KR102497785B1 - Recombinant microorganism and method for preparing copolymer comprising 2-hydroxybutyrate and lactate - Google Patents

Recombinant microorganism and method for preparing copolymer comprising 2-hydroxybutyrate and lactate Download PDF

Info

Publication number
KR102497785B1
KR102497785B1 KR1020180002495A KR20180002495A KR102497785B1 KR 102497785 B1 KR102497785 B1 KR 102497785B1 KR 1020180002495 A KR1020180002495 A KR 1020180002495A KR 20180002495 A KR20180002495 A KR 20180002495A KR 102497785 B1 KR102497785 B1 KR 102497785B1
Authority
KR
South Korea
Prior art keywords
leu
ala
gly
val
hydroxybutyrate
Prior art date
Application number
KR1020180002495A
Other languages
Korean (ko)
Other versions
KR20190084575A (en
Inventor
강혜옥
조영현
강동균
박혜권
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to KR1020180002495A priority Critical patent/KR102497785B1/en
Publication of KR20190084575A publication Critical patent/KR20190084575A/en
Application granted granted Critical
Publication of KR102497785B1 publication Critical patent/KR102497785B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • C12N9/1029Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/13Transferases (2.) transferring sulfur containing groups (2.8)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/42Hydroxy-carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/44Polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01095Phosphoglycerate dehydrogenase (1.1.1.95)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/01Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y208/00Transferases transferring sulfur-containing groups (2.8)
    • C12Y208/03CoA-transferases (2.8.3)
    • C12Y208/03001Propionate CoA-transferase (2.8.3.1)

Abstract

2-하이드록시부티레이트 및 락테이트를 포함하는 공중합체를 생산하는 재조합 미생물 및 이의 제조방법, 및 이를 이용한 2-하이드록시부티레이트 및 락테이트의 공중합체의 제조 방법이 제공된다.A recombinant microorganism producing a copolymer containing 2-hydroxybutyrate and lactate and a method for preparing the same, and a method for preparing a copolymer of 2-hydroxybutyrate and lactate using the same are provided.

Description

2-하이드록시부티레이트 및 락테이트의 공중합체 제조를 위한 재조합 균주 및 방법{Recombinant microorganism and method for preparing copolymer comprising 2-hydroxybutyrate and lactate}Recombinant microorganism and method for preparing copolymer comprising 2-hydroxybutyrate and lactate}

2-하이드록시부티레이트 및 락테이트를 반복단위로 포함하는 공중합체를 생산하는 재조합 미생물 및 이의 제조방법, 및 이를 이용한 2-하이드록시부티레이트 및 락테이트의 공중합체의 제조 방법이 제공된다.A recombinant microorganism producing a copolymer comprising 2-hydroxybutyrate and lactate as repeating units, a method for preparing the same, and a method for preparing a copolymer of 2-hydroxybutyrate and lactate using the same are provided.

폴리하이드록시알카노에트(polyhydroxyalkanoate: PHA)는 미생물이 질소, 산소, 인, 마그네슘 등의 성장에 필요한 원소가 부족한 상태에서 탄소원이 풍부하게 존재할 때 에너지 및 환원능의 저장을 위하여 미생물 내부에 축적하는 천연 폴리에스터 물질이다. PHA는 종래 석유로부터 유래된 합성 고분자와 비슷한 물성을 가지면서 생분해성 및 생체적합성을 보이기 때문에, 기존의 합성 플라스틱을 대체할 물질로 인식되고 있다. Polyhydroxyalkanoate (PHA) is a substance that accumulates inside microorganisms to store energy and reducing ability when carbon sources are abundant in the absence of elements necessary for growth, such as nitrogen, oxygen, phosphorus, and magnesium. It is a natural polyester material. Since PHA exhibits biodegradability and biocompatibility while having physical properties similar to synthetic polymers derived from conventional petroleum, it is recognized as a material to replace existing synthetic plastics.

PHA 의 모노머로 알려진 것은 약 150종 이상으로, 이 중 대부분의 모노머들이 3-, 4-, 5- 또는 6-하이드록시알카노에트 (hydroxyalkanoate: HA)이고, 활발히 연구되고 있는 대표적인 PHA 모노머로는 락테이트(3-hydroxybutyrate: LA), 4-하이드록시부티레이트(4-hydroxybutyrate: 4HB), 3-하이드록시프로피오네이트(3-hydroxypropionate: 3HP), 및 탄소수가 6~12개인 중간 사슬 길이(medium chain length: MCL)의 3-하이드록시알카노에트(MCL 3-hydroxyalkanoate) 등과 같이, 3번과 4번 탄소 위치에 하이드록시기(hydroxyl group)가 있는 모노머들을 들 수 있다.More than 150 types of PHA monomers are known, and most of them are 3-, 4-, 5- or 6-hydroxyalkanoate (HA), and representative PHA monomers that are being actively studied are Lactate (3-hydroxybutyrate: LA), 4-hydroxybutyrate (4HB), 3-hydroxypropionate (3HP), and medium chain length (6-12 carbon atoms) chain length: monomers having a hydroxyl group at the 3rd and 4th carbon positions, such as 3-hydroxyalkanoate of MCL).

미생물에서 PHA 를 합성하는 데 핵심적인 역할을 하는 효소는 PHA 합성효소로, 이는 다양한 하이드록시아실-CoA(hydroxyacyl-CoA) 를 기질로 하여 해당 모노머를 함유한 폴리에스터를 합성한다. 또한, PHA 합성효소는 다양한 하이드록시아실-CoA 들 중에서 기질특이성을 가지기 때문에 고분자의 모노머 조성은 PHA 합성효소에 의해 조절된다. 따라서, PHA 를 합성하기 위해서는, PHA 합성효소의 기질로 사용될 수 있는 다양한 하이드록시아실-CoA 를 합성하고 제공하는 대사경로와, 상기 기질과 PHA 합성효소를 이용한 고분자 합성 대사경로가 필요하다. An enzyme that plays a key role in synthesizing PHA in microorganisms is PHA synthase, which uses various hydroxyacyl-CoAs as substrates to synthesize polyesters containing the corresponding monomers. In addition, since the PHA synthase has substrate specificity among various hydroxyacyl-CoAs, the monomer composition of the polymer is controlled by the PHA synthetase. Therefore, in order to synthesize PHA, a metabolic pathway synthesizing and providing various hydroxyacyl-CoAs that can be used as substrates for PHA synthetase and a metabolic pathway for synthesizing polymers using the substrate and PHA synthetase are required.

한편, 2번 탄소 위치에 하이드록시기가 있는 2-하이드록시부티레이트(2-hydroxybutyrate, 2HB) 등의 모노머의 경우 PHA 합성효소의 기질특이성에 적합하지 않다는 문제가 있다. 다양한 중합체 및 공중합체의 모노머로서 유용한 2HB 생합성을 증가시키기 위하여 전구체로부터 2HB로의 전환 효율을 증가시키는 효소 도입이 필요하다.On the other hand, in the case of monomers such as 2-hydroxybutyrate (2HB) having a hydroxyl group at the position of carbon number 2, there is a problem that it is not suitable for the substrate specificity of the PHA synthetase. In order to increase the biosynthesis of 2HB, which is useful as a monomer for various polymers and copolymers, it is necessary to introduce enzymes that increase the conversion efficiency of 2HB from precursors.

KR 10-1211767 B1KR 10-1211767 B1

본 발명은 미생물의 대사과정 중, 2-하이드록시알카노에이트의 일종인 2-하이드록시부티레이트의 전구체로부터 2-하이드록시부티레이트로의 전환 효율을 증가시키는 효소가 과발현된 재조합 미생물을 제작함으로써, 2-하이드록시부티레이트의 생합성을 증진시키고, 2-하이드록시부티레이트를 포함하는 중합체 또는 공중합체, 예컨대, 2-하이드록시부티레이트 및 락테이트를 포함하는 공중합체의 합성 효율을 증진시키는 기술을 제공한다.The present invention prepares a recombinant microorganism overexpressing an enzyme that increases the conversion efficiency of 2-hydroxybutyrate from a precursor of 2-hydroxybutyrate, a type of 2-hydroxyalkanoate, during the metabolic process of microorganisms. -Provides a technique for enhancing the biosynthesis of hydroxybutyrate and enhancing the synthesis efficiency of a polymer or copolymer containing 2-hydroxybutyrate, such as a copolymer containing 2-hydroxybutyrate and lactate.

일 예는 2-케토부티레이트로부터 2-하이드록시부티레이트를 생성하는 효소를 암호화하는 유전자가 도입된 재조합 미생물을 제공한다. One example provides a recombinant microorganism into which a gene encoding an enzyme for producing 2-hydroxybutyrate from 2-ketobutyrate is introduced.

다른 예는 상기 재조합 미생물을 포함하는, 2-하이드록시부티레이트 제조용 조성물을 제공한다.Another example provides a composition for preparing 2-hydroxybutyrate, including the recombinant microorganism.

다른 예는 상기 재조합 미생물을 포함하는, 2-하이드록시부티레이트 및 락테이트를 반복단위로 포함하는 공중합체 제조용 조성물을 제공한다. 상기 조성물은 2-하이드록시부티레이트 및 락테이트를 반복단위로 포함하는 공중합체 생산량을 증진시키거나, 및/또는 공중합체 내 2-하이드록시부티레이트 함량비를 증가시키는 것일 수 있다. Another example provides a composition for preparing a copolymer containing 2-hydroxybutyrate and lactate as repeating units, including the recombinant microorganism. The composition may increase the yield of a copolymer containing 2-hydroxybutyrate and lactate as repeating units and/or increase the content ratio of 2-hydroxybutyrate in the copolymer.

다른 예는 상기 재조합 미생물을 배양하는 단계를 포함하는, 2-하이드록시부티레이트 제조 방법을 제공한다. Another example provides a method for producing 2-hydroxybutyrate, comprising culturing the recombinant microorganism.

다른 예는 상기 재조합 미생물을 배양하는 단계를 포함하는, 2-하이드록시부티레이트 및 락테이트를 반복단위로 포함하는 공중합체의 제조 방법 또는 2-하이드록시부티레이트 및 락테이트를 반복단위로 포함하는 공중합체 내의 2-하이드록시부티레이트 함량을 증가시키는 방법을 제공한다.Another example is a method for producing a copolymer comprising 2-hydroxybutyrate and lactate as repeating units or a copolymer comprising 2-hydroxybutyrate and lactate as repeating units, comprising culturing the recombinant microorganism. A method for increasing the 2-hydroxybutyrate content in

다른 예는 2-하이드록시부티레이트 및 락테이트를 반복단위로 포함하는 공중합체를 제공한다. 상기 공중합체는 앞서 설명한 제조 방법에 의하여 제조된 것일 수 있다. 상기 공중합체는 2-하이드록시부티레이트 함량이 약 15몰% 이상, 약 17몰% 이상, 약 20몰% 이상, 약 22몰% 이상, 또는 약 25몰% 이상일 수 있다.Another example provides a copolymer comprising 2-hydroxybutyrate and lactate as repeating units. The copolymer may be prepared by the above-described preparation method. The copolymer may have a 2-hydroxybutyrate content of about 15 mole % or greater, about 17 mole % or greater, about 20 mole % or greater, about 22 mole % or greater, or about 25 mole % or greater.

미생물 발효 중에 생산되는 락테이트와, 아미노산 대사 중에 생산되는 2-케토부티레이트(2KB)가 2-하이드록시부티레이트(2HB)로 전환되어, PHA 합성효소와 코엔자임 A 전환효소에 의해 2-하이드록시부티레이트-락테이트 공중합체 [P(2HB-LA)]로 생합성되는 것을 확인하였다.Lactate produced during microbial fermentation and 2-ketobutyrate (2KB) produced during amino acid metabolism are converted to 2-hydroxybutyrate (2HB), and 2-hydroxybutyrate- It was confirmed that the lactate copolymer [P(2HB-LA)] was biosynthesized.

2-하이드록시부티레이트-락테이트 공중합체 [P(2HB-LA)]의 모노머인 2-하이드록시부티레이트의 함량을 높이기 위해서 이의 전구체인 2-케토부티레이트로부터 2-하이드록시부티레이트로의 전환 효율을 증가시키는 효소의 도입이 필요하다. In order to increase the content of 2-hydroxybutyrate, a monomer of the 2-hydroxybutyrate-lactate copolymer [P(2HB-LA)], the conversion efficiency of 2-hydroxybutyrate from its precursor, 2-ketobutyrate, is increased. It requires the introduction of enzymes that

락테이트 탈수소효소 (D-lactate Dehydrogenase; LdhA)는 2-하이드록시알카노에이트(2HA)의 일종인 락테이트(LA)를 생산하는 효소이다. LdhA와 같이 2HA를 생산하는 효소를 스크리닝하기 위하여, 대장균에서 LdhA를 기반으로 Blast (유사 유전자 탐색)를 진행하여, 2-하이드록시알카노에이트의 일종인 2-하이드록시부티레이트의 생산에 적합한 효소를 탐색하고, 이들 효소가 과발현된 경우, 2-하이드록시부티레이트-락테이트 공중합체 내의 2-하이드록시부티레이트 함량이 증가함을 확인하였다. 예컨대, 상기 효소로서 D-3-phosphoglycerate dehydrogenase (SerA), Erythronate-4-phosphate dehydrogenase (PdxB) 등이 스크리닝 되었으며, SerA가 과발현된 경우, 상기 효소가 과발현되지 않은 경우와 비교하여, 2-하이드록시부티레이트 생산량이 중량 기준으로 약 2.5배 이상 증가하고, 2-하이드록시부티레이트-락테이트 공중합체 내의 2-하이드록시부티레이트 함량비(몰%)가 약 1.5배 이상 증가하였으며, PdxB가 과발현된 경우, 상기 효소가 과발현되지 않은 경우와 비교하여, 2-하이드록시부티레이트-락테이트 공중합체 내의 2-하이드록시부티레이트 함량비(몰%)가 약 2배 이상 증가하였다 (표 4 참조).Lactate dehydrogenase (D-lactate dehydrogenase; LdhA) is an enzyme that produces lactate (LA), a type of 2-hydroxyalkanoate (2HA). In order to screen for an enzyme that produces 2HA, such as LdhA, an enzyme suitable for the production of 2-hydroxybutyrate, a type of 2-hydroxyalkanoate, was obtained by conducting Blast (similar gene search) based on LdhA in Escherichia coli. Investigated, and when these enzymes were overexpressed, it was confirmed that the 2-hydroxybutyrate content in the 2-hydroxybutyrate-lactate copolymer increased. For example, D-3-phosphoglycerate dehydrogenase (SerA), Erythronate-4-phosphate dehydrogenase (PdxB), etc. have been screened as the enzymes, and when SerA is overexpressed, compared to when the enzyme is not overexpressed, 2-hydroxy Butyrate production increased by about 2.5 times or more by weight, the 2-hydroxybutyrate content ratio (mol%) in the 2-hydroxybutyrate-lactate copolymer increased by about 1.5 times or more, and when PdxB was overexpressed, the above Compared to the case where the enzyme was not overexpressed, the 2-hydroxybutyrate content ratio (mol%) in the 2-hydroxybutyrate-lactate copolymer increased by about 2 times or more (see Table 4).

이에, 본 발명은 미생물의 대사과정 중, 2-하이드록시알카노에이트의 일종인 2-하이드록시부티레이트의 전구체로부터 2-하이드록시부티레이트로의 전환 효율을 증가시키는 효소가 과발현된 재조합 미생물을 제작함으로써, 2-하이드록시부티레이트의 생합성을 증진시키고, 2-하이드록시부티레이트를 포함하는 중합체 또는 공중합체, 예컨대, 2-하이드록시부티레이트 및 락테이트를 포함하는 공중합체의 합성 효율을 증진시키는 기술을 제공한다.Therefore, the present invention is to prepare a recombinant microorganism overexpressing an enzyme that increases the conversion efficiency of 2-hydroxybutyrate, a kind of 2-hydroxyalkanoate, from a precursor of 2-hydroxybutyrate during the metabolic process of the microorganism. Provides a technique for enhancing the biosynthesis of 2-hydroxybutyrate and enhancing the synthesis efficiency of a polymer or copolymer containing 2-hydroxybutyrate, such as a copolymer containing 2-hydroxybutyrate and lactate. .

일 예는 2-케토부티레이트로부터 2-하이드록시부티레이트를 생성하는 효소를 암호화하는 유전자가 도입된 재조합 미생물을 제공한다. 예컨대, 상기 2-케토부티레이트로부터 2-하이드록시부티레이트를 생성하는 효소는 포스포글리세레이트 탈수소효소 (D-3-phosphoglycerate dehydrogenase; 예컨대, SerA), 에리트로네이트-4-포스페이트 탈수소효소 (Erythronate-4-phosphate dehydrogenase; 예컨대, PdxB), 또는 이들의 조합일 수 있다. 상기 재조합 미생물은 내재적으로 및/또는 외래 (동종 유래 또는 이종 유래)의 CoA 전이효소 암호화 유전자 및 PHA 합성효소 암호화 유전자를 포함하는 것일 수 있다. One example provides a recombinant microorganism into which a gene encoding an enzyme for producing 2-hydroxybutyrate from 2-ketobutyrate is introduced. For example, the enzyme that produces 2-hydroxybutyrate from the 2-ketobutyrate is phosphoglycerate dehydrogenase (D-3-phosphoglycerate dehydrogenase; e.g., SerA), erythronate-4-phosphate dehydrogenase (Erythronate-4-phosphate dehydrogenase) phosphate dehydrogenase; eg, PdxB), or a combination thereof. The recombinant microorganism may contain an endogenous and/or exogenous (allogeneic or heterologous) CoA transferase encoding gene and PHA synthetase encoding gene.

상기 재조합 미생물은 2-하이드록시부티레이트, 또는 2-하이드록시부티레이트 및 락테이트를 반복단위로 포함하는 공중합체의 제조에 사용될 수 있다.The recombinant microorganism may be used to prepare 2-hydroxybutyrate or a copolymer containing 2-hydroxybutyrate and lactate as repeating units.

다른 예는 상기 재조합 미생물을 포함하는, 2-하이드록시부티레이트 제조용 조성물을 제공한다. 상기 2-하이드록시부티레이트 제조를 위한 재조합 미생물은 2-케토부티레이트로부터 2-하이드록시부티레이트를 생성하는 효소를 암호화하는 유전자가 도입된 것일 수 있다. Another example provides a composition for preparing 2-hydroxybutyrate, including the recombinant microorganism. The recombinant microorganism for preparing the 2-hydroxybutyrate may be a gene encoding an enzyme for producing 2-hydroxybutyrate from 2-ketobutyrate.

다른 예는 상기 재조합 미생물을 포함하는, 2-하이드록시부티레이트 및 락테이트를 반복단위로 포함하는 공중합체 제조용 조성물을 제공한다. 상기 2-하이드록시부티레이트 및 락테이트를 반복단위로 포함하는 공중합체 제조를 위한 재조합 미생물은 2-케토부티레이트로부터 2-하이드록시부티레이트를 생성하는 효소를 암호화하는 유전자에 더하여, CoA 전이효소 암호화 유전자 및 PHA 합성효소 암호화 유전자를 포함하는 것(또는 도입된 것) 일 수 있다.Another example provides a composition for preparing a copolymer containing 2-hydroxybutyrate and lactate as repeating units, including the recombinant microorganism. The recombinant microorganism for producing a copolymer comprising 2-hydroxybutyrate and lactate as repeating units is a CoA transferase encoding gene and a gene encoding an enzyme that produces 2-hydroxybutyrate from 2-ketobutyrate It may be one containing (or introduced) a PHA synthetase encoding gene.

상기 조성물은 2-하이드록시부티레이트 및 락테이트를 반복단위로 포함하는 공중합체 생산량을 증진시키거나, 및/또는 공중합체 내 2-하이드록시부티레이트 함량비를 증가시키는 것일 수 있다. The composition may increase the yield of a copolymer containing 2-hydroxybutyrate and lactate as repeating units and/or increase the content ratio of 2-hydroxybutyrate in the copolymer.

다른 예는 상기 재조합 미생물을 배양하는 단계를 포함하는, 2-하이드록시부티레이트 제조 방법을 제공한다. Another example provides a method for producing 2-hydroxybutyrate, comprising culturing the recombinant microorganism.

다른 예는 상기 재조합 미생물을 배양하는 단계를 포함하는, 2-하이드록시부티레이트 및 락테이트를 반복단위로 포함하는 공중합체의 제조 방법 또는 2-하이드록시부티레이트 및 락테이트를 반복단위로 포함하는 공중합체 내의 2-하이드록시부티레이트 함량을 증가시키는 방법을 제공한다.Another example is a method for producing a copolymer comprising 2-hydroxybutyrate and lactate as repeating units or a copolymer comprising 2-hydroxybutyrate and lactate as repeating units, comprising culturing the recombinant microorganism. A method for increasing the 2-hydroxybutyrate content in

다른 예는 2-하이드록시부티레이트 및 락테이트를 반복단위로 포함하는 공중합체를 제공한다. 상기 공중합체는 앞서 설명한 제조 방법에 의하여 제조된 것일 수 있다. 상기 공중합체는 2-하이드록시부티레이트 함량이 약 15몰% 이상, 약 17몰% 이상, 약 20몰% 이상, 약 22몰% 이상, 또는 약 25몰% 이상일 수 있다 (상한값은 특별한 한정이 없으나, 약 60몰% 이하, 약 50몰% 이하, 약 40몰% 이하, 또는 약 35몰% 이하일 수 있으나, 이에 제한되지 않음; 이하 공중합체 내 2-하이드록시부티레이트 함량에 동일하게 적용됨).Another example provides a copolymer comprising 2-hydroxybutyrate and lactate as repeating units. The copolymer may be prepared by the above-described preparation method. The copolymer may have a 2-hydroxybutyrate content of about 15 mol% or more, about 17 mol% or more, about 20 mol% or more, about 22 mol% or more, or about 25 mol% or more (the upper limit is not particularly limited, but , but is not limited to about 60 mol% or less, about 50 mol% or less, about 40 mol% or less, or about 35 mol% or less; the same applies to the 2-hydroxybutyrate content in the copolymer below).

본 명세서에 사용된 바로서, 용어 "2-하이드록시부티레이트 및 락테이트를 반복단위로 포함하는 공중합체" 또는 " 2-하이드록시부티레이트-락테이트 공중합체"는 모노머로서 2-하이드록시부티레이트 및 락테이트가 에스터 결합으로 중합된 반복단위를 포함하는 선형의 폴리에스터를 의미한다. 이 때, 각 모노머의 중합 순서에는 특별한 제한이 없으며, 무작위적으로 반복될 수 있다. As used herein, the term “copolymer comprising 2-hydroxybutyrate and lactate as repeating units” or “2-hydroxybutyrate-lactate copolymer” refers to 2-hydroxybutyrate and lactate as monomers. Tate refers to a linear polyester containing repeating units polymerized through ester linkages. At this time, the polymerization sequence of each monomer is not particularly limited and may be repeated randomly.

상기 2-하이드록시부티레이트-락테이트 공중합체 [P(2HB-LA)]는 2-하이드록시부티레이트 및 락테이트 모노머에 코엔자임-A(CoA)를 전달하는 코엔자임-A(CoA) 전이효소 및 폴리하이드록시알카노에이트 (polyhydroxyalkanoate; PHA)를 합성하는 PHA 합성효소에 의하여 생합성될 수 있다.The 2-hydroxybutyrate-lactate copolymer [P(2HB-LA)] is a coenzyme-A (CoA) transferase and polyhydroxy that transfers coenzyme-A (CoA) to 2-hydroxybutyrate and lactate monomers. It can be biosynthesized by PHA synthase that synthesizes polyhydroxyalkanoate (PHA).

본 명세서에서 제공되는 재조합 미생물은, 2-하이드록시부티레이트-락테이트 공중합체 제조를 위하여, CoA 전이효소 암호화 유전자 및 PHA 합성효소 암호화 유전자를 포함하는 것일 수 있다. 상기 CoA 전이효소 및 PHA 합성효소를 암호화하는 유전자는 통상적인 유전자 재조합적 방법 (예컨대, CoA 전이효소 암호화 유전자 및 PHA 합성효소 암호화 유전자를 각각 또는 함께 포함하는 재조합 벡터를 사용)으로 미생물 세포 내에 도입되어 있는 것일 수 있다.The recombinant microorganism provided herein may contain a CoA transferase-encoding gene and a PHA synthetase-encoding gene in order to prepare a 2-hydroxybutyrate-lactate copolymer. Genes encoding the CoA transferase and PHA synthetase are introduced into microbial cells by a conventional gene recombinant method (eg, using a recombinant vector containing the CoA transferase encoding gene and the PHA synthetase encoding gene, respectively or together) there may be

또한, 상기 재조합 미생물은 2-하이드록시부티레이트의 생산량, 2-하이드록시부티레이트-락테이트 공중합체의 생산량, 및/또는 상기 공중합체 내 2-하이드록시부티레이트 함량을 높이기 위하여, 2-하이드록시부티레이트의 전구체인 2-케토부티레이트로부터 2-하이드록시부티레이트를 생성하는 효소를 암호화하는 유전자가 과발현되도록 조작된 것일 수 있다. 상기 2-케토부티레이트로부터 2-하이드록시부티레이트를 생성하는 효소를 암호화하는 유전자의 과발현은 재조합 미생물과 동일 개체 유래, 동종 유래, 또는 이종 유래의 2-케토부티레이트로부터 2-하이드록시부티레이트를 생성하는 효소를 암호화하는 유전자를 포함하는 재조합 벡터를 사용하는 통상적인 유전자 재조합적 방법에 의하여 수행될 수 있다. In addition, the recombinant microorganism is 2-hydroxybutyrate in order to increase the production of 2-hydroxybutyrate, the production of 2-hydroxybutyrate-lactate copolymer, and / or the content of 2-hydroxybutyrate in the copolymer. It may be engineered to overexpress a gene encoding an enzyme that produces 2-hydroxybutyrate from the precursor 2-ketobutyrate. Overexpression of the gene encoding the enzyme for producing 2-hydroxybutyrate from the 2-ketobutyrate is an enzyme that produces 2-hydroxybutyrate from 2-ketobutyrate derived from the same organism as the recombinant microorganism, allogeneic, or heterologous It can be performed by a conventional genetic recombination method using a recombinant vector containing a gene encoding a.

상기 재조합 미생물에 있어서, CoA 전이효소 암호화 유전자 및 PHA 합성효소 암호화 유전자, 및 2-케토부티레이트로부터 2-하이드록시부티레이트를 생성하는 효소를 암호화하는 유전자는 각각 별개의 재조합 벡터에 포함(삽입)되거나, 이들 중 2 이상이 함께 하나의 벡터에 포함 (삽입)되어, 상기 미생물 (재조합대상 숙주 미생물)에 도입될 수 있다.In the recombinant microorganism, the CoA transferase encoding gene, the PHA synthetase encoding gene, and the gene encoding the enzyme for generating 2-hydroxybutyrate from 2-ketobutyrate are each included (inserted) in a separate recombinant vector, Two or more of these may be included (inserted) together in one vector and introduced into the microorganism (host microorganism to be recombined).

상기 CoA 전이효소는, 예컨대, 프로피오닐-CoA 전이효소일 수 있다. 프로피오닐-CoA 전이효소 (EC 2.8.3.1)는 다음의 반응식 1의 화학 반응을 촉매하는 효소이다:The CoA transferase may be, for example, a propionyl-CoA transferase. Propionyl-CoA transferase (EC 2.8.3.1) is an enzyme that catalyzes the chemical reaction of Scheme 1:

acetyl-CoA + propanoate ⇔ acetate + propanoyl-CoA (반응식 1).acetyl-CoA + propanoate ⇔ acetate + propanoyl-CoA (Scheme 1).

상기 효소 및 이를 암호화하는 유전자는 클로스트리디움 프로피오니쿰(Clostridium propionicum)에서 유래한 것일 수 있다.The enzyme and the gene encoding it may be derived from Clostridium propionicum .

예를 들어, 상기 프로피오닐-CoA 전이효소 암호화 유전자는,For example, the gene encoding the propionyl-CoA transferase,

(a) 서열번호 1의 염기서열; (a) the nucleotide sequence of SEQ ID NO: 1;

(b) 서열번호 1의 염기서열에서 A1200G (1200번째 염기인 A가 G로 치환된 변이를 의미함; 이하 기재되는 염기서열 변이 표현에 동일하게 적용됨)의 변이를 포함하는 염기서열; (b) a nucleotide sequence including a mutation of A1200G (meaning a mutation in which A, the 1200th base, is substituted with G; the same applies to the expression of nucleotide sequence mutation described below) in the nucleotide sequence of SEQ ID NO: 1;

(c) 서열번호 1의 염기서열에서 T78C, T669C, A1125G 및 T1158C의 변이를 포함하는 염기서열; (c) a nucleotide sequence comprising mutations of T78C, T669C, A1125G and T1158C in the nucleotide sequence of SEQ ID NO: 1;

(d) 서열번호 1의 염기서열에서 A1200G의 변이를 포함하고, 서열번호 1과 대응하는 아미노산 서열에서 G335A (335번째 아미노산 Gly이 Ala로 치환된 변이를 의미함, 이하 기재되는 아미노산 서열 변이 표현에 동일하게 적용됨)의 변이를 포함하는 아미노산 서열을 암호화하는 염기서열;(d) Including the mutation of A1200G in the nucleotide sequence of SEQ ID NO: 1, G335A in the amino acid sequence corresponding to SEQ ID NO: 1 (meaning a mutation in which the 335th amino acid Gly is substituted with Ala, in the expression of amino acid sequence mutations described below) the same applies) a nucleotide sequence encoding an amino acid sequence including a mutation;

(e) 서열번호 1의 염기서열에서 A1200G의 변이를 포함하고, 서열번호 1과 대응하는 아미노산 서열에서 A243T의 변이가 포함된 아미노산 서열을 암호화하는 염기서열;(e) a nucleotide sequence encoding an amino acid sequence including A1200G mutation in the nucleotide sequence of SEQ ID NO: 1 and A243T mutation in the amino acid sequence corresponding to SEQ ID NO: 1;

(f) 서열번호 1 의 염기서열에서 T669C, A1125G 및 T1158C의 변이를 포함하고, 서열번호 1과 대응하는 아미노산 서열에서 D65G의 변이를 포함하는 아미노산 서열을 암호화하는 염기서열;(f) a base sequence encoding an amino acid sequence including T669C, A1125G and T1158C mutations in the base sequence of SEQ ID NO: 1 and D65G mutation in the amino acid sequence corresponding to SEQ ID NO: 1;

(g) 서열번호 1의 염기서열에서 A1200G의 변이를 포함하고, 서열번호 1과 대응하는 아미노산 서열에서 D257N의 변이를 포함하는 아미노산 서열을 암호화하는 염기서열;(g) a nucleotide sequence encoding an amino acid sequence including A1200G mutation in the nucleotide sequence of SEQ ID NO: 1 and D257N mutation in the amino acid sequence corresponding to SEQ ID NO: 1;

(h) 서열번호 1의 염기서열에서 T669C, A1125G 및 T1158C의 변이를 포함하고, 서열번호 1과 대응하는 아미노산 서열에서 D65N의 변이를 포함하는 아미노산 서열을 암호화하는 염기서열;(h) a nucleotide sequence encoding an amino acid sequence including T669C, A1125G and T1158C mutations in the nucleotide sequence of SEQ ID NO: 1 and a D65N mutation in the amino acid sequence corresponding to SEQ ID NO: 1;

(i) 서열번호 1의 염기서열에서 T669C, A1125G 및 T1158C의 변이를 포함하고, 서열번호 1과 대응하는 아미노산 서열에서 T199I의 변이를 포함하는 아미노산 서열을 암호화하는 염기서열; 및(i) a nucleotide sequence encoding an amino acid sequence including T669C, A1125G and T1158C mutations in the nucleotide sequence of SEQ ID NO: 1 and a T199I mutation in the amino acid sequence corresponding to SEQ ID NO: 1; and

(j) 서열번호 1의 염기서열에서 T78C, T669C, A1125G 및 T1158C의 변이를 포함하고, 서열번호 1과 대응하는 아미노산 서열에서 V193A의 변이를 포함하는 아미노산 서열을 암호화하는 염기서열(j) A base sequence encoding an amino acid sequence including T78C, T669C, A1125G and T1158C mutations in the base sequence of SEQ ID NO: 1 and a V193A mutation in the amino acid sequence corresponding to SEQ ID NO: 1

로 이루어진 군으로부터 선택된 염기서열을 포함하는 것일 수 있으며, 상기 상기 프로피오닐-CoA 전이효소는 상기 염기서열에 의하여 암호화되는 아미노산 서열을 포함하는 것일 수 있다.It may include a nucleotide sequence selected from the group consisting of, and the propionyl-CoA transferase may include an amino acid sequence encoded by the nucleotide sequence.

상기 폴리하이드록시알카노에이트 합성효소 (polyhydroxyalkanoate (PHA) synthase)는 CoA와 hydroxy fatty acid의 티오에스테르를 기질로 사용하여 폴리하이드록시알카노에이트를 생합성하는 효소로서, 탄소수 3-5의 지방산을 사용하는 type (예컨대, Cupriavidus necator, Alcaligenes latus 등의 다양한 박테리아 유래)과 탄소수 6-14의 지방산을 사용하는 type (예컨대, Pseudomonas 속 유래)의 것일 수 있다. The polyhydroxyalkanoate (PHA) synthase is an enzyme that biosynthesizes polyhydroxyalkanoate using a thioester of CoA and hydroxy fatty acid as a substrate, and uses a fatty acid having 3 to 5 carbon atoms. It may be of a type (eg, derived from various bacteria such as Cupriavidus necator, Alcaligenes latus, etc.) and a type using a fatty acid having 6-14 carbon atoms (eg, derived from the genus Pseudomonas).

예컨대, 상기 PHA 합성효소 및 이를 암호화하는 유전자는 슈도모나스 속 (Pseudomonas sp.) 균주, 예컨대, 슈도모나스 속 6-19 균주(Pseudomonas sp. 6-19)에서 유래한 PHA 합성효소(phaC)일 수 있다.For example, the PHA synthetase and the gene encoding it may be a PHA synthetase (phaC) derived from a Pseudomonas sp. strain, for example, a Pseudomonas sp. 6-19 strain ( Pseudomonas sp. 6-19).

예를 들어, 상기 PHA 합성효소는,For example, the PHA synthase,

서열번호 4의 아미노산 서열; 또는 the amino acid sequence of SEQ ID NO: 4; or

서열번호 4의 아미노산 서열에서 L18H, V24A, K91R, M128V, E130D, N246S, S325T, S477R, S477H, S477F, S477Y, S477G, Q481M, Q481K, Q481R 및 A527S로 이루어진 군으로부터 선택되는 하나 이상의 변이를 포함하는 아미노산 서열L18H, V24A, K91R, M128V, E130D, N246S, S325T, S477R, S477H, S477F, S477Y, S477G, Q481M, Q481K, Q481R and A527S in the amino acid sequence of SEQ ID NO: 4. amino acid sequence

을 포함하는 것일 수 있다.It may contain.

다른 구체예에서, 상기 PHA 합성효소는,In another embodiment, the PHA synthetase,

서열번호 4의 아미노산 서열에서, In the amino acid sequence of SEQ ID NO: 4,

(i) S325T 및 Q481M; (i) S325T and Q481M;

(ii) E130D, S325T 및 Q481M; (ii) E130D, S325T and Q481M;

(iii) E130D, S325T, S477R 및 Q481M; (iii) E130D, S325T, S477R and Q481M;

(iv) E130D, S477F 및 Q481K; 및(iv) E130D, S477F and Q481K; and

(v) L18H, V24A, K91R, M128V, E130D, N246S, S325T, S477G, Q481K 및 A527S(v) L18H, V24A, K91R, M128V, E130D, N246S, S325T, S477G, Q481K and A527S

로 이루어진 군으로부터 선택되는 변이를 포함하는 아미노산 서열을 포함하는 것일 수 있고, 상기 PHA 합성효소 암호화 유전자는 상기 아미노산 서열을 암호화하는 염기서열을 포함하는 것일 수 있다.It may include an amino acid sequence including a mutation selected from the group consisting of, and the gene encoding the PHA synthetase may include a base sequence encoding the amino acid sequence.

상기 2-케토부티레이트로부터 2-하이드록시부티레이트를 생성하는 효소는 재조합 미생물 (재조합대상 숙주 미생물)과 동일 개체(균주) 또는 동종 미생물 또는 이종 미생물 유래의 포스포글리세레이트 탈수소효소 (phosphoglycerate dehydrogenase), 에리트로네이트-4-포스페이트 탈수소효소 (Erythronate-4-phosphate dehydrogenase) 등으로 이루어진 군에서 선택된 1종 이상일 수 있다. 예컨대, 상기 포스포글리세레이트 탈수소효소는 대장균 (예컨대, Escherichia coli K12 균주) 유래의 D-3-phosphoglycerate dehydrogenase인 SerA (GenBank Accession No. NP_417388.1)일 수 있으며, 이의 암호화 유전자는 Escherichia coli K12 균주 게놈 (NC_000913.3) 중 3057178..3058410 부위일 수 있다. 상기 에리트로네이트-4-포스페이트 탈수소효소는 대장균 (예컨대, Escherichia coli K12 균주) 유래의 에리트로네이트-4-포스페이트 탈수소효소인 PdxB (GenBank Accession No. NP_416823.1)일 수 있으며, 이의 암호화 유전자는 Escherichia coli K12 균주 게놈 (NC_000913.3) 중 2436715..2437851 부위일 수 있다.The enzyme that produces 2-hydroxybutyrate from 2-ketobutyrate is phosphoglycerate dehydrogenase derived from the same entity (strain) as the recombinant microorganism (host microorganism to be recombinated) or homogeneous or heterogeneous microorganism, erythro It may be at least one selected from the group consisting of erythronate-4-phosphate dehydrogenase and the like. For example, the phosphoglycerate dehydrogenase is Escherichia coli (eg, Escherichia coli K12 strain) derived D-3-phosphoglycerate dehydrogenase, SerA (GenBank Accession No. NP_417388.1), and its encoding gene is Escherichia coli It may be site 3057178..3058410 in the K12 strain genome (NC_000913.3). The erythronate-4-phosphate dehydrogenase is Escherichia coli (e.g., Escherichia coli K12 strain) derived from erythronate-4-phosphate dehydrogenase, PdxB (GenBank Accession No. NP_416823.1), the coding gene of which is Escherichia coli It may be site 2436715..2437851 in the K12 strain genome (NC_000913.3).

상기 포스포글리세레이트 탈수소효소 SerA (NP_417388.1) 및 에리트로네이트-4-포스페이트 탈수소효소 PdxB (NP_416823.1)의 아미노산 서열 및 상기 효소의 암호화 유전자의 염기서열을 하기의 표 1에 정리하였다:The amino acid sequences of the phosphoglycerate dehydrogenase SerA (NP_417388.1) and erythronate-4-phosphate dehydrogenase PdxB (NP_416823.1) and the base sequences of the genes encoding the enzymes are summarized in Table 1 below:

명칭designation 설명explanation 서열order SerASerA E. coli K12 유래 D-3-phosphoglycerate dehydrogenaseD-3-phosphoglycerate dehydrogenase derived from E. coli K12 MAKVSLEKDKIKFLLVEGVHQKALESLRAAGYTNIEFHKGALDDEQLKESIRDAHFIGLRSRTHLTEDVINAAEKLVAIGCFCIGTNQVDLDAAAKRGIPVFNAPFSNTRSVAELVIGELLLLLRGVPEANAKAHRGVWNKLAAGSFEARGKKLGIIGYGHIGTQLGILAESLGMYVYFYDIENKLPLGNATQVQHLSDLLNMSDVVSLHVPENPSTKNMMGAKEISLMKPGSLLINASRGTVVDIPALCDALASKHLAGAAIDVFPTEPATNSDPFTSPLCEFDNVLLTPHIGGSTQEAQENIGLEVAGKLIKYSDNGSTLSAVNFPEVSLPLHGGRRLMHIHENRPGVLTALNKIFAEQGVNIAAQYLQTSAQMGYVVIDIEADEDVAEKALQAMKAIPGTIRARLLY (서열번호 31)MAKVSLEKDKIKFLLVEGVHQKALESLRAAGYTNIEFHKGALDDEQLKESIRDAHFIGLRSRTHLTEDVINAAEKLVAIGCFCIGTNQVDLDAAAKRGIPVFNAPFSNTRSVAELVIGELLLLLRGVPEANAKAHRGVWNKLAAGSFEARGKKLGIIGYGHIGTQLGILAESLGMYVYFYDIENKLPLGNATQVQHLSDLLNMSDVVSLHVPENPSTKNMMGAKEISLMKPGSLLINASRGTVVDIPALCDALASKHLAGAAIDVFPTEPATNSDPFTSPLCEFDNVLLTPHIGGSTQEAQENIGLEVAGKLIKYSDNGSTLSAVNFPEVSLPLHGGRRLMHIHENRPGVLTALNKIFAEQGVNIAAQYLQTSAQMGYVVIDIEADEDVAEKALQAMKAIPGTIRARLLY (서열번호 31) ATGGCAAAGGTATCGCTGGAGAAAGACAAGATTAAGTTTCTGCTGGTAGAAGGCGTGCACCAAAAGGCGCTGGAAAGCCTTCGTGCAGCTGGTTACACCAACATCGAATTTCACAAAGGCGCGCTGGATGATGAACAATTAAAAGAATCCATCCGCGATGCCCACTTCATCGGCCTGCGATCCCGTACCCATCTGACTGAAGACGTGATCAACGCCGCAGAAAAACTGGTCGCTATTGGCTGTTTCTGTATCGGAACAAACCAGGTTGATCTGGATGCGGCGGCAAAGCGCGGGATCCCGGTATTTAACGCACCGTTCTCAAATACGCGCTCTGTTGCGGAGCTGGTGATTGGCGAACTGCTGCTGCTATTGCGCGGCGTGCCGGAAGCCAATGCTAAAGCGCACCGTGGCGTGTGGAACAAACTGGCGGCGGGTTCTTTTGAAGCGCGCGGCAAAAAGCTGGGTATCATCGGCTACGGTCATATTGGTACGCAATTGGGCATTCTGGCTGAATCGCTGGGAATGTATGTTTACTTTTATGATATTGAAAATAAACTGCCGCTGGGCAACGCCACTCAGGTACAGCATCTTTCTGACCTGCTGAATATGAGCGATGTGGTGAGTCTGCATGTACCAGAGAATCCGTCCACCAAAAATATGATGGGCGCGAAAGAAATTTCACTAATGAAGCCCGGCTCGCTGCTGATTAATGCTTCGCGCGGTACTGTGGTGGATATTCCGGCGCTGTGTGATGCGCTGGCGAGCAAACATCTGGCGGGGGCGGCAATCGACGTATTCCCGACGGAACCGGCGACCAATAGCGATCCATTTACCTCTCCGCTGTGTGAATTCGACAACGTCCTTCTGACGCCACACATTGGCGGTTCGACTCAGGAAGCGCAGGAGAATATCGGCCTGGAAGTTGCGGGTAAATTGATCAAGTATTCTGACAATGGCTCAACGCTCTCTGCGGTGAACTTCCCGGAAGTCTCGCTGCCACTGCACGGTGGGCGTCGTCTGATGCACATCCACGAAAACCGTCCGGGCGTGCTAACTGCGCTGAACAAAATCTTCGCCGAGCAGGGCGTCAACATCGCCGCGCAATATCTGCAAACTTCCGCCCAGATGGGTTATGTGGTTATTGATATTGAAGCCGACGAAGACGTTGCCGAAAAAGCGCTGCAGGCAATGAAAGCTATTCCGGGTACCATTCGCGCCCGTCTGCTGTACTAA (서열번호 32)ATGGCAAAGGTATCGCTGGAGAAAGACAAGATTAAGTTTCTGCTGGTAGAAGGCGTGCACCAAAAGGCGCTGGAAAGCCTTCGTGCAGCTGGTTACACCAACATCGAATTTCACAAAGGCGCGCTGGATGATGAACAATTAAAAGAATCCATCCGCGATGCCCACTTCATCGGCCTGCGATCCCGTACCCATCTGACTGAAGACGTGATCAACGCCGCAGAAAAACTGGTCGCTATTGGCTGTTTCTGTATCGGAACAAACCAGGTTGATCTGGATGCGGCGGCAAAGCGCGGGATCCCGGTATTTAACGCACCGTTCTCAAATACGCGCTCTGTTGCGGAGCTGGTGATTGGCGAACTGCTGCTGCTATTGCGCGGCGTGCCGGAAGCCAATGCTAAAGCGCACCGTGGCGTGTGGAACAAACTGGCGGCGGGTTCTTTTGAAGCGCGCGGCAAAAAGCTGGGTATCATCGGCTACGGTCATATTGGTACGCAATTGGGCATTCTGGCTGAATCGCTGGGAATGTATGTTTACTTTTATGATATTGAAAATAAACTGCCGCTGGGCAACGCCACTCAGGTACAGCATCTTTCTGACCTGCTGAATATGAGCGATGTGGTGAGTCTGCATGTACCAGAGAATCCGTCCACCAAAAATATGATGGGCGCGAAAGAAATTTCACTAATGAAGCCCGGCTCGCTGCTGATTAATGCTTCGCGCGGTACTGTGGTGGATATTCCGGCGCTGTGTGATGCGCTGGCGAGCAAACATCTGGCGGGGGCGGCAATCGACGTATTCCCGACGGAACCGGCGACCAATAGCGATCCATTTACCTCTCCGCTGTGTGAATTCGACAACGTCCTTCTGACGCCACACATTGGCGGTTCGACTCAGGAAGCGCAGGAGAATATCGGCCTGGAAGTTGCGGGTAAATTGATCAAGTATTCTGACAATGGCTCAACGCTCTCTGCGGTGAACTTCCCGGAAGTCTCGCTGCCAC TGCACGGTGGGCGTCGTCTGATGCACATCCACGAAAACCGTCCGGGCGTGCTAACTGCGCTGAACAAAATCTTCGCCGAGCAGGGCGTCAACATCGCCGCGCAATATCTGCAAACTTCCGCCCAGATGGGTTATGTGGTTATTGATATTGAAGCCGACGAAGACGTTGCCGAAAAAGCGCTGCAGGCAATGAAAGCTATTCCGGGTACCATTCGCGCCCGTCTGCTGTACTAA (SEQ ID NO: 32) PdxBPdxB E. coli K12 유래 Erythronate-4-phosphate dehydrogenaseErythronate-4-phosphate dehydrogenase from E. coli K12 MKILVDENMPYARDLFSRLGEVTAVPGRPIPVAQLADADALMVRSVTKVNESLLAGKPIKFVGTATAGTDHVDEAWLKQAGIGFSAAPGCNAIAVVEYVFSSLLMLAERDGFSLYDRTVGIVGVGNVGRRLQARLEALGIKTLLCDPPRADRGDEGDFRSLDELVQRADILTFHTPLFKDGPYKTLHLADEKLIRSLKPGAILINACRGAVVDNTALLTCLNEGQKLSVVLDVWEGEPELNVELLKKVDIGTSHIAGYTLEGKARGTTQVFEAYSKFIGHEQHVALDTLLPAPEFGRITLHGPLDQPTLKRLVHLVYDVRRDDAPLRKVAGIPGEFDKLRKNYLERREWSSLYVICDDASAASLLCKLGFNAVHHPAR (서열번호 33)MKILVDENMPYARDLFSRLGEVTAVPGRPIPVAQLADADALMVRSVTKVNESLLAGKPIKFVGTATAGTDHVDEAWLKQAGIGFSAAPGCNAIAVVEYVFSSLLMLAERDGFSLYDRTVGIVGVGNVGRRLQARLEALGIKTLLCDPPRADRGDEGDFRSLDELVQRADILTFHTPLFKDGPYKTLHLADEKLIRSLKPGAILINACRGAVVDNTALLTCLNEGQKLSVVLDVWEGEPELNVELLKKVDIGTSHIAGYTLEGKARGTTQVFEAYSKFIGHEQHVALDTLLPAPEFGRITLHGPLDQPTLKRLVHLVYDVRRDDAPLRKVAGIPGEFDKLRKNYLERREWSSLYVICDDASAASLLCKLGFNAVHHPAR (서열번호 33) GTGAAAATCCTTGTTGATGAAAATATGCCTTATGCCCGCGACTTATTTAGCCGTTTGGGTGAGGTGACCGCGGTTCCCGGGCGTCCAATCCCCGTCGCTCAACTGGCAGACGCGGATGCGCTGATGGTGCGTTCGGTCACGAAAGTGAATGAATCTTTGCTGGCAGGAAAACCCATTAAATTTGTTGGCACTGCCACTGCGGGGACCGACCATGTCGATGAAGCATGGTTGAAGCAGGCGGGAATTGGTTTTTCCGCTGCACCTGGCTGTAATGCGATTGCGGTGGTGGAATATGTTTTCTCCTCCCTGCTGATGCTTGCCGAACGCGATGGATTTTCACTGTACGACCGTACGGTGGGGATCGTGGGCGTTGGTAACGTTGGACGTCGATTGCAGGCGCGACTGGAAGCGTTAGGGATTAAAACCTTACTTTGCGATCCGCCTCGCGCCGACCGTGGGGATGAGGGTGATTTCCGCTCGCTGGATGAGTTAGTCCAGCGCGCGGATATTCTGACTTTCCATACGCCACTCTTTAAAGATGGTCCGTACAAAACGCTACATCTGGCGGATGAAAAACTGATCCGTAGCCTGAAGCCCGGAGCGATTCTGATTAACGCCTGCCGTGGCGCAGTCGTCGATAATACTGCGTTGCTGACCTGCCTGAATGAAGGCCAGAAGTTAAGCGTAGTGCTGGATGTCTGGGAAGGCGAACCGGAACTCAACGTCGAGCTGCTGAAAAAAGTGGATATCGGCACGTCGCATATCGCAGGCTATACCCTGGAAGGTAAAGCACGCGGTACTACGCAAGTGTTTGAAGCTTATAGCAAGTTTATTGGGCATGAACAGCACGTTGCGCTGGATACATTACTGCCTGCGCCAGAGTTTGGTCGCATTACGCTGCATGGCCCGCTCGATCAACCGACGCTGAAAAGGCTGGTGCATTTGGTGTATGATGTGCGCCGCGATGACGCACCGCTGCGTAAAGTCGCCGGGATACCGGGTGAGTTCGATAAACTGCGCAAAAACTATCTTGAGCGCCGTGAATGGTCATCTCTGTATGTAATTTGTGATGACGCCAGTGCGGCATCATTGCTGTGTAAACTGGGTTTTAACGCCGTTCATCATCCGGCACGTTAA (서열번호 34)GTGAAAATCCTTGTTGATGAAAATATGCCTTATGCCCGCGACTTATTTAGCCGTTTGGGTGAGGTGACCGCGGTTCCCGGGCGTCCAATCCCCGTCGCTCAACTGGCAGACGCGGATGCGCTGATGGTGCGTTCGGTCACGAAAGTGAATGAATCTTTGCTGGCAGGAAAACCCATTAAATTTGTTGGCACTGCCACTGCGGGGACCGACCATGTCGATGAAGCATGGTTGAAGCAGGCGGGAATTGGTTTTTCCGCTGCACCTGGCTGTAATGCGATTGCGGTGGTGGAATATGTTTTCTCCTCCCTGCTGATGCTTGCCGAACGCGATGGATTTTCACTGTACGACCGTACGGTGGGGATCGTGGGCGTTGGTAACGTTGGACGTCGATTGCAGGCGCGACTGGAAGCGTTAGGGATTAAAACCTTACTTTGCGATCCGCCTCGCGCCGACCGTGGGGATGAGGGTGATTTCCGCTCGCTGGATGAGTTAGTCCAGCGCGCGGATATTCTGACTTTCCATACGCCACTCTTTAAAGATGGTCCGTACAAAACGCTACATCTGGCGGATGAAAAACTGATCCGTAGCCTGAAGCCCGGAGCGATTCTGATTAACGCCTGCCGTGGCGCAGTCGTCGATAATACTGCGTTGCTGACCTGCCTGAATGAAGGCCAGAAGTTAAGCGTAGTGCTGGATGTCTGGGAAGGCGAACCGGAACTCAACGTCGAGCTGCTGAAAAAAGTGGATATCGGCACGTCGCATATCGCAGGCTATACCCTGGAAGGTAAAGCACGCGGTACTACGCAAGTGTTTGAAGCTTATAGCAAGTTTATTGGGCATGAACAGCACGTTGCGCTGGATACATTACTGCCTGCGCCAGAGTTTGGTCGCATTACGCTGCATGGCCCGCTCGATCAACCGACGCTGAAAAGGCTGGTGCATTTGGTGTATGATGTGCGCCGCGATGACGCACCGCTGCGTAAAGTCGCCGGGATACCGG (SEQ ID NO: 34)

상기 효소들은 분자의 활성을 전체적으로 변경시키지 않는 범위 내에서 추가적인 변이를 포함할 수 있다. 예를 들어, 분자의 활성을 전체적으로 변경시키지 않는 단백질 및 펩티드에서의 아미노산 교환은 당해 분야에 공지되어 있다. 예를 들어, 통상적으로 일어나는 교환은 아미노산 잔기 Ala/Ser, Val/Ile, Asp/Glu, Thr/Ser, Ala/Gly, Ala/Thr, Ser/Asn, Ala/Val, Ser/Gly, Thr/Phe, Ala/Pro, Lys/Arg, Asp/Asn, Leu/Ile, Leu/Val, Ala/Glu, Asp/Gly 간의 교환을 들 수 있으나, 이에 제한되는 것은 아니다. 경우에 따라서, 상기 단백질은, 인산화(phosphorylation), 황화(sulfation), 아크릴화(acrylation), 당화(glycosylation), 메틸화(methylation), 파네실화(farnesylation) 등으로 수식(modification) 될 수도 있다. 또한, 아미노산 서열 상의 변이 또는 수식에 의해서 단백질의 열, pH 등에 대한 구조적 안정성이 증가하거나 단백질 활성이 증가한 효소 단백질을 포함할 수 있다.The enzymes may contain additional mutations within the range of not altering the activity of the molecule as a whole. For example, amino acid exchanges in proteins and peptides that do not entirely alter the activity of the molecule are known in the art. For example, commonly occurring exchanges are amino acid residues Ala/Ser, Val/Ile, Asp/Glu, Thr/Ser, Ala/Gly, Ala/Thr, Ser/Asn, Ala/Val, Ser/Gly, Thr/Phe , Ala/Pro, Lys/Arg, Asp/Asn, Leu/Ile, Leu/Val, Ala/Glu, Asp/Gly, but not limited thereto. In some cases, the protein may be modified by phosphorylation, sulfation, acrylation, glycosylation, methylation, farnesylation, or the like. In addition, it may include an enzyme protein in which structural stability to heat, pH, etc. or protein activity is increased by mutation or modification in the amino acid sequence.

또한, 상기 효소를 코딩하는 유전자는, 기능적으로 균등한 코돈 또는 (코돈의 축퇴성에 의해) 동일한 아미노산을 코딩하는 코돈, 또는 생물학적으로 균등한 아미노산을 코딩하는 코돈을 포함하는 핵산분자를 포함할 수 있다. 상기 핵산 분자는 표준 분자 생물학 기술, 예를 들어 화학적 합성 방법 또는 재조합 방법을 이용하여 분리 또는 제조하거나, 시판되는 것을 사용할 수 있다.In addition, the gene encoding the enzyme may include a nucleic acid molecule including a functionally equivalent codon or a codon encoding the same amino acid (due to codon degeneracy), or a codon encoding a biologically equivalent amino acid. there is. The nucleic acid molecule can be isolated or prepared using standard molecular biology techniques, such as chemical synthesis or recombinant methods, or commercially available ones.

"벡터"는 개체의 세포 내에서 목적 단백질을 코딩하는 유전자 삽입물이 발현되도록 작동가능하게 연결된 필수적인 조절 요소를 포함하는 유전자 작제물을 말하며, 목적 단백질을 코딩하는 핵산 서열을 숙주세포로 도입되기 위한 수단이 된다. 상기 벡터는 플라스미드, 아데노바이러스 벡터, 레트로바이러스 벡터 및 아데노-연관 바이러스 벡터 등의 바이러스 벡터, 박테리오파지 벡터, 코즈미드 벡터, YAC(Yeast Artificial Chromosome) 벡터 등 다양한 벡터들로 이루어진 군에서 선택된 1종 이상일 수 있다. 일 예에서, 상기 플라스미드 벡터는 pBlue (예컨대, pBluescript II KS(+)), pSC101, pGV1106, pACYC177, ColE1, pKT230, pME290, pBR322, pUC8/9, pUC6, pBD9, pHC79, pIJ61, pLAFR1, pHV14, pGEX 시리즈, pET 시리즈, pUC19 등으로 이루어진 군에서 선택된 1종 이상일 수 있고, 상기 박테리오파지 벡터는 lambda gt4 lambda B, lambda-Charon, lambda Δz1, 및 M13 등으로 이루어진 군에서 선택된 1종 이상일 수 있으며, 상기 바이러스 벡터는 SV40 등일 수 있으나, 이에 제한되는 것은 아니다."Vector" refers to a genetic construct comprising essential regulatory elements operably linked to express a gene insert encoding a protein of interest in a cell of an individual, and a means for introducing a nucleic acid sequence encoding a protein of interest into a host cell. becomes The vector may be at least one selected from the group consisting of various vectors such as plasmid, adenovirus vector, retrovirus vector and adeno-associated virus vector, bacteriophage vector, cosmid vector, and YAC (Yeast Artificial Chromosome) vector. there is. In one example, the plasmid vector is pBlue (e.g., pBluescript II KS(+)), pSC101, pGV1106, pACYC177, ColE1, pKT230, pME290, pBR322, pUC8/9, pUC6, pBD9, pHC79, pIJ61, pLAFR1, pHV14, It may be one or more species selected from the group consisting of pGEX series, pET series, pUC19, etc., and the bacteriophage vector may be one or more species selected from the group consisting of lambda gt4 lambda B, lambda-Charon, lambda Δz1, and M13. The viral vector may be SV40 or the like, but is not limited thereto.

"재조합 벡터"는 외래의 목적 유전자를 포함하는 클로닝 벡터 및 발현 벡터를 포함한다. 클로닝 벡터는 복제기점, 예를 들어 플라스미드, 파지 또는 코스미드의 복제 기점을 포함하며, 다른 DNA 절편이 부착되어 부착된 절편이 복제될 수 있는 레플리콘이다. 발현 벡터는 단백질을 합성하는데 사용되도록 개발되었다.A "recombinant vector" includes a cloning vector and an expression vector containing an exogenous gene of interest. A cloning vector is a replicon that includes an origin of replication, for example, an origin of replication of a plasmid, phage or cosmid, and to which another DNA fragment is attached to which the attached fragment can be replicated. Expression vectors have been developed for use in synthesizing proteins.

본 명세서에서 벡터는 원핵세포 또는 진핵세포 등 각종 숙주세포에서 목적하는 효소 유전자를 발현하고 이를 생산하는 기능을 할 수 있도록 하면 특별히 한정되지 않지만, 벡터 내로 삽입되어 전달된 유전자가 숙주세포의 게놈 내로 비가역적으로 융합되어 세포 내에서 유전자 발현이 장기간 안정적으로 지속되도록 하는 것이 좋다. In the present specification, the vector is not particularly limited as long as it can express and produce the desired enzyme gene in various host cells such as prokaryotic or eukaryotic cells, but the gene inserted into the vector and transferred is not incorporated into the genome of the host cell. It is preferable to reversibly fuse so that gene expression is stably maintained for a long time in the cell.

이러한 벡터는, 목적 유전자가 선택된 숙주 내에서 발현될 수 있도록 하는 전사 및 해독 발현 조절 서열을 포함한다. 발현 조절 서열로는, 전사를 실시하기 위한 프로모터, 그러한 전사를 조절하기 위한 임의의 오퍼레이터 서열, 적합한 mRNA 리보좀 결합 부위를 코딩하는 서열 및/또는 전사 및 해독의 종결을 조절하는 서열을 포함할 수 있다. 예를 들면, 원핵생물에 적합한 조절 서열은 프로모터, 임의로 오퍼레이터 서열 및/또는 리보좀 결합 부위를 포함할 수 있다. 진핵세포에 적합한 조절 서열은 프로모터, 터미네이터 및/또는 폴리아데닐화 시그날을 포함할 수 있다. 개시 코돈 및 종결 코돈은 일반적으로 목적 단백질을 코딩하는 핵산 서열의 일부로 간주되며, 유전자 작제물이 투여되었을 때 개체에서 작용을 나타내야 하며 코딩 서열과 인프레임(in frame)에 있어야 한다. 벡터의 프로모터는 구성적 또는 유도성일 수 있다. 또한 복제 가능한 발현벡터인 경우 복제 기원을 포함할 수 있다. 그 외에, 인핸서, 목적하는 유전자의 5' 말단 및 3' 말단의 비해독영역, 선별 마커(예컨대, 항생제 내성 마커), 또는 복제가능단위 등을 적절하게 포함할 수도 있다. 벡터는 자가 복제하거나 숙주 게놈 DNA에 통합될 수 있다.Such vectors contain transcriptional and translational expression control sequences that allow expression of the gene of interest in the host of choice. Expression control sequences may include a promoter to effect transcription, any operator sequence to regulate such transcription, a sequence encoding a suitable mRNA ribosome binding site, and/or a sequence to control termination of transcription and translation. . For example, regulatory sequences suitable for prokaryotes may include a promoter, optionally an operator sequence, and/or a ribosome binding site. Regulatory sequences suitable for eukaryotic cells may include promoters, terminators and/or polyadenylation signals. The initiation codon and stop codon are generally considered to be part of the nucleic acid sequence encoding the protein of interest, and must be functional in the subject when the genetic construct is administered and must be in frame with the coding sequence. The vector's promoter may be constitutive or inducible. Also, in the case of an expression vector capable of replication, an origin of replication may be included. In addition, an enhancer, an untranslated region at the 5' end and 3' end of the gene of interest, a selectable marker (eg, antibiotic resistance marker), or a replicable unit may be appropriately included. Vectors can replicate autonomously or integrate into the host genomic DNA.

유용한 발현 조절 서열의 예로는, 아데노바이러스의 초기 및 후기 프로모터들, 원숭이 바이러스 40(SV40), 마우스 유방 종양 바이러스(MMTV) 프로모터, HIV의 긴 말단 반복부(LTR) 프로모터, 몰로니 바이러스, 시토메갈로바이러스(CMV) 프로모터, 엡스타인 바이러스(EBV) 프로모터, 로우스 사코마 바이러스(RSV) 프로모터, RNA 폴리머라제 Ⅱ 프로모터, β-액틴 프로모터, 사람 헤로글로빈 프로모터 및 사람 근육 크레아틴 프로모터, lac 시스템, trp 시스템, TAC 또는 TRC 시스템, T3 및 T7 프로모터들, 파지 람다의 주요 오퍼레이터 및 프로모터 영역, fd 코드 단백질의 조절 영역, 포스포글리세레이트 키나아제 (phosphoglycerate kinase, PGK) 또는 다른 글리콜분해 효소에 대한 프로모터, 포스파타제의 프로모터들, 예를 들어 Pho5, 효모 알파-교배 시스템의 프로모터 및 원핵세포 또는 진핵세포 또는 이들의 바이러스의 유전자의 발현을 조절하는 것으로 알려진 구성과 유도의 기타 다른 서열 및 이들의 여러 조합을 포함할 수 있다.Examples of useful expression control sequences include the early and late promoters of adenovirus, monkey virus 40 (SV40), mouse mammary tumor virus (MMTV) promoter, long terminal repeat (LTR) promoter of HIV, molone virus, cytomegalovirus viral (CMV) promoter, Epstein virus (EBV) promoter, Rouss sarcoma virus (RSV) promoter, RNA polymerase II promoter, β-actin promoter, human hemoglobin promoter and human muscle creatine promoter, lac system, trp system, TAC or TRC system, T3 and T7 promoters, major operator and promoter regions of phage lambda, regulatory regions of fd code proteins, promoters for phosphoglycerate kinase (PGK) or other glycolytic enzymes, promoters for phosphatases , such as Pho5, promoters of the yeast alpha-mating system, and other sequences of constitutive and inducible properties known to regulate expression of genes in prokaryotic or eukaryotic cells or viruses thereof, and various combinations thereof. .

세포에서 형질전환 유전자의 발현 수준을 높이기 위해서는 목적하는 유전자와 전사 및 해독 발현 조절 서열이 서로 작동가능하도록 연결되어야 한다. 일반적으로, "작동가능하게 연결된"은 연결된 DNA 서열이 접촉하고, 또한 분비 리더의 경우 접촉하고 리딩 프레임 내에 존재하는 것을 의미한다. 예를 들면, 전서열(pre-sequence) 또는 분비 리더(leader)에 대한 DNA가 단백질의 분비에 참여하는 전단백질로서 발현되는 경우 폴리펩타이드에 대한 DNA에 작동가능하게 연결될 수 있고, 프로모터 또는 인핸서가 서열의 전사에 영향을 끼치는 경우 코딩서열에 작동가능하게 연결될 수 있고, 또는 리보좀 결합 부위는 서열의 전사에 영향을 끼치는 경우 코딩 서열에 작동가능하게 연결될 수 있고, 또는 리보좀 결합 부위는 번역을 용이하게 하도록 배치되는 경우 코딩 서열에 작동가능하게 연결될 수 있다. 이들 서열의 연결은 편리한 제한 효소 부위에서 라이게이션(연결)에 의해 수행될 수 있고, 그러한 부위가 존재하지 않는 경우, 통상의 방법에 따른 합성 올리고뉴클레오티드 어댑터(oligonucleotide adaptor) 또는 링커(linker)를 사용하여 수행될 수 있다.In order to increase the expression level of the transgene in cells, the gene of interest and transcriptional and translational expression control sequences must be operably linked to each other. Generally, "operably linked" means that the DNA sequences being linked are contiguous and, in the case of a secretory leader, contiguous and in reading frame. For example, DNA for a pre-sequence or secretion leader can be operably linked to DNA for a polypeptide when expressed as a pre-protein that participates in secretion of the protein, and the promoter or enhancer is can be operably linked to a coding sequence if it affects transcription of the sequence, or the ribosome binding site can be operably linked to a coding sequence if it affects transcription of the sequence, or the ribosome binding site can facilitate translation When arranged to do so, it can be operably linked to a coding sequence. Linkage of these sequences can be performed by ligation (linkage) at convenient restriction enzyme sites, and if such sites do not exist, synthetic oligonucleotide adapters or linkers according to conventional methods are used. can be performed by

당업자는 숙주세포의 성질, 벡터의 복제 수, 복제 수를 조절할 수 있는 능력 및 당해 벡터에 의해 코딩되는 다른 단백질, 예를 들어 항생제 마커의 발현 등을 고려하여, 본 발명에 적합한 각종 벡터, 발현 조절 서열, 숙주 등을 선정할 수 있다.Those skilled in the art can consider various vectors suitable for the present invention, expression control, considering the properties of the host cell, the copy number of the vector, the ability to control the copy number, and the expression of other proteins encoded by the vector, such as antibiotic markers. Sequence, host, etc. can be selected.

본 명세서에서 제공되는 재조합 미생물은 상기 재조합 벡터를 사용하여 숙주 미생물 세포를 형질전환시켜서 얻어질 수 있다.The recombinant microorganism provided herein may be obtained by transforming a host microbial cell using the recombinant vector.

용어, "형질전환"은 목적 유전자를 숙주 미생물로 도입시켜 목절 유전자가 염색체외 인자로서 또는 염색체 통합완성에 의해 복제가능하게 되는 것을 의미한다. The term "transformation" means introducing a target gene into a host microorganism so that the gene becomes replicable as an extrachromosomal factor or by completion of chromosomal integration.

숙주 미생물로 사용 가능한 미생물은 원핵세포와 진핵세포로 이루어진 군에서 선택될 수 있으며, 통상적으로, DNA의 도입효율이 높고, 도입된 DNA의 발현효율이 높은 미생물이 숙주 미생물로서 사용될 수 있다. 숙주 미생물이 구체 예로, 대장균 (예를 들어, E. coli DH5a, E. coli JM101, E. coli K12, E. coli W3110, E. coli X1776, E. coli B 및 E. coli XL1-Blue)을 포함하는 에스케리키아 속, 슈도모나스 속, 바실러스 속, 스트렙토마이세스 속, 어위니아 속, 세라티아 속, 프로비덴시아 속, 코리네박테리움 속, 렙토스피라 속, 살모넬라 속, 브레비박테리아 속, 하이포모나스 속, 크로모박테리움 속, 노카디아 속, 진균 또는 효모와 같은 주지의 진핵 및 원핵 숙주 등을 예시할 수 있으나, 이에 제한되는 것은 아니다. 적당한 숙주로 형질전환되면, 벡터는 숙주 게놈과 무관하게 복제하고 기능할 수 있거나, 또는 일부 경우에 게놈 그 자체에 통합될 수 있다. Microorganisms that can be used as host microorganisms may be selected from the group consisting of prokaryotic cells and eukaryotic cells, and typically, microorganisms with high efficiency of DNA introduction and high expression efficiency of the introduced DNA may be used as host microorganisms. The host microorganism is a specific example, Escherichia coli (e.g., E. coli DH5a, E. coli JM101 , E. coli K12, E. coli W3110, E. coli X1776, E. coli B and E. coli XL1-Blue), including Escherichia, Pseudomonas, Bacillus, Streptomyces, Erwinia, Serratia, Providencia, Corynebacterium, Leptospira, Salmonella, Brevi Genus bacteria, genus Hypomonas, genus Chromobacterium, genus Nocadia, known eukaryotic and prokaryotic hosts such as fungi or yeast may be exemplified, but are not limited thereto. Once transformed into a suitable host, the vector can replicate and function independently of the host genome or, in some cases, can integrate into the genome itself.

또한, 본 발명의 목적상, 상기 숙주세포는 탄소원으로부터 하이드록시아실-CoA를 생합성하는 경로를 가지고 있는 미생물일 수 있다.In addition, for the purpose of the present invention, the host cell may be a microorganism having a pathway for biosynthesizing hydroxyacyl-CoA from a carbon source.

형질전환 방법으로는, 당 분야에서 공지된 바와 같이 적합한 표준 기술, 예들 들어, 전기천공법(electroporation), 전기주입법(electroinjection), 미세주입법(microinjection), 인산칼슘공동-침전법(calcium phosphate co-precipitation), 염화캄슘/염화루비듐법, 레트로바이러스 감염(retroviral infection), DEAE-덱스트란(DEAE-dextran), 양이온 리포좀(cationic liposome)법, 폴리에틸렌 글리콜 침전법(polyethylene glycol-mediated uptake), 유전자총(gene gun) 등을 이용할 수 있으나, 이에 제한되는 것은 아니다. 이 때 원형의 벡터를 적절한 제한효소로 절단하여 선형의 벡터 형태로 도입할 수 있다.Transformation methods include suitable standard techniques as known in the art, for example, electroporation, electroinjection, microinjection, calcium phosphate co-precipitation. precipitation), calcium chloride/rubidium chloride method, retroviral infection, DEAE-dextran, cationic liposome method, polyethylene glycol-mediated uptake, gene gun (gene gun) may be used, but is not limited thereto. At this time, the circular vector can be cut with an appropriate restriction enzyme and introduced in the form of a linear vector.

상기 형질전환된 재조합 미생물을 배양하여 2-하이드록시부티레이트-락테이트 공중합체를 생산할 수 있다.2-hydroxybutyrate-lactate copolymer can be produced by culturing the transformed recombinant microorganism.

상기 재조합 벡터가 도입된 재조합 미생물을 적절한 배지에서 배양하여, 2-하이드록시부티레이트-락테이트 공중합체를 효과적으로 생산할 수 있다. 이 때 사용되는 배지와 배양조건은 재조합 미생물의 종류에 따라 통상적으로 사용되는 것을 적절히 선택하여 사용할 수 있다. 배양 시 세포의 생육과 공중합체의 생산에 적합하도록 온도, 배지의 pH 및 배양시간 등의 조건들을 적절하게 조절할 수 있다. 상기 배양 방법의 예에는, 회분식, 연속식 및 유가식 배양이 포함되나, 이에 제한되는 것은 아니다.By culturing the recombinant microorganism into which the recombinant vector is introduced in an appropriate medium, the 2-hydroxybutyrate-lactate copolymer can be effectively produced. At this time, the medium and culture conditions used may be appropriately selected and used according to the type of recombinant microorganism. Conditions such as temperature, medium pH, and incubation time may be appropriately adjusted so as to be suitable for cell growth and copolymer production during culture. Examples of the culture method include, but are not limited to, batch, continuous and fed-batch culture.

일 구현예로, 상기 배양은 2-하이드록시부티레이트 또는 이의 전구체, 및 락테이트 또는 이의 전구체를 포함하는 배지에서 수행되는 것일 수 있다. 상기 2-하이드록시부티레이트 및/또는 락테이트의 전구체는 미생물의 대사 과정에서 2-하이드록시부티레이트 및/또는 락테이트로 전환 가능한 모든 물질일 수 있으며, 예컨대, 2-케토부티레이트, 글루코오스 등을 예시할 수 있다. 또한, 상기 재조합 미생물이 글루코오스 등의 탄소원으로부터 락테이트를 생합성 할 수 있다면, 락테이트 및/또는 이의 전구체를 별도로 첨가하지 않아도 통상적인 탄소원 공급으로 상기 공중합체를 제조할 수 있다. 또한 상기 재조합 미생물이 트레오닌 등의 질소원 (아미노산)으로부터 2-케토부티레이트, 2-하이드록시부티레이트 등을 생합성 할 수 있다면, 2-하이드록시부티레이트 및/또는 이의 전구체를 별도로 첨가하지 않아도 통상적인 질소원 (아미노산) 공급으로 상기 공중합체를 제조할 수 있다.In one embodiment, the culture may be performed in a medium containing 2-hydroxybutyrate or a precursor thereof, and lactate or a precursor thereof. The precursor of 2-hydroxybutyrate and/or lactate may be any material that can be converted into 2-hydroxybutyrate and/or lactate in the metabolic process of microorganisms, and examples thereof include 2-ketobutyrate, glucose, and the like. can In addition, if the recombinant microorganism is capable of biosynthesizing lactate from a carbon source such as glucose, the copolymer can be prepared by supplying a conventional carbon source without separately adding lactate and/or a precursor thereof. In addition, if the recombinant microorganism can biosynthesize 2-ketobutyrate, 2-hydroxybutyrate, etc. from a nitrogen source (amino acid) such as threonine, it is possible to biosynthesize 2-hydroxybutyrate and/or a precursor thereof without separately adding a conventional nitrogen source (amino acid). ), the above copolymer can be prepared by supplying.

이 외에, 배양에 사용되는 배지는 특정한 균주의 요구조건을 적절하게 만족시켜야 한다. 상기 배지는 다양한 탄소원, 질소원, 인원 및 미량원소 성분을 포함할 수 있다. 배지 내 탄소원으로는 글루코오스, 사카로오스, 락토오스, 프락토오스, 말토오스, 전분, 셀룰로오스와 같은 당 및 탄수화물, 대두유, 해바라기유, 피마자유, 코코넛유 등과 같은 오일 및 지방, 팔미트산, 스테아린산, 리놀레산과 같은 지방산, 글리세롤, 에탄올과 같은 알코올, 아세트산과 같은 유기산 등으로 이루어진 군에서 선택된 1종 이상을 예시할 수 있으나, 이에 제한되는 것은 아니다. 이들 물질은 개별적으로 또는 혼합물로서 사용될 수 있다. 배지 내 질소원으로는 아미노산, 펩톤, 효모 추출물, 육즙, 맥아 추출물, 옥수수 침지액, 대두밀 및 요소 또는 무기 화합물, 예를 들면 황산암모늄, 염화암모늄, 인산암모늄, 탄산암모늄 및 질산암모늄을 예시할 수 있으나, 이에 제한되는 것은 아니다. 질소원 또한 개별적으로 또는 혼합물로서 사용할 수 있다. 배지 내 인원으로는 인산이수소칼륨 또는 인산수소이칼륨 또는 상응하는 나트륨-함유 염을 예시할 수 있으나, 이에 제한되는 것은 아니다. 또한, 배양 배지는 성장에 필요한 황산마그네슘 또는 황산철과 같은 금속염을 포함하거나, 아미노산 및 비타민과 같은 필수 성장 물질을 포함할 수 있으나, 이에 제한되는 것은 아니다. 상기된 원료들은 배양 과정에서 배양물에 적절한 방식에 의해 회분식으로 또는 연속식으로 첨가될 수 있다.In addition to this, the medium used for culture must suitably satisfy the requirements of a particular strain. The medium may contain various carbon sources, nitrogen sources, phosphorus and trace element components. Carbon sources in the medium include sugars and carbohydrates such as glucose, saccharose, lactose, fructose, maltose, starch, and cellulose, oils and fats such as soybean oil, sunflower oil, castor oil, and coconut oil, and palmitic acid, stearic acid, and linoleic acid. At least one selected from the group consisting of fatty acids, glycerol, alcohols such as ethanol, and organic acids such as acetic acid may be exemplified, but is not limited thereto. These materials may be used individually or as a mixture. Nitrogen sources in the medium include amino acids, peptone, yeast extract, broth, malt extract, corn steep liquor, soybean meal, and urea or inorganic compounds such as ammonium sulfate, ammonium chloride, ammonium phosphate, ammonium carbonate and ammonium nitrate. However, it is not limited thereto. Nitrogen sources may also be used individually or as a mixture. Persons in the medium include, but are not limited to, potassium dihydrogen phosphate or dipotassium hydrogen phosphate or a corresponding sodium-containing salt. In addition, the culture medium may include metal salts such as magnesium sulfate or iron sulfate necessary for growth, or may include essential growth substances such as amino acids and vitamins, but is not limited thereto. The above raw materials may be added in a batchwise or continuous manner by a method suitable for the culture during the cultivation process.

또한, 필요에 따라, 수산화나트륨, 수산화칼륨, 암모니아와 같은 기초 화합물 또는 인산 또는 황산과 같은 산 화합물을 적절한 방식으로 사용하여 배양물의 pH를 조절할 수 있다. 또한, 지방산 폴리글리콜 에스테르와 같은 소포제를 사용하여 기포 생성을 억제할 수 있다. 호기 상태를 유지하기 위해 배양물 내로 산소 또는 산소-함유 기체 (예, 공기)를 주입할 수 있으며, 배양물의 온도는 보통 20℃ 내지 45℃, 바람직하게는 25℃ 내지 40℃ 일 수 있다. 배양은 원하는 고분자의 생산량이 최대로 얻어질 때까지 계속될 수 있다.In addition, if necessary, the pH of the culture may be adjusted using a basic compound such as sodium hydroxide, potassium hydroxide, or ammonia or an acid compound such as phosphoric acid or sulfuric acid in an appropriate manner. In addition, antifoaming agents such as fatty acid polyglycol esters may be used to suppress foam formation. Oxygen or oxygen-containing gas (eg, air) may be injected into the culture to maintain an aerobic state, and the temperature of the culture may be usually 20 ° C to 45 ° C, preferably 25 ° C to 40 ° C. Cultivation may be continued until the maximum yield of the desired polymer is obtained.

본 발명에서 제공되는 2-하이드록시부티레이트-락테이트 공중합체의 제조 방법은 재조합 미생물을 배양하는 단계 이후에, 생산된 2-하이드록시부티레이트-락테이트 공중합체를 배양물로부터 회수 (또는 분리 또는 정제)하는 단계를 추가로 포함할 수 있다.In the method for preparing the 2-hydroxybutyrate-lactate copolymer provided in the present invention, after culturing the recombinant microorganism, the produced 2-hydroxybutyrate-lactate copolymer is recovered from the culture (or separated or purified). ) may be further included.

재조합 미생물로부터 생산된 2-하이드록시부티레이트-락테이트 공중합체는, 당업계에 널리 알려져 있는 방법으로 세포 또는 배양 배지로부터 분리해낼 수 있다. 2-하이드록시부티레이트-락테이트 공중합체의 회수 방법의 예로서, 원심분리, 초음파파쇄, 여과, 이온교환 크로마토그래피, 고성능 액체 크로마토그래피(high performance liquid chromatography: HPLC), 가스 크로마토그래피(gas chromatography: GC) 등의 방법이 있으나, 이들 예에 한정되는 것은 아니다.The 2-hydroxybutyrate-lactate copolymer produced from recombinant microorganisms can be isolated from cells or culture media by a method widely known in the art. Examples of methods for recovering 2-hydroxybutyrate-lactate copolymer include centrifugation, ultrasonic disruption, filtration, ion exchange chromatography, high performance liquid chromatography (HPLC), gas chromatography: GC) and the like, but it is not limited to these examples.

본 발명은 2-하이드록시부티레이트, 및 2-하이드록시부티레이트 및 락테이트를 반복단위로 포함하는 공중합체를 효율적으로 생산할 수 있는 기술을 제공하며, 상기 기술을 사용함으로써, 2-하이드록시부티레이트 생산량 및/또는 2-하이드록시부티레이트-락테이트 공중합체 내 2-하이드록시부티레이트 함량을 증가시킬 수 있다.The present invention provides a technique for efficiently producing 2-hydroxybutyrate and a copolymer containing 2-hydroxybutyrate and lactate as repeating units, and by using the technique, 2-hydroxybutyrate production and / or the 2-hydroxybutyrate content in the 2-hydroxybutyrate-lactate copolymer can be increased.

도 1은 pPs619C1310-CpPCT540 벡터의 제작 과정 및 개열 지도를 나타낸 것이다.
도 2는 pPs619C1249.18H-CPPCT540 벡터의 개열 지도를 나타낸 것이다.
도 3은 pSTV28-serA 벡터의 개열지도를 나타낸 것이다.
도 4는 pSTV28-pdxB 벡터의 개열지도를 나타낸 것이다.
Figure 1 shows the construction process and cleavage map of the pPs619C1310-CpPCT540 vector.
Figure 2 shows the cleavage map of the pPs619C1249.18H-CPPCT540 vector.
Figure 3 shows the cleavage map of the pSTV28- ser A vector.
Figure 4 shows a cleavage map of the pSTV28- pdx B vector.

이하, 본 발명을 실시예에 의해 상세히 설명한다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명이 하기 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail by examples. However, the following examples are only to illustrate the present invention, and the present invention is not limited by the following examples.

실시예Example 1. 2- 1. 2- 하이드록시부티레이트hydroxybutyrate -- 락테이트lactate 공중합체 제조용 재조합 벡터의 제조 Preparation of recombinant vectors for copolymer production

1-1. pPs619C1310-CPPCT540 재조합 벡터의 제조1-1. Preparation of pPs619C1310-CPPCT540 recombinant vector

프로피오닐-CoA 트랜스퍼라아제 유전자(pct)는 클로스트리듐 프로피오니쿰(Clostridium propionicum) 유래의 프로피오닐-CoA 트랜스퍼라아제(CP-PCT)의 변이체를 사용하였고, PHA 합성효소 유전자는 슈도모나스 속 MBEL 6-19 (KCTC 11027BP) 유래의 PHA 합성효소의 변이체를 사용하였다. 이 때 사용된 벡터는 pBluescript II (Stratagene Co., USA)이다.For the propionyl-CoA transferase gene (pct), a variant of propionyl-CoA transferase (CP-PCT) derived from Clostridium propionicum was used, and the PHA synthase gene was MBEL of Pseudomonas. A variant of PHA synthetase derived from 6-19 (KCTC 11027BP) was used. The vector used at this time is pBluescript II (Stratagene Co., USA).

우선, PHA 합성효소(phaC1Ps6-19) 유전자를 분리하기 위하여, 슈도모나스 속 MBEL 6-19 (KCTC 11027BP)의 전체 DNA를 추출하고, phaC1Ps6-19 유전자 서열(서열번호 3)에 기반하여, 프라이머[5'-GAGAGACAATCAAATCATGAGTAACAAGAGTAACG-3'(서열번호 5), 5'-CACTCATGCAAGCGTCACCGTTCGTGCACGTAC-3'(서열번호 6)]를 제작하고, 상기 추출한 전체 DNA를 주형으로 하여, PCR을 수행하였다. 얻어진 PCR 산물을 전기영동하여, phaC1Ps6-19 유전자에 해당하는 1.7 kb 크기의 유전자 절편을 확인하고, phaC1Ps6-19 유전자를 수득하였다.First, in order to isolate the PHA synthase (phaC1Ps6-19) gene, the entire DNA of Pseudomonas genus MBEL 6-19 (KCTC 11027BP) was extracted, and based on the phaC1Ps6-19 gene sequence (SEQ ID NO: 3), primers [5 '-GAGAGACAATCAAATCATGAGTAACAAGAGTAACG-3' (SEQ ID NO: 5), 5'-CACTCATGCAAGCGTCACCGTTCGTGCACGTAC-3' (SEQ ID NO: 6)] were prepared, and PCR was performed using the extracted total DNA as a template. The obtained PCR product was subjected to electrophoresis to identify a 1.7 kb gene fragment corresponding to the phaC1Ps6-19 gene, and the phaC1Ps6-19 gene was obtained.

phaC1Ps6-19 합성효소를 발현시키기 위하여, pSYL105 벡터(Lee et al., Biotech. Bioeng., 1994, 44:1337-1347)에서 Ralstonia eutropha H16 유래의 PHB 생산 오페론이 함유된 DNA 절편을 BamHI/EcoRI으로 절단하여, pBluescript II (Stratagene Co., USA)의 BamHI/EcoRI 인식부위에 삽입함으로써 pReCAB 재조합 벡터를 제조하였다. pReCAB 벡터는 PHA 합성효소(phaCRE)와 단량체 공급효소(phaARE 및 phaBRE)가 PHB 오페론 프로모터에 의해 항시적으로 발현된다. BstBI/SbfI 인식 부위가 각각 양끝에 하나씩만 포함된 phaC1Ps6-19 합성효소 유전자 절편을 만들기 위해 우선 내재하고 있는 BstBI 위치를 SDM(site directed mutagenesis) 방법으로 아미노산의 변환 없이 제거하였고, BstBI/SbfI 인식부위를 첨가하기 위해 프라이머[5'-ATGCCCGGAGCCGGTTCGAA-3'(서열번호 7), 5'-CGTTACTCTTGTTACTCATGATTTGATTGTCTCTC-3'(서열번호 8), 5'-GAGAGACAATCAAATCATGAGTAACAAGAGTAACG-3'(서열번호 9), 5-CACTCATGCAAGCGTCACCGTTCGTGCACGTAC-3'(서열번호 10), 5'- GTACGTGCACGAACGGTGACGCTTGCATGAGTG-3'(서열번호 11), 5'-AACGGGAGGGAACCTGCAGG-3'(서열번호 12)]를 이용하여 오버랩핑 PCR을 수행하였다. pReCAB 벡터를 BstBI/SbfI으로 절단하여 R.eutropha H16 PHA 합성효소 (phaCRE)를 제거한 다음, 상기에서 수득한 phaC1Ps6-19 유전자를 BstBI/SbfI 인식부위에 삽입함으로써 pPs619C1-ReAB 재조합 벡터를 제조하였다. To express the phaC1Ps6-19 synthetase, a DNA fragment containing the PHB-producing operon from Ralstonia eutropha H16 in the pSYL105 vector (Lee et al., Biotech. Bioeng., 1994, 44:1337-1347) was transcribed with BamHI/EcoRI. The pReCAB recombinant vector was prepared by cutting and inserting into the BamHI/EcoRI recognition site of pBluescript II (Stratagene Co., USA). In the pReCAB vector, PHA synthetase (phaCRE) and monomer feeder enzymes (phaARE and phaBRE) are constitutively expressed by the PHB operon promoter. In order to create a phaC1Ps6-19 synthetase gene fragment containing only one BstBI/SbfI recognition site at each end, the BstBI locus originally present was removed without amino acid conversion using SDM (site directed mutagenesis), and the BstBI/SbfI recognition site To add primers [5'-ATGCCCGGAGCCGGTTCGAA-3' (SEQ ID NO: 7), 5'-CGTTACTCTTGTTACTCATGATTTGATTGTCTCTC-3' (SEQ ID NO: 8), 5'-GAGAGACAATCAAATCATGAGTAACAAGAGTAACG-3' (SEQ ID NO: 9), 5-CACTCATGCAAGCGTCACCGTTCGTGCACGTAC-3 '(SEQ ID NO: 10), 5'-GTACGTGCACGAACGGTGACGCTTGCATGAGTG-3' (SEQ ID NO: 11), 5'-AACGGGAGGGAACCTGCAGG-3' (SEQ ID NO: 12)]. The pReCAB vector was digested with BstBI/SbfI to remove R.eutropha H16 PHA synthase (phaCRE), and then the phaC1Ps6-19 gene obtained above was inserted into the BstBI/SbfI recognition site to prepare pPs619C1-ReAB recombinant vector.

SCL(short chain length) 활성에 영향을 미치는 아미노산 위치 3 곳을 아미노산 서열 배열분석을 통해 찾았고, 프라이머[5'-CTGACCTTGCTGGTGACCGTGCTTGATACCACC-3'(서열번호 13), 5-GGTGGTATCAAGCACGGTCACCAGCAAGGTCAG-3'(서열번호 14), 5'-CGAGCAGCGGGCATATCATGAGCATCCTGAACCCGC-3'(서열번호 15), 5'-GCGGGTTCAGGATGCTCATGATATGCCCGCTGCTCG-3'(서열번호 16), 5'-ATCAACCTCATGACCGATGCGATGGCGCCGACC-3'(서열번호 17), 5'-GGTCGGCGCCATCGCATCGGTCATGAGGTTGAT-3'(서열번호 18)]를 사용한 SDM 방법을 이용하여, E130D, S325T, Q481M 을 포함하는 phaC1Ps6-19 합성효소 변이체인 phaC1Ps6-19300을 함유한 pPs619C1300-ReAB 를 제조하였다.Three amino acid positions that affect short chain length (SCL) activity were found through amino acid sequence alignment analysis, and primers [5'-CTGACCTTGCTGGTGACCGTGCTTGATACCACC-3' (SEQ ID NO: 13), 5-GGTGGTATCAAGCACGGTCACCAGCAAGGTCAG-3' (SEQ ID NO: 14) , 5'-CGAGCAGCGGGCATATCATGAGCATCCTGAACCCGC-3' (SEQ ID NO: 15), 5'-GCGGGTTCAGGATGCTCATGATATGCCCGCTGCTCG-3' (SEQ ID NO: 16), 5'-ATCAACCTCATGACCGATGCGATGGCGCCGACC-3' (SEQ ID NO: 17), 5'-GGTCGGCGCCATCGCATCGGTCAT3'GAGGTTGAT 18)], pPs619C1300-ReAB containing phaC1Ps6-19300, which is a phaC1Ps6-19 synthase variant including E130D, S325T and Q481M, was prepared.

여기에 프로피오닐-CoA 트랜스퍼라아제가 같이 발현되는 오페론 형태의 항시적 발현되는 시스템을 구축하기 위하여 클로스트리듐 프로피오니쿰(Clostridium propionicum) 유래의 프로피오닐-CoA 트랜스퍼라아제 (CP-PCT)를 사용하였다. CP-PCT는 클로스트리듐 프로피오니쿰의 염색체 DNA를 프라이머[5'-GGAATTCATGAGAAAGGTTCCCATTATTACCGCAGATGA-3'(서열번호 19), 5'-GCTCTAGATTAGGACTTCATTTCCTTCAGACCCATTAAGCCTTCTG-3'(서열번호 20)]를 이용하여 PCR하여 얻어진 단편을 사용하였다. 이 때, 원래 야생형 CP-PCT에 존재하는 NdeI site를 cloning의 용이성을 위해 SDM 방법을 이용하여 제거하였고, SbfI/NdeI 인식부위를 첨가하기 위해 프라이머[5'-AGGCCTGCAGGCGGATAACAATTTCACACAGG-3'(서열번호 21), 5'-GCCCATATGTCTAGATTAGGACTTCATTTCC-3'(서열번호 22)]를 이용하여 오버랩핑 PCR을 수행하였다. pPs619C1300-ReAB 벡터를 SbfI/NdeI으로 절단하여 Ralstonia eutrophus H16 유래의 단량체 공급효소 (phaARE 및 phaBRE)를 제거한 다음, 상기 PCR 클로닝한 CP-PCT 유전자를 SbfI/NdeI 인식 부위에 삽입함으로써 pPs619C1300-CPPCT 재조합 벡터를 제조하였다.In order to construct a constitutive expression system in the form of an operon in which propionyl-CoA transferase is co-expressed, propionyl-CoA transferase (CP-PCT) derived from Clostridium propionicum was used. used CP-PCT is a fragment obtained by PCR of chromosomal DNA of Clostridium propionicum using primers [5'-GGAATTCATGAGAAAGGTTCCCATTATTACCGCAGATGA-3' (SEQ ID NO: 19), 5'-GCTCTAGATTAGGACTTCATTTCCTTCAGACCCATTAAGCCTTCTG-3' (SEQ ID NO: 20)] used At this time, the NdeI site originally present in the wild-type CP-PCT was removed using the SDM method for ease of cloning, and a primer [5'-AGGCCTGCAGGCGGATAACAATTTCACACAGG-3' (SEQ ID NO: 21) was added to add the SbfI/NdeI recognition site. , 5'-GCCCATATGTCTAGATTAGGACTTCATTTCC-3' (SEQ ID NO: 22)] was used to perform overlapping PCR. The pPs619C1300-ReAB vector was digested with SbfI/NdeI to remove Ralstonia eutrophus H16-derived monomer supply enzymes (phaARE and phaBRE), and then the PCR cloned CP-PCT gene was inserted into the SbfI/NdeI recognition site to obtain pPs619C1300-CPPCT recombinant vector was manufactured.

다음으로, CP-PCT 유전자에 무작위적 돌연변이(random mutagenesis)를 도입하기 위해 상기에서 제작된 pPs619C1300-CPPCT을 주형으로 하고, 프라이머[5'-CGCCGGCAGGCCTGCAGG-3'(서열번호 23), 5'-GGCAGGTCAGCCCATATGTC-3'(서열번호 24)]를 이용하여 Mn2+이 첨가되고 dNTPs의 농도 차이가 존재하는 조건에서 Error-prone PCR을 실시하였다. 그 후, 무작위적 돌연변이가 포함된 PCR 단편을 증폭하기 위해 상기 프라이머를 이용하여 일반 조건에서 PCR하였다. pPs619C1300-CPPCT 벡터를 SbfI/NdeI으로 절단하여 야생형 CP-PCT 를 제거한 후, 상기 증폭된 돌연변이 PCR 단편을 SbfI/NdeI 인식부위에 삽입시킨 ligation mixture를 만들어 E. coli JM109에 도입하여 ~105정도 규모의 CP-PCT 라이브러리를 제작하였다. 상기 제작된 CP-PCT 라이브러리는 고분자 검출배지(LB agar, glucose 20g/L, LA 1g/L, Nile red 0.5㎍/ml)에서 3일간 생육시킨 후 고분자 생성 여부를 확인하는 스크리닝 작업을 수행하여 ~80여 개체의 후보를 1차 선정하였다. 이들 후보를 고분자가 생성되는 조건에서 4일간 액체 배양(LB agar, glucose 20g/L, LA 1g/L, ampicillin 100mg/L, 37℃)하였고, FACS(Florescence Activated Cell Sorting) 분석을 통하여 2 개체, 즉 CP-PCT Variant 512 (핵산치환 A1200G 포함) 및 CP-PCT Variant 522 (핵산치환 T78C, T669C, A1125G, T1158C 포함)를 선정하였다. 상기 1차 선별된 돌연변이체들(CP-PCT Variant 512, CP-PCT Variant 522)을 기본으로 다시 상기 Error-prone PCR의 방법으로 무작위적 돌연변이를 수행하여 다양한 CP-PCT 변이체들을 얻을 수 있었고, 그 중 CP-PCT Variant 540 (Val193Ala 및 침묵돌연변이 T78C, T669C, A1125G, T1158C 포함)를 2차 선별하여 pPs619C1300-CPPCT540 벡터를 제조하였다.Next, in order to introduce random mutagenesis into the CP-PCT gene, pPs619C1300-CPPCT prepared above was used as a template, and primers [5'-CGCCGGCAGGCCTGCAGG-3' (SEQ ID NO: 23), 5'-GGCAGGTCAGCCCATATGTC -3' (SEQ ID NO: 24)] was used to perform Error-prone PCR under conditions where Mn2+ was added and there was a difference in concentration of dNTPs. Thereafter, PCR was performed under normal conditions using the primers to amplify the PCR fragment containing the random mutation. After removing the wild type CP-PCT by digesting the pPs619C1300-CPPCT vector with SbfI/NdeI, a ligation mixture was created by inserting the amplified mutant PCR fragment into the SbfI/NdeI recognition site, and introduced into E. coli JM109 to obtain ~105 scale A CP-PCT library was constructed. The CP-PCT library prepared above was grown for 3 days in a polymer detection medium (LB agar, glucose 20 g/L, LA 1 g/L, Nile red 0.5 μg/ml), and then screened to determine whether polymers were produced. About 80 candidates were selected for the first time. These candidates were cultured in liquid for 4 days (LB agar, glucose 20g/L, LA 1g/L, ampicillin 100mg/L, 37°C) under conditions where polymers were produced, and through FACS (Florescence Activated Cell Sorting) analysis, 2 individuals, That is, CP-PCT Variant 512 (including nucleic acid substitution A1200G) and CP-PCT Variant 522 (including nucleic acid substitution T78C, T669C, A1125G, and T1158C) were selected. Based on the first selected mutants (CP-PCT Variant 512, CP-PCT Variant 522), random mutation was performed again by the error-prone PCR method to obtain various CP-PCT variants, and Among them, CP-PCT Variant 540 (including Val193Ala and silent mutations T78C, T669C, A1125G, T1158C) was selected for the second round to prepare a pPs619C1300-CPPCT540 vector.

또한, 상기 제조한 phaC1Ps6-19 합성효소 변이체(phaC1Ps6-19300)를 기초로 하여 프라이머[5'-GAATTCGTGCTGTCGAGCCGCGGGCATATC-3'(서열번호 25), 5'-GATATGCCCGCGGCTCGACAGCACGAATTC-3'(서열번호 26), 5'-GGGCATATCAAGAGCATCCTGAACCCGC-3'(서열번호 27), 5'-GCGGGTTCAGGATGCTCTTGATATGCCC-3'(서열번호 28)]를 사용한 SDM 방법을 이용하여 E130D, S477F 및 Q481K 이 변이된 아미노산 서열을 가진 슈도모나스 속 MBEL 6-19 유래 PHA 합성효소 변이체(phaC1Ps6-19310) 를 함유한 pPs619C1310-CPPCT540 벡터를 제조하였다(도 1).In addition, based on the phaC1Ps6-19 synthase variant (phaC1Ps6-19300) prepared above, primers [5'-GAATTCGTGCTGTCGAGCCGCGGGCATATC-3' (SEQ ID NO: 25), 5'-GATATGCCCGCGGCTCGACAGCACGAATTC-3' (SEQ ID NO: 26), 5' -GGGCATATCAAGAGCATCCTGAACCCGC-3' (SEQ ID NO: 27), 5'-GCGGGTTCAGGATGCTCTTGATATGCCC-3' (SEQ ID NO: 28)] derived from Pseudomonas genus MBEL 6-19 with mutated amino acid sequences of E130D, S477F and Q481K using the SDM method A pPs619C1310-CPPCT540 vector containing a PHA synthetase variant (phaC1Ps6-19310) was constructed (FIG. 1).

1-2. pPs619C1249.18H-CPPCT540 재조합 벡터의 제조1-2. Preparation of pPs619C1249.18H-CPPCT540 recombinant vector

상기 1-1 에서 제조한 pPs619C1310-CPPCT540 벡터를 주형으로 하여 프라이머[5'-ATGCCCGGAGCCGGTT'CGAA-3'(서열번호 29) 및 5'-GAAATTGTTATCCGCCTGCAGG-3'(서열번호 30)]를 사용하여 error-prone PCR을 수행하였다. error-prone PCR을 수행한 후 돌연변이가 포함된 PCR 단편을 증폭하기 위해 상기 프라이머를 이용하여 다시 PCR 한 후 증폭된 돌연변이들을 pPs619C1310-CPPCT540 벡터의 BstBI/SbfI 위치에 삽입하여 변이체들에 대한 라이브러리를 제작하였다. 제작된 변이체 라이브러리를 E.coli XL-1Blue에 형질전환 시키고, 이를 PHB 검출배지(LB agar, glucose 20g/L, Nile red 0.5㎍/ml)에서 3일 동안 배양했다. 배양 후 스크리닝 과정을 통해 최종 선별된 변이체는 L18H, V24A, K91R, M128V, E130D, N246S, S325T, S477G, Q481K 및 A527S이 변이된 아미노산 서열을 가진 pPs619C1249.18H 이었다. 이렇게 하여 재조합 벡터 pPs619C1249.18H-CPPCT540 벡터를 제조하였다(도 2).Using the pPs619C1310-CPPCT540 vector prepared in 1-1 as a template and primers [5'-ATGCCCGGAGCCGGTT'CGAA-3' (SEQ ID NO: 29) and 5'-GAAATTGTTATCCGCCTGCAGG-3' (SEQ ID NO: 30)], error- prone PCR was performed. After performing error-prone PCR, PCR was performed again using the above primers to amplify the PCR fragment containing the mutation, and then the amplified mutation was inserted into the BstBI/SbfI site of the pPs619C1310-CPPCT540 vector to construct a library for variants. did The prepared mutant library was transformed into E.coli XL-1Blue and cultured for 3 days in PHB detection medium (LB agar, glucose 20g/L, Nile red 0.5μg/ml). The variant finally selected through the screening process after culturing was pPs619C1249.18H having an amino acid sequence in which L18H, V24A, K91R, M128V, E130D, N246S, S325T, S477G, Q481K and A527S were mutated. In this way, the recombinant vector pPs619C1249.18H-CPPCT540 vector was prepared (FIG. 2).

실시예 2. 2-하이드록시부티레이트-락테이트 공중합체 제조용 균주의 제작Example 2. Preparation of strains for preparing 2-hydroxybutyrate-lactate copolymer

2.1. 2.1. serAserA 또는 or pdxBpdxB 유전자 과발현( Gene overexpression ( overexpressionoverexpression )을 위한 재조합 벡터 제작) Recombinant vector construction for

Escherichia coli K12 균주 유래 D-3-phosphoglycerate dehydrogenase 유전자 (serA) (서열번호 32)를 또는 Escherichia coli K12 유래 Erythronate-4-phosphate dehydrogenase 유전자 (pdxB) (서열번호 34)를 pSTV28 벡터 (Addgene)에 삽입하여 serA 과발현용 벡터 pSTV28-serA (도 3 참조) 및 pdxB 과발현용 벡터 pSTV28-pdxB (도 4 참조)를 각각 제작하였다. 상기 벡터의 제작 과정을 도 3 및 도 4에 모식적으로 나타내었으며, 각 클로닝에 사용된 프라이머 서열을 아래의 표 2에 나타내었다: Escherichia coli K12 strain-derived D-3-phosphoglycerate dehydrogenase gene (serA) (SEQ ID NO: 32) or Escherichia coli By inserting the K12-derived erythronate-4-phosphate dehydrogenase gene (pdxB) (SEQ ID NO: 34) into the pSTV28 vector (Addgene), the vector pSTV28-serA for overexpression of serA (see Fig. 3) and the vector pSTV28- pdxB for overexpression of pdx B ( See Figure 4) was produced respectively. The construction process of the vector is schematically shown in FIGS. 3 and 4, and the primer sequences used for each cloning are shown in Table 2 below:

프라이머primer 서열 (5'→3')Sequence (5'→3') 서열번호sequence number pdxB-sac-FpdxB-sac-F GCGCGCGAGCTCGTGAAAATCCTTGTTGATGAGCGCGCGAGCTCGTGAAAATCCTTGTTGATGA 3535 pdxB-sph-RpdxB-sph-R GCGCGCGCATGCTTAACGTGCCGGATGATGAAGCGCGCGCATGCTTAACGTGCCGGATGATGAA 3636 serA-sac-FserA-sac-F GCGCGCGAGCTCATGGCAAAGGTATCGCTGGAGCGCGCGAGCTCATGGCAAAGGTATCGCTGGA 3737 SerA-sph-RSerA-sph-R GCGCGCGCATGCTTAGTACAGCAGACGGGCGCGCGCGCGCATGCTTAGTACAGCAGACGGGCGC 3838

2.2. 2-2.2. 2- 하이드록시부티레이트hydroxybutyrate -- 락테이트lactate 공중합체 제조용 재조합 균주 제작 Production of recombinant strains for copolymer production

E. coli XL1-blue (Stratagene, USA)에 상기 실시예 1.2에서 제작된 벡터 pPs619C1249.18H-CPPCT540와, 상기 실시예 2.1에서 제작된 벡터 pSTV28-serA 또는 pSTV28-pdxB를 전기천공법(electroporation)으로 도입시켜 2HB-LA 공중합체 제조용 재조합 균주를 제작하였다. E. coli Introducing the vector pPs619C1249.18H-CPPCT540 constructed in Example 1.2 and the vector pSTV28- ser A or pSTV28- pdx B constructed in Example 2.1 into XL1-blue (Stratagene, USA) by electroporation to prepare a recombinant strain for preparing 2HB-LA copolymer.

실시예 3. 2-하이드록시부티레이트-락테이트 공중합체 제조Example 3. Preparation of 2-hydroxybutyrate-lactate copolymer

상기 실시예 2.2에서 준비된 재조합 균주를 100mg/L 앰피실린(ampicillin) 및 30mg/L 클로람페니콜(chloramphenicol)이 함유되어 있는 3 mL의 LB 배지[BactoTM Triptone(BD) 10g/L, BactoTM yeast extract(BD) 5g/L, NaCL(amresco) 10g/L]에서 12시간동안 전 배양 (seed culture) 하였다. The recombinant strain prepared in Example 2.2 was mixed with 3 mL of LB medium containing 100 mg/L ampicillin and 30 mg/L chloramphenicol [Bacto TM Triptone (BD) 10 g/L, Bacto TM yeast extract ( BD) 5 g/L, NaCL (amresco) 10 g/L] for 12 hours in seed culture.

얻어진 전 배양액 100ml를 100mg/L의 앰피실린, 30mg/L 클로람페니콜, 2-케토부티레이트 (2KB) 2g/L, 글루코오스 20g/L, 및 thiamine 10mg/L이 추가로 함유된 100ml MR 배지(배지 1L 당 Glucose 10g, KH2PO4 6.67g, (NH4)2HPO4 4g, MgSO4·7H2O 0.8g, citric acid 0.8g, 및 trace metal solution 5mL; 여기에서, Trace metal solution은 1L 당 5M HCl 5mL, FeSO4?7H2O 10g, CaCl2 2g, ZnSO4?7H2O 2.2g, MnSO4·4H2O 0.5g, CuSO4·5H2O 1g, (NH4)6Mo7O2·4H2O 0.1g, 및 Na2B4O2·10H2 O 0.02g 함유)에 접종하여 30℃에서 4일간 250 rpm 으로 교반하며 본배양을 수행하였다.100 ml of the obtained whole culture medium was added to 100 ml MR medium (per medium 1 L Glucose 10g, KH 2 PO 4 6.67g, (NH 4 )2HPO 4 4g, MgSO 4 7H 2 O 0.8g, citric acid 0.8g, and trace metal solution 5mL, wherein the trace metal solution is 5M HCl 5mL per 1L. , FeSO 4 ?7H 2 O 10g, CaCl 2 2g, ZnSO 4 ?7H 2 O 2.2g, MnSO 4 4H 2 O 0.5g, CuSO 4 5H 2 O 1g, (NH 4 )6Mo 7 O 2 4H 2 O 0.1 g, and Na 2 B 4 O 2 10H 2 O 0.02g containing) was inoculated and main culture was performed at 30 ° C. for 4 days with stirring at 250 rpm.

상기 배양액을 4℃, 4000 rpm에서 10분간 원심분리하여 균체를 회수하고 충분한 양의 증류수로 2회 씻어준 후 80℃ 에서 12시간 건조하였다. 제거된 균체를 정량한 후 100℃에서 클로로포름을 용매로 사용하여 황산 촉매 하에서 메탄올과 반응시켜 주었다. 이를 상온에서 클로로포름의 절반에 해당하는 부피의 증류수를 첨가하여 혼합한 후 두 개의 층으로 분리될 때까지 정치시켰다. 두 개의 층 중에서 메틸화된 고분자의 단량체들이 녹아 있는 클로로포름층을 채취하여 가스크로마토그래피(GC)로 고분자의 성분을 분석하였다. 내부 표준물질로는 벤조에이트(benzoate)를 사용하였다. 이 때 사용된 GC 분석조건은 하기의 표 3과 같다.The culture solution was centrifuged at 4°C and 4000 rpm for 10 minutes to recover cells, washed twice with a sufficient amount of distilled water, and then dried at 80°C for 12 hours. After quantifying the removed cells, they were reacted with methanol at 100 °C under a sulfuric acid catalyst using chloroform as a solvent. This was mixed by adding distilled water in a volume corresponding to half of chloroform at room temperature, and then allowed to stand until separated into two layers. Among the two layers, the chloroform layer in which the methylated polymer monomers were dissolved was sampled and the components of the polymer were analyzed by gas chromatography (GC). Benzoate was used as an internal standard. The GC analysis conditions used at this time are shown in Table 3 below.

GC 분석조건GC analysis conditions ItemItem QualityQuality ModelModel Hewlett Packard 6890NHewlett Packard 6890N DetectorDetector Flame ionization detector(FID)Flame ionization detector (FID) ColumnColumn Alltech Capillary ATTM-WAX, 30m, 0.53mmAlltech Capillary AT TM -WAX, 30m, 0.53mm Liquid phaseliquid phase 100% polyethylene Glycol100% Polyethylene Glycol Inj.port temp/Det.port tempInj.port temp/Det.port temp 250℃/ 250℃250℃/ 250℃ Carrier gasCarrier gas HeHe Total flowTotal flow 3ml/min3ml/min septum purge went flowseptum purge went flow 1ml/min1ml/min Column head pressureColumn head pressure 29kPa29 kPa Injection port modeInjection port mode SplitlessSplitless Injection volumn/SolventInjection volume/solvent 1㎕/chloroform1 μl/chloroform Initial temp./TimeInitial temp./Time 80℃/5min80℃/5min Final temp./TimeFinal temp./Time 230℃/5min230℃/5min Ramp of temp.Ramp of temp. 7.5℃/min7.5℃/min

GC 분석에서 얻어진 결과를 하기의 표 4에 나타내었다:The results obtained from the GC analysis are shown in Table 4 below:

Strain (with 619C1_249 + CPPCT_540)Strain (with 619C1_249 + CPPCT_540) 2-ketobutyrate (2g/L)2-ketobutyrate (2g/L) 2HB (mg/L)2HB (mg/L) LA mol %LA mol % 2HB mol %2HB mol % P(2HB-LA) content (wt%)P(2HB-LA) content (wt%) Control (XB)Control (XB) -- 0.070.07 98.098.0 2.02.0 5.25.2 ++ 1.031.03 85.385.3 14.714.7 10.110.1 XB + serA XB+ serA ++ 2.502.50 78.478.4 21.621.6 15.515.5 XB + pdxB XB+ pdxB ++ 0.430.43 71.771.7 28.328.3 2.02.0

(XB: pPs619C1249.18H-CPPCT540가 도입된 형질전환체(XB: Transformant into which pPs619C1249.18H-CPPCT540 was introduced

XB + serA: pPs619C1249.18H-CPPCT540 + pSTV28-serA가 도입된 형질전환체XB + serA : pPs619C1249.18H-CPPCT540 + pSTV28-transformant into which ser A was introduced

XB + pdxB: pPs619C1249.18H-CPPCT540 + pSTV28-pdxB가 도입된 형질전환체)XB + pdxB : pPs619C1249.18H-CPPCT540 + pSTV28-transformant into which pdx B was introduced)

표 4에 나타난 바와 같이, serA 과발현 대장균에 2-케토부티레이트 (2g/L)를 기질로 첨가하여 배양한 결과, 대조군과 비교하여, 2-하이드록시부티레이트 생산량이 약 2.5배 증가하였으며, P(2HB-LA) 공중합체의 총 생산량도 약 1.5배 증가 하였다. 또한, pdxB 과발현 대장균에 2-케토부티레이트 (2g/L)를 기질로 첨가하여 배양한 결과, 대조군과 비교하여, P(2HB-LA) 공중합체 내의 2-하이드록시부티레이트 함량이 약 2배 증가하였다.As shown in Table 4, as a result of culture by adding 2-ketobutyrate (2 g / L) as a substrate to serA overexpressing E. coli, the production of 2-hydroxybutyrate increased by about 2.5 times compared to the control group, and P (2HB -LA) The total production of copolymers also increased by about 1.5 times. In addition, as a result of culture by adding 2-ketobutyrate (2 g/L) as a substrate to pdxB-overexpressing E. coli, the content of 2-hydroxybutyrate in the P(2HB-LA) copolymer was increased by about 2 times compared to the control group. .

<110> LG CHEM, LTD. <120> Recombinant microorganism and method for preparing copolymer comprising 2-hydroxybutyrate and lactate <130> DPP20173751KR <160> 38 <170> KopatentIn 3.0 <210> 1 <211> 1575 <212> DNA <213> Clostridium propionicum <220> <221> gene <222> (1)..(1575) <223> popionyl-CoA transferase <400> 1 atgagaaagg ttcccattat taccgcagat gaggctgcaa agcttattaa agacggtgat 60 acagttacaa caagtggttt cgttggaaat gcaatccctg aggctcttga tagagctgta 120 gaaaaaagat tcttagaaac aggcgaaccc aaaaacatta cctatgttta ttgtggttct 180 caaggtaaca gagacggaag aggtgctgag cactttgctc atgaaggcct tttaaaacgt 240 tacatcgctg gtcactgggc tacagttcct gctttgggta aaatggctat ggaaaataaa 300 atggaagcat ataatgtatc tcagggtgca ttgtgtcatt tgttccgtga tatagcttct 360 cataagccag gcgtatttac aaaggtaggt atcggtactt tcattgaccc cagaaatggc 420 ggcggtaaag taaatgatat taccaaagaa gatattgttg aattggtaga gattaagggt 480 caggaatatt tattctaccc tgcttttcct attcatgtag ctcttattcg tggtacttac 540 gctgatgaaa gcggaaatat cacatttgag aaagaagttg ctcctctgga aggaacttca 600 gtatgccagg ctgttaaaaa cagtggcggt atcgttgtag ttcaggttga aagagtagta 660 aaagctggta ctcttgaccc tcgtcatgta aaagttccag gaatttatgt tgactatgtt 720 gttgttgctg acccagaaga tcatcagcaa tctttagatt gtgaatatga tcctgcatta 780 tcaggcgagc atagaagacc tgaagttgtt ggagaaccac ttcctttgag tgcaaagaaa 840 gttattggtc gtcgtggtgc cattgaatta gaaaaagatg ttgctgtaaa tttaggtgtt 900 ggtgcgcctg aatatgtagc aagtgttgct gatgaagaag gtatcgttga ttttatgact 960 ttaactgctg aaagtggtgc tattggtggt gttcctgctg gtggcgttcg ctttggtgct 1020 tcttataatg cggatgcatt gatcgatcaa ggttatcaat tcgattacta tgatggcggc 1080 ggcttagacc tttgctattt aggcttagct gaatgcgatg aaaaaggcaa tatcaacgtt 1140 tcaagatttg gccctcgtat cgctggttgt ggtggtttca tcaacattac acagaataca 1200 cctaaggtat tcttctgtgg tactttcaca gcaggtggct taaaggttaa aattgaagat 1260 ggcaaggtta ttattgttca agaaggcaag cagaaaaaat tcttgaaagc tgttgagcag 1320 attacattca atggtgacgt tgcacttgct aataagcaac aagtaactta tattacagaa 1380 agatgcgtat tccttttgaa ggaagatggt ttgcacttat ctgaaattgc acctggtatt 1440 gatttgcaga cacagattct tgacgttatg gattttgcac ctattattga cagagatgca 1500 aacggccaaa tcaaattgat ggacgctgct ttgtttgcag aaggcttaat gggtctgaag 1560 gaaatgaagt cctaa 1575 <210> 2 <211> 524 <212> PRT <213> Clostridium propionicum <220> <221> PEPTIDE <222> (1)..(524) <223> propionyl-CoA transferase <400> 2 Met Arg Lys Val Pro Ile Ile Thr Ala Asp Glu Ala Ala Lys Leu Ile 1 5 10 15 Lys Asp Gly Asp Thr Val Thr Thr Ser Gly Phe Val Gly Asn Ala Ile 20 25 30 Pro Glu Ala Leu Asp Arg Ala Val Glu Lys Arg Phe Leu Glu Thr Gly 35 40 45 Glu Pro Lys Asn Ile Thr Tyr Val Tyr Cys Gly Ser Gln Gly Asn Arg 50 55 60 Asp Gly Arg Gly Ala Glu His Phe Ala His Glu Gly Leu Leu Lys Arg 65 70 75 80 Tyr Ile Ala Gly His Trp Ala Thr Val Pro Ala Leu Gly Lys Met Ala 85 90 95 Met Glu Asn Lys Met Glu Ala Tyr Asn Val Ser Gln Gly Ala Leu Cys 100 105 110 His Leu Phe Arg Asp Ile Ala Ser His Lys Pro Gly Val Phe Thr Lys 115 120 125 Val Gly Ile Gly Thr Phe Ile Asp Pro Arg Asn Gly Gly Gly Lys Val 130 135 140 Asn Asp Ile Thr Lys Glu Asp Ile Val Glu Leu Val Glu Ile Lys Gly 145 150 155 160 Gln Glu Tyr Leu Phe Tyr Pro Ala Phe Pro Ile His Val Ala Leu Ile 165 170 175 Arg Gly Thr Tyr Ala Asp Glu Ser Gly Asn Ile Thr Phe Glu Lys Glu 180 185 190 Val Ala Pro Leu Glu Gly Thr Ser Val Cys Gln Ala Val Lys Asn Ser 195 200 205 Gly Gly Ile Val Val Val Gln Val Glu Arg Val Val Lys Ala Gly Thr 210 215 220 Leu Asp Pro Arg His Val Lys Val Pro Gly Ile Tyr Val Asp Tyr Val 225 230 235 240 Val Val Ala Asp Pro Glu Asp His Gln Gln Ser Leu Asp Cys Glu Tyr 245 250 255 Asp Pro Ala Leu Ser Gly Glu His Arg Arg Pro Glu Val Val Gly Glu 260 265 270 Pro Leu Pro Leu Ser Ala Lys Lys Val Ile Gly Arg Arg Gly Ala Ile 275 280 285 Glu Leu Glu Lys Asp Val Ala Val Asn Leu Gly Val Gly Ala Pro Glu 290 295 300 Tyr Val Ala Ser Val Ala Asp Glu Glu Gly Ile Val Asp Phe Met Thr 305 310 315 320 Leu Thr Ala Glu Ser Gly Ala Ile Gly Gly Val Pro Ala Gly Gly Val 325 330 335 Arg Phe Gly Ala Ser Tyr Asn Ala Asp Ala Leu Ile Asp Gln Gly Tyr 340 345 350 Gln Phe Asp Tyr Tyr Asp Gly Gly Gly Leu Asp Leu Cys Tyr Leu Gly 355 360 365 Leu Ala Glu Cys Asp Glu Lys Gly Asn Ile Asn Val Ser Arg Phe Gly 370 375 380 Pro Arg Ile Ala Gly Cys Gly Gly Phe Ile Asn Ile Thr Gln Asn Thr 385 390 395 400 Pro Lys Val Phe Phe Cys Gly Thr Phe Thr Ala Gly Gly Leu Lys Val 405 410 415 Lys Ile Glu Asp Gly Lys Val Ile Ile Val Gln Glu Gly Lys Gln Lys 420 425 430 Lys Phe Leu Lys Ala Val Glu Gln Ile Thr Phe Asn Gly Asp Val Ala 435 440 445 Leu Ala Asn Lys Gln Gln Val Thr Tyr Ile Thr Glu Arg Cys Val Phe 450 455 460 Leu Leu Lys Glu Asp Gly Leu His Leu Ser Glu Ile Ala Pro Gly Ile 465 470 475 480 Asp Leu Gln Thr Gln Ile Leu Asp Val Met Asp Phe Ala Pro Ile Ile 485 490 495 Asp Arg Asp Ala Asn Gly Gln Ile Lys Leu Met Asp Ala Ala Leu Phe 500 505 510 Ala Glu Gly Leu Met Gly Leu Lys Glu Met Lys Ser 515 520 <210> 3 <211> 1677 <212> DNA <213> Pseudomonas sp. 6-19 <220> <221> gene <222> (1)..(1677) <223> PHA synthase <400> 3 atgagtaaca agagtaacga tgagttgaag tatcaagcct ctgaaaacac cttggggctt 60 aatcctgtcg ttgggctgcg tggaaaggat ctactggctt ctgctcgaat ggtgcttagg 120 caggccatca agcaaccggt gcacagcgtc aaacatgtcg cgcactttgg tcttgaactc 180 aagaacgtac tgctgggtaa atccgggctg caaccgacca gcgatgaccg tcgcttcgcc 240 gatccggcct ggagccagaa cccgctctat aaacgttatt tgcaaaccta cctggcgtgg 300 cgcaaggaac tccacgactg gatcgatgaa agtaacctcg cccccaagga tgtggcgcgt 360 gggcacttcg tgatcaacct catgaccgaa gcgatggcgc cgaccaacac cgcggccaac 420 ccggcggcag tcaaacgctt ttttgaaacc ggtggcaaaa gcctgctcga cggcctctcg 480 cacctggcca aggatctggt acacaacggc ggcatgccga gccaggtcaa catgggtgca 540 ttcgaggtcg gcaagagcct gggcgtgacc gaaggcgcgg tggtgtttcg caacgatgtg 600 ctggaactga tccagtacaa gccgaccacc gagcaggtat acgaacgccc gctgctggtg 660 gtgccgccgc agatcaacaa gttctacgtt ttcgacctga gcccggacaa gagcctggcg 720 cggttctgcc tgcgcaacaa cgtgcaaacg ttcatcgtca gctggcgaaa tcccaccaag 780 gaacagcgag agtggggcct gtcgacctac atcgaagccc tcaaggaagc ggttgacgtc 840 gttaccgcga tcaccggcag caaagacgtg aacatgctcg gggcctgctc cggcggcatc 900 acttgcactg cgctgctggg ccattacgcg gcgattggcg aaaacaaggt caacgccctg 960 accttgctgg tgagcgtgct tgataccacc ctcgacagcg acgtcgccct gttcgtcaat 1020 gaacagaccc ttgaagccgc caagcgccac tcgtaccagg ccggcgtact ggaaggccgc 1080 gacatggcga aggtcttcgc ctggatgcgc cccaacgatc tgatctggaa ctactgggtc 1140 aacaattacc tgctaggcaa cgaaccgccg gtgttcgaca tcctgttctg gaacaacgac 1200 accacacggt tgcccgcggc gttccacggc gacctgatcg aactgttcaa aaataaccca 1260 ctgattcgcc cgaatgcact ggaagtgtgc ggcaccccca tcgacctcaa gcaggtgacg 1320 gccgacatct tttccctggc cggcaccaac gaccacatca ccccgtggaa gtcctgctac 1380 aagtcggcgc aactgtttgg cggcaacgtt gaattcgtgc tgtcgagcag cgggcatatc 1440 cagagcatcc tgaacccgcc gggcaatccg aaatcgcgct acatgaccag caccgaagtg 1500 gcggaaaatg ccgatgaatg gcaagcgaat gccaccaagc atacagattc ctggtggctg 1560 cactggcagg cctggcaggc ccaacgctcg ggcgagctga aaaagtcccc gacaaaactg 1620 ggcagcaagg cgtatccggc aggtgaagcg gcgccaggca cgtacgtgca cgaacgg 1677 <210> 4 <211> 559 <212> PRT <213> Pseudomonas sp. 6-19 <220> <221> PEPTIDE <222> (1)..(559) <223> PHA synthase <400> 4 Met Ser Asn Lys Ser Asn Asp Glu Leu Lys Tyr Gln Ala Ser Glu Asn 1 5 10 15 Thr Leu Gly Leu Asn Pro Val Val Gly Leu Arg Gly Lys Asp Leu Leu 20 25 30 Ala Ser Ala Arg Met Val Leu Arg Gln Ala Ile Lys Gln Pro Val His 35 40 45 Ser Val Lys His Val Ala His Phe Gly Leu Glu Leu Lys Asn Val Leu 50 55 60 Leu Gly Lys Ser Gly Leu Gln Pro Thr Ser Asp Asp Arg Arg Phe Ala 65 70 75 80 Asp Pro Ala Trp Ser Gln Asn Pro Leu Tyr Lys Arg Tyr Leu Gln Thr 85 90 95 Tyr Leu Ala Trp Arg Lys Glu Leu His Asp Trp Ile Asp Glu Ser Asn 100 105 110 Leu Ala Pro Lys Asp Val Ala Arg Gly His Phe Val Ile Asn Leu Met 115 120 125 Thr Glu Ala Met Ala Pro Thr Asn Thr Ala Ala Asn Pro Ala Ala Val 130 135 140 Lys Arg Phe Phe Glu Thr Gly Gly Lys Ser Leu Leu Asp Gly Leu Ser 145 150 155 160 His Leu Ala Lys Asp Leu Val His Asn Gly Gly Met Pro Ser Gln Val 165 170 175 Asn Met Gly Ala Phe Glu Val Gly Lys Ser Leu Gly Val Thr Glu Gly 180 185 190 Ala Val Val Phe Arg Asn Asp Val Leu Glu Leu Ile Gln Tyr Lys Pro 195 200 205 Thr Thr Glu Gln Val Tyr Glu Arg Pro Leu Leu Val Val Pro Pro Gln 210 215 220 Ile Asn Lys Phe Tyr Val Phe Asp Leu Ser Pro Asp Lys Ser Leu Ala 225 230 235 240 Arg Phe Cys Leu Arg Asn Asn Val Gln Thr Phe Ile Val Ser Trp Arg 245 250 255 Asn Pro Thr Lys Glu Gln Arg Glu Trp Gly Leu Ser Thr Tyr Ile Glu 260 265 270 Ala Leu Lys Glu Ala Val Asp Val Val Thr Ala Ile Thr Gly Ser Lys 275 280 285 Asp Val Asn Met Leu Gly Ala Cys Ser Gly Gly Ile Thr Cys Thr Ala 290 295 300 Leu Leu Gly His Tyr Ala Ala Ile Gly Glu Asn Lys Val Asn Ala Leu 305 310 315 320 Thr Leu Leu Val Ser Val Leu Asp Thr Thr Leu Asp Ser Asp Val Ala 325 330 335 Leu Phe Val Asn Glu Gln Thr Leu Glu Ala Ala Lys Arg His Ser Tyr 340 345 350 Gln Ala Gly Val Leu Glu Gly Arg Asp Met Ala Lys Val Phe Ala Trp 355 360 365 Met Arg Pro Asn Asp Leu Ile Trp Asn Tyr Trp Val Asn Asn Tyr Leu 370 375 380 Leu Gly Asn Glu Pro Pro Val Phe Asp Ile Leu Phe Trp Asn Asn Asp 385 390 395 400 Thr Thr Arg Leu Pro Ala Ala Phe His Gly Asp Leu Ile Glu Leu Phe 405 410 415 Lys Asn Asn Pro Leu Ile Arg Pro Asn Ala Leu Glu Val Cys Gly Thr 420 425 430 Pro Ile Asp Leu Lys Gln Val Thr Ala Asp Ile Phe Ser Leu Ala Gly 435 440 445 Thr Asn Asp His Ile Thr Pro Trp Lys Ser Cys Tyr Lys Ser Ala Gln 450 455 460 Leu Phe Gly Gly Asn Val Glu Phe Val Leu Ser Ser Ser Gly His Ile 465 470 475 480 Gln Ser Ile Leu Asn Pro Pro Gly Asn Pro Lys Ser Arg Tyr Met Thr 485 490 495 Ser Thr Glu Val Ala Glu Asn Ala Asp Glu Trp Gln Ala Asn Ala Thr 500 505 510 Lys His Thr Asp Ser Trp Trp Leu His Trp Gln Ala Trp Gln Ala Gln 515 520 525 Arg Ser Gly Glu Leu Lys Lys Ser Pro Thr Lys Leu Gly Ser Lys Ala 530 535 540 Tyr Pro Ala Gly Glu Ala Ala Pro Gly Thr Tyr Val His Glu Arg 545 550 555 <210> 5 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 5 gagagacaat caaatcatga gtaacaagag taacg 35 <210> 6 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 6 cactcatgca agcgtcaccg ttcgtgcacg tac 33 <210> 7 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 7 atgcccggag ccggttcgaa 20 <210> 8 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 8 cgttactctt gttactcatg atttgattgt ctctc 35 <210> 9 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 9 gagagacaat caaatcatga gtaacaagag taacg 35 <210> 10 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 10 cactcatgca agcgtcaccg ttcgtgcacg tac 33 <210> 11 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 11 gtacgtgcac gaacggtgac gcttgcatga gtg 33 <210> 12 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 12 aacgggaggg aacctgcagg 20 <210> 13 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 13 ctgaccttgc tggtgaccgt gcttgatacc acc 33 <210> 14 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 14 ggtggtatca agcacggtca ccagcaaggt cag 33 <210> 15 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 15 cgagcagcgg gcatatcatg agcatcctga acccgc 36 <210> 16 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 16 gcgggttcag gatgctcatg atatgcccgc tgctcg 36 <210> 17 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 17 atcaacctca tgaccgatgc gatggcgccg acc 33 <210> 18 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 18 ggtcggcgcc atcgcatcgg tcatgaggtt gat 33 <210> 19 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 19 ggaattcatg agaaaggttc ccattattac cgcagatga 39 <210> 20 <211> 46 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 20 gctctagatt aggacttcat ttccttcaga cccattaagc cttctg 46 <210> 21 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 21 aggcctgcag gcggataaca atttcacaca gg 32 <210> 22 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 22 gcccatatgt ctagattagg acttcatttc c 31 <210> 23 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 23 cgccggcagg cctgcagg 18 <210> 24 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 24 ggcaggtcag cccatatgtc 20 <210> 25 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 25 gaattcgtgc tgtcgagccg cgggcatatc 30 <210> 26 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 26 gatatgcccg cggctcgaca gcacgaattc 30 <210> 27 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 27 gggcatatca agagcatcct gaacccgc 28 <210> 28 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 28 gcgggttcag gatgctcttg atatgccc 28 <210> 29 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 29 atgcccggag ccggttcgaa 20 <210> 30 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 30 gaaattgtta tccgcctgca gg 22 <210> 31 <211> 410 <212> PRT <213> Artificial Sequence <220> <223> E. coli K12 derived D-3-phosphoglycerate dehydrogenase (SerA) <400> 31 Met Ala Lys Val Ser Leu Glu Lys Asp Lys Ile Lys Phe Leu Leu Val 1 5 10 15 Glu Gly Val His Gln Lys Ala Leu Glu Ser Leu Arg Ala Ala Gly Tyr 20 25 30 Thr Asn Ile Glu Phe His Lys Gly Ala Leu Asp Asp Glu Gln Leu Lys 35 40 45 Glu Ser Ile Arg Asp Ala His Phe Ile Gly Leu Arg Ser Arg Thr His 50 55 60 Leu Thr Glu Asp Val Ile Asn Ala Ala Glu Lys Leu Val Ala Ile Gly 65 70 75 80 Cys Phe Cys Ile Gly Thr Asn Gln Val Asp Leu Asp Ala Ala Ala Lys 85 90 95 Arg Gly Ile Pro Val Phe Asn Ala Pro Phe Ser Asn Thr Arg Ser Val 100 105 110 Ala Glu Leu Val Ile Gly Glu Leu Leu Leu Leu Leu Arg Gly Val Pro 115 120 125 Glu Ala Asn Ala Lys Ala His Arg Gly Val Trp Asn Lys Leu Ala Ala 130 135 140 Gly Ser Phe Glu Ala Arg Gly Lys Lys Leu Gly Ile Ile Gly Tyr Gly 145 150 155 160 His Ile Gly Thr Gln Leu Gly Ile Leu Ala Glu Ser Leu Gly Met Tyr 165 170 175 Val Tyr Phe Tyr Asp Ile Glu Asn Lys Leu Pro Leu Gly Asn Ala Thr 180 185 190 Gln Val Gln His Leu Ser Asp Leu Leu Asn Met Ser Asp Val Val Ser 195 200 205 Leu His Val Pro Glu Asn Pro Ser Thr Lys Asn Met Met Gly Ala Lys 210 215 220 Glu Ile Ser Leu Met Lys Pro Gly Ser Leu Leu Ile Asn Ala Ser Arg 225 230 235 240 Gly Thr Val Val Asp Ile Pro Ala Leu Cys Asp Ala Leu Ala Ser Lys 245 250 255 His Leu Ala Gly Ala Ala Ile Asp Val Phe Pro Thr Glu Pro Ala Thr 260 265 270 Asn Ser Asp Pro Phe Thr Ser Pro Leu Cys Glu Phe Asp Asn Val Leu 275 280 285 Leu Thr Pro His Ile Gly Gly Ser Thr Gln Glu Ala Gln Glu Asn Ile 290 295 300 Gly Leu Glu Val Ala Gly Lys Leu Ile Lys Tyr Ser Asp Asn Gly Ser 305 310 315 320 Thr Leu Ser Ala Val Asn Phe Pro Glu Val Ser Leu Pro Leu His Gly 325 330 335 Gly Arg Arg Leu Met His Ile His Glu Asn Arg Pro Gly Val Leu Thr 340 345 350 Ala Leu Asn Lys Ile Phe Ala Glu Gln Gly Val Asn Ile Ala Ala Gln 355 360 365 Tyr Leu Gln Thr Ser Ala Gln Met Gly Tyr Val Val Ile Asp Ile Glu 370 375 380 Ala Asp Glu Asp Val Ala Glu Lys Ala Leu Gln Ala Met Lys Ala Ile 385 390 395 400 Pro Gly Thr Ile Arg Ala Arg Leu Leu Tyr 405 410 <210> 32 <211> 1233 <212> DNA <213> Artificial Sequence <220> <223> serA gene <400> 32 atggcaaagg tatcgctgga gaaagacaag attaagtttc tgctggtaga aggcgtgcac 60 caaaaggcgc tggaaagcct tcgtgcagct ggttacacca acatcgaatt tcacaaaggc 120 gcgctggatg atgaacaatt aaaagaatcc atccgcgatg cccacttcat cggcctgcga 180 tcccgtaccc atctgactga agacgtgatc aacgccgcag aaaaactggt cgctattggc 240 tgtttctgta tcggaacaaa ccaggttgat ctggatgcgg cggcaaagcg cgggatcccg 300 gtatttaacg caccgttctc aaatacgcgc tctgttgcgg agctggtgat tggcgaactg 360 ctgctgctat tgcgcggcgt gccggaagcc aatgctaaag cgcaccgtgg cgtgtggaac 420 aaactggcgg cgggttcttt tgaagcgcgc ggcaaaaagc tgggtatcat cggctacggt 480 catattggta cgcaattggg cattctggct gaatcgctgg gaatgtatgt ttacttttat 540 gatattgaaa ataaactgcc gctgggcaac gccactcagg tacagcatct ttctgacctg 600 ctgaatatga gcgatgtggt gagtctgcat gtaccagaga atccgtccac caaaaatatg 660 atgggcgcga aagaaatttc actaatgaag cccggctcgc tgctgattaa tgcttcgcgc 720 ggtactgtgg tggatattcc ggcgctgtgt gatgcgctgg cgagcaaaca tctggcgggg 780 gcggcaatcg acgtattccc gacggaaccg gcgaccaata gcgatccatt tacctctccg 840 ctgtgtgaat tcgacaacgt ccttctgacg ccacacattg gcggttcgac tcaggaagcg 900 caggagaata tcggcctgga agttgcgggt aaattgatca agtattctga caatggctca 960 acgctctctg cggtgaactt cccggaagtc tcgctgccac tgcacggtgg gcgtcgtctg 1020 atgcacatcc acgaaaaccg tccgggcgtg ctaactgcgc tgaacaaaat cttcgccgag 1080 cagggcgtca acatcgccgc gcaatatctg caaacttccg cccagatggg ttatgtggtt 1140 attgatattg aagccgacga agacgttgcc gaaaaagcgc tgcaggcaat gaaagctatt 1200 ccgggtacca ttcgcgcccg tctgctgtac taa 1233 <210> 33 <211> 378 <212> PRT <213> Artificial Sequence <220> <223> E. coli K12 derived Erythronate-4-phosphate dehydrogenase (PdxB) <400> 33 Met Lys Ile Leu Val Asp Glu Asn Met Pro Tyr Ala Arg Asp Leu Phe 1 5 10 15 Ser Arg Leu Gly Glu Val Thr Ala Val Pro Gly Arg Pro Ile Pro Val 20 25 30 Ala Gln Leu Ala Asp Ala Asp Ala Leu Met Val Arg Ser Val Thr Lys 35 40 45 Val Asn Glu Ser Leu Leu Ala Gly Lys Pro Ile Lys Phe Val Gly Thr 50 55 60 Ala Thr Ala Gly Thr Asp His Val Asp Glu Ala Trp Leu Lys Gln Ala 65 70 75 80 Gly Ile Gly Phe Ser Ala Ala Pro Gly Cys Asn Ala Ile Ala Val Val 85 90 95 Glu Tyr Val Phe Ser Ser Leu Leu Met Leu Ala Glu Arg Asp Gly Phe 100 105 110 Ser Leu Tyr Asp Arg Thr Val Gly Ile Val Gly Val Gly Asn Val Gly 115 120 125 Arg Arg Leu Gln Ala Arg Leu Glu Ala Leu Gly Ile Lys Thr Leu Leu 130 135 140 Cys Asp Pro Pro Arg Ala Asp Arg Gly Asp Glu Gly Asp Phe Arg Ser 145 150 155 160 Leu Asp Glu Leu Val Gln Arg Ala Asp Ile Leu Thr Phe His Thr Pro 165 170 175 Leu Phe Lys Asp Gly Pro Tyr Lys Thr Leu His Leu Ala Asp Glu Lys 180 185 190 Leu Ile Arg Ser Leu Lys Pro Gly Ala Ile Leu Ile Asn Ala Cys Arg 195 200 205 Gly Ala Val Val Asp Asn Thr Ala Leu Leu Thr Cys Leu Asn Glu Gly 210 215 220 Gln Lys Leu Ser Val Val Leu Asp Val Trp Glu Gly Glu Pro Glu Leu 225 230 235 240 Asn Val Glu Leu Leu Lys Lys Val Asp Ile Gly Thr Ser His Ile Ala 245 250 255 Gly Tyr Thr Leu Glu Gly Lys Ala Arg Gly Thr Thr Gln Val Phe Glu 260 265 270 Ala Tyr Ser Lys Phe Ile Gly His Glu Gln His Val Ala Leu Asp Thr 275 280 285 Leu Leu Pro Ala Pro Glu Phe Gly Arg Ile Thr Leu His Gly Pro Leu 290 295 300 Asp Gln Pro Thr Leu Lys Arg Leu Val His Leu Val Tyr Asp Val Arg 305 310 315 320 Arg Asp Asp Ala Pro Leu Arg Lys Val Ala Gly Ile Pro Gly Glu Phe 325 330 335 Asp Lys Leu Arg Lys Asn Tyr Leu Glu Arg Arg Glu Trp Ser Ser Leu 340 345 350 Tyr Val Ile Cys Asp Asp Ala Ser Ala Ala Ser Leu Leu Cys Lys Leu 355 360 365 Gly Phe Asn Ala Val His His Pro Ala Arg 370 375 <210> 34 <211> 1137 <212> DNA <213> Artificial Sequence <220> <223> pdxB gene <400> 34 gtgaaaatcc ttgttgatga aaatatgcct tatgcccgcg acttatttag ccgtttgggt 60 gaggtgaccg cggttcccgg gcgtccaatc cccgtcgctc aactggcaga cgcggatgcg 120 ctgatggtgc gttcggtcac gaaagtgaat gaatctttgc tggcaggaaa acccattaaa 180 tttgttggca ctgccactgc ggggaccgac catgtcgatg aagcatggtt gaagcaggcg 240 ggaattggtt tttccgctgc acctggctgt aatgcgattg cggtggtgga atatgttttc 300 tcctccctgc tgatgcttgc cgaacgcgat ggattttcac tgtacgaccg tacggtgggg 360 atcgtgggcg ttggtaacgt tggacgtcga ttgcaggcgc gactggaagc gttagggatt 420 aaaaccttac tttgcgatcc gcctcgcgcc gaccgtgggg atgagggtga tttccgctcg 480 ctggatgagt tagtccagcg cgcggatatt ctgactttcc atacgccact ctttaaagat 540 ggtccgtaca aaacgctaca tctggcggat gaaaaactga tccgtagcct gaagcccgga 600 gcgattctga ttaacgcctg ccgtggcgca gtcgtcgata atactgcgtt gctgacctgc 660 ctgaatgaag gccagaagtt aagcgtagtg ctggatgtct gggaaggcga accggaactc 720 aacgtcgagc tgctgaaaaa agtggatatc ggcacgtcgc atatcgcagg ctataccctg 780 gaaggtaaag cacgcggtac tacgcaagtg tttgaagctt atagcaagtt tattgggcat 840 gaacagcacg ttgcgctgga tacattactg cctgcgccag agtttggtcg cattacgctg 900 catggcccgc tcgatcaacc gacgctgaaa aggctggtgc atttggtgta tgatgtgcgc 960 cgcgatgacg caccgctgcg taaagtcgcc gggataccgg gtgagttcga taaactgcgc 1020 aaaaactatc ttgagcgccg tgaatggtca tctctgtatg taatttgtga tgacgccagt 1080 gcggcatcat tgctgtgtaa actgggtttt aacgccgttc atcatccggc acgttaa 1137 <210> 35 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> pdxB-sac-F primer <400> 35 gcgcgcgagc tcgtgaaaat ccttgttgat ga 32 <210> 36 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> pdxB-sph-R primer <400> 36 gcgcgcgcat gcttaacgtg ccggatgatg aa 32 <210> 37 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> serA-sac-F primer <400> 37 gcgcgcgagc tcatggcaaa ggtatcgctg ga 32 <210> 38 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> SerA-sph-R primer <400> 38 gcgcgcgcat gcttagtaca gcagacgggc gc 32 <110> LG CHEM, LTD. <120> Recombinant microorganism and method for preparing copolymer comprising 2-hydroxybutyrate and lactate <130> DPP20173751KR <160> 38 <170> KopatentIn 3.0 <210> 1 <211> 1575 <212> DNA <213> Clostridium propionicum <220> < 221> gene <222> (1)..(1575) <223> popionyl-CoA transferase <400> 1 atgagaaagg ttcccattat taccgcagat gaggctgcaa agcttattaa agacggtgat 60 acagttacaa caagtggttt cgttggaaat gcaatccctg aggctcttga tagagctgta 120 gaaaaaagat tcttagaaac aggcgaaccc aaaaacatta cctatgttta ttgtggttct 180 caaggtaaca gagacggaag aggtgctgag cactttgctc atgaaggcct tttaaaacgt 240 tacatcgctg gtcactgggc tacagttcct gctttgggta aaatggctat ggaaaataaa 300 atggaagcat ataatgtatc tcagggtgca ttgtgtcatt tgttccgtga tatagcttct 360 cataagccag gcgtatttac aaaggtaggt atcggtactt tcattgaccc cagaaatggc 420 ggcggtaaag taaatgatat taccaaagaa gatattgttg aattggtaga gattaagggt 480 caggaatatt tattctaccc tgcttttcct attcatgtag ctcttattcg tggtacttac 540 gctgatgaaa gcggaaatat cacatttgag aaagaagttg ctcctctgga aggaacttca 600 gtatgccagg ctgttaaaaa cagtggcggt atcgttgtag ttcaggttga aagagtagta 660 aaagctggta ctcttgaccc tcgtcatgta aaagttccag gaatttatgt tgactatgtt 720 gttgttgctg acccagaaga tcatcagcaa tctttagatt gtgaatatga tcctgcatta 780 tcaggcgagc atagaagacc tgaagttgtt ggagaaccac ttcctttgag tgcaaagaaa 840 gttattggtc gtcgtggtgc cattgaatta gaaaaagatg ttgctgtaaa tttaggtgtt 900 ggtgcgcctg aatatgtagc aagtgttgct gatgaagaag gtatcgttga ttttatgact 960 ttaactgctg aaagtggtgc tattggtggt gttcctgctg gtggcgttcg ctttggtgct 1020 tcttataatg cggatgcatt gatcgatcaa ggttatcaat tcgattacta tgatggcggc 1080 ggcttagacc tttgctattt aggcttagct gaatgcgatg aaaaaggcaa tatcaacgtt 1140 tcaagatttg gccctcgtat cgctggttgt ggtggtttca tcaacattac acagaataca 1200 cctaaggtat tcttctgtgg tactttcaca gcaggtggct taaaggttaa aattgaagat 1260 ggcaaggtta ttattgttca agaaggcaag cagaaaaaat tcttgaaagc tgttgagcag 1320 attacattca atggtgacgt tgcacttgct aataagcaac aagtaactta tattacagaa 1380 agatgcgtat tccttttgaa ggaagatggt ttgcacttat ctgaaattgc acctggtatt 1440 gatttgcaga cacagattct tgacgttatg gattttgcac ctattattga cagagatgca 1500 aacggccaaa tcaaattgat ggacgctgct ttgtttgcag aaggcttaat gggtctgaag 1560 gaaatgaagt cctaa 1575 <210> 2 <211> 524 <212> PRT <213> Clostridium propionicum <220> <221> PEPTIDE <222> (1)..(524) <223> propionyl-CoA transferase <400> 2 Met Arg Lys Val Pro Ile Ile Thr Ala Asp Glu Ala Ala Lys Leu Ile 1 5 10 15 Lys Asp Gly Asp Thr Val Thr Thr Ser Gly Phe Val Gly Asn Ala Ile 20 25 30 Pro Glu Ala Leu Asp Arg Ala Val Glu Lys Arg Phe Leu Glu Thr Gly 35 40 45 Glu Pro Lys Asn Ile Thr Tyr Val Tyr Cys Gly Ser Gln Gly Asn Arg 50 55 60 Asp Gly Arg Gly Ala Glu His Phe Ala His Glu Gly Leu Leu Lys Arg 65 70 75 80 Tyr Ile Ala Gly His Trp Ala Thr Val Pro Ala Leu Gly Lys Met Ala 85 90 95 Met Glu Asn Lys Met Glu Ala Tyr Asn Val Ser Gln Gly Ala Leu Cys 100 105 110 His Leu Phe Arg Asp Ile Ala Ser His Lys Pro Gly Val Phe Thr Lys 115 120 125 Val Gly Ile Gly Thr Phe Ile Asp Pro Arg Asn Gly Gly Gly Lys Val 130 135 140 Asn Asp Ile Thr Lys Glu Asp Ile Val Glu Leu Val Glu Ile Lys Gly 145 150 155 160 Gln Glu Tyr Leu Phe Tyr Pro Ala Phe Pro Ile His Val Ala Leu Ile 165 170 175 Arg Gly Thr Tyr Ala Asp Glu Ser Gly Asn Ile Thr Phe Glu Lys Glu 180 185 190 Val Ala Pro Leu Glu Gly Thr Ser Val Cys Gln Ala Val Lys Asn Ser 195 200 205 Gly Gly Ile Val Val Val Gln Val Glu Arg Val Val Lys Ala Gly Thr 210 215 220 Leu Asp Pro Arg His Val Lys Val Pro Gly Ile Tyr Val Asp Tyr Val 225 230 235 240 Val Val Ala Asp Pro Glu Asp His Gln Gln Ser Leu Asp Cys Glu Tyr 245 250 255 Asp Pro Ala Leu Ser Gly Glu His Arg Arg Pro Glu Val Val Gly Glu 260 265 270 Pro Leu Pro Leu Ser Ala Lys Lys Val Ile Gly Arg Arg Gly Ala Ile 275 280 285 Glu Leu Glu Lys Asp Val Ala Val Asn Leu Gly Val Gly Ala Pro Glu 290 295 300 Tyr Val Ala Ser Val Ala Asp Glu Glu Gly Ile Val Asp Phe Met Thr 305 310 315 320 Leu Thr Ala Glu Ser Gly Ala Ile Gly Gly Val Pro Ala Gly Gly Val 325 330 335 Arg Phe Gly Ala Ser Tyr Asn Ala Asp Ala Leu Ile Asp Gln Gly Tyr 340 345 350 Gln Phe Asp Tyr Tyr Asp Gly Gly Gly Leu Asp Leu Cys Tyr Leu Gly 355 360 365 Leu Ala Glu Cys Asp Glu Lys Gly Asn Ile Asn Val Ser Arg Phe Gly 370 375 380 Pro Arg Ile Ala Gly Cys Gly Gly Phe Ile Asn Ile Thr Gln Asn Thr 385 390 395 400 Pro Lys Val Phe Phe Cys Gly Thr Phe Thr Ala Gly Gly Leu Lys Val 405 410 415 Lys Ile Glu Asp Gly Lys Val Ile Ile Val Gln Glu Gly Lys Gln Lys 420 425 430 Lys Phe Leu Lys Ala Val Glu Gln Ile Thr Phe Asn Gly Asp Val Ala 435 440 445 Leu Ala Asn Lys Gln Gln Val Thr Tyr Ile Thr Glu Arg Cys Val Phe 450 455 460 Leu Leu Lys Glu Asp Gly Leu His Leu Ser Glu Ile Ala Pro Gly Ile 465 470 475 480 Asp Leu Gln Thr Gln Ile Leu Asp Val Met Asp Phe Ala Pro Ile Ile 485 490 495 Asp Arg Asp Ala Asn Gly Gln Ile Lys Leu Met Asp Ala Ala Leu Phe 500 505 510 Ala Glu Gly Leu Met Gly Leu Lys Glu Met Lys Ser 515 520 <210> 3 <211> 1677 <212> DNA <213> Pseudomonas sp. 6-19 <220> <221> gene <222> (1)..(1677) <223> PHA synthase <400> 3 atgagtaaca agagtaacga tgagttgaag tatcaagcct ctgaaaacac cttggggctt 60 aatcctgtcg ttgggctgcg tggaaaggat ctactggctt ctgctcgaat ggtgcttagg 120 caggccatca agcaaccggt gcacagcgtc aaacatgtcg cgcactttgg tcttgaactc 180 aagaacgtac tgctgggtaa atccgggctg caaccgacca gcgatgaccg tcgcttcgcc 240 gatccggcct ggagccagaa cccgctctat aaacgttatt tgcaaaccta cctggcgtgg 300 cgcaaggaac tccacgactg gatcgatgaa agtaacctcg cccccaagga tgtggcgcgt 360 gggcacttcg tgatcaacct catgaccgaa gcgatggcgc cgaccaacac cgcggccaac 420 ccggcggcag tcaaacgctt ttttgaaacc ggtggcaaaa gcctgctcga cggcctctcg 480 cacctggcca aggatctggt acacaacggc ggcatgccga gccaggtcaa catgggtgca 540 ttcgaggtcg gcaagagcct gggcgtgacc gaaggcgcgg tggtgtttcg caacgatgtg 600 ctggaactga tccagtacaa gccgaccacc gagcaggtat acgaacgccc gctgctggtg 660 gtgccgccgc agatcaacaa gttctacgtt ttcgacctga gcccggacaa gagcctggcg 720 cggttctgcc tgcgcaacaa cgtgcaaacg ttcatcgtca gctggcgaaa tcccaccaag 780 gaacagcgag agtggggcct gt cgacctac atcgaagccc tcaaggaagc ggttgacgtc 840 gttaccgcga tcaccggcag caaagacgtg aacatgctcg gggcctgctc cggcggcatc 900 acttgcactg cgctgctggg ccattacgcg gcgattggcg aaaacaaggt caacgccctg 960 accttgctgg tgagcgtgct tgataccacc ctcgacagcg acgtcgccct gttcgtcaat 1020 gaacagaccc ttgaagccgc caagcgccac tcgtaccagg ccggcgtact ggaaggccgc 1080 gacatggcga aggtcttcgc ctggatgcgc cccaacgatc tgatctggaa ctactgggtc 1140 aacaattacc tgctaggcaa cgaaccgccg gtgttcgaca tcctgttctg gaacaacgac 1200 accacacggt tgcccgcggc gttccacggc gacctgatcg aactgttcaa aaataaccca 1260 ctgattcgcc cgaatgcact ggaagtgtgc ggcaccccca tcgacctcaa gcaggtgacg 1320 gccgacatct tttccctggc cggcaccaac gaccacatca ccccgtggaa gtcctgctac 1380 aagtcggcgc aactgtttgg cggcaacgtt gaattcgtgc tgtcgagcag cgggcatatc 1440 cagagcatcc tgaacccgcc gggcaatccg aaatcgcgct acatgaccag caccgaagtg 1500 gcggaaaatg ccgatgaatg gcaagcgaat gccaccaagc atacagattc ctggtggctg 1560 cactggcagg cctggcaggc ccaacgctcg ggcgagctga aaaagtcccc gacaaaactg 1620 ggcagcaagg cgtatccggc aggtgaagcg gcgccaggca cgtacgtgca cgaacgg 1677 <210> 4 <211> 559 <212> PRT <213> Pseudomonas sp. 6-19 <220> <221> PEPTIDE <222> (1)..(559) <223> PHA synthase <400> 4 Met Ser Asn Lys Ser Asn Asp Glu Leu Lys Tyr Gln Ala Ser Glu Asn 1 5 10 15 Thr Leu Gly Leu Asn Pro Val Val Gly Leu Arg Gly Lys Asp Leu Leu 20 25 30 Ala Ser Ala Arg Met Val Leu Arg Gln Ala Ile Lys Gln Pro Val His 35 40 45 Ser Val Lys His Val Ala His Phe Gly Leu Glu Leu Lys Asn Val Leu 50 55 60 Leu Gly Lys Ser Gly Leu Gln Pro Thr Ser Asp Asp Arg Arg Phe Ala 65 70 75 80 Asp Pro Ala Trp Ser Gln Asn Pro Leu Tyr Lys Arg Tyr Leu Gln Thr 85 90 95 Tyr Leu Ala Trp Arg Lys Glu Leu His Asp Trp Ile Asp Glu Ser Asn 100 105 110 Leu Ala Pro Lys Asp Val Ala Arg Gly His Phe Val Ile Asn Leu Met 115 120 125 Thr Glu Ala Met Ala Pro Thr Asn Thr Ala Ala Asn Pro Ala Ala Val 130 135 140 Lys Arg Phe Phe Glu Thr Gly Gly Lys Ser Leu Leu Asp Gly Leu Ser 145 150 155 160 His Leu Ala Lys Asp Leu Val His Asn Gly Gly Met Pro Ser Gln Val 165 170 175 Asn Met Gly Ala Phe Glu Val Gly Lys Ser Leu Gly Val Thr Glu Gly 180 185 190 Ala Val Val Phe Arg Asn Asp Val Leu Glu Leu Ile Gln Tyr Lys Pro 195 200 205 Thr Thr Glu Gln Val Tyr Glu Arg Pro Leu Leu Val Val Pro Pro Gln 210 215 220 Ile Asn Lys Phe Tyr Val Phe Asp Leu Ser Pro Asp Lys Ser Leu Ala 225 230 235 240 Arg Phe Cys Leu Arg Asn Asn Val Gln Thr Phe Ile Val Ser Trp Arg 245 250 255 Asn Pro Thr Lys Glu Gln Arg Glu Trp Gly Leu Ser Thr Tyr Ile Glu 260 265 270 Ala Leu Lys Glu Ala Val Asp Val Val Thr Ala Ile Thr Gly Ser Lys 275 280 285 Asp Val Asn Met Leu Gly Ala Cys Ser Gly Gly Ile Thr Cys Thr Ala 290 295 300 Leu Leu Gly His Tyr Ala Ala Ile Gly Glu Asn Lys Val Asn Ala Leu 305 310 315 320 Thr Leu Leu Val Ser Val Leu Asp Thr Thr Leu Asp Ser Asp Val Ala 325 330 335 Leu Phe Val Asn Glu Gln Thr Leu Glu Ala Ala Lys Arg His Ser Tyr 340 345 350 Gln Ala Gly Val Leu Glu Gly Arg Asp Met Ala Lys Val Phe Ala Trp 355 360 365 Met Arg Pro Asn Asp Leu Ile Trp Asn Tyr Trp Val Asn Asn Tyr Leu 370 375 380 Leu Gly Asn Glu Pro Pro Val Phe Asp Ile Leu Phe Trp Asn Asn Asp 385 390 395 400 Thr Thr Arg Leu Pro Ala Ala Phe His Gly Asp Leu Ile Glu Leu Phe 405 410 415 Lys Asn Asn Pro Leu Ile Arg Pro Asn Ala Leu Glu Val Cys Gly Thr 420 425 430 Pro Ile Asp Leu Lys Gln Val Thr Ala Asp Ile Phe Ser Leu Ala Gly 435 440 445 Thr Asn Asp His Ile Thr Pro Trp Lys Ser Cys Tyr Lys Ser Ala Gln 450 455 460 Leu Phe Gly Gly Asn Val Glu Phe Val Leu Ser Ser Ser Gly His Ile 465 470 475 480 Gln Ser Ile Leu Asn Pro Pro Gly Asn Pro Lys Ser Arg Tyr Met Thr 485 490 495 Ser Thr Glu Val Ala Glu Asn Ala Asp Glu Trp Gln Ala Asn Ala Thr 500 505 510 Lys His Thr Asp Ser Trp Trp Leu His Trp Gln Ala Trp Gln Ala Gln 515 520 525 Arg Ser Gly Glu Leu Lys Lys Ser Pro Thr Lys Leu Gly Ser Lys Ala 530 535 540 Tyr Pro Ala Gly Glu Ala Ala Pro Gly Thr Tyr Val His Glu Arg 545 550 555 <210> 5 <211> 35 <212> DNA <213> Artificial Sequence <220> <223 > primer <400> 5 gagagacaat caaatcatga gtaacaagag taacg 35 <210> 6 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 6 cactcatgca agcgtcaccg ttcgtgcacg tac 33 <210> 7 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 7 atgcccggag ccggttcgaa 20 <210> 8 <211> 35 <212> DNA <213> Artificial Sequence <220> <223 > primer <400> 8 cgttactctt gttactcatg atttgattgt ctctc 35 <210> 9 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 9 gagagacaat caaatcatga gtaacaagag taacg 35 <210> 10 <211 > 33 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 10 cactcatgca agcgtcaccg ttcgtgcacg tac 33 <210> 11 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 11 gtacgtgcac gaacggtgac gcttgcatga gtg 33 <210> 12 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 12 aacgggaggg aacctgcagg 20 <210> 13 <211> 33 < 212> DNA <213> Artificial Sequence <220> <223> primer <400> 13 ctgaccttgc tggtgaccgt gcttgatacc acc 33 <210> 14 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer <400 > 14 ggtggtatca agcacggtca ccagcaaggt cag 33 <210> 15 <211> 36 <212> DNA <213> Artificial Sequence <220> < 223> primer <400> 15 cgagcagcgg gcatatcatg agcatcctga acccgc 36 <210> 16 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 16 gcgggttcag gatgctcatg atatgcccgc tgctcg 36 <210> 17 < 211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 17 atcaacctca tgaccgatgc gatggcgccg acc 33 <210> 18 <211> 33 <212> DNA <213> Artificial Sequence <220> <223 > primer <400> 18 ggtcggcgcc atcgcatcgg tcatgaggtt gat 33 <210> 19 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 19 ggaattcatg agaaaggttc ccattattac cgcagatga 39 <210> 20 <211 > 46 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 20 gctctagatt aggacttcat ttccttcaga cccattaagc cttctg 46 <210> 21 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 21 aggcctgcag gcggataaca atttcacaca gg 32 <210> 22 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 22 gcccatatgt ctagattagg acttcatttc c 31 <210> 23 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 23 cgccggcagg cctgcagg 18 <210> 24 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 24 ggcaggtcag cccatatgtc 20 <210> 25 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 25 gaattcgtgc tgtcgagccg cgggcatatc 30 <210> 26 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 26 gatatgcccg cggctcgaca gcacgaattc 30 <210 > 27 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 27 gggcatatca agagcatcct gaacccgc 28 <210> 28 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 28 gcgggttcag gatgctcttg atatgccc 28 <210> 29 <211> 20 <212> D NA <213> Artificial Sequence <220> <223> primer <400> 29 atgcccggag ccggttcgaa 20 <210> 30 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 30 gaaattgtta tccgcctgca gg 22 <210> 31 <211> 410 <212> PRT <213> Artificial Sequence <220> <223> E. coli K12 derived D-3-phosphoglycerate dehydrogenase (SerA) <400> 31 Met Ala Lys Val Ser Leu Glu Lys Asp Lys Ile Lys Phe Leu Leu Val 1 5 10 15 Glu Gly Val His Gln Lys Ala Leu Glu Ser Leu Arg Ala Ala Gly Tyr 20 25 30 Thr Asn Ile Glu Phe His Lys Gly Ala Leu Asp Asp Glu Gln Leu Lys 35 40 45 Glu Ser Ile Arg Asp Ala His Phe Ile Gly Leu Arg Ser Arg Thr His 50 55 60 Leu Thr Glu Asp Val Ile Asn Ala Ala Glu Lys Leu Val Ala Ile Gly 65 70 75 80 Cys Phe Cys Ile Gly Thr Asn Gln Val Asp Leu Asp Ala Ala Ala Lys 85 90 95 Arg Gly Ile Pro Val Phe Asn Ala Pro Phe Ser Asn Thr Arg Ser Val 100 105 110 Ala Glu Leu Val Ile Gly Glu Leu Leu Leu Leu Leu Leu Arg Gly Val Pro 115 120 12 5 Glu Ala Asn Ala Lys Ala His Arg Gly Val Trp Asn Lys Leu Ala Ala 130 135 140 Gly Ser Phe Glu Ala Arg Gly Lys Lys Leu Gly Ile Ile Gly Tyr Gly 145 150 155 160 His Ile Gly Thr Gln Leu Gly Ile Leu Ala Glu Ser Leu Gly Met Tyr 165 170 175 Val Tyr Phe Tyr Asp Ile Glu Asn Lys Leu Pro Leu Gly Asn Ala Thr 180 185 190 Gln Val Gln His Leu Ser Asp Leu Leu Asn Met Ser Asp Val Val Ser 195 200 205 Leu His Val Pro Glu Asn Pro Ser Thr Lys Asn Met Met Gly Ala Lys 210 215 220 Glu Ile Ser Leu Met Lys Pro Gly Ser Leu Leu Ile Asn Ala Ser Arg 225 230 235 240 Gly Thr Val Val Asp Ile Pro Ala Leu Cys Asp Ala Leu Ala Ser Lys 245 250 255 His Leu Ala Gly Ala Ala Ile Asp Val Phe Pro Thr Glu Pro Ala Thr 260 265 270 Asn Ser Asp Pro Phe Thr Ser Pro Leu Cys Glu Phe Asp Asn Val Leu 275 280 285 Leu Thr Pro His Ile Gly Gly Ser Thr Gln Glu Ala Gln Glu Asn Ile 290 295 300 Gly Leu Glu Val Ala Gly Lys Leu Ile Lys Tyr Ser Asp Asn Gly Ser 305 310 315 320 Thr Leu Ser Ala Val Asn Phe Pro Glu Val Ser Leu Pro Leu His Gly 325 330 335 Gly Arg Arg Leu Met His Ile His Glu Asn Arg Pro Gly Val Leu Thr 340 345 350 Ala Leu Asn Lys Ile Phe Ala Glu Gln Gly Val Asn Ile Ala Ala Gln 355 360 365 Tyr Leu Gln Thr Ser Ala Gln Met Gly Tyr Val Val Ile Asp Ile Glu 370 375 380 Ala Asp Glu Asp Val Ala Glu Lys Ala Leu Gln Ala Met Lys Ala Ile 385 390 395 400 Pro Gly Thr Ile Arg Ala Arg Leu Leu Tyr 405 410 <210> 32 <211> 1233 <212> DNA <213> Artificial Sequence <220> <223> serA gene <400> 32 atggcaaagg tatcgctgga gaaagacaag attaagtttc tgctggtaga aggcgtgcac 60 caaaaggcgc tggaaagcct tcgtgcagct ggttacacca acatcgaatt tcacaaaggc 120 gcgctggatg atgaacaatt aaaagaatcc atccgcgatg cccacttcat cggcctgcga 180 tcccgtaccc atctgactga agacgtgatc aacgccgcag aaaaactggt cgctattggc 240 tgtttctgta tcggaacaaa ccaggttgat ctggatgcgg cggcaaagcg cgggatcccg 300 gtatttaacg caccgttctc aaatacgcgc tctgttgcgg agctggtgat tggcgaactg 360 ctgctgctat tgcgcggcgt gccggaagcc aatgctaaag cgcaccgtgg cgtgtggaac 420 aaactggcgg cgggttcttt tgaagcgcgc ggcaaaaagc tgggtatcat cggctacggt 480 catattggta cgcaattggg cattctggct gaatcgctg g gaatgtatgt ttacttttat 540 gatattgaaa ataaactgcc gctgggcaac gccactcagg tacagcatct ttctgacctg 600 ctgaatatga gcgatgtggt gagtctgcat gtaccagaga atccgtccac caaaaatatg 660 atgggcgcga aagaaatttc actaatgaag cccggctcgc tgctgattaa tgcttcgcgc 720 ggtactgtgg tggatattcc ggcgctgtgt gatgcgctgg cgagcaaaca tctggcgggg 780 gcggcaatcg acgtattccc gacggaaccg gcgaccaata gcgatccatt tacctctccg 840 ctgtgtgaat tcgacaacgt ccttctgacg ccacacattg gcggttcgac tcaggaagcg 900 caggagaata tcggcctgga agttgcgggt aaattgatca agtattctga caatggctca 960 acgctctctg cggtgaactt cccggaagtc tcgctgccac tgcacggtgg gcgtcgtctg 1020 atgcacatcc acgaaaaccg tccgggcgtg ctaactgcgc tgaacaaaat cttcgccgag 1080 cagggcgtca acatcgccgc gcaatatctg caaacttccg cccagatggg ttatgtggtt 1140 attgatattg aagccgacga agacgttgcc gaaaaagcgc tgcaggcaat gaaagctatt 1200 ccgggtacca ttcgcgcccg tctgctgtac taa 1233 <210> 33 <211> 378 <212> PRT <213 > Artificial Sequence <220> <223> E. coli K12 derived Erythronate-4-phosphate dehydrogenase (PdxB) <400> 33 Met Lys Ile Leu Val Asp Glu Asn Met Pro Tyr Ala Arg Asp Leu Phe 1 5 10 15 Ser Arg Leu Gly Glu Val Thr Ala Val Pro Gly Arg Pro Ile Pro Val 20 25 30 Ala Gln Leu Ala Asp Ala Asp Ala Leu Met Val Arg Ser Val Thr Thr Lys 35 40 45 Val Asn Glu Ser Leu Leu Ala Gly Lys Pro Ile Lys Phe Val Gly Thr 50 55 60 Ala Thr Ala Gly Thr Asp His Val Asp Glu Ala Trp Leu Lys Gln Ala 65 70 75 80 Gly Ile Gly Phe Ser Ala Ala Pro Gly Cys Asn Ala Ile Ala Val Val 85 90 95 Glu Tyr Val Phe Ser Ser Leu Leu Met Leu Ala Glu Arg Asp Gly Phe 100 105 110 Ser Leu Tyr Asp Arg Thr Val Gly Ile Val Gly Val Gly Asn Val Gly 115 120 125 Arg Arg Leu Gln Ala Arg Leu Glu Ala Leu Gly Ile Lys Thr Leu Leu 130 135 140 Cys Asp Pro Pro Arg Ala Asp Arg Gly Asp Glu Gly Asp Phe Arg Ser 145 150 155 160 Leu Asp Glu Leu Val Gln Arg Ala Asp Ile Leu Thr Phe His Thr Pro 165 170 175 Leu Phe Lys Asp Gly Pro Tyr Lys Thr Leu His Leu Ala Asp Glu Lys 180 185 190 Leu Ile Arg Ser Leu Lys Pro Gly Ala Ile Leu Ile Asn Ala Cys Arg 195 200 205 Gly Ala Val Val Asp Asn Thr Ala Leu Leu Thr Cys Leu Asn Glu Gly 210 215 220 Gln Lys Leu Ser Val Val Leu Asp Val Trp Glu Gly Glu Pro Glu Leu 225 230 235 240 Asn Val Glu Leu Leu Lys Lys Val Asp Ile Gly Thr Ser His Ile Ala 245 250 255 Gly Tyr Thr Leu Glu Gly Lys Ala Arg Gly Thr Thr Gln Val Phe Glu 260 265 270 Ala Tyr Ser Lys Phe Ile Gly His Glu Gln His Val Ala Leu Asp Thr 275 280 285 Leu Leu Pro Ala Pro Glu Phe Gly Arg Ile Thr Leu His Gly Pro Leu 290 295 300 Asp Gln Pro Thr Leu Lys Arg Leu Val His Leu Val Tyr Asp Val Arg 305 310 315 320 Arg Asp Asp Ala Pro Leu Arg Lys Val Ala Gly Ile Pro Gly Glu Phe 325 330 335 Asp Lys Leu Arg Lys Asn Tyr Leu Glu Arg Arg Glu Trp Ser Ser Leu 340 345 350 Tyr Val Ile Cys Asp Asp Ala Ser Ala Ala Ser Leu Leu Cys Lys Leu 355 360 365 Gly Phe Asn Ala Val His Pro Ala Arg 370 375 <210> 34 <211> 1137 <212> DNA <213> Artificial Sequence <220> <223> pdxB gene <400> 34 gtgaaaatcc ttgttgatga aaatatgcct tatgcccgcg acttatttag ccgtttgggt 60 gaggtgaccg cggttcccgg gcgtccaatc cccgtcgctc aactggcaga cgcggatgcg 120 ctgatggtgc gttcggtcac gaaagtgaat gaatctttgc tggcaggaaa acccattaaa 180 tttgttggca ctgccactgc ggggaccgac catgtcgatg aagcatggtt gaagcaggcg 240 ggaattggtt tttccgctgc acctggctgt aatgcgattg cggtggtgga atatgttttc 300 tcctccctgc tgatgcttgc cgaacgcgat ggattttcac tgtacgaccg tacggtgggg 360 atcgtgggcg ttggtaacgt tggacgtcga ttgcaggcgc gactggaagc gttagggatt 420 aaaaccttac tttgcgatcc gcctcgcgcc gaccgtgggg atgagggtga tttccgctcg 480 ctggatgagt tagtccagcg cgcggatatt ctgactttcc atacgccact ctttaaagat 540 ggtccgtaca aaacgctaca tctggcggat gaaaaactga tccgtagcct gaagcccgga 600 gcgattctga ttaacgcctg ccgtggcgca gtcgtcgata atactgcgtt gctgacctgc 660 ctgaatgaag gccagaagtt aagcgtagtg ctggatgtct gggaaggcga accggaactc 720 aacgtcgagc tgctgaaaaa agtggatatc ggcacgtcgc atatcgcagg ctataccctg 780 gaaggtaaag cacgcggtac tacgcaagtg tttgaagctt atagcaagtt tattgggcat 840 gaacagcacg ttgcgctgga tacattactg cctgcgccag agtttggtcg cattacgctg 900 catggcccgc tcgatcaacc gacgctgaaa aggctggtgc atttggtgta tgatgtgcgc 960 cgcgatgacg caccgctgcg taaagtcgcc gggataccgg gtgagttcga taaactgcgc 1020 aaaaactatc ttgagcgccg tgaatggtca tctctgtatg taatttgtga tgacgccagt 1080 gcggcatcat tgctgtgtaa actgggtttt aacgccgttc atcatccggc acgttaa 1137 <210> 35 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> pdxB-sac-F primer <400> 35 gcgcgcgagc tcgtgaaaat ccttgttgat ga 32 <210> 36 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> pdxB-sph-R primer <400> 36 gcgcgcgcat gcttaacgtg ccggatgatg aa 32 <210> 37 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> serA-sac-F primer <400> 37 gcgcgcgagc tcatggcaaa ggtatcgctg ga 32 <210> 38 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> SerA-sph-R primer<400> 38 gcgcgcgcat gcttagtaca gcagacgggc gc 32

Claims (18)

포스포글리세레이트 탈수소효소 암호화 유전자를 포함하는 재조합 벡터로 형질전환되고,
프로피오닐-CoA 전이효소 암호화 유전자 및 폴리하이드록시알카노에이트 합성효소 암호화 유전자를 포함하고,
상기 프로피오닐-CoA 전이효소 암호화 유전자는 서열번호 1의 염기서열에서 T78C, T669C, A1125G 및 T1158C의 변이를 포함하고, 서열번호 1과 대응하는 아미노산 서열에서 V193A의 변이를 포함하는 아미노산 서열을 암호화하는 염기서열을 포함하고,
상기 폴리하이드록시알카노에이트 합성효소 암호화 유전자는
서열번호 4의 아미노산 서열에서 L18H, V24A, K91R, M128V, E130D, N246S, S325T, S477G, Q481K 및 A527S 변이를 포함하는 아미노산 서열을 암호화하는 염기서열을 포함하는,
재조합 미생물.
Transformed with a recombinant vector containing a phosphoglycerate dehydrogenase encoding gene,
A gene encoding a propionyl-CoA transferase and a gene encoding a polyhydroxyalkanoate synthetase;
The gene encoding the propionyl-CoA transferase includes mutations of T78C, T669C, A1125G and T1158C in the nucleotide sequence of SEQ ID NO: 1, and encodes an amino acid sequence including a mutation of V193A in the amino acid sequence corresponding to SEQ ID NO: 1 Contains a nucleotide sequence,
The polyhydroxyalkanoate synthetase encoding gene is
A base sequence encoding an amino acid sequence including L18H, V24A, K91R, M128V, E130D, N246S, S325T, S477G, Q481K and A527S mutations in the amino acid sequence of SEQ ID NO: 4,
recombinant microorganisms.
제1항에 있어서, 포스포글리세레이트 탈수소효소 암호화 유전자는 Escherichia coli 유래 D-3-포스포글리세레이트 탈수소효소 유전자 (serA)인, 재조합 미생물.The method of claim 1, wherein the phosphoglycerate dehydrogenase encoding gene is Escherichia coli A recombinant microorganism, which is a derived D-3-phosphoglycerate dehydrogenase gene (serA). 삭제delete 제1항에 있어서, 재조합 미생물은 대장균인, 재조합 미생물. The recombinant microorganism according to claim 1, wherein the recombinant microorganism is Escherichia coli. 제1항에 있어서, 상기 프로피오닐-CoA 전이효소 암호화 유전자는 클로스트리디움 프로피오니쿰(Clostridium propionicum)에서 유래한 것인, 재조합 미생물.The recombinant microorganism according to claim 1, wherein the propionyl-CoA transferase encoding gene is derived from Clostridium propionicum . 제1항에 있어서, 상기 폴리하이드록시알카노에이트 합성효소 암호화 유전자는 슈도모나스 속 균주에서 유래한 phaC인, 재조합 미생물.The recombinant microorganism according to claim 1, wherein the polyhydroxyalkanoate synthetase encoding gene is phaC derived from a strain of the genus Pseudomonas. 삭제delete 삭제delete 삭제delete 제1항, 제2항 및 제4항 내지 제6항 중 어느 한 항에 있어서, 상기 재조합 미생물은 2-하이드록시부티레이트 및 락테이트를 반복단위로 포함하는 공중합체를 생산하는 것인, 재조합 미생물.The recombinant microorganism according to any one of claims 1, 2 and 4 to 6, wherein the recombinant microorganism produces a copolymer comprising 2-hydroxybutyrate and lactate as repeating units. . 제10항에 있어서, 상기 2-하이드록시부티레이트 및 락테이트를 반복단위로 포함하는 공중합체는 2-하이드록시부티레이트 함량이 15몰% 이상, 50몰% 이하인 것인, 재조합 미생물.The recombinant microorganism according to claim 10, wherein the copolymer comprising 2-hydroxybutyrate and lactate as repeating units has a 2-hydroxybutyrate content of 15 mol% or more and 50 mol% or less. 제1항, 제2항 및 제4항 내지 제6항 중 어느 한 항의 재조합 미생물을 배양하는 단계를 포함하는, 2-하이드록시부티레이트 및 락테이트를 반복단위로 포함하는 공중합체의 제조 방법.A method for preparing a copolymer comprising 2-hydroxybutyrate and lactate as repeating units, comprising culturing the recombinant microorganism according to any one of claims 1, 2, and 4 to 6. 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete
KR1020180002495A 2018-01-08 2018-01-08 Recombinant microorganism and method for preparing copolymer comprising 2-hydroxybutyrate and lactate KR102497785B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180002495A KR102497785B1 (en) 2018-01-08 2018-01-08 Recombinant microorganism and method for preparing copolymer comprising 2-hydroxybutyrate and lactate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180002495A KR102497785B1 (en) 2018-01-08 2018-01-08 Recombinant microorganism and method for preparing copolymer comprising 2-hydroxybutyrate and lactate

Publications (2)

Publication Number Publication Date
KR20190084575A KR20190084575A (en) 2019-07-17
KR102497785B1 true KR102497785B1 (en) 2023-02-07

Family

ID=67512675

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180002495A KR102497785B1 (en) 2018-01-08 2018-01-08 Recombinant microorganism and method for preparing copolymer comprising 2-hydroxybutyrate and lactate

Country Status (1)

Country Link
KR (1) KR102497785B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009111513A1 (en) * 2008-03-03 2009-09-11 Joule Biotechnologies, Inc. Engineered co2 fixing microorganisms producing carbon-based products of interest

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101211767B1 (en) 2009-06-30 2012-12-12 한국과학기술원 Mutants of PHA Synthases and Method for Preparing PLA and PLA Copolymer Using the Same
KR101328567B1 (en) * 2011-03-11 2013-11-13 한국화학연구원 Recombinant Microorganism Producing polyhydroxyalkanoate (PHA) containing 2-hydroxybutyrate (2HB) monomer and Preparing Method of PHA containing 2HB Using Thereof
KR101273599B1 (en) * 2011-06-08 2013-06-11 한국화학연구원 Method for Preparing Polyhydroxyalkanoate Containing 2-Hydroxybutyrate

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009111513A1 (en) * 2008-03-03 2009-09-11 Joule Biotechnologies, Inc. Engineered co2 fixing microorganisms producing carbon-based products of interest

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Biotechnology and Bioprocess Engineering, 21: 169-174 (2016).*

Also Published As

Publication number Publication date
KR20190084575A (en) 2019-07-17

Similar Documents

Publication Publication Date Title
KR102519456B1 (en) Method for preparing poly(3-hydroxypropionate-b-lactate) block copolymer by using microorganisms
KR101293886B1 (en) Recombinant Ralstonia eutropha Having an Producing Ability of Polylactate or Its Copolymers and Method for Preparing Polylactate or Its Copolymers Using the Same
KR100957777B1 (en) Mutants of PHA synthase from Pseudomonas sp. 6-19 and method for preparing lactate homopolymer or copolymer using the same
KR101273599B1 (en) Method for Preparing Polyhydroxyalkanoate Containing 2-Hydroxybutyrate
EP3187590B1 (en) Method for producing polyhydroxyalkanoate copolymer from saccharide raw material
KR101114912B1 (en) Method for Preparing Polylactate and its Copolymer Using Mutant Microorganism with Improved Productivity of Polylactate and its Copolymer
KR102088504B1 (en) Copolymer comprising 3-hydroxypropionate, 2-hydroxybutyrate and lactate as repeating unit and method for preparing the same
KR102538109B1 (en) Method of Preparing PLA Homopolymer Using Recombinant Microorganism Comprising ldhD Gene
KR102361618B1 (en) Copolymer comprising 2-hydroxybutyrate and 3-hydroxybutyrate and method of preparing the same
KR102088503B1 (en) Copolymer comprising 4-hydroxybutyrate, 3-hydroxybutyrate and 2-hydroxybutyrate as repeating unit and method for preparing the same
KR102002096B1 (en) Copolymer comprising 4-hydroxybutyrate, 2-hydroxybutyrate and lactate as repeating unit and method for preparing the same
KR102497785B1 (en) Recombinant microorganism and method for preparing copolymer comprising 2-hydroxybutyrate and lactate
KR102623585B1 (en) Recombinant microorganism and method for preparing terpolymer comprising 2-hydroxybutyrate, 2-hydroxyisovalerate and lactate
KR102318930B1 (en) Adhesive Composition Comprising Polyhydroxyalkanoate
KR102088502B1 (en) Copolymer comprising 4-hydroxybutyrate, 3-hydroxybutyrate, 2-hydroxybutyrate and lactate as repeating unit and method for preparing the same
KR20200145119A (en) Method for preparing copolymer comprising 4-hydroxybutyrate, 2-hydroxybutyrate and lactate as repeating unit with increased lactate content
KR102036828B1 (en) Method for Preparing Polyhydroxyalkanoates Using 2-Hydroxyisocaproate-CoA Transferase
KR102009420B1 (en) Method for preparing copolymer comprising 4-hydroxybutyrate and lactate as repeating unit using glucose
KR102091259B1 (en) Method for controlling polyhydroxyalkanoate using sequence variation in 5&#39;-untranslated region
KR101260187B1 (en) Recombinant microorganism able to produce polylactate or polylactate copolymer from glycerol and method for producing polylactate or polylactate copolymer from glycerol using the same
KR20230140757A (en) Recombinant microorganism for producing poly(3-hydroxybutyrate-co-3-hydroxyvalerate)

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant