 . In addition to the function of rotating the movable blades 22, the wing actuator 23 may also have functions such as acidification and pH control. The fixed blades 21 and the movable blades 22 may be arranged to form a plurality of layers vertically. When the solid content of the raw water is refined by the fixed blades 21 and the movable blades 22, it is advantageous for the nitrification reaction by the growth of nitrifying bacteria.

본 발명의 세부 구성으로서, 상기 전처리조(20)는 원수를 배출하는 관로에 기포제거기(27)를 더 구비하는 것을 특징으로 한다.As a detailed configuration of the present invention, the pretreatment tank 20 is characterized in that a bubble remover 27 is further provided in a pipe line for discharging raw water.

도 1에서, 전처리조(20)의 하류측 관로에 기포제거기(27)가 설치되는 상태를 나타낸다. 전처리조(20)의 교반, 산기 처리를 거치는 동안 원수에 다량의 기포가 발생될 수 있다. 기포는 후속된 탈질화 반응의 효율을 저하시키므로 제거하는 것이 바람직하다. 기포제거기(27)는 다공성 블레이드 그리고/또는 에어홀 파이프 방식을 적용할 수 있다. 어느 경우에나 기포제거기(27)는 이송되는 원수의 난류화를 억제하는 구조가 좋다.In FIG. 1, a state in which the bubble remover 27 is installed in the downstream pipe of the pretreatment tank 20 is shown. A large amount of bubbles may be generated in the raw water during the agitation and aeration treatment of the pretreatment tank 20 . Air bubbles reduce the efficiency of the subsequent denitrification reaction and are therefore preferably removed. The air bubble remover 27 may employ a porous blade and/or air hole pipe method. In any case, the bubble remover 27 has a structure that suppresses the turbulence of the raw water to be transferred.

이후 전처리조(20)에서 배출되는 원수는 질산성 질소를 무산소 상태에서 질소가스로 전화시키는 탈질반응이 2가지 처리경로 중의 어느 하나로 진행된다. 탈질화의 영향인자로는 배양온도, pH, 알칼리도, 용존산소, C/N 비, 탄소원의 종류 등이 알려져 있다. 통상 유기물, 질소, 인이 100: 5: 1로 되면 미생물의 성장 번식에 의한 오염물질 제거 효율이 높아진다.Thereafter, the raw water discharged from the pretreatment tank 20 undergoes a denitrification reaction in which nitrate nitrogen is converted into nitrogen gas in an anoxic state through one of two treatment paths. Influencing factors of denitrification are known, such as incubation temperature, pH, alkalinity, dissolved oxygen, C/N ratio, and type of carbon source. In general, when organic matter, nitrogen, and phosphorus are 100: 5: 1, the efficiency of pollutant removal by the growth and reproduction of microorganisms increases.

또한, 본 발명에 따르면 황접촉에 의한 탈질을 유발하는 제1탈질부(30)가 상기 전처리조(20)에 일측 처리경로를 형성하도록 연결되는 구조이다.In addition, according to the present invention, the first denitrification unit 30 that induces denitrification by sulfur contact is connected to the pretreatment tank 20 to form a treatment path on one side.

도 1에서, 전처리조(20)의 일측 처리경로에 제1탈질부(30)가 배치되는 상태를 나타낸다. 원수에서 유기물의 농도가 질소의 농도에 비하여 상대적으로 낮은 상태라면 상대적으로 단순한 구조의 제1탈질부(30)를 거치도록 한다. 물론 탈질 공정의 자동화를 위해 후술하듯이 유기물(BOD), 총질소(T-N), 총인(T-P) 등을 측정하는 제어가 수반된다.1 shows a state in which the first denitration unit 30 is disposed in one treatment path of the pretreatment tank 20 . When the concentration of organic matter in raw water is relatively low compared to the concentration of nitrogen, it passes through the first denitrification unit 30 having a relatively simple structure. Of course, control for measuring organic matter (BOD), total nitrogen (T-N), total phosphorus (TP), etc. is accompanied as described below for automation of the denitrification process.

본 발명의 세부 구성으로서, 상기 제1탈질부(30)는 반응조(31)에 연계되는 온도조절기(32), 석회석공급기(33), 탄소원공급기(35)를 구비하는 것을 특징으로 한다.As a detailed configuration of the present invention, the first denitrification unit 30 is characterized by having a temperature controller 32 connected to the reaction tank 31, a limestone supplier 33, and a carbon source supplier 35.

제1탈질부(30)는 상대적으로 저농도 BOD 함유의 원수가 유입되는 반응조(31)에 황입자와 석회석을 투입하여 질산성 질소의 탈질반응을 유도한다. 황은 전자공여체와 미생물이 붙을 수 있는 담체로 작용한다. 온도조절기(32)는 황을 이용한 독립영양 미생물(티오바실러스 데니트리피칸스 등)의 반응에 유리한 범위로 반응조(31)의 온도를 유지한다. 석회석공급기(33)는 탈질반응에서 발생하는 수소이온을 중화시켜 적절한 알칼리도(pH 6.5~8.0)를 맞춘다. 석회석공급기(33)는 황입자를 동시에 투입하도록 라인믹서로 구성할 수도 있다. 탄소원공급기(35)는 메탄올, 에탄올, 아세테이트 등과 같은 상용의 외부탄소원을 제공한다. 적어도 부분적으로 음식물쓰레기. 하수슬러지, 메탄가스, 분뇨 등으로 대체 가능하다.The first denitrification unit 30 induces a denitrification reaction of nitrate nitrogen by injecting sulfur particles and limestone into the reaction tank 31 into which raw water containing relatively low BOD is introduced. Sulfur acts as an electron donor and a carrier on which microorganisms can adhere. The temperature controller 32 maintains the temperature of the reaction vessel 31 in a range favorable to the reaction of autotrophic microorganisms (such as Thiobacillus denitripicans) using sulfur. The limestone feeder 33 neutralizes hydrogen ions generated in the denitrification reaction to adjust the appropriate alkalinity (pH 6.5 to 8.0). The limestone feeder 33 may be configured as a line mixer to simultaneously inject sulfur particles. The carbon source supplier 35 provides a commercially available external carbon source such as methanol, ethanol, or acetate. At least partially food waste. It can be replaced with sewage sludge, methane gas, manure, etc.

한편, 제1탈질부(30)의 반응조(31)의 저면에는 반응성을 높이도록 와류발생기(37)를 구비할 수 있다.Meanwhile, a vortex generator 37 may be provided on the bottom surface of the reaction tank 31 of the first denitration unit 30 to increase reactivity.

또한, 본 발명에 따르면 미생물담체(45)로 탈질을 유도하는 제2탈질부(40)가 상기 전처리조(20)에 타측 처리경로를 형성하도록 연결되는 구조이다.In addition, according to the present invention, the second denitrification unit 40 for inducing denitrification to the microbial carrier 45 is connected to the pretreatment tank 20 to form the other treatment path.

도 1에서, 전처리조(20)의 타측 처리경로에 제2탈질부(40)가 배치되는 상태를 나타낸다. 제2탈질부(40)는 상대적으로 고농도 BOD 함유의 원수가 유입되는 반응조(41)에 탈질 미생물을 투입하여 질산성 질소의 탈질반응을 유도한다. 미생물담체(45)에 수용되는 탈질 미생물로 바실러스(bacillus), 슈도모나스(Pseudomonas), 마이크로코쿠스(Micrococcus) 등을 사용한다. 제2탈질부(40)는 연속회분식 반응조(SBR, Sequencing Batch Reactor)를 기반하는 하는 것이 선호되지만 이에 한정되지 않는다. SBR과 간헐유입식을 적용하면 부지 소요면적을 축소하면서 충격부하(Shock load)를 감당하기 유리하다.1 shows a state in which the second denitration unit 40 is disposed in the other treatment path of the pretreatment tank 20 . The second denitrification unit 40 induces a denitrification reaction of nitrate nitrogen by injecting denitrification microorganisms into the reaction tank 41 into which raw water containing relatively high BOD is introduced. Bacillus, Pseudomonas, and Micrococcus are used as denitrifying microorganisms accommodated in the microbial carrier 45 . The second denitrification unit 40 is preferably based on a Sequencing Batch Reactor (SBR), but is not limited thereto. If SBR and intermittent inflow are applied, it is advantageous to reduce the area required for the site and handle the shock load.

본 발명의 세부 구성으로서, 상기 제2탈질부(40)는 반응조(41)에 연계되는 온도조절기(42), pH조절기(43), 미생물담체(45)를 수용한 가변통체(46)를 구비하는 것을 특징으로 한다.As a detailed configuration of the present invention, the second denitrification unit 40 is provided with a temperature controller 42 connected to the reaction tank 41, a pH controller 43, and a variable cylinder 46 accommodating a microbial carrier 45. It is characterized by doing.

제2탈질부(40)에서 탈질 공정의 조건은 용존산소(DO) 0~2mg/L, pH 6.5~7.5, 온도 35~50℃로 설정할 수 있다. 온도조절기(42)는 반응조(41)의 전면에 고르게 배치되지만 특히 가변통체(46)의 주변에서 밀집도를 높인다. pH조절기(43)는 pH 조절제 등의 약품을 투입하여 탈질반응의 알칼리도를 맞춘다. 이외에 제1탈질부(30)의 탄소원공급기(35)를 적용할 수 있다. 미생물담체(45)는 탈질 미생물의 반응성을 조절하도록 가변통체(46)를 사용하는 것이 좋다. 미생물담체(45)는 폴링(Pall-Ring)과 유사한 다공성 구조를 기반으로 구성할 수 있다.Conditions for the denitrification process in the second denitrification unit 40 may be set to dissolved oxygen (DO) of 0 to 2 mg/L, pH of 6.5 to 7.5, and temperature of 35 to 50°C. The temperature controller 42 is evenly disposed on the front of the reaction tank 41, but particularly increases the density around the variable cylinder 46. The pH controller 43 adjusts the alkalinity of the denitrification reaction by injecting chemicals such as pH adjusters. In addition, the carbon source supplier 35 of the first denitration unit 30 may be applied. It is preferable to use a variable cylinder 46 as the microorganism carrier 45 to control the reactivity of denitrifying microorganisms. The microorganism carrier 45 may be configured based on a porous structure similar to that of a Pall-Ring.

본 발명의 세부 구성으로서, 상기 가변통체(46)는 교번적인 투입이 가능하도록 일측과 타측의 가이드레일(47)에 승강 가능하게 지지되는 것을 특징으로 한다.As a detailed configuration of the present invention, the variable tubular body 46 is characterized in that it is supported so as to be able to move up and down on one side and the other guide rail 47 so that alternate injection is possible.

도 2를 참조하면, 반응조(41)의 일측과 타측에서 가변통체(46)의 설치 상태를 나타낸다. 도 2(a)처럼 가변통체(46)는 가이드레일(47) 상에 장착되고 모션구동기(48)에 의하여 상하의 적절한 위치로 승강된다. 모션구동기(48)는 로프-드럼 방식, 체인컨베이어 방식 등에서 선택하여 적용할 수 있다. 도 2(b)처럼 한 쌍의 가변통체(46)는 V자형으로 배치된 2개의 가이드레일(47)에 각각 지지된다. 일측 가변통체(46)는 일측 가이드레일(47)을 따라 승강되고 타측 가변통체(46)는 타측 가이드레일(47)을 따라 승강된다. 부호 46′는 가변통체(46)가 승강하기 전의 상태를 나타낸다. 이와 같은 구조에 의하면 미생물담체(45)의 이상이 발생하거나 수명에 도달한 경우 즉시로 점검ㆍ교체하기 용이하다.Referring to FIG. 2 , the installation state of the variable cylinder 46 is shown on one side and the other side of the reaction tank 41 . As shown in FIG. 2 (a), the variable cylinder 46 is mounted on the guide rail 47 and moved up and down to an appropriate position by the motion actuator 48. The motion actuator 48 can be applied by selecting from a rope-drum method, a chain conveyor method, and the like. As shown in FIG. 2 (b), the pair of deformable cylinders 46 are supported by two guide rails 47 arranged in a V shape. One side deformable cylinder 46 moves up and down along one side guide rail 47 and the other side deformable cylinder 46 moves up and down along the other side guide rail 47 . Reference numeral 46' denotes a state before the variable cylinder 46 moves up and down. According to such a structure, it is easy to inspect and replace the microorganism carrier 45 immediately when an abnormality occurs or the service life is reached.

한편, 반응조(41)는 가이드레일(47)의 상단 노출과 가변통체(46)의 출입을 위해 별도의 개폐 가능한 국부적 커버(도시 생략)를 갖춘다.On the other hand, the reaction tank 41 is provided with a separate openable and openable local cover (not shown) for exposure of the top of the guide rail 47 and entry and exit of the variable cylinder 46.

본 발명의 세부 구성으로서, 상기 가이드레일(47)은 가변통체(46)의 승강 위치에 대응하여 통기공의 개도율 변동을 유발하도록 설치되는 것을 특징으로 한다.As a detailed configuration of the present invention, the guide rail 47 is characterized in that it is installed to cause a change in the opening rate of the ventilation hole in response to the elevation position of the variable cylinder 46.

도 3을 참조하면, 가변통체(46)의 승강되는 위치에 따라 신축되는 상태를 나타낸다. 부호 46A는 내부 통체이고 부호 46B는 외부 통체이고 부호 46C는 내부 통체에 형성된 통기공이다. 가변통체(46)는 내부 통체와 외부 통체에 의한 텔레스코픽 구조이다. 도 3(a)처럼 가변통체(46)가 가이드레일(47)의 상단에 위치하면 통기공은 모두 은폐되고, 도 3(b)처럼 가변통체(46)가 가이드레일(47)의 하단에 위치하면 통기공은 모두 노출된다. 통기공의 개도율 변동에 의하여 내부에 수용된 미생물담체(45)에 의한 반응성이 달라진다.Referring to FIG. 3 , a state in which the deformable cylinder 46 is expanded or contracted according to an elevated position is shown. Reference numeral 46A denotes an inner cylinder, 46B an outer cylinder, and 46C a ventilation hole formed in the inner cylinder. The variable cylinder 46 has a telescopic structure by an inner cylinder and an outer cylinder. As shown in FIG. 3 (a), when the variable cylinder 46 is located at the upper end of the guide rail 47, all ventilation holes are concealed, and as shown in FIG. 3 (b), the variable cylinder 46 is located at the lower end of the guide rail 47 Doing so exposes all vents. The reactivity of the microorganism carrier 45 accommodated therein varies according to the change in the opening rate of the ventilation hole.

또한, 본 발명에 따르면 제어기(50)가 상기 전처리조(20), 제1탈질부(30), 제2탈질부(40)를 설정된 알고리즘으로 제어하는 구조를 이루고 있다.In addition, according to the present invention, the controller 50 controls the pretreatment tank 20, the first NOx removal unit 30, and the second NOx removal unit 40 according to a set algorithm.

도 1 및 도 4를 참조하면, 제어기(50)가 마이컴 회로로 구성되는 상태를 나타낸다. 제어기(50)는 마이크로프로세서, 메모리, 입출력인터페이스를 갖추고 구동부와 연결된다. 제어기(50)의 출력인터페이스와 구동부에는 날개구동기(23), 송풍산기기(25), 온도조절기(32)(42), 모션구동기(48), 유로전환밸브(57) 등이 연결된다. 제어기(50)의 알고리즘은 메모리에 프로그램과 데이터 형태로 저장되고 마이크로프로세서에 의하여 실행된다.Referring to FIGS. 1 and 4 , a state in which the controller 50 is composed of a microcomputer circuit is shown. The controller 50 has a microprocessor, memory, input/output interface and is connected to the driving unit. The output interface of the controller 50 and the driving unit are connected to the blade driver 23, the blower 25, the temperature controllers 32 and 42, the motion actuator 48, and the flow change valve 57. The algorithms of the controller 50 are stored in the form of programs and data in memory and executed by the microprocessor.

본 발명의 세부 구성으로서, 상기 제어기(50)는 BOD측정기(51), MLSS측정기(52), ORP측정기(53), 담체측정기(55)의 입력 신호에 대응하여 유로전환밸브(57) 그리고/또는 모션구동기(48)의 출력을 결정하는 알고리즘을 포함하는 것을 특징으로 한다.As a detailed configuration of the present invention, the controller 50 controls the flow path switching valve 57 and / or an algorithm for determining the output of the motion actuator 48.

도 4에서, 제어기(50)의 입력인터페이스에 BOD측정기(51), MLSS측정기(52), ORP측정기(53), 담체측정기(55)가 연결된 상태를 나타낸다. BOD측정기(51)는 침전조(10), 전처리조(20) 등에서 용존산소량(DO) 농도변화를 통해 유기물의 양을 간접적으로 측정한다. MLSS측정기(52)는 전처리조(20)에서 활성슬러지 부유물질 그리고/또는 폭기조 혼합액의 부유물질을 측정한다. ORP측정기(53)는 전처리조(20), 제1탈질부(30), 제2탈질부(40) 등에서 산화환원전위값(mV)으로 반응과 관련된 물리량을 측정한다. 담체측정기(55)는 제1탈질부(30) 및 제2탈질부(40)에서 미생물의 반응성과 관련된 물리량(농도)을 측정한다. 도시하지 않으나 기본적으로 온도센서, pH센서, 암모늄 센서 등이 탑재되고, 이외에 특정 성분을 직접 검출하는 센서와 카메라가 탑재될 수 있다.4 shows a state in which the BOD measuring device 51, the MLSS measuring device 52, the ORP measuring device 53, and the carrier measuring device 55 are connected to the input interface of the controller 50. The BOD meter 51 indirectly measures the amount of organic matter through a change in dissolved oxygen (DO) concentration in the precipitation tank 10, the pretreatment tank 20, and the like. The MLSS measuring device 52 measures the suspended matter of the activated sludge and/or the mixed solution of the aeration tank in the pretreatment tank 20. The ORP measuring device 53 measures physical quantities related to the reaction in terms of oxidation reduction potential (mV) in the pretreatment tank 20, the first denitrification unit 30, the second denitration unit 40, and the like. The carrier measuring device 55 measures a physical quantity (concentration) related to the reactivity of microorganisms in the first denitrification unit 30 and the second denitrification unit 40. Although not shown, a temperature sensor, a pH sensor, an ammonium sensor, etc. are basically mounted, and in addition, a sensor and a camera for directly detecting a specific component may be mounted.

제어기(50)에 의한 자동화 제어의 일예로서, 침전조(10)에서 전처리조(20)를 거쳐 유입되는 원수의 유기물/질소 농도를 판단하여, 유로전환밸브(57)에 의하여 제1탈질부(30) 또는 제2탈질부(40)로 처리경로를 전환하고, 각각의 처리경로에서 설정된 서브루틴프로그램을 실행하여 피드백 제어하며, 각 공정에서 이상이 발생하면 시청각적 경보를 발생한다.As an example of automated control by the controller 50, the organic matter/nitrogen concentration of the raw water flowing from the precipitation tank 10 through the pretreatment tank 20 is determined, and the first denitration unit 30 ) or the second denitration unit 40, the processing path is switched, the subroutine program set in each processing path is executed for feedback control, and an audible and visual alarm is generated when an abnormality occurs in each process.

본 발명은 기재된 실시예에 한정되는 것이 아니고, 본 발명의 사상 및 범위를 벗어나지 않고 다양하게 수정 및 변형할 수 있음이 이 기술의 분야에서 통상의 지식을 가진 자에게 자명하다. 따라서 그러한 변형예 또는 수정예들은 본 발명의 특허청구범위에 속한다 해야 할 것이다.The present invention is not limited to the described embodiments, and it is obvious to those skilled in the art that various modifications and variations can be made without departing from the spirit and scope of the present invention. Therefore, such variations or modifications should fall within the scope of the claims of the present invention.

10: 침전조 20: 전처리부 21: 고정날개
22: 가동날개 23: 날개구동기 25: 송풍산기기
27: 기포제거기 30: 제1탈질부 31: 반응조
32: 온도조절기 33: 석회석공급기 35: 탄소원공급기
37: 와류발생기 40: 제2탈질부 41: 반응조
42: 온도조절기 43: pH조절기 45: 미생물담체
46: 가변통체 47: 가이드레일 48: 모션구동기
50: 제어기 51: BOD측정기 52: MLSS측정기
53: ORP측정기 55: 담체측정기 57: 유로전환밸브
10: sedimentation tank 20: pretreatment unit 21: fixed wing
22: movable wing 23: wing actuator 25: blowing machine
27: bubble remover 30: first denitrification unit 31: reaction tank
32: temperature controller 33: limestone feeder 35: carbon source feeder
37: vortex generator 40: second denitrification unit 41: reaction tank
42: temperature controller 43: pH controller 45: microorganism carrier
46: variable body 47: guide rail 48: motion actuator
50: controller 51: BOD meter 52: MLSS meter
53: ORP meter 55: carrier meter 57: flow path switching valve

Claims (8)

탈질 기능이 강화된 구조를 갖춘 오하수 처리 시스템에 있어서:
침전조(10)를 거쳐 유입되는 원수의 질산화를 유발하는 전처리조(20);
상기 전처리조(20)에 일측 처리경로를 형성하도록 연결되고, 황접촉에 의한 탈질을 유발하는 제1탈질부(30);
상기 전처리조(20)에 타측 처리경로를 형성하도록 연결되고, 미생물담체(45)로 탈질을 유도하는 제2탈질부(40); 및
상기 전처리조(20), 제1탈질부(30), 제2탈질부(40)를 설정된 알고리즘으로 제어하는 제어기(50);를 포함하되,
상기 제1탈질부(30)는 반응조(31)에 연계되는 온도조절기(32), 석회석공급기(33), 탄소원공급기(35)를 구비하고,
상기 제2탈질부(40)는 반응조(41)에 연계되는 온도조절기(42), pH조절기(43), 미생물담체(45)를 수용하는 가변통체(46)를 구비하며, 가변통체(46)는 통기공을 지닌 내부 통체의 외면를 2개의 외부 통체로 슬라이딩 가능하게 감싼 텔레스코픽 구조이고,
상기 가변통체(46)는 교번적인 투입이 가능하도록 일측과 타측의 가이드레일(47)에 승강 가능하게 지지되고,
상기 가이드레일(47)은 각각 V자형으로 대향하도록 배치되어 가변통체(46)의 승강 위치에 대응하여 통기공의 개도율 변동을 유발하도록 설치되고, 가변통체(46)가 가이드레일(47)에 의해 승강하면서 2개의 외부 통체가 양 옆으로 이동하여 내부 통체 표면에 형성된 통기공의 전체 개도율이 변동되는 것을 특징으로 하는 탈질 강화 구조의 오하수 처리 시스템.
In the sewage treatment system with enhanced denitrification function:
A pretreatment tank 20 for causing nitrification of the raw water introduced through the precipitation tank 10;
a first denitration unit 30 connected to the pretreatment tank 20 to form a treatment path on one side and causing denitration by sulfur contact;
a second denitrification unit 40 connected to the pretreatment tank 20 to form the other treatment path and inducing denitrification to the microbial carriers 45; and
A controller 50 controlling the pretreatment tank 20, the first NOx removal unit 30, and the second NOx removal unit 40 with a set algorithm;
The first denitrification unit 30 includes a temperature controller 32 connected to the reaction tank 31, a limestone supplier 33, and a carbon source supplier 35,
The second denitrification unit 40 includes a temperature controller 42 connected to the reaction tank 41, a pH controller 43, and a variable cylinder 46 accommodating a microorganism carrier 45, and the variable cylinder 46 Is a telescopic structure in which the outer surface of the inner cylinder having a ventilation hole is slidably wrapped with two outer cylinders,
The variable cylinder 46 is supported so as to be able to move up and down on guide rails 47 on one side and the other side so that alternate input is possible,
The guide rails 47 are arranged to face each other in a V shape, and are installed to induce a change in the opening rate of the ventilation hole in response to the elevation position of the variable cylinder 46, and the variable cylinder 46 is attached to the guide rail 47. Sewage treatment system with a denitrification strengthening structure, characterized in that the total opening rate of the ventilation hole formed on the surface of the inner cylinder is varied by moving the two outer cylinders sideways while being raised and lowered by the.
청구항 1에 있어서,
상기 전처리조(20)는 고정날개(21)와 가동날개(22)를 인접하게 배치하여 원수 고형분의 미세화를 유도하는 것을 특징으로 하는 탈질 강화 구조의 오하수 처리 시스템.
The method of claim 1,
The pretreatment tank (20) is sewage treatment system with a denitrification strengthening structure, characterized in that by arranging the fixed blades (21) and the movable blades (22) adjacently to induce miniaturization of the raw water solids.
청구항 1에 있어서,
상기 전처리조(20)는 원수를 배출하는 관로에 기포제거기(27)를 더 구비하는 것을 특징으로 하는 탈질 강화 구조의 오하수 처리 시스템.
The method of claim 1,
The sewage treatment system of the denitrification strengthening structure, characterized in that the pretreatment tank (20) further includes a bubble remover (27) in a pipe line for discharging raw water.
삭제delete 삭제delete 삭제delete 삭제delete 청구항 1에 있어서,
상기 제어기(50)는 BOD측정기(51), MLSS측정기(52), ORP측정기(53)의 입력 신호에 대응하여 전처리부(20)에서 제1탈질부(30) 또는 제2탈질부(40)의 처리경로를 전환하는 유로전환밸브(57) 그리고/또는 로프-드럼 방식이나 체인컨베이어 방식으로 가변통체(46)를 승강시키는 모션구동기(48)의 출력을 결정하는 알고리즘을 포함하는 것을 특징으로 하는 탈질 강화 구조의 오하수 처리 시스템.
The method of claim 1,
The controller 50 controls the first NOx removal unit 30 or the second NOx removal unit 40 in the preprocessor 20 in response to the input signals of the BOD meter 51, the MLSS meter 52, and the ORP meter 53. Characterized in that it includes an algorithm for determining the output of the flow path switching valve 57 for switching the processing path of and / or the motion actuator 48 for lifting the variable cylinder 46 in a rope-drum method or a chain conveyor method. Sewage treatment system with enhanced denitrification structure.
KR1020220084256A 2022-07-08 2022-07-08 Waste water treatment system with enhanced denitrification structure KR102502856B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220084256A KR102502856B1 (en) 2022-07-08 2022-07-08 Waste water treatment system with enhanced denitrification structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220084256A KR102502856B1 (en) 2022-07-08 2022-07-08 Waste water treatment system with enhanced denitrification structure

Publications (1)

Publication Number Publication Date
KR102502856B1 true KR102502856B1 (en) 2023-02-23

Family

ID=85329760

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220084256A KR102502856B1 (en) 2022-07-08 2022-07-08 Waste water treatment system with enhanced denitrification structure

Country Status (1)

Country Link
KR (1) KR102502856B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116621339A (en) * 2023-07-26 2023-08-22 湖南三友环保科技有限公司 Fine control denitrification control method and control device for sewage processor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000063136A (en) * 2000-01-27 2000-11-06 정호봉 Livestock wastes and high density nitrogen water wastes nitrogen remove and treatment system
JP2001038396A (en) * 1999-08-04 2001-02-13 Hitachi Constr Mach Co Ltd Mud solidifying and treating device
KR20010102867A (en) * 2001-09-08 2001-11-17 김학로 SBR omitted
KR100433259B1 (en) 2002-09-23 2004-05-24 박주석 Method for treating a wastewater using a system for wastewater treatment including a bioactivator reactor
KR20050081109A (en) * 2004-02-12 2005-08-18 주식회사 기술환경 Gi soul biological system and method
KR101332849B1 (en) 2012-12-21 2013-11-27 한국산업기술시험원 Total nitrogen, phosphorus treatment apparatus and method for sewage treatment using the same
KR20200041724A (en) * 2018-10-13 2020-04-22 한상관 Eco-friendly water purification method that naturally purifies contaminated river water using multiple installed ceramic tints and microbial ceramic tints for water purification applied to it

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001038396A (en) * 1999-08-04 2001-02-13 Hitachi Constr Mach Co Ltd Mud solidifying and treating device
KR20000063136A (en) * 2000-01-27 2000-11-06 정호봉 Livestock wastes and high density nitrogen water wastes nitrogen remove and treatment system
KR20010102867A (en) * 2001-09-08 2001-11-17 김학로 SBR omitted
KR100433259B1 (en) 2002-09-23 2004-05-24 박주석 Method for treating a wastewater using a system for wastewater treatment including a bioactivator reactor
KR20050081109A (en) * 2004-02-12 2005-08-18 주식회사 기술환경 Gi soul biological system and method
KR101332849B1 (en) 2012-12-21 2013-11-27 한국산업기술시험원 Total nitrogen, phosphorus treatment apparatus and method for sewage treatment using the same
KR20200041724A (en) * 2018-10-13 2020-04-22 한상관 Eco-friendly water purification method that naturally purifies contaminated river water using multiple installed ceramic tints and microbial ceramic tints for water purification applied to it

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116621339A (en) * 2023-07-26 2023-08-22 湖南三友环保科技有限公司 Fine control denitrification control method and control device for sewage processor
CN116621339B (en) * 2023-07-26 2023-12-01 湖南三友环保科技有限公司 Fine control denitrification control method and control device for sewage processor

Similar Documents

Publication Publication Date Title
CN100360438C (en) Method and installation for the biological treatment of water using activated sludge and comprising aeration regulation
AU2008244181B2 (en) Method and equipment for processing waste water containing sulphides and ammonium
KR100893122B1 (en) High Effective Treatment Apparatus and Method of Sewage and Wastewater
CN109205954A (en) Light electrolysis catalysis oxidation, biochemical treatment high-concentration waste hydraulic art
KR100876323B1 (en) Advanced treatment apparatus for treatment of sewage water or waste water using aerobic microorganism activation apparatus
CN217148724U (en) Sewage treatment integrated biological nitrogen and phosphorus removal device
KR102311712B1 (en) Shortcut Nitrogen Removal Process and System by using Partial Nitritation in SBBR(Sequencing Batch Biofilm Reactor) with Media
KR102502856B1 (en) Waste water treatment system with enhanced denitrification structure
CN110183052A (en) A kind of waste waste water treatment system and method
KR101471053B1 (en) Organic oxidation tank having a manure treatment device
KR20090030397A (en) Apparatus for high rate removal of nitrogen and phosphorus from swtp/wwtp
KR101688800B1 (en) Treatment system for reverse osmosis concentrate and method thereof
JP2017013014A (en) Organic wastewater treatment system, organic wastewater treatment method, and control program of organic wastewater treatment system
KR100486782B1 (en) Apparatus and method for purifying sewage and wastewater using reaction tank having variable water level
KR100306665B1 (en) Microbial Reactor and Drainage Treatment Method
KR102502858B1 (en) Waste water treatment system with enhanced dephosphorization structure
KR100869304B1 (en) High effective treatment apparatus of sewage and wastewater
KR100384660B1 (en) Automatic system and method for treating nitrogen in waste water
KR100436043B1 (en) Method for removing nitro-oxides in waste water
KR101032068B1 (en) Sewage-wastewater treating system and method the same, using high-effciency sequencing batch reactor process
KR20100088283A (en) High effective treatment apparatus and method of sewage and wastewater using membrane
KR100935022B1 (en) Apparatus for purifying waste water
JP6396238B2 (en) Organic wastewater treatment system, organic wastewater treatment method, and organic wastewater treatment system control program
KR100710706B1 (en) The non-resolve organic wastewater treatment process and system using the facultative microorganism chemical coagulation reaction
KR102607197B1 (en) High-concentration landfill leachate, livestock wastewater, manure, food wastewater, industrial wastewater and low-concentration wastewater treatment system using an upflow complex bioreactor

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant