KR102493409B1 - Nitrous oxide decomposition catalyst and its manufacturing method - Google Patents

Nitrous oxide decomposition catalyst and its manufacturing method Download PDF

Info

Publication number
KR102493409B1
KR102493409B1 KR1020210017348A KR20210017348A KR102493409B1 KR 102493409 B1 KR102493409 B1 KR 102493409B1 KR 1020210017348 A KR1020210017348 A KR 1020210017348A KR 20210017348 A KR20210017348 A KR 20210017348A KR 102493409 B1 KR102493409 B1 KR 102493409B1
Authority
KR
South Korea
Prior art keywords
cerium
yttrium
nitrous oxide
decomposition catalyst
preparation example
Prior art date
Application number
KR1020210017348A
Other languages
Korean (ko)
Other versions
KR20220114169A (en
Inventor
강연석
신중훈
김민수
최경륜
어은겸
Original Assignee
주식회사 숨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 숨 filed Critical 주식회사 숨
Priority to KR1020210017348A priority Critical patent/KR102493409B1/en
Publication of KR20220114169A publication Critical patent/KR20220114169A/en
Application granted granted Critical
Publication of KR102493409B1 publication Critical patent/KR102493409B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/464Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8628Processes characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

본 발명은 세륨-이트륨 산화물 지지체 및 상기 세륨-이트륨 산화물 지지체에 담지된 로듐을 포함하며, 상기 세륨과 이트륨의 몰 비율은 7~9:3~1 인 것을 특징으로 하는 아산화질소 분해 촉매로서, 저온에서 활성 저하 없이 아산화질소를 분해시킬 수 있다.The present invention is a nitrous oxide decomposition catalyst comprising a cerium-yttrium oxide support and rhodium supported on the cerium-yttrium oxide support, wherein the molar ratio of cerium and yttrium is 7 to 9:3 to 1, can degrade nitrous oxide without reducing its activity.

Description

아산화질소 분해 촉매 및 그 제조방법{Nitrous oxide decomposition catalyst and its manufacturing method}Nitrous oxide decomposition catalyst and its manufacturing method

본 발명은 아산화질소 분해 촉매 및 그 제조방법에 관한 것으로서, 보다 상세하게는 환원제 없이 저온에서 높은 아산화질소 분해율을 갖는 아산화질소 분해 촉매 및 그 제조방법에 관한 것이다.The present invention relates to a nitrous oxide decomposition catalyst and a method for preparing the same, and more particularly, to a nitrous oxide decomposition catalyst having a high nitrous oxide decomposition rate at a low temperature without a reducing agent and a method for preparing the same.

지구 온난화로 인한 기후변화 현상이 점차 가시화 되고 있는 가운데 세계 각국에서는 탄산가스를 비롯한 온실가스의 배출을 저감하기 위한 연구개발 노력이 진행되고 있다.While the phenomenon of climate change due to global warming is becoming increasingly visible, research and development efforts are being made to reduce emissions of greenhouse gases, including carbon dioxide, in countries around the world.

온실가스 중에서 N2O는 CO2와 메탄(CH4) 다음으로 많이 배출되는 성분이며 지구온난화 효과는 CO2 분자의 310배에 달하기 때문에 N2O 저감기술은 전 세계적으로 매우 필요한 기술이고 기술 선진국을 중심으로 개발 경쟁이 활발한 상황이다.Among greenhouse gases, N 2 O is the most emitted component after CO 2 and methane (CH 4 ), and its global warming effect reaches 310 times that of CO 2 molecules. Therefore, N 2 O reduction technology is a very necessary technology worldwide. Development competition is active, centered on developed countries.

현재 N2O 저감에는 열분해 기술과 촉매 분해 기술이 적용되고 있으며, 열분해 기술을 이용한 저감 방법은 비교적 용이하기 때문에 열분해 기술의 점유율이 상당히 높은편이지만, 열분해 온도가 1,000 ℃로 에너지 소비가 많은 단점이 있다.Currently, pyrolysis technology and catalytic decomposition technology are applied to N 2 O reduction, and since the reduction method using pyrolysis technology is relatively easy, the share of pyrolysis technology is quite high. there is.

따라서 N2O 분해 온도를 낮추면서도 높은 저감률을 갖는 촉매 개발의 필요성이 요구되고 있다. 예를 들어 대한민국 공개특허 10-2016-0104701호는 세리아를 사용한 선택적 촉매 환원 과정을 통한 질소산화물 환원 촉매 기술을 개시하고 있다. Therefore, there is a need to develop a catalyst having a high reduction rate while lowering the N 2 O decomposition temperature. For example, Korean Patent Publication No. 10-2016-0104701 discloses a nitrogen oxide reduction catalyst technology through a selective catalytic reduction process using ceria.

본 발명은 앞서 배경이 되는 기술에서 살펴본 바와 같이, 저온에서 촉매의 활성 저하 없이 아산화질소를 저감시킬 수 있는 분해 촉매 및 그 제조방법을 제공하기 위한 것이다.As described above, the present invention is to provide a decomposition catalyst capable of reducing nitrous oxide without reducing the activity of the catalyst at a low temperature and a method for preparing the same.

상기 과제를 해결하기 위해, 본 발명은 세륨-이트륨 산화물 지지체 및 상기 세륨-이트륨 산화물 지지체에 담지된 로듐을 포함하며, 상기 세륨과 이트륨의 몰 비율은 7~9:3~1 인 것을 특징으로 하는 아산화질소 분해 촉매를 제공한다.In order to solve the above problems, the present invention includes a cerium-yttrium oxide support and rhodium supported on the cerium-yttrium oxide support, and the molar ratio of cerium and yttrium is 7 to 9: 3 to 1, characterized in that A nitrous oxide decomposition catalyst is provided.

본 발명의 일 실시예에 있어서, 상기 로듐은 상기 세륨-이트륨 산화물 지지체 무게 대비 1%로 담지될 수 있다.In one embodiment of the present invention, the rhodium may be supported in an amount of 1% based on the weight of the cerium-yttrium oxide support.

본 발명의 일 실시예에 있어서, 상기 아산화질소 분해 촉매는 300℃ 이상에서 93% 이상의 아산화질소 분해율을 나타낼 수 있다.In one embodiment of the present invention, the nitrous oxide decomposition catalyst may exhibit a nitrous oxide decomposition rate of 93% or more at 300 ° C or higher.

또한, 본 발명은 세륨 전구체와 이트륨 전구체를 순차적으로 혼합, 건조 및 소성하여 세륨-이트륨 산화물 지지체를 제조하는 단계 및 상기 세륨-이트륨 산화물 지지체에 로듐 전구체를 순차적으로 담지, 건조 및 소성하는 단계를 포함하는 것을 특징으로 하는 아산화질소 분해 촉매의 제조방법을 제공한다.In addition, the present invention includes the steps of preparing a cerium-yttrium oxide support by sequentially mixing, drying, and firing a cerium precursor and a yttrium precursor, and sequentially supporting, drying, and firing a rhodium precursor on the cerium-yttrium oxide support. It provides a method for producing a nitrous oxide decomposition catalyst, characterized in that.

본 발명의 일 실시예에 있어서, 상기 세륨 전구체와 이트륨 전구체의 몰비율은 7~9:3~1 일 수 있다.In one embodiment of the present invention, the molar ratio of the cerium precursor and the yttrium precursor may be 7 to 9:3 to 1.

본 발명의 일 실시예에 있어서, 상기 세륨-이트륨 산화물 지지체의 소성온도는 300~500 ℃ 일 수 있다.In one embodiment of the present invention, the firing temperature of the cerium-yttrium oxide support may be 300 to 500 °C.

본 발명에 따른 아산화질소 분해 촉매는 산소 환원성이 높아 산소 전달특성이 우수하여 저온에서 활성 저하 없이 아산화질소를 분해시킬 수 있다.The nitrous oxide decomposition catalyst according to the present invention has high oxygen reducibility and excellent oxygen transfer characteristics, so that it can decompose nitrous oxide without deterioration in activity at low temperatures.

도 1은 서로 다른 몰 비율을 갖는 세륨-이트륨 산화물에 로듐(Rh)을 담지하여 제조한 촉매의 N2O 제거 효율을 확인한 결과이다.
도 2는 서로 다른 몰 비율을 갖는 세륨-이트륨 산화물에 로듐(Rh)을 담지하여 제조한 촉매의 H2-TPR 분석 결과이다.
도 3은 서로 다른 몰 비율을 갖는 세륨-이트륨 산화물에 로듐(Rh)을 담지하여 제조한 촉매의 N2O-TPSR 분석 결과이다.
도 4는 세륨-이트륨의 비율이 8:2로 제조된 지지체의 소성온도에 따른 N2O 분해 효율을 나타낸 결과이다.
1 is a result of confirming the N 2 O removal efficiency of catalysts prepared by supporting rhodium (Rh) on cerium-yttrium oxide having different mole ratios.
2 is a result of H 2 -TPR analysis of catalysts prepared by supporting rhodium (Rh) on cerium-yttrium oxide having different mole ratios.
3 is a result of N 2 O-TPSR analysis of catalysts prepared by supporting rhodium (Rh) on cerium-yttrium oxide having different mole ratios.
Figure 4 is a result showing the N 2 O decomposition efficiency according to the sintering temperature of the cerium-yttrium ratio of 8: 2 prepared support.

본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 이하 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.The present invention can apply various transformations and can have various embodiments. Hereinafter, specific embodiments will be illustrated in the drawings and described in detail in the detailed description. However, it should be understood that this is not intended to limit the present invention to specific embodiments, and includes all transformations, equivalents, and substitutes included in the spirit and scope of the present invention. In describing the present invention, if it is determined that a detailed description of related known technologies may obscure the gist of the present invention, the detailed description will be omitted.

본 발명은 환원제 없이 저온에서 높은 아산화질소 분해율을 달성하기 위해 세륨-이트륨 산화물 지지체와 상기 산화물 지지체 상에 담지되는 로듐을 포함하는 아산화질소 분해 촉매로서, 상기 세륨과 이트륨의 몰 비율이 7~9:3~1 인 것을 특징으로 한다.The present invention is a nitrous oxide decomposition catalyst comprising a cerium-yttrium oxide support and rhodium supported on the oxide support to achieve a high nitrous oxide decomposition rate at a low temperature without a reducing agent, wherein the molar ratio of cerium and yttrium is 7 to 9: It is characterized by being 3 to 1.

상기 로듐은 활성금속으로서 아산화질소 분해반응에서 직접적인 활성 site로 작용하여 우수한 반응활성을 나타낸다. 이때, 상기 로듐은 세륨-이트륨 산화물 지지체 무게 대비 1wt%로 함유되는 것이 바람직하다.As an active metal, rhodium acts as a direct active site in the nitrous oxide decomposition reaction and exhibits excellent reaction activity. At this time, the rhodium is preferably contained in an amount of 1 wt% based on the weight of the cerium-yttrium oxide support.

N2O 분해 촉매에서 반응활성은 활성 site의 유리한 산소거동 특성, 즉 산화-환원 특성에 영향을 받는다(하기 반응식 1 및 2).In the N 2 O decomposition catalyst, the reaction activity is influenced by the favorable oxygen behavior characteristics of the active site, that is, oxidation-reduction characteristics (reaction formulas 1 and 2 below).

(반응식 1) 2N2O + 2* -> 2N2 + 2O* (* : 활성 site)(Scheme 1) 2N 2 O + 2* -> 2N 2 + 2O* (* : active site)

(반응식 2) 2O* -> O2 + 2* (O* : 흡착산소)(Scheme 2) 2O* -> O 2 + 2* (O*: adsorbed oxygen)

상기 반응식에서 볼 수 있듯이, 활성이 높은 N2O 분해 촉매를 제조하기 위해서는 상기 반응식 2의 반응을 촉진시킬 수 있도록 저온에서 산소의 탈리가 용이하도록 하는 것이 필요하다.As can be seen from the reaction formula, in order to prepare a highly active N 2 O decomposition catalyst, it is necessary to facilitate desorption of oxygen at a low temperature so as to promote the reaction of reaction formula 2.

따라서, 본 발명은 산소 저장 및 전달능력이 우수한 세륨-이트륨 산화물 지지체를 활성금속의 담체로 사용하여 촉매 활성을 향상시킴으로써 저온에서 아산화질소의 분해율이 저하되는 것을 방지할 수 있다.Therefore, the present invention can prevent the decomposition rate of nitrous oxide from being lowered at a low temperature by improving the catalytic activity by using the cerium-yttrium oxide support having excellent oxygen storage and transportability as a carrier for the active metal.

또한, 로듐이 세륨-이트륨 산화물 지지체로부터 산소를 전달받아 기상에 방출하므로 산소 탈착이 촉진되고 그로 인해 생성된 세륨-이트륨 산화물 지지체 상의 산소 결함(oxygen vacancy)이 N2O의 반응 활성 site로 작용하여 아산화질소의 분해율이 증대할 수 있다.In addition, since rhodium receives oxygen from the cerium-yttrium oxide support and releases it in the gaseous phase, oxygen desorption is promoted, and the resulting oxygen vacancy on the cerium-yttrium oxide support acts as a reaction active site for N 2 O. The rate of nitrous oxide decomposition may increase.

이때, 상기 세륨과 이트륨은 7~9:3~1의 몰 비율로 함유되어 300~500℃ 에서 소성되는 것이 바람직하고, 더욱 바람직하게는 8:2 몰 비율로 함유되어 300℃ 에서 소성될 수 있으며, 상기 몰 비율 및 소성온도 범위내에서 세륨-이트륨 산화물 지지체의 산소전달능력이 우수하여 저온에서 촉매의 N2O 분해 효율이 저하되지 않고 높은 상태를 유지할 수 있다. At this time, the cerium and yttrium are preferably contained in a molar ratio of 7 to 9:3 to 1 and calcined at 300 to 500 ° C, more preferably contained in a molar ratio of 8: 2 and calcined at 300 ° C. , Oxygen transfer ability of the cerium-yttrium oxide support is excellent within the range of the molar ratio and sintering temperature, so that the N 2 O decomposition efficiency of the catalyst can be maintained at a high level without deterioration at low temperatures.

이하, 본 발명의 바람직한 실시예에 기초하여 본 발명을 더욱 구체적으로 설명한다. 그러나 본 발명의 기술적 사상은 이에 한정되거나 제한되지 않고 당업자에 의해 변형되어 다양하게 실시될 수 있음은 물론이다.Hereinafter, the present invention will be described in more detail based on preferred embodiments of the present invention. However, it goes without saying that the technical idea of the present invention is not limited or limited thereto and can be modified and implemented in various ways by those skilled in the art.

제조예 1Preparation Example 1

먼저, 세륨 나이트레이트(Ce(NO3)3*6H2O, Aldrich Chemical Co.)와 이트륨 나이트레이트 헥사하이드레이트(Y(NO3)3*6H2O, Aldrich Chemical Co.) 전구체를 총 0.1 M에 대한 세륨과 이트륨의 몰 비율(mole ratio)만큼 계산하여 상온의 증류수에 따로 용해시켰다. 이때, 두 전구체의 몰 비율은 세륨 나이트레이트와 이트륨 나이트레이트 헥사하이드레이트가 1:0 이 되도록 제조하였다. 제조된 세륨 용액과 이트륨 용액을 둥근플라스크에 혼합한 후, 해당 혼합 용액에 질산을 첨가하여 pH 2가 되도록 조절했다. 이후, 0.1 M 혼합용액을 기준으로 시트르산(citric acid, HOC(COOH)(CH2COOH)2)을 2배(0.2M) 만큼 계산하여 증류수에 교반하고, 해당 시트르산 용액을 혼합용액에 첨가했다. 제조된 혼합용액의 수분을 제거하기 위하여 진공회전증발기를 이용하여 건조시킨 후, 건조 후 남아있는 졸(sol)을 103 ℃의 건조기에서 24 시간 이상 충분히 건조하였다. 생성된 노란색 파우더를 사각형 로에서 10 ℃/min의 승온속도로 500 ℃의 온도로 승온시켜 4 시간 동안 공기 분위기에서 소성하여 세륨-이트륨 산화물을 제조하였다.First, cerium nitrate (Ce(NO 3 ) 3 *6H 2 O, Aldrich Chemical Co.) and yttrium nitrate hexahydrate (Y(NO 3 ) 3 *6H 2 O, Aldrich Chemical Co.) precursors were mixed at a total concentration of 0.1 M. The mole ratio of cerium to yttrium was calculated and dissolved separately in distilled water at room temperature. At this time, the molar ratio of the two precursors was prepared so that cerium nitrate and yttrium nitrate hexahydrate were 1:0. After mixing the prepared cerium solution and yttrium solution in a round flask, nitric acid was added to the mixed solution to adjust the pH to 2. Then, based on the 0.1 M mixed solution, citric acid (HOC(COOH)(CH 2 COOH) 2 ) was calculated twice (0.2M), stirred in distilled water, and the citric acid solution was added to the mixed solution. After drying using a vacuum rotary evaporator to remove moisture from the prepared mixed solution, the sol remaining after drying was sufficiently dried in a dryer at 103 ° C. for 24 hours or more. The resulting yellow powder was heated to 500 °C at a heating rate of 10 °C/min in a square furnace and calcined in an air atmosphere for 4 hours to prepare cerium-yttrium oxide.

제조예 2Preparation Example 2

세륨 나이트레이트와 이트륨 나이트레이트 헥사하이드레이트의 몰 비율이 0.8:0.2 이 되도록 한 것을 제외하고 제조예 1과 동일한 방법으로 제조하였다.It was prepared in the same manner as in Preparation Example 1, except that the molar ratio of cerium nitrate and yttrium nitrate hexahydrate was 0.8:0.2.

제조예 3Preparation Example 3

세륨 나이트레이트와 이트륨 나이트레이트 헥사하이드레이트의 몰 비율이 0.6:0.4 가 되도록 한 것을 제외하고 제조예 1과 동일한 방법으로 제조하였다.It was prepared in the same manner as in Preparation Example 1, except that the molar ratio of cerium nitrate and yttrium nitrate hexahydrate was 0.6:0.4.

제조예 4Production Example 4

세륨 나이트레이트와 이트륨 나이트레이트 헥사하이드레이트의 몰 비율이 0.4:0.6 이 되도록 한 것을 제외하고 제조예 1과 동일한 방법으로 제조하였다.It was prepared in the same manner as in Preparation Example 1, except that the molar ratio of cerium nitrate and yttrium nitrate hexahydrate was 0.4:0.6.

제조예 5Preparation Example 5

세륨 나이트레이트와 이트륨 나이트레이트 헥사하이드레이트의 지지체를 300 ℃ 에서 소성한 것을 제외하고 제조예 2와 동일한 방법으로 제조하였다.It was prepared in the same manner as in Preparation Example 2, except that the support of cerium nitrate and yttrium nitrate hexahydrate was calcined at 300 °C.

제조예 6Preparation Example 6

세륨 나이트레이트와 이트륨 나이트레이트 헥사하이드레이트의 지지체를 400 ℃ 에서 소성한 것을 제외하고 제조예 2와 동일한 방법으로 제조하였다.It was prepared in the same manner as in Preparation Example 2, except that the support of cerium nitrate and yttrium nitrate hexahydrate was calcined at 400 °C.

제조예 7Preparation Example 7

세륨 나이트레이트와 이트륨 나이트레이트 헥사하이드레이트의 지지체를 600 ℃ 에서 소성한 것을 제외하고 제조예 2와 동일한 방법으로 제조하였다.It was prepared in the same manner as in Preparation Example 2, except that the support of cerium nitrate and yttrium nitrate hexahydrate was calcined at 600 °C.

본 연구에서는 세륨-이트륨 산화물의 몰 비율 및 지지체의 소성온도에 따른 N2O 직접 분해 효율 영향을 확인하였으며, 두 전구체의 몰 비율과 지지체의 소성온도는 하기와 같다.In this study, the effect of N 2 O direct decomposition efficiency according to the molar ratio of cerium-yttrium oxide and the firing temperature of the support was confirmed, and the molar ratio of the two precursors and the firing temperature of the support were as follows.

몰 비율(mole ratio)mole ratio 지지체(Ce:Y) 소성온도Support (Ce:Y) firing temperature 세륨cerium 이트륨yttrium 제조예 1Preparation Example 1 1One 00 500500 제조예 2Preparation Example 2 0.80.8 0.20.2 500500 제조예 3Preparation Example 3 0.60.6 0.40.4 500500 제조예 4Production Example 4 0.40.4 0.60.6 500500 제조예 5Preparation Example 5 0.80.8 0.20.2 300300 제조예 6Preparation Example 6 0.80.8 0.20.2 400400 제조예 7Preparation Example 7 0.80.8 0.20.2 600600

실험예 1: 지지체의 몰 비율에 따른 NExperimental Example 1: N according to the molar ratio of the support 22 O 제거 효율O removal efficiency

도 1은 서로 다른 몰 비율을 갖는 세륨-이트륨 산화물에 로듐(Rh)을 담지하여 제조한 촉매의 N2O 제거 효율을 확인한 결과이다. 1 is a result of confirming the N 2 O removal efficiency of catalysts prepared by supporting rhodium (Rh) on cerium-yttrium oxide having different mole ratios.

실험은 N2O 1,500ppm, 산소 4 vol%, 공간속도 60,000 hr-1 조건에서 진행하였다.The experiment was conducted under the conditions of N 2 O 1,500ppm, oxygen 4 vol%, space velocity 60,000 hr -1 .

도 1을 참조하면, 350 ℃ 이하의 온도에서 제조예 1에 비하여 제조예 2의 효율이 더 우수한 결과를 보였다. 반면에 제조예 3, 제조예 4의 효율은 점차 감소하는 것을 확인하였다. 따라서 세륨-이트륨 산화물에서 세륨의 비율이 7 이상으로 이루어지는 것이 바람직하며, 더욱 더 바람직하게는 세륨의 비율이 8인 것을 알 수 있었다. Referring to FIG. 1, the efficiency of Preparation Example 2 was better than that of Preparation Example 1 at a temperature of 350 °C or less. On the other hand, it was confirmed that the efficiencies of Preparation Examples 3 and 4 gradually decreased. Therefore, it was found that the ratio of cerium in the cerium-yttrium oxide is preferably 7 or more, and more preferably the ratio of cerium is 8.

실험예 2: HExperimental Example 2: H 22 -TPR 분석-TPR analysis

도 2는 서로 다른 몰 비율을 갖는 세륨-이트륨 산화물에 로듐(Rh)을 담지하여 제조한 촉매의 H2-TPR 분석 결과이다. 2 is a result of H 2 -TPR analysis of catalysts prepared by supporting rhodium (Rh) on cerium-yttrium oxide having different mole ratios.

N2O 분해 반응의 메커니즘은 N2O + O → N2 + O2로 진행되어 촉매의 산소 환원성은 중요한 인자로 판단될 수 있으므로, H2-TPR 분석을 통하여 촉매 내 산소의 환원 가능한 온도를 확인하였으며, 면적을 계산하여 촉매가 갖는 산소량을 비교하였다. Since the mechanism of the N 2 O decomposition reaction proceeds from N 2 O + O → N 2 + O 2 and the oxygen reduction of the catalyst can be judged as an important factor, the temperature at which the oxygen in the catalyst can be reduced is determined through the H 2 -TPR analysis. It was confirmed, and the oxygen amount of the catalyst was compared by calculating the area.

도 2를 참조하면, H2-TPR 결과 제조예 1은 103 ℃와 219 ℃에서 수소의 환원 피크가 관찰되었다. 반면에 제조예 2는 105 ℃에서 단일 피크가 관찰되었으며, 해당 피크의 면적을 적분하였을 때 제조예 1의 피크보다 약 2.8배 더 넓은 것을 확인 할 수 있었다. 따라서 제조예 2는 제조예 1보다 환원성이 더 우수함을 확인할 수 있었다. 반면에 제조예 3과 제조예 4는 촉매 내 산소의 환원 피크가 더 높은 온도로 이동하는 것을 확인할 수 있었다. 따라서 세륨-이트륨 산화물에서 세륨의 비율이 7 이상으로 이루어질 때 산소 전달특성이 가장 우수함을 확인하였다.Referring to Figure 2, H 2 -TPR results Preparation Example 1 was observed at 103 ℃ and 219 ℃ reduction peaks of hydrogen. On the other hand, in Preparation Example 2, a single peak was observed at 105 ° C., and when the area of the peak was integrated, it was confirmed that it was about 2.8 times wider than the peak in Preparation Example 1. Therefore, it was confirmed that Preparation Example 2 was more excellent in reducibility than Preparation Example 1. On the other hand, in Preparation Example 3 and Preparation Example 4, it was confirmed that the reduction peak of oxygen in the catalyst shifted to a higher temperature. Therefore, it was confirmed that the oxygen transfer characteristics were the best when the ratio of cerium in the cerium-yttrium oxide was 7 or more.

실험예 3: NExperimental Example 3: N 22 O-TPSR 분석O-TPSR analysis

도 3은 서로 다른 몰 비율을 갖는 세륨-이트륨 산화물에 로듐(Rh)을 담지하여 제조한 촉매의 N2O-TPSR 분석 결과이다.3 is a result of N 2 O-TPSR analysis of catalysts prepared by supporting rhodium (Rh) on cerium-yttrium oxide having different mole ratios.

해당 실험은 N2O 1,500ppm, 산소 4 vol%의 조건에서 진행하였으며, 60 ℃에서부터 N2O와 O2를 주입하면서 승온시켰을 때 N2가 생성되는 온도를 확인하였다. The experiment was conducted under conditions of 1,500 ppm N 2 O and 4 vol% oxygen, and the temperature at which N 2 was generated was confirmed when the temperature was raised while injecting N 2 O and O 2 from 60 °C.

도 3을 참조하면, 제조예 1에 비하여 제조예 2가 200 ℃에서 N2의 생성이 더 많은 것을 확인하였다. 이는 낮은 온도에서부터 더 많은 양의 N2O를 분해 가능하다는 것을 확인시켜준다. Referring to FIG. 3, it was confirmed that Production Example 2 produced more N 2 at 200 °C compared to Preparation Example 1. This confirms that a higher amount of N 2 O can be decomposed from a lower temperature.

실험예 4: 지지체의 소성온도에 따른 NExperimental Example 4: N according to the firing temperature of the support 22 O 분해 효율O decomposition efficiency

도 4는 세륨-이트륨의 비율이 8:2로 제조된 지지체의 소성온도에 따른 N2O 분해 효율을 나타낸 결과이다.Figure 4 is a result showing the N 2 O decomposition efficiency according to the sintering temperature of the cerium-yttrium ratio of 8: 2 prepared support.

도 4를 참조하면, 300 ℃ 이하의 온도에서 제조예 2에 비하여 제조예 5와 제조예 6의 효율이 더 우수한 결과를 보였다. 반면에 제조예 7의 효율은 점차 감소하는 것을 확인하였다. 따라서 세륨-이트륨 산화물에서 소성온도는 300~500℃ 사이로 이루어지는 것이 바람직하다는 것을 알 수 있었다.Referring to FIG. 4, the efficiency of Preparation Examples 5 and 6 was better than Preparation Example 2 at a temperature of 300 ° C. or less. On the other hand, it was confirmed that the efficiency of Preparation Example 7 gradually decreased. Therefore, it was found that the sintering temperature in cerium-yttrium oxide is preferably between 300 and 500 °C.

이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.As above, specific parts of the present invention have been described in detail, and for those skilled in the art, it is clear that these specific descriptions are only preferred embodiments, and the scope of the present invention is not limited thereby. something to do. Accordingly, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

Claims (6)

세륨-이트륨 산화물 지지체 및
상기 세륨-이트륨 산화물 지지체에 담지된 로듐을 포함하며,
상기 세륨과 이트륨의 몰 비율은 8:2 이며,
아산화질소 분해 촉매는 300℃ 이상에서 93% 이상의 아산화질소 분해율을 나타내는 것을 특징으로 하는 아산화질소 분해 촉매.
a cerium-yttrium oxide support; and
Including rhodium supported on the cerium-yttrium oxide support,
The molar ratio of cerium and yttrium is 8:2,
The nitrous oxide decomposition catalyst is a nitrous oxide decomposition catalyst, characterized in that it exhibits a nitrous oxide decomposition rate of 93% or more at 300 ℃ or more.
제1항에 있어서,
상기 로듐은 상기 세륨-이트륨 산화물 지지체 무게 대비 1%로 담지되는 것을 특징으로 하는 아산화질소 분해 촉매.
According to claim 1,
The rhodium is a nitrous oxide decomposition catalyst, characterized in that supported by 1% relative to the weight of the cerium-yttrium oxide support.
삭제delete 제1항 또는 제2항 중 어느 한 항에 따른 아산화질소 분해 촉매의 제조방법으로,
세륨 전구체와 이트륨 전구체를 순차적으로 혼합, 건조 및 소성하여 세륨-이트륨 산화물 지지체를 제조하는 단계 및
상기 세륨-이트륨 산화물 지지체에 로듐 전구체를 순차적으로 담지하는 단계를 포함하며,
상기 세륨 전구체와 이트륨 전구체의 몰비율은 8:2 인 것을 특징으로 하는 아산화질소 분해 촉매의 제조방법.
A method for preparing the nitrous oxide decomposition catalyst according to any one of claims 1 or 2,
Preparing a cerium-yttrium oxide support by sequentially mixing, drying, and calcining a cerium precursor and a yttrium precursor; and
Sequentially supporting a rhodium precursor on the cerium-yttrium oxide support,
Method for producing a nitrous oxide decomposition catalyst, characterized in that the molar ratio of the cerium precursor and the yttrium precursor is 8: 2.
삭제delete 제4항에 있어서,
상기 세륨-이트륨 산화물 지지체를 제조하는 단계에서의 소성온도는 300~500 ℃ 인 것을 특징으로 하는 아산화질소 분해 촉매의 제조방법.
According to claim 4,
Method for producing a nitrous oxide decomposition catalyst, characterized in that the calcination temperature in the step of preparing the cerium-yttrium oxide support is 300 ~ 500 ℃.
KR1020210017348A 2021-02-08 2021-02-08 Nitrous oxide decomposition catalyst and its manufacturing method KR102493409B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210017348A KR102493409B1 (en) 2021-02-08 2021-02-08 Nitrous oxide decomposition catalyst and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210017348A KR102493409B1 (en) 2021-02-08 2021-02-08 Nitrous oxide decomposition catalyst and its manufacturing method

Publications (2)

Publication Number Publication Date
KR20220114169A KR20220114169A (en) 2022-08-17
KR102493409B1 true KR102493409B1 (en) 2023-01-31

Family

ID=83110608

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210017348A KR102493409B1 (en) 2021-02-08 2021-02-08 Nitrous oxide decomposition catalyst and its manufacturing method

Country Status (1)

Country Link
KR (1) KR102493409B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100706449B1 (en) 2005-12-09 2007-04-10 현대자동차주식회사 Preparation method of ceria for purifying automotive exhaust gas
CN102186563A (en) 2008-10-03 2011-09-14 罗地亚经营管理公司 Method of decomposing n2o using a catalyst based on a cerium lanthanum oxide

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102483435B1 (en) * 2014-12-08 2023-01-02 바스프 코포레이션 Nitrous oxide removal catalysts for exhaust systems

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100706449B1 (en) 2005-12-09 2007-04-10 현대자동차주식회사 Preparation method of ceria for purifying automotive exhaust gas
CN102186563A (en) 2008-10-03 2011-09-14 罗地亚经营管理公司 Method of decomposing n2o using a catalyst based on a cerium lanthanum oxide

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
C.-M. Cho et al., Effect of oxygen vacancies on direct N2O decomposition over ZrO2-Y2O3 catalysts, Journal of Asian Ceramic Societies, 7(4), 518 내지 523쪽, 2019.11.4.발행*
Camille M. et al., A New Dynamic Approach for N2O Decomposition by Pre-reduced Rh/CeZrOx Catalysts, ChemCatChem, 12, 3042내지3049쪽, 2020.3.16. 발행*
Hristiyan A. Aleksandrov et al., Structure and reducibility of yttrium-doped cerium dioxide nanoparticles and (111) surface, RSC Adv., 2018, 8, 33728, 2018.10.2.발행
S. M. Lee et al., Catalytic Performance of Ce0.6Y0.4O2-Supported Platinum Catalyst for Low-Temperature Water-Gas Shift Reaction, ACS Omega, 3(3), 3156 내지 3163쪽, 2018.3.15.발행*
Verónica Rico-Pérez et al., Effect of RhOx/CeO2 Calcination on Metal-Support Interaction and Catalytic Activity for N2O Decomposition, Appl. Sci. 2014, 4, 468-481, 2014.9.22.발행

Also Published As

Publication number Publication date
KR20220114169A (en) 2022-08-17

Similar Documents

Publication Publication Date Title
CN110787840B (en) Bimetallic MOFs catalyst and preparation method and application thereof
KR20100050429A (en) Mixed oxides catalysts
JP5459322B2 (en) Redox material for thermochemical water splitting and hydrogen production method
US8435486B2 (en) Redox material for thermochemical water splitting, and method for producing hydrogen
CN104936692B (en) The ammoxidation catalyst based on the sour yttrium of metal-doped positive cobalt for producing nitric acid
KR102493409B1 (en) Nitrous oxide decomposition catalyst and its manufacturing method
CN114832848B (en) Catalyst and preparation method and application thereof
KR101467405B1 (en) Catalyst for the steam reforming of methane, method for preparing thereof and method for the steam reforming of methane in by-product gas containing sulphur using the catalyst
KR101988370B1 (en) Catalysts for methanation of carbon dioxide and the manufacturing method of the same
KR20230034166A (en) METHOD FOR SYNTHESIS Ni/AlMaOx CATALYSTS FOR AMMONIA DECOMPOSITION USING CATION ANION DOUBLE HYDROLYSIS
KR102457079B1 (en) Simultaneous removal system of complex harmful substances
KR102558168B1 (en) Catalyst for ammonia oxidation, and method for producing the same
KR20190071266A (en) Manufacturing method of decomposition catalyst for N2O abatement by adding mixed metal oxides in alumina support
KR102378405B1 (en) Selective reduction catalyst for removing nitrogen oxide using ammonia, manufacturing method thereof and method for removing nitrogen oxide using the same
KR101579523B1 (en) Method of preparing phosphorous doped alumina based oxidation catalyst and thereof oxidation catalyst
KR20210109358A (en) Elimination Method of Chlorine in Inorganics Using Bases and Selective Catalytic Reduction(SCR) Catalysts Manufactured Thereby
CN112023954A (en) Preparation method of bismuth oxyiodate composite photocatalyst with 2D-2D structure
CN112044455A (en) Preparation method of phosphorus-doped cerium-titanium selective catalytic reduction denitration catalyst
US11845051B2 (en) Ammonia synthesis catalyst, method of producing the same, and method of synthesizing ammonia using the same
KR100473080B1 (en) Method for Improving NOx Removal Efficiency from Flue Gas and Reducing Consumption of Ammonia and Emission of Nitrogen Dioxide Using Modified Natural Manganese Ores
KR100337024B1 (en) Manufacturing Method of high surface area alumina for high temperature catalytic combustion using surfactant
KR102476863B1 (en) Denitrification catalyst and exhaust gas treatment system for thermal power generation using the same
JP7340811B2 (en) Precursor for producing VOC removal catalyst, VOC removal catalyst and method for producing the same
KR102261448B1 (en) Preparing Method of Ru and Ir Based Catalysts for Reducing NOx Using Non-chloride Precursor
CN115518640B (en) Preparation method and application of zinc-iron loaded modified carbon composite material

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant