KR102490375B1 - 움직임 벡터 리스트 설정 방법 및 이러한 방법을 사용하는 장치 - Google Patents

움직임 벡터 리스트 설정 방법 및 이러한 방법을 사용하는 장치 Download PDF

Info

Publication number
KR102490375B1
KR102490375B1 KR1020217030602A KR20217030602A KR102490375B1 KR 102490375 B1 KR102490375 B1 KR 102490375B1 KR 1020217030602 A KR1020217030602 A KR 1020217030602A KR 20217030602 A KR20217030602 A KR 20217030602A KR 102490375 B1 KR102490375 B1 KR 102490375B1
Authority
KR
South Korea
Prior art keywords
motion vector
block
mvp candidate
current block
candidate
Prior art date
Application number
KR1020217030602A
Other languages
English (en)
Other versions
KR20210119577A (ko
Inventor
박승욱
박준영
김정선
임재현
전병문
전용준
최영희
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of KR20210119577A publication Critical patent/KR20210119577A/ko
Application granted granted Critical
Publication of KR102490375B1 publication Critical patent/KR102490375B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/513Processing of motion vectors
    • H04N19/521Processing of motion vectors for estimating the reliability of the determined motion vectors or motion vector field, e.g. for smoothing the motion vector field or for correcting motion vectors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/105Selection of the reference unit for prediction within a chosen coding or prediction mode, e.g. adaptive choice of position and number of pixels used for prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/136Incoming video signal characteristics or properties
    • H04N19/137Motion inside a coding unit, e.g. average field, frame or block difference
    • H04N19/139Analysis of motion vectors, e.g. their magnitude, direction, variance or reliability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/513Processing of motion vectors
    • H04N19/517Processing of motion vectors by encoding
    • H04N19/52Processing of motion vectors by encoding by predictive encoding

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

움직임 벡터 리스트 설정 방법 및 이러한 방법을 사용하는 장치가 개시되어 있다. 움직임 벡터 리스트 설정 방법 및 이러한 방법을 사용하는 장치는 제1 공간적 후보 예측 그룹에서 순차적 판단 절차에 의해 제1 움직임 벡터 또는 제2 움직임 벡터의 존재 여부를 판단하는 단계와 순차적인 판단 절차에 의해 산출된 제1 움직임 벡터 또는 제2 움직임 벡터를 후보 예측 움직임 벡터로 설정하는 단계를 포함할 수 있다. 따라서, 후보 예측 움직임 벡터를 스캔함에 있어서 스케일링의 횟수를 제한함으로써 부/복호화시 발생하는 시간을 줄이고 복잡도를 감소시킬 수 있다.

Description

움직임 벡터 리스트 설정 방법 및 이러한 방법을 사용하는 장치{METHOD FOR SETTING MOTION VECTOR LIST AND APPARATUS USING SAME}
본 발명은 움직임 벡터 리스트 설정 방법 및 이러한 방법을 사용하는 장치 에 관한 것으로 더욱 상세하게는 복호화 방법 및 장치에 관한 것이다.
최근 HD(High Definition) 영상 및 UHD(Ultra High Definition) 영상과 같은 고해상도, 고품록을 받으질의 영상에 대한 수요가 다양한 응용 분야에서 증가하고 있다. 영상 데이터가 고해상도, 고품질이 될수록 기존의 영상 데이터에 비해 상대적으로 데이터량이 증가하기 때문에 기존의 유무선 광대역 회선과 같은 매체를 이용하여 영상 데이터를 전송하거나 기존의 저장 매체를 이용해 저장하는 경우, 전송 비용과 저장 비용이 증가하게 된다. 영상 데이터가 고해상도, 고품질화 됨에 따라 발생하는 이러한 문제들을 해결하기 위해서는 고효율의 영상 압축 기술들이 활용될 수 있다.
영상 압축 기술로 현재 픽쳐의 이전 또는 이후 픽쳐로부터 현재 픽쳐에 포함된 화소값을 예측하는 화면 간 예측 기술, 현재 픽쳐 내의 화소 정보를 이용하여 현재 픽쳐에 포함된 화소값을 예측하는 화면 내 예측 기술, 출현 빈도가 높은 값에 짧은 부호를 할당하고 출현 빈도가 낮은 값에 긴 부호를 할당하는 엔트로피 부호화 기술 등 다양한 기술이 존재하고 이러한 영상 압축 기술을 이용해 영상 데이터를 효과적으로 압축하여 전송 또는 저장할 수 있다.
본 발명의 제1 목적은 영상 부호화 효율을 증가시키기 위해 후보 예측 움직임 벡터 리스트를 설정하는 방법을 제공하는 것이다.
또한, 본 발명의 제2 목적은 영상 부호화 효율을 증가시키기 위해 후보 예측 움직임 벡터 리스트를 설정하는 방법을 수행하는 장치를 제공하는 것이다.
상술한 본 발명의 목적을 달성하기 위한 본 발명의 일 측면에 따른 영상 복호화 방법은 제1 공간적 후보 예측 그룹에서 순차적 판단 절차에 의해 제1 움직임 벡터 또는 제2 움직임 벡터의 존재 여부를 판단하는 단계와 상기 순차적인 판단 절차에 의해 산출된 제1 움직임 벡터 또는 제2 움직임 벡터를 후보 예측 움직임 벡터로 설정하는 단계를 포함할 수 있다. 상기 제1 공간적 후보 예측 그룹은 좌측 제1 블록 및 좌측 제2 블록을 포함할 수 있다. 상기 제1 움직임 벡터는 현재 예측 단위와 동일한 참조 프레임과 동일한 참조 픽쳐 리스트를 가지는 움직임 벡터이고 상기 제2 움직임 벡터는 현재 예측 단위와 동일한 참조 프레임과 다른 참조 픽쳐 리스트를 가지는 움직임 벡터일 수 있다. 상기 영상 복호화 방법은 제1 공간적 후보 예측 그룹에서 순차적 판단 절차에 의해 제3 움직임 벡터 또는 제4 움직임 벡터의 존재 여부를 판단하는 단계와 상기 순차적인 판단 절차에 의해 산출된 제3 움직임 벡터 또는 제4 움직임 벡터를 스케일링하여 후보 예측 움직임 벡터로 설정하고 스케일링 여부 정보를 변경하는 단계를 포함할 수 있다. 상기 제3 움직임 벡터는 다른 참조 프레임과 동일한 참조 픽쳐 리스트를 가지는 움직임 벡터이고, 상기 제4 움직임 벡터는 다른 참조 프레임과 다른 참조 픽쳐 리스트를 가지는 움직임 벡터일 수 있다. 상기 영상 복호화 방법은 제2 공간적 후보 예측 그룹에서 순차적 판단 절차에 의해 제1 움직임 벡터 또는 제2 움직임 벡터의 존재 여부를 판단하는 단계와 상기 순차적인 판단 절차에 의해 산출된 제1 움직임 벡터 또는 제2 움직임 벡터를 후보 예측 움직임 벡터로 설정하는 단계를 포함할 수 있다. 상기 제2 공간적 후보 예측 그룹은 상단 제1 블록, 상단 제2 블록 및 상단 제3 블록을 포함할 수 있다. 상기 영상 복호화 방법은 상기 스케일링 여부 정보를 기초로 제1 공간적 후보 예측 그룹에서 산출된 후보 예측 움직임 벡터에 스케일링을 수행하였는지 여부를 판단하는 단계를 더 포함할 수 있다. 상기 영상 복호화 방법은 제2 공간적 후보 예측 그룹에서 순차적 판단 절차에 의해 제3 움직임 벡터 또는 제4 움직임 벡터의 존재 여부를 판단하는 단계와 상기 순차적인 판단 절차에 의해 산출된 제3 움직임 벡터 또는 제4 움직임 벡터를 스케일링하여 후보 예측 움직임 벡터로 설정하고 스케일링 여부 정보를 변경하는 단계를 더 포함할 수 있다. 상기 영상 복호화 방법은 시간적 후보 예측 단위의 움직임 벡터가 존재하는 경우 상기 움직임 벡터를 후보 예측 움직임 벡터로 후보 예측 움직임 벡터 리스트에 포함하는 단계를 더 포함할 수 있다. 상기 영상 복호화 방법은 상기 제1 공간적 후보 예측 그룹, 상기 제2 공간적 후보 예측 그룹, 상기 시간적 후보 예측 단위 중 적어도 하나로부터 산출된 후보 예측 움직임 벡터 중 동일한 후보 예측 움직임 벡터가 존재하는지 여부를 판단하고 동일한 후보 예측 움직임 벡터가 존재하는 경우 우선 순위가 가장 높은 후보 예측 움직임 벡터를 제외하고 제거하는 단계를 더 포함할 수 있다. 상기 영상 복호화 방법은 상기 후보 예측 움직임 벡터 리스트에 포함된 후보 예측 움직임 벡터가 일정수 이하이고, 상기 후보 예측 움직임 벡터 리스트에 추가하고자 하는 추가의 후보 예측 움직임 벡터와 동일한 벡터가 상기 후보 예측 움직임 벡터 리스트에 존재하지 않는 경우 상기 추가의 후보 예측 움직임 벡터를 상기 후보 예측 움직임 벡터 리스트에 추가하는 단계를 더 포함할 수 있다.
상술한 바와 같이 본 발명의 실시예에 따른 움직임 벡터 리스트 설정 방법 및 이러한 방법을 사용하는 장치에 따르면, 후보 예측 움직임 벡터를 스캔함에 있어서 스케일링의 횟수를 제한함으로써 부/복호화시 발생하는 시간을 줄이고 복잡도를 감소시킬 수 있다.
도 1은 본 발명의 일실시예에 따른 영상 부호화 장치를 나타낸 블록도이다.
도 2는 본 발명의 다른 실시예에 따른 영상 복호화기를 나타낸 블록도이다.
도 3은 본 발명의 또 다른 실시예에 따른 예측 움직임 벡터를 생성하기 위한 공간적 후보 예측 단위 및 시간적 후보 예측 단위를 나타낸 개념도이다.
도 4는 본 발명의 또 다른 실시예에 따른 예측 움직임 벡터 유도 방법을 나타낸 순서도이다.
도 5는 본 발명의 또 다른 실시예에 따른 현재 예측 단위의 움직임 벡터와 공간적 후보 예측 단위의 움직임 벡터와의 관계를 통해 공간적 후보 예측 단위의 움직임 벡터를 분류하는 방법을 설명하기 위한 개념도이다.
도 6은 본 발명의 또 다른 실시예에 따른 후보 예측 그룹 가용성 정보 및 시간적 후보 예측 단위의 가용성 정보를 산출하는 방법을 나타내는 순서도이다.
도 7은 본 발명의 또 다른 실시예에 따른 제1 공간적 후보 예측 그룹에서 후보 예측 움직임 벡터를 산출하는 방법을 나타낸 순서도이다.
도 8은 본 발명의 또 다른 실시예에 따른 제2 공간적 후보 예측 그룹에서 후보 예측 움직임 벡터(제1 움직임 벡터, 제2 움직임 벡터)를 산출하는 방법을 나타낸 순서도이다.
도 9는 본 발명의 또 다른 실시예에 따른 제2 공간적 후보 예측 그룹에서 후보 예측 움직임 벡터(제3 움직임 벡터, 제4 움직임 벡터)를 산출하는 방법을 나타낸 순서도이다.
도 10는 본 발명의 또 다른 실시예에 따른 제2 공간적 후보 예측 그룹에서 후보 예측 움직임 벡터(제3 움직임 벡터, 제4 움직임 벡터)를 산출하는 방법을 나타낸 순서도이다.
도 11은 본 발명의 또 다른 실시예에 따른 시간적 후보 예측 그룹에서 후보 예측 움직임 벡터를 산출하는 방법을 나타낸 순서도이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다.
제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. 및/또는 이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어"있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어"있다거나 "직접 접속되어"있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
이하, 첨부한 도면들을 참조하여, 본 발명의 바람직한 실시예를 보다 상세하게 설명하고자 한다. 이하, 도면상의 동일한 구성요소에 대해서는 동일한 참조부호를 사용하고 동일한 구성요소에 대해서 중복된 설명은 생략한다.
도 1은 본 발명의 일실시예에 따른 영상 부호화 장치를 나타낸 블록도이다.
도 1을 참조하면, 영상 부호화 장치(100)는 픽쳐 분할부(105), 예측부(110), 변환부(115), 양자화부(120), 재정렬부(125), 엔트로피 부호화부(130), 역양자화부(135), 역변환부(140), 필터부(145) 및 메모리(150)를 포함할 수 있다.
도 1에 나타난 각 구성부들은 영상 부호화 장치에서 서로 다른 특징적인 기능들을 나타내기 위해 독립적으로 도시한 것으로, 각 구성부들이 분리된 하드웨어나 하나의 소프트웨어 구성 단위로 이루어짐을 의미하지 않는다. 즉, 각 구성부는 설명의 편의상 각각의 구성부로 나열하여 포함한 것으로 각 구성부 중 적어도 두 개의 구성부가 합쳐져 하나의 구성부로 이루어지거나, 하나의 구성부가 복수개의 구성부로 나뉘어져 기능을 수행할 수 있고 이러한 각 구성부의 통합된 실시예 및 분리된 실시예도 본 발명의 본질에서 벋어나지 않는 한 본 발명의 권리범위에 포함된다.
또한, 일부의 구성 요소는 본 발명에서 본질적인 기능을 수행하는 필수적인 구성 요소는 아니고 단지 성능을 향상시키기 위한 선택적 구성 요소일 수 있다. 본 발명은 단지 성능 향상을 위해 사용되는 구성 요소를 제외한 본 발명의 본질을 구현하는데 필수적인 구성부만을 포함하여 구현될 수 있고, 단지 성능 향상을 위해 사용되는 선택적 구성 요소를 제외한 필수 구성 요소만을 포함한 구조도 본 발명의 권리범위에 포함된다.
픽쳐 분할부(105)는 입력된 픽쳐를 적어도 하나의 처리 단위로 분할할 수 있다. 이때, 처리 단위는 예측 단위(Prediction Unit: PU)일 수도 있고, 변환 단위(Transform Unit: TU)일 수도 있으며, 부호화 단위(Coding Unit: CU)일 수도 있다. 픽쳐 분할부(105)에서는 하나의 픽쳐에 대해 복수의 부호화 단위, 예측 단위 및 변환 단위의 조합으로 분할하고 소정의 기준(예를 들어, 비용 함수)으로 하나의 부호화 단위, 예측 단위 및 변환 단위 조합을 선택하여 픽쳐를 부호화 할 수 있다.
예를 들어, 하나의 픽쳐는 복수개의 부호화 단위로 분할될 수 있다. 픽쳐에서 부호화 단위를 분할하기 위해서는 쿼드 트리 구조(Quad Tree Structure)와 같은 재귀적인 트리 구조를 사용할 수 있는데 하나의 영상 또는 최대 크기 부호화 단위를 루트로 하여 다른 부호화 단위로 분할되는 부호화 유닛은 분할된 부호화 단위의 개수만큼의 자식 노드를 가지고 분할될 수 있다. 일정한 제한에 따라 더이상 분할되지 않는 부호화 단위는 리프 노드가 된다. 즉, 하나의 코딩 유닛에 대하여 정방형 분할만이 가능하다고 가정하는 경우, 하나의 부호화 단위는 최대 4개의 다른 부호화 단위로 분할될 수 있다.
이하, 본 발명의 실시예에서는 부호화 단위의 의미를 부호화를 하는 단위라는 의미뿐만 아니라 복호화를 하는 단위의 의미로 사용할 수 있다.
예측 단위는 하나의 부호화 단위 내에서 동일한 크기의 적어도 하나의 정사각형 또는 직사각형 등의 형태를 가지고 분할되거나 하나의 부호화 단위 내에서 분할된 예측 단위 중 하나의 예측 단위의 형태가 다른 예측 단위의 형태와 다른 형태를 가지고 분할될 수 있다.
부호화 단위를 기초로 화면 내 예측을 수행하는 예측 단위를 생성시 최소 부호화 단위가 아닌 경우, 복수의 예측 단위(NxN)으로 분할하지 않고 화면 내 예측을 수행할 수 있다.
예측부(110)는 화면 간 예측을 수행하는 화면 간 예측부와 화면 내 예측을 수행하는 화면 내 예측부를 포함할 수 있다. 예측 단위에 대해 화면 간 예측을 사용할 것인지 또는 화면 내 예측을 수행할 것인지를 결정하고, 각 예측 방법에 따른 구체적인 정보(예컨대, 화면 내 예측 모드, 움직임 벡터, 참조 픽쳐 등)를 결정할 수 있다. 이때, 예측이 수행되는 처리 단위와 예측 방법 및 구체적인 내용이 정해지는 처리 단위는 다를 수 있다. 예컨대, 예측의 방법과 예측 모드 등은 예측 단위로 결정되고, 예측의 수행은 변환 단위로 수행될 수도 있다. 생성된 예측 블록과 원본 블록 사이의 잔차값(잔차 블록)은 변환부(115)로 입력될 수 있다. 또한, 예측을 위해 사용한 예측 모드 정보, 움직임 벡터 정보 등은 잔차값과 함께 엔트로피 부호화부(130)에서 부호화되어 복호화기에 전달될 수 있다. 특정한 부호화 모드를 사용할 경우, 예측부(110)를 통해 예측 블록을 생성하지 않고, 원본 블록을 그대로 부호화하여 복호화부에 전송하는 것도 가능하다
화면 간 예측부는 현재 픽쳐의 이전 픽쳐 또는 이후 픽쳐 중 적어도 하나의 픽쳐의 정보를 기초로 예측 단위를 예측할 수 있다. 화면 간 예측부는 참조 픽쳐 보간부, 움직임 예측부, 움직임 보상부가 포함할 수 있다.
참조 픽쳐 보간부에서는 메모리(150)로부터 참조 픽쳐 정보를 제공받고 참조 픽쳐에서 정수 화소 이하의 화소 정보를 생성할 수 있다. 휘도 화소의 경우, 1/4 화소 단위로 정수 화소 이하의 화소 정보를 생성하기 위해 필터 계수를 달리하는 DCT 기반의 8탭 보간 필터(DCT-based Interpolation Filter)가 사용될 수 있다. 색차 신호의 경우 1/8 화소 단위로 정수 화소 이하의 화소 정보를 생성하기 위해 필터 계수를 달리하는 DCT 기반의 4탭 보간 필터(DCT-based Interpolation Filter)가 사용될 수 있다.
움직임 예측부는 참조 픽쳐 보간부에 의해 보간된 참조 픽쳐를 기초로 움직임 예측을 수행할 수 있다. 움직임 벡터를 산출하기 위한 방법으로 FBMA(Full search-based Block Matching Algorithm), TSS(Three Step Search), NTS(New Three-Step Search Algorithm) 등 다양한 방법이 사용될 수 있다. 움직임 벡터는 보간된 화소를 기초로 1/2 또는 1/4 화소 단위의 움직임 벡터값을 가질 수 있다. 움직임 예측부에서는 움직임 예측 방법을 다르게 하여 현재 예측 단위를 예측할 수 있다. 움직임 예측 방법으로 스킵(Skip) 방법, 머지(Merge) 방법, AMVP(Advanced Motion Vector Prediction)방법 등 다양한 방법이 사용될 수 있다.
이하, 본 발명의 실시예에서는 AMVP 방법을 사용하여 화면 간 예측을 수행시 후보 예측 움직임 벡터 리스트를 구성하는 방법에 대해 개시한다.
화면 내 예측부는 현재 픽쳐 내의 화소 정보인 현재 블록 주변의 참조 픽셀정보를 기초로 예측 단위를 생성할 수 있다. 현재 예측 단위의 주변 블록이 화면 간 예측을 수행한 블록이어서, 참조 픽셀이 화면 간 예측을 수행한 픽셀일 경우, 화면 간 예측을 수행한 블록에 포함되는 참조 픽셀을 주변의 화면 내 예측을 수행한 블록의 참조 픽셀 정보로 대체하여 사용할 수 있다. 즉, 참조 픽셀이 가용하지 않는 경우, 가용하지 않은 참조 픽셀 정보를 가용한 참조 픽셀 중 적어도 하나의 참조 픽셀로 대체하여 사용할 수 있다.
화면 내 예측에서 예측 모드는 참조 픽셀 정보를 예측 방향에 따라 사용하는 방향성 예측 모드와 예측을 수행시 방향성 정보을 사용하지 않는 비 방향성 모드를 가질 수 있다. 휘도 정보를 예측하기 위한 모드와 색차 정보를 예측하기 위한 모드가 상이할 수 있고, 색차 정보를 예측하기 위해 휘도 정보를 예측한 화면 내 예측 모드 정보 또는 예측된 휘도 신호 정보를 활용할 수 있다.
화면 내 예측을 수행시 예측 단위의 크기와 변환 단위의 크기가 동일할 경우, 예측 단위의 좌측에 존재하는 픽셀, 좌측 상단에 존재하는 픽셀, 상단에 존재하는 픽셀을 기초로 예측 단위에 대한 화면 내 예측을 수행하지만, 화면 내 예측을 수행시 예측 단위의 크기와 변환 단위의 크기가 상이할 경우, 변환 단위를 기초로 한 참조 픽셀을 이용하여 화면 내 예측을 수행할 수 있다. 또한, 최소 부호화 단위에 대해서만 NxN 분할을 사용하는 화면 내 예측을 사용할 수 있다.
화면 내 예측 방법은 예측 모드에 따라 참조 화소에 AIS(Adaptive Intra Smoothing) 필터를 적용한 후 예측 블록을 생성할 수 있다. 참조 화소에 적용되는 AIS 필터의 종류는 상이할 수 있다. 화면 내 예측 방법을 수행하기 위해 현재 예측 단위의 화면 내 예측 모드는 현재 예측 단위의 주변에 존재하는 예측 단위의 화면 내 예측 모드로부터 예측할 수 있다. 주변 예측 단위로부터 예측된 모드 정보를 이용하여 현재 예측 단위의 예측 모드를 예측하는 경우, 현재 예측 단위와 주변 예측 단위의 화면 내 예측 모드가 동일할 경우, 소정의 플래그 정보를 이용하여 현재 예측 단위와 주변 예측 단위의 예측 모드가 동일하다는 정보를 전송할 수 있고, 만약, 현재 예측 단위와 주변 예측 단위의 예측 모드가 상이할 경우, 엔트로피 부호화를 수행하여 현재 블록의 예측 모드 정보를 부호화할 수 있다.
또한, 예측부(110)에서 생성된 예측 단위을 기초로 예측을 수행한 예측 단위와 예측 단위의 원본 블록과 차이값인 잔차값(Residual) 정보를 포함하는 잔차 블록이 생성될 수 있다. 생성된 잔차 블록은 변환부(115)로 입력될 수 있다. 변환부(115)에서는 원본 블록과 예측부(110)를 통해 생성된 예측 단위의 잔차값(residual) 정보를 포함한 잔차 블록을 DCT(Discrete Cosine Transform) 또는 DST(Discrete Sine Transform)와 같은 변환 방법을 사용하여 변환시킬 수 있다. 잔차 블록을 변환하기 위해 DCT를 적용할지 DST를 적용할지는 잔차 블록을 생성하기 위해 사용된 예측 단위의 화면 내 예측 모드 정보를 기초로 결정할 수 있다.
양자화부(120)는 변환부(115)에서 주파수 영역으로 변환된 값들을 양자화할 수 있다. 블록에 따라 또는 영상의 중요도에 따라 양자화 계수는 변할 수 있다. 양자화부(120)에서 산출된 값은 역양자화부(135)와 재정렬부(125)에 제공될 수 있다.
재정렬부(125)는 양자화된 잔차값에 대해 계수값의 재정렬을 수행할 수 있다.
재정렬부(125)는 계수 스캐닝(Coefficient Scanning) 방법을 통해 2차원의 블록 형태 계수를 1차원의 벡터 형태로 변경할 수 있다. 예를 들어, 재정렬부(125)에서는 지그재그 스캔(Zig-Zag Scan)방법을 이용하여 DC 계수부터 고주파수 영역의 계수까지 스캔하여 1차원 벡터 형태로 변경시킬 수 있다. 변환 단위의 크기 및 화면 내 예측 모드에 따라 지그 재그 스캔 방법이 아닌 2차원의 블록 형태 계수를 열 방향으로 스캔하는 수직 스캔 방법, 2차원의 블록 형태 계수를 행 방향으로 스캔하는 수평 스캔 방법이 사용될 수 있다. 즉, 변환 단위의 크기 및 화면 내 예측 모드에 따라 지그재그 스캔, 수직 방향 스캔 및 수평 방향 스캔 중 어떠한 스캔 방법이 사용될지 여부를 결정할 수 있다.
엔트로피 부호화부(130)는 재정렬부(125)에 의해 산출된 값들을 기초로 엔트로피 부호화를 수행할 수 있다. 엔트로피 부호화는 예를 들어, 지수 골롬(Exponential Golomb), CAVLC(Context-Adaptive Variable Length Coding), CABAC(Context-Adaptive Binary Arithmetic Coding)과 같은 다양한 부호화 방법을 사용할 수 있다.
엔트로피 부호화부(130)는 재정렬부(125) 및 예측부(110)로부터 부호화 단위의 잔차값 계수 정보 및 블록 타입 정보, 예측 모드 정보, 분할 단위 정보, 예측 단위 정보 및 전송 단위 정보, 움직임 벡터 정보, 참조 프레임 정보, 블록의 보간 정보, 필터링 정보 등 다양한 정보를 부호화할 수 있다.
엔트로피 부호화부(130)에서는 재정렬부(125)에서 입력된 부호화 단위의 계수값을 엔트로피 부호화할 수 있다.
엔트로피 부호화부(130)에서는 가변 길이 부호화 테이블(Variable Length Coding Table)과 같은 엔트로피 부호화를 수행하기 위한 테이블이 저장될 수 있고 저장된 가변 길이 부호화 테이블을 사용하여 엔트로피 부호화를 수행할 수 있다. 엔트로피 부호화를 수행함에 있어서 테이블에 포함된 일부의 코드 워드(Codeword)에 카운터(Counter)를 이용한 방법 또는 직접 변환(Direct Swapping)방법을 사용하여 해당 정보의 코드 번호에 대한 코드 워드 할당을 변화시킬 수 있다. 예를 들어, 코드 번호와 코드 워드를 매핑하는 테이블에서 적은 비트수의 코드 워드가 할당된 상위 몇 개의 코드 번호의 경우, 카운터를 사용해 코드 번호의 합산된 발생 횟수가 가장 많은 코드 번호에 짧은 길이의 코드 워드를 할당할 수 있도록 적응적으로 코드 워드와 코드 번호를 매핑하는 테이블의 매핑 순서를 바꿀 수 있다. 카운터에서 카운팅된 횟수가 소정의 임계값에 이른 경우, 카운터에 기록된 카운팅 횟수를 반으로 나누어 다시 카운팅을 수행할 수 있다.
카운팅을 수행하지 않는 테이블 내의 코드 번호는 직접 변환(Direct Swapping) 방법을 사용하여 코드 번호에 해당하는 정보가 발생할 경우, 바로 위의 코드 번호와 자리를 변환하는 방법을 통해 해당 코드 번호에 할당되는 비트 수를 적게하여 엔트로피 부호화를 수행할 수 있다.
역양자화부(135) 및 역변환부(140)에서는 양자화부(120)에서 양자화된 값들을 역양자화하고 변환부(115)에서 변환된 값들을 역변환한다. 역양자화부(135) 및 역변환부(140)에서 생성된 잔차값(Residual)은 예측부(110)에 포함된 움직임 추정부, 움직임 보상부 및 인트라 예측부를 통해서 예측된 예측 단위와 합쳐져 복원 블록(Reconstructed Block)을 생성할 수 있다.
필터부(145)는 디블록킹 필터, 오프셋 보정부, ALF(Adaptive Loop Filter)중 적어도 하나를 포함할 수 있다.
디블록킹 필터(145)는 복원된 픽쳐에서 블록간의 경계로 인해 생긴 블록 왜곡을 제거할 수 있다. 디블록킹을 수행할지 여부를 판단하기 위해 블록에 포함된 몇 개의 열 또는 행에 포함된 픽셀을 기초로 현재 블록에 디블록킹 필터 적용할지 여부를 판단할 수 있다. 블록에 디블록킹 필터를 적용하는 경우 필요한 디블록킹 필터링 강도에 따라 강한 필터(Strong Filter) 또는 약한 필터(Weak Filter)를 적용할 수 있다. 또한 디블록킹 필터를 적용함에 있어 수직 필터링 및 수평 필터링을 수행시 수평 방향 필터링 및 수직 방향 필터링이 병행 처리되도록 할 수 있다.
오프셋 보정부는 디블록킹을 수행한 영상에 대해 픽셀 단위로 원본 영상과의 오프셋을 보정할 수 있다. 특정 픽쳐에 대한 오프셋 보정을 수행하기 위해 영상에 포함된 픽셀을 일정한 수의 영역으로 구분한 후 오프셋을 수행할 영역을 결정하고 해당 영역에 오프셋을 적용하는 방법 또는 각 픽셀의 에지 정보를 고려하여 오프셋을 적용하는 방법을 사용할 수 있다.
ALF (Adaptive Loop Filter)는 필터링한 복원 영상과 원래의 영상을 비교한 값을 기초로 필터링을 수행할 수 있다. 영상에 포함된 픽셀을 소정의 그룹으로 나눈 후 해당 그룹에 적용될 하나의 필터를 결정하여 그룹마다 차별적으로 필터링을 수행할 수 있다. ALF를 적용할지 여부에 관련된 정보는 휘도 신호는 부호화 단위(Coding Unit, CU) 별로 전송될 수 있고, 각각의 블록에 따라 적용될 ALF의 크기 및 계수는 달라질 수 있다. ALF는 다양한 형태를 가질 수 있으며, 필터에 그에 따라 포함되는 계수의 갯수도 달라질 수 있다. 이러한 ALF의 필터링 관련 정보(필터 계수 정보, ALF On/Off 정보, 필터 형태 정보)는 비트스트림에서 소정의 파라메터 셋에 포함되어 전송될 수 있다.
메모리(150)는 필터부(145)를 통해 산출된 복원 블록 또는 픽쳐를 저장할 수 있고, 저장된 복원 블록 또는 픽쳐는 화면 간 예측을 수행 시 예측부(110)에 제공될 수 있다.
도 2는 본 발명의 다른 실시예에 따른 영상 복호화기를 나타낸 블록도이다.
도 2를 참조하면, 영상 복호화기(200)는 엔트로피 복호화부(2110), 재정렬부(215), 역양자화부(220), 역변환부(225), 예측부(230), 필터부(235), 메모리(240)가 포함될 수 있다.
영상 부호화기에서 영상 비트스트림이 입력된 경우, 입력된 비트스트림은 영상 부호화기와 반대의 절차로 복호화될 수 있다.
엔트로피 복호화부(210)는 영상 부호화기의 엔트로피 부호화부에서 엔트로피 부호화를 수행한 것과 반대의 절차로 엔트로피 복호화를 수행할 수 있다. 예를 들어, 영상 부호화기에서 엔트로피 부호화를 수행하기 위해 사용된 VLC 테이블은 엔트로피 복호화부에서도 동일한 가변 길이 부호화 테이블로 구현되어 엔트로피 복호화를 수행할 수 있다. 엔트로피 복호화부(210)에서 복호화된 정보 중 예측 블록을 생성하기 위한 정보는 예측부(230)로 제공되고 엔트로피 복호화부에서 엔트로피 복호화를 수행한 잔차값은 재정렬부(215)로 입력될 수 있다.
엔트로피 복호화부(210)에서도 엔트로피 부호화부와 마찬가지로 카운터(Counter) 또는 직접 변환(Direct Swapping) 방법을 이용해 코드 워드 할당 테이블을 변화시킬 수 있고, 변화된 코드 워드 할당 테이블에 기초하여 엔트로피 복호화를 수행할 수 있다.
엔트로피 복호화부(210)에서는 부호화기에서 수행된 화면 내 예측 및 화면 간 예측에 관련된 정보를 복호화할 수 있다. 전술한 바와 같이 영상 부호화기에서 화면 내 예측 및 화면 간 예측을 수행시 소정의 제약이 있는 경우, 이러한 제약을 기초로 한 엔트로피 복호화를 수행해 현재 블록에 대한 화면 내 예측 및 화면 간 예측에 관련된 정보를 제공받을 수 있다.
엔트로피 복호화부(210)에서는 이하 도 3 내지 8에서의 본 발명의 실시예에서 설명하는 화면 내 부호화 모드 복호화 방법을 기초로 소정의 이진 부호를 사용하여 현재 예측 단위의 화면 내 예측 모드 정보를 복호화할 수 있다.
재정렬부(215)는 엔트로피 복호화부(210)에서 엔트로피 복호화된 비트스트림을 부호화부에서 재정렬한 방법을 기초로 재정렬을 수행할 수 있다. 1차원 벡터 형태로 표현된 계수들을 다시 2차원의 블록 형태의 계수로 복원하여 재정렬할 수 있다. 재정렬부에서는 부호화부에서 수행된 계수 스캐닝에 관련된 정보를 제공받고 해당 부호화부에서 수행된 스캐닝 순서에 기초하여 역으로 스캐닝하는 방법을 통해 재정렬을 수행할 수 있다.
역양자화부(220)는 부호화기에서 제공된 양자화 파라미터와 재정렬된 블록의 계수값을 기초로 역양자화를 수행할 수 있다.
역변환부(225)는 영상 부호화기에서 수행한 양자화 결과에 대해 변환부에서 수행한 DCT 및 DST에 대해 역DCT 및 역 DST를 수행할 수 있다. 역변환은 영상 부호화기에서 결정된 전송 단위를 기초로 수행될 수 있다. 영상 부호화기의 변환부에서는 DCT와 DST는 예측 방법, 현재 블록의 크기 및 예측 방향 등 복수의 정보에 따라 선택적으로 수행될 수 있고, 영상 복호화기의 역변환부(225)에서는 영상 부호화기의 변환부에서 수행된 변환 정보를 기초로 역변환을 수행할 수 있다.
변환을 수행시 변환 단위가 아닌 부호화 단위를 기준으로 변환을 수행할 수 있다.
예측부(230)는 엔트로피 복호화부(210)에서 제공된 예측 블록 생성 관련 정보와 메모리(240)에서 제공된 이전에 복호화된 블록 또는 픽쳐 정보를 기초로 예측 블록을 생성할 수 있다.
전술한 바와 같이 영상 부호화기에서의 동작과 동일하게 화면 내 예측을 수행시 예측 단위의 크기와 변환 단위의 크기가 동일할 경우, 예측 단위의 좌측에 존재하는 픽셀, 좌측 상단에 존재하는 픽셀, 상단에 존재하는 픽셀을 기초로 예측 단위에 대한 화면 내 예측을 수행하지만, 화면 내 예측을 수행시 예측 단위의 크기와 변환 단위의 크기가 상이할 경우, 변환 단위를 기초로 한 참조 픽셀을 이용하여 화면 내 예측을 수행할 수 있다. 또한, 최소 부호화 단위에 대해서만 NxN 분할을 사용하는 화면 내 예측을 사용할 수 있다.
예측부(230)는 예측 단위 판별부, 화면 간 예측부 및 화면 내 예측부를 포함할 수 있다. 예측 단위 판별부는 엔트로피 복호화부에서 입력되는 예측 단위 정보, 화면 내 예측 방법의 예측 모드 정보, 화면 간 예측 방법의 움직임 예측 관련 정보 등 다양한 정보를 입력 받고 현재 부호화 단위에서 예측 단위를 구분하고, 예측 단위가 화면 간 예측을 수행하는지 아니면 화면 내 예측을 수행하는지 여부를 판별할 수 있다. 화면 간 예측부는 영상 부호화기에서 제공된 현재 예측 단위의 화면 간 예측에 필요한 정보를 이용해 현재 예측 단위가 포함된 현재 픽쳐의 이전 픽쳐 또는 이후 픽쳐 중 적어도 하나의 픽쳐에 포함된 정보를 기초로 현재 예측 단위에 대한 화면 간 예측을 수행할 수 있다.
화면 간 예측을 수행하기 위해 부호화 단위를 기준으로 해당 부호화 단위에 포함된 예측 단위의 움직임 예측 방법이 스킵 모드(Skip Mode), 머지 모드(Merge 모드), AMVP 모드(AMVP Mode) 중 어떠한 방법인지 여부를 판단할 수 있다.
이하, 본 발명의 실시예에서는 AMVP 방법을 사용하여 화면 간 예측을 수행시 후보 예측 움직임 벡터 리스트를 구성하는 방법에 대해 개시한다.
화면 내 예측부는 현재 픽쳐 내의 화소 정보를 기초로 예측 블록을 생성할 수 있다. 예측 단위가 화면 내 예측을 수행한 예측 단위인 경우, 영상 부호화기에서 제공된 예측 단위의 화면 내 예측 모드 정보를 기초로 화면 내 예측을 수행할 수 있다. 화면 내 예측부에는 AIS 필터, 참조 화소 보간부, DC 필터를 포함할 수 있다. AIS 필터는 현재 블록의 참조 화소에 필터링을 수행하는 부분으로써 현재 예측 단위의 예측 모드에 따라 필터의 적용 여부를 결정하여 적용할 수 있다. 영상 부호화기에서 제공된 예측 단위의 예측 모드 및 AIS 필터 정보를 이용하여 현재 블록의 참조 화소에 AIS 필터링을 수행할 수 있다. 현재 블록의 예측 모드가 AIS 필터링을 수행하지 않는 모드일 경우, AIS 필터는 적용되지 않을 수 있다.
참조 화소 보간부는 예측 단위의 예측 모드가 참조 화소를 보간한 화소값을 기초로 화면 내 예측을 수행하는 예측 단위일 경우, 참조 화소를 보간하여 정수값 이하의 화소 단위의 참조 화소을 생성할 수 있다. 현재 예측 단위의 예측 모드가 참조 화소를 보간하지 않고 예측 블록을 생성하는 예측 모드일 경우 참조 화소는 보간되지 않을 수 있다. DC 필터는 현재 블록의 예측 모드가 DC 모드일 경우 필터링을 통해서 예측 블록을 생성할 수 있다.
복원된 블록 또는 픽쳐는 필터부(235)로 제공될 수 있다. 필터부(235)는 디블록킹 필터, 오프셋 보정부, ALF를 포함할 수 있다.
영상 부호화기로부터 해당 블록 또는 픽쳐에 디블록킹 필터를 적용하였는지 여부에 대한 정보 및 디블록킹 필터를 적용하였을 경우, 강한 필터를 적용하였는지 또는 약한 필터를 적용하였는지에 대한 정보를 제공받을 수 있다. 영상 복호화기의 디블록킹 필터에서는 영상 부호화기에서 제공된 디블록킹 필터 관련 정보를 제공받고 영상 복호화기에서 해당 블록에 대한 디블록킹 필터링을 수행할 수 있다. 영상 부호화기에서와 마찬가지로 우선 수직 디블록킹 필터링 및 수평 디블록킹 필터링을 수행하되, 겹치는 부분에 있어서는 수직 디블록킹 및 수평 디블록킹 중 적어도 하나를 수행할 수 있다. 수직 디블록킹 필터링 및 수평 디블록킹 필터링이 겹치는 부분에서 이전에 수행되지 못한 수직 디블록킹 필터링 또는 수평 디블록킹 필터링이 수행될 수 있다. 이러한 디블록킹 필터링 과정을 통해서 디블록킹 필터링의 병행 처리(Parallel Processing)이 가능하다.
오프셋 보정부는 부호화시 영상에 적용된 오프셋 보정의 종류 및 오프셋 값정보 등을 기초로 복원된 영상에 오프셋 보정을 수행할 수 있다.
ALF는 필터링을 수행 후 복원된 영상과 원래의 영상을 비교한 값을 기초로 필터링을 수행할 수 있다. 부호화기로부터 제공된 ALF 적용 여부 정보, ALF 계수 정보 등을 기초로 부호화 단위에 ALF를 적용할 수 있다. 이러한 ALF 정보는 특정한 파라메터 셋에 포함되어 제공될 수 있다.
메모리(240)는 복원된 픽쳐 또는 블록을 저장하여 참조 픽쳐 또는 참조 블록으로 사용할 수 있도록 할 수 있고 또한 복원된 픽쳐를 출력부로 제공할 수 있다.
전술한 바와 같이 이하, 본 발명의 실시예에서는 설명의 편의상 코딩 유닛(Coding Unit)을 부호화 단위라는 용어로 사용하지만, 부호화 뿐만 아니라 복호화를 수행하는 단위가 될 수도 있다.
또한, 이하, 본 발명의 실시예에서 후술할 영상 부호화 방법 및 영상 복호화 방법은 도 1 및 도 2에서 전술한 영상 부호화기 및 영상 복호화기에 포함된 각 구성부에서 수행될 수 있다. 구성부의 의미는 하드웨어적인 의미 뿐만 아니라 알고리즘을 통해 수행될 수 있는 소프트웨어적인 처리 단위도 포함할 수 있다.
도 3은 본 발명의 또 다른 실시예에 따른 예측 움직임 벡터를 생성하기 위한 공간적 후보 예측 단위 및 시간적 후보 예측 단위를 나타낸 개념도이다.
현재 예측 단위의 좌측 상단에 존재하는 픽셀의 위치를 (xP, yP)라고 하고 현재 예측 단위의 너비를 nPSW, 높이를 nPSH라는 변수로 정의한다. 공간적 후보 예측 단위를 표현하기 위한 변수인 MinPuSize는 예측 단위에서 사용할 수 있는 가장 작은 예측 단위의 크기를 나타낸다.
이하, 본 발명의 실시예에서는 현재 예측 단위의 공간적 주변 예측 단위는 (xP-1, yP+nPSH)에 존재하는 픽셀을 포함하는 블록을 좌측 제1 블록(300), (xP-1, yP+nPSH-MinPuSize)에 존재하는 픽셀을 포함하는 블록을 좌측 제2 블록(310)이라는 용어로 정의하여 사용한다. 또한, (xP+nPSW, yP-1)에 위치하는 픽셀을 포함하는 블록을 상단 제1 블록(320), (xP+nPSW-MinPuSize, yP-1)에 위치하는 픽셀을 포함하는 블록을 상단 제2 블록(330), (xP-MinPuSize, yP-1)에 위치하는 픽셀을 포함하는 블록을 상단 제3 블록(340)이라는 용어로 정의하여 사용한다.
공간적 후보 예측 단위는 좌측 제1 블록(300), 좌측 제2 블록(310), 상단 제1 블록(320), 상단 제2 블록(330), 상단 제3 블록(340)을 포함할 수 있다. 좌측 제1 블록(300) 및 좌측 제2 블록(310)을 포함하는 하나의 그룹을 제1 공간적 후보 예측 그룹으로 정의하고 상단 제1 블록(320), 상단 제2 블록(330), 상단 제3 블록(340)을 포함하는 하나의 그룹을 제2 공간적 후보 예측 그룹이라고 정의한다. 제1 공간적 후보 예측 그룹에 포함되는 예측 단위와 제2 공간적 후보 예측 그룹에 포함되는 예측 단위를 포함하는 용어로 공간적 후보 예측 단위라는 용어를 사용할 수 있다.
시간적 후보 예측 단위(350)는 현재 예측 단위를 포함하는 픽쳐 내의 픽셀 위치(xP, yP)를 기초로 현재 예측 단위의 콜-픽쳐에서 (xP+nPSW, yP+nPSH) 위치의 픽셀을 포함하는 예측 단위이거나 (xP+nPSW, yP+nPSH) 위치의 픽셀을 포함하는 예측 단위가 가용하지 않은 경우, (xP+nPSW/2-1, yP+nPSH/2-1) 위치의 픽셀을 포함하는 예측 단위가 될 수 있다.
도 3에서 개시한 공간적 후보 예측 단위의 위치 및 개수와 시간적 후보 예측 단위의 위치 및 개수는 임의적인 것으로써 본 발명의 본질에서 벋어나지 않는 한 공간적 후보 예측 단위의 위치 및 개수와 시간적 후보 예측 단위의 위치 및 개수는 변할 수 있고 또한, 후보 예측 움직임 벡터 리스트를 구성시 우선적으로 스캔되는 예측 단위의 위치 및 후보 예측 그룹도 변할 수 있다. 즉, 이하, 본 발명의 실시예에서 설명하는 후보 예측 움직임 벡터 리스트를 구성시 사용되는 예측 단위의 위치, 개수, 스캔 순서, 후보 예측 그룹 등은 하나의 실시예로써 본 발명의 본질에서 벋어나지 않는 한 변할 수 있다.
도 4는 본 발명의 또 다른 실시예에 따른 예측 움직임 벡터 유도 방법을 나타낸 순서도이다.
도 4를 참조하면, 제1 공간적 후보 예측 그룹 가용성 정보가 존재하는 경우, 제1 공간적 후보 예측 그룹에서 후보 예측 움직임 벡터를 산출한다(단계 S400).
제1 공간적 후보 예측 그룹은 전술한 바와 같이 좌측 제1 블록, 좌측 제2 블록이 될 수 있다. 제1 공간적 후보 예측 그룹에서 예측 움직임 벡터를 산출하기 위해 제1 공간적 후보 예측 그룹 가용성 정보를 사용할 수 있다. 제1 공간적 후보 예측 그룹 가용성 정보는 소정의 비트 정보를 기초로써 제1 공간적 후보 예측 그룹에 존재하는 블록의 움직임 벡터 중 적어도 하나의 움직임 벡터가 가용한 후보 예측 움직임 벡터로써 현재 예측 단위의 후보 예측 움직임 벡터 리스트에 후보 예측 움직임 벡터로서 포함될지 여부에 대한 정보를 표현할 수 있다. 제1 공간적 후보 예측 그룹 가용성 정보 설정 방법 및 후보 예측 움직임 벡터 산출 방법은 이하, 본 발명의 실시예에서 후술한다.
제2 공간적 후보 예측 그룹 가용성 정보가 존재하는 경우, 제2 공간적 후보 예측 그룹에서 후보 예측 움직임 벡터를 산출한다(단계 S410).
제2 공간적 후보 예측 그룹은 전술한 바와 같이 상단 제1 블록, 상단 제2 블록 및 상단 제3 블록이 될 수 있다. 제2 공간적 후보 예측 그룹에서 예측 움직임 벡터를 산출하기 위해 제2 공간적 후보 예측 그룹 가용성 정보를 사용할 수 있다. 제2 공간적 후보 예측 그룹 가용성 정보는 제1 공간적 후보 예측 그룹 가용성 정보와 마찬가지로 소정의 비트 정보를 기초로 제2 공간적 후보 예측 그룹에 존재하는 블록의 움직임 벡터 중 적어도 하나의 움직임 벡터가 후보 예측 움직임 벡터로써 현재 예측 단위의 후보 예측 움직임 벡터 리스트에 포함될지 여부에 대한 정보를 표현할 수 있다. 제2 공간적 후보 예측 그룹 가용성 정보 설정 방법 및 후보 예측 움직임 벡터 산출 방법은 이하, 본 발명의 실시예에서 후술한다.
시간적 후보 예측 단위 가용성 정보가 존재하는 경우, 시간적 후보 예측 단위에서 후보 예측 움직임 벡터를 산출한다(단계 S420).
시간적 후보 예측 단위 가용성 정보는 소정의 비트 정보를 기초로 시간적 후보 예측 단위의 움직임 벡터를 후보 예측 움직임 벡터로써 현재 예측 단위의 후보 예측 움직임 벡터 리스트에 포함할지 여부에 대한 정보를 표현할 수 있다. 시간적 후보 예측 단위 가용성 정보 설정 방법 및 후보 예측 움직임 벡터 산출 방법은 이하, 본 발명의 실시예에서 후술한다.
후보 예측 움직임 벡터 리스트에는 단계 S400 내지 단계 S420을 통해 산출된 움직임 벡터, 즉, 제1 공간적 후보 예측 그룹, 제2 공간적 후보 예측 그룹, 시간적 후보 예측 단위 중 적어도 하나에서 산출된 후보 예측 움직임 벡터가 포함될 수 있다.
후보 예측 움직임 벡터 리스트에서 동일한 후보 예측 움직임 벡터가 있는 경우, 우선 순위가 가장 높은 후보 예측 움직임 벡터를 제외하고 후보 움직임 벡터 리스트에서 제거한다(단계 S430).
단계 S400에서 단계 S420에서 수행되는 후보 예측 움직임 벡터 산출 과정을 통해 산출된 후보 예측 움직임 벡터는 단계 S430에서 수행되는 후보 예측 움직임 벡터 동일성 판단 과정을 통해 동일하지 않은 후보 예측 움직임 벡터만을 후보 예측 움직임 벡터 리스트에 포함시킬 수 있다.
후보 예측 움직임 벡터 리스트에 후보 예측 움직임 벡터가 존재하지 않는 경우, 영 벡터를 추가적으로 후보 예측 움직임 벡터 리스트에 삽입한다(단계 S440).
단계 S400에서 단계 S420에서 수행되는 후보 예측 움직임 벡터 산출 과정에서 후보 예측 움직임 벡터가 산출되지 않는 경우, 후보 예측 움직임 벡터 리스트에는 후보 예측 움직임 벡터가 존재하지 않을 수 있다. 이러한 경우, 영 벡터를 후보 예측 움직임 벡터 리스트에 포함시킬 수 있다. 본 단계는 이하 후술할 추가의 후보 예측 움직임 벡터를 삽입하는 단계인 단계 S470에서 통합적으로 이루어질 수도 있고, 본 단계가 단계 S470과 통합적으로 수행되는 경우, 본 단계는 수행되지 않을 수 있다.
현재 후보 예측 움직임 벡터 리스트에 포함되어 있는 후보 예측 움직임 벡터의 개수가 후보 예측 움직임 벡터 리스트에 포함될 수 있는 최대 개수 이상인지 여부를 판단한다(단계 S450).
후보 예측 움직임 벡터 리스트에 포함될 수 있는 후보 예측 움직임 벡터의 개수는 임의의 개수로 제한 될 수 있다. 예를 들어, 최대 예측 움직임 벡터 개수가 2 개로 제한되는 경우, 단계 S400에서 단계 S440에서 수행되는 후보 예측 움직임 벡터 산출 과정을 통해 산출된 후보 예측 움직임 벡터가 3개로 최대 예측 움직임 벡터 개수보다 많은 경우, 우선 순위가 높은 순으로 2개의 후보 예측 움직임 벡터만이 후보 예측 움직임 벡터 리스트에 포함될 수 있고, 나머지 1개의 벡터는 후보 움직임 벡터 리스트에서 제외될 수 있다.
현재 후보 예측 움직임 벡터 리스트에 포함되어 있는 후보 예측 움직임 벡터의 개수가 후보 예측 움직임 벡터 리스트에 포함될 수 있는 최대 개수 이상인 경우, 후보 예측 움직임 벡터 리스트에 포함되어 있는 후보 예측 움직임 벡터를 최대 후보 예측 움직임 벡터 개수만 예측 움직임 벡터 리스트에 포함시킨다(단계 S460).
우선 순위가 높은 순으로 최대 후보 예측 움직임 벡터 개수만큼의 후보 예측 움직임 벡터를 후보 예측 움직임 벡터 리스트에 포함시키고, 나머지 후보 예측 움직임 벡터는 후보 예측 움직임 벡터 리스트에서 제외시킬 수 있다.
현재 후보 예측 움직임 벡터 리스트에 포함되어 있는 후보 예측 움직임 벡터의 개수가 후보 예측 움직임 벡터 리스트에 포함될 수 있는 최대 후보 예측 움직임 벡터의 개수보다 작은 경우, 추가의 후보 예측 움직임 벡터를 후보 예측 움직임 벡터 리스트에 포함시킨다(단계 S470).
후보 예측 움직임 벡터의 개수가 후보 예측 움직임 벡터 리스트에 포함될 수 있는 최대 후보 예측 움직임 벡터의 개수보다 작은 경우, 추가의 후보 예측 움직임 벡터를 후보 예측 움직임 벡터 리스트에 포함시켜 후보 예측 움직임 벡터 리스트를 구현할 수 있다. 예를 들어, 현재 후보 예측 움직임 벡터 리스트에 포함되어 있는 후보 예측 움직임 벡터가 영 벡터가 아닌 경우, 영 벡터를 추가적인 후보 예측 움직임 벡터로써 후보 예측 움직임 벡터 리스트에 포함시킬 수 있다. 추가의 후보 예측 움직임 벡터는 영벡터가 아닌 이미 후보 예측 움직임 벡터 리스트에 존재하는 벡터들의 조합 또는 스케일링 값이 될 수도 있다.
후보 예측 움직임 벡터의 인덱스 정보를 기초로 현재 예측 단위의 예측 움직임 벡터를 결정한다(단계 S480).
후보 예측 움직임 벡터 인덱스 정보는 단계 S400 내지 단계 S470을 통해 산출된 후보 예측 움직임 벡터 리스트에 포함된 후보 예측 움직임 벡터 정보 중 어떠한 후보 예측 움직임 벡터를 현재 예측 단위의 예측 움직임 벡터로 사용할지 여부를 나타낼 수 있다. 후보 예측 움직임 벡터 인덱스 정보를 기초로 산출된 현재 예측 단위의 예측 움직임 벡터와 현재 예측 단위의 원래 움직임 벡터값과 예측 움직임 벡터값의 차이 정보인 차분 움직임 벡터 정보를 더해서 현재 예측 단위의 움직임 벡터 정보를 산출할 수 있다.
도 5는 본 발명의 또 다른 실시예에 따른 현재 예측 단위의 움직임 벡터와 공간적 후보 예측 단위의 움직임 벡터와의 관계를 통해 공간적 후보 예측 단위의 움직임 벡터를 분류하는 방법을 설명하기 위한 개념도이다.
도 5를 참조하면, 현재 예측 단위와 동일한 참조 프레임과 동일한 참조 픽쳐 리스트로부터 산출된 공간적 후보 예측 단위의 움직임 벡터를 제1 움직임 벡터(500)라고 한다. 도 5를 참조하면, 현재 예측 단위(550)의 참조 픽쳐가 j 픽쳐이고 j 픽쳐가 포함된 참조 픽쳐 리스트가 L0 리스트라고 가정한다면 공간적 후보 예측 단위(570)의 벡터(500)가 가리키는 참조 픽쳐가 j 픽쳐이고 j 픽쳐가 포함된 참조 픽쳐 리스트가 L0 리스트이므로 공간적 후보 예측 단위(570)의 움직임 벡터와 현재 예측 단위의 움직임 벡터는 동일한 참조 픽쳐 및 동일한 참조 픽쳐 리스트를 가진다. 이렇듯 현재 예측 단위와 동일한 참조 프레임과 동일한 리스트로부터 산출된 움직임 벡터를 제1 움직임 벡터(500)라고 정의한다.
현재 예측 단위(550)와 동일한 참조 프레임을 가지되 서로 다른 참조 픽쳐 리스트로부터 산출된 공간적 후보 예측 단위(570)의 움직임 벡터를 제2 움직임 벡터(510)라고 한다. 현재 예측 단위(550)의 참조 픽쳐가 j 픽쳐이고 j 픽쳐가 포함된 참조 픽쳐 리스트가 L0 리스트라고 가정한다면 공간적 후보 예측 단위(570)의 벡터가 가리키는 참조 픽쳐가 j 픽쳐이고 j 픽쳐가 포함된 참조 픽쳐 리스트가 L1 리스트이므로 공간적 후보 예측 단위의 움직임 벡터(510)와 현재 예측 단위의 움직임 벡터는 동일한 참조 픽쳐를 가지나 서로 다른 참조 픽쳐 리스트를 가진다. 이렇듯 현재 예측 단위와 동일한 참조 프레임이지만 서로 다른 리스트로부터 산출된 움직임 벡터를 제2 움직임 벡터(510)라고 정의한다.
현재 예측 단위와 서로 다른 참조 프레임을 가지되 동일한 참조 픽쳐 리스트로부터 산출된 공간적 후보 예측 단위의 움직임 벡터를 제3 움직임 벡터(520)라고 한다. 현재 예측 단위(550)의 참조 픽쳐가 j 픽쳐이고 j 픽쳐가 포함된 참조 픽쳐 리스트가 L0 리스트라고 가정한다면 공간적 후보 예측 단위(570)의 벡터(520)가 가리키는 참조 픽쳐가 i 픽쳐이고 i 픽쳐가 포함된 참조 픽쳐 리스트가 L0 리스트이므로 공간적 후보 예측 단위의 움직임 벡터와 현재 예측 단위의 움직임 벡터는 서로 다른 참조 픽쳐를 가지나 동일한 참조 픽쳐 리스트를 가진다. 이렇듯 현재 예측 단위(550)와 서로 다른 참조 프레임이지만 동일한 리스트로부터 산출된 움직임 벡터를 제3 움직임 벡터(520)라고 정의한다. 제3 움직임 벡터(520)의 경우, 현재 예측 단위와 참조 픽쳐가 서로 다르므로 공간적 후보 예측 단위의 움직임 벡터를 사용시 현재 예측 단위의 참조 픽쳐를 기준으로 스케일링하여 후보 예측 움직임 벡터 리스트에 포함될 수 있다.
현재 예측 단위(550)와 서로 다른 참조 프레임을 가지고 서로 다른 참조 픽쳐 리스트로부터 산출된 공간적 후보 예측 단위(570)의 움직임 벡터를 제4 움직임 벡터(530)라고 한다. 현재 예측 단위(550)의 참조 픽쳐가 j 픽쳐이고 j 픽쳐가 포함된 참조 픽쳐 리스트가 L0 리스트라고 가정한다면 공간적 후보 예측 단위(570)의 벡터(530)가 가리키는 참조 픽쳐가 m 픽쳐이고 m 픽쳐가 포함된 참조 픽쳐 리스트가 L1 리스트이므로 공간적 후보 예측 단위의 움직임 벡터와 현재 예측 단위의 움직임 벡터는 서로 다른 참조 픽쳐 및 서로 다른 참조 픽쳐 리스트를 가진다. 이렇듯 현재 예측 단위와 서로 다른 참조 프레임 및 서로 다른 참조 픽쳐 리스트로부터 산출된 움직임 벡터를 제4 움직임 벡터(530)라고 정의한다. 제4 움직임 벡터(530) 또한 현재 예측 단위(550)와 참조 픽쳐가 서로 다르므로 공간적 후보 예측 단위의 움직임 벡터를 사용시 현재 예측 단위의 참조 픽쳐를 기준으로 스케일링을 수행하여 후보 예측 움직임 벡터 리스트에 포함될 수 있다.
공간적 후보 예측 단위의 움직임 벡터는 현재 예측 단위의 참조 프레임 및 참조 픽쳐 리스트에 따라 전술한 바와 같이 제1 움직임 벡터 내지 제4 움직임 벡터로 분류될 수 있다. 공간적 후보 예측 단위의 움직임 벡터를 제1 움직임 벡터 내지 제4 움직임 벡터로 분류하는 방법은 이하 본 발명의 실시예에서 설명할 공간적 후보 예측 단위의 움직임 벡터 중 어떠한 움직임 벡터가 후보 예측 움직임 벡터로써 우선적으로 사용될지 여부를 결정하는데 사용될 수 있다.
도 6은 본 발명의 또 다른 실시예에 따른 후보 예측 그룹 가용성 정보 및 시간적 후보 예측 단위의 가용성 정보를 산출하는 방법을 나타내는 순서도이다.
도 6에서는 전술한 도 4의 단계 S400 내지 단계 S420에서 개시한 공간적 후보 예측 그룹 가용성 정보 및 시간적 후보 예측 단위의 가용성 정보를 산출하는 방법 및 후보 예측 움직임 벡터를 산출하는 방법에 대해 개시한다.
도 6은 가용성 정보 및 후보 예측 움직임 벡터를 산출하는 방법을 나타낸 간략화하여 나타낸 순서도이다.
도 6을 참조하면, 좌측 제1 블록에서 좌측 제2 블록 순서로 제1 움직임 벡터 및 제2 움직임 벡터가 존재하는지 여부를 순차적으로 판단한다(단계 S600).
단계 S600에서는 좌측 제1 블록에 제1 움직임 벡터가 존재하는지 여부를 판단하고, 좌측 제1 블록에 제1 움직임 벡터가 존재하지 않는 경우 좌측 제1 블록에 제2 움직임 벡터가 존재하는지 여부를 판단한다.
다음 절차로 좌측 제2 블록에 제1 움직임 벡터가 존재하는지 여부를 판단하고, 좌측 제2 블록에 제1 움직임 벡터가 존재하지 않는 경우 다음으로 좌측 제2 블록에 제2 움직임 벡터가 존재하는지 여부를 판단한다.
전술한 단계 S600의 순차적인 판단 절차를 기초로 조건에 맞는 움직임 벡터가 존재하는 경우 그 이후의 판단 절차는 생략하고 해당 움직임 벡터는 후보 예측 움지임 벡터로서 후보 예측 움직임 리스트에 포함될 수 있다. 또한, 제1 공간적 후보 예측 그룹 가용성 정보를 1로 설정해 제1 공간적 후보 예측 그룹에 후보 예측 움직임 벡터가 존재함을 표시할 수 있다. 1은 후보 예측 움직임 벡터의 존재 여부를 표시하기 위한 임의의 이진수로 다른 이진 부호를 통해 동일한 의미를 포함할 수 있다. 본 발명의 실시예에서 소정의 정보의 내용을 표시하는 1 및 0의 이진수는 임의적인 것으로 다른 이진 부호 또는 다른 부호화 방법을 사용하여 생성된 부호를 기초로 해당 정보를 표현할 수 있다.
좌측 제1 블록에서 좌측 제2 블록 순서로 제3 움직임 벡터 및 제4 움직임 벡터가 존재하는지 여부를 순차적으로 판단한다(단계 S610).
단계 S600을 통해 가용성 여부 판단 정보를 1로 설정하지 못한 경우, 즉, 좌측 제1 블록에서 좌측 제2 블록 순서로 제1 움직임 벡터 및 제2 움직임 벡터가 존재하는지 여부를 순차적으로 판단한 결과 조건에 맞는 벡터를 발견하지 못한 경우, 단계 S610을 통해 후보 예측 움직임 벡터를 산출할 수 있다.
즉, 단계 S610에서는 좌측 제1 블록에 제3 움직임 벡터가 존재하는지 여부를 판단하고, 좌측 제1 블록에 제3 움직임 벡터가 존재하지 않는 경우 좌측 제1 블록에 제4 움직임 벡터가 존재하는지 여부를 판단한다.
다음 절차로 좌측 제2 블록에 제3 움직임 벡터가 존재하는지 여부를 판단하고, 좌측 제2 블록에 제3 움직임 벡터가 존재하지 않는 경우 다음으로 좌측 제2 블록에 제4 움직임 벡터가 존재하는지 여부를 판단한다.
단계 S610에서는 위의 판단 절차를 순차적으로 진행하여 조건을 만족하는 움직임 벡터가 존재하는 경우, 제1 공간적 후보 예측 그룹 가용성 정보를 1로 설정하고, 이후의 움직임 벡터 존재 여부 판단 절차는 수행되지 않을 수 있다.
전술한 바와 같이 제3 움직임 벡터와 제4 움직임 벡터는 현재 예측 단위와 동일하지 않은 참조 픽쳐를 가리키므로 제3 움직임 벡터와 제4 움직임 벡터는 스케일링을 수행한 후 후보 예측 움직임 벡터 리스트에 포함될 수 있다.
만약 단계 S610을 통해 좌측 제1 블록 또는 좌측 제2 블록에 제3 움직임 벡터 및 제4 움직임 벡터가 존재하는 것으로 판단되는 경우, 스케일링을 수행했는지 여부를 표시하는 정보(이하, 스케일링 여부 표시 정보라고 함)의 값을 1로 설정하여 후보 예측 움직임 벡터에 대한 스케일링이 한번 수행된 것을 표시할 수 있다. 본 발명의 실시예에 따른 움직임 예측 방법에서는 후보 예측 움직임 벡터를 생성하기 위한 스케일링의 횟수가 제한될 수 있다. 예를 들어, 후보 예측 움직임 벡터를 생성하기 위한 스케일링의 횟수를 1 회로 제한하여 스케일링을 수행하는 경우, 스케일링 여부를 표시하는 플래그 정보를 통해 스케일링이 수행되었음을 표시하여 추가의 스케일링이 수행되지 않도록 할 수 있다. 스케일링 횟수에 제한을 둠으로써 후보 예측 움직임 벡터를 산출함에 있어서 복잡도를 크게 감소시킬 수 있다.
단계 S610에서도 순차적인 판단 절차를 기초로 조건에 맞는 움직임 벡터가 존재하는 경우, 해당 움직임 벡터는 스케일링을 수행하여 후보 예측 움직임 리스트에 포함될 수 있고, 제1 공간적 후보 예측 그룹 가용성 정보를 1로 설정될 수 있다.
단계 S600 및 단계 S610을 통해 설정된 제1 공간적 후보 예측 그룹 가용성 정보를 기초로 이전에 개시한 도 4의 단계 S400을 통해 제1 공간적 후보 예측 그룹에서 하나의 후보 예측 움직임 벡터를 산출할 수 있다.
상단 제1 블록, 상단 제2 블록 상단 제3 블록의 순서로 제1 움직임 벡터 및 제2 움직임 벡터가 존재하는지 여부를 순차적으로 판단한다(단계 S620).
단계 S620에서는 상단 제1 블록에 제1 움직임 벡터가 존재하는지 여부를 판단하고, 상단 제1 블록에 제1 움직임 벡터가 존재하지 않는 경우 상단 제1 블록에 제2 움직임 벡터가 존재하는지 여부를 판단한다.
다음 절차로 상단 제2 블록에 제1 움직임 벡터가 존재하는지 여부를 판단하고, 상단 제2 블록에 제1 움직임 벡터가 존재하지 않는 경우 다음으로 상단 제2 블록에 제2 움직임 벡터가 존재하는지 여부를 판단한다.
다음 절차로 상단 제3 블록에 제1 움직임 벡터가 존재하는지 여부를 판단하고, 상단 제3 블록에 제1 움직임 벡터가 존재하지 않는 경우 다음으로 상단 제3 블록에 제2 움직임 벡터가 존재하는지 여부를 판단한다.
단계 S620의 순차적인 판단 절차를 기초로 조건에 맞는 움직임 벡터가 존재하는 경우, 그 이후의 판단 절차는 수행되지 않을 수 있다. 산출된 움직임 벡터는 후보 예측 움직임 리스트에 포함될 수 있고, 제2 공간적 후보 예측 그룹 가용성 정보를 1로 설정해 제1 공간적 후보 예측 그룹에 후보 예측 움직임 벡터가 존재함을 표시할 수 있다.
제1 공간적 후보 예측 단위의 스케일링 여부에 따라 상단 제1 블록, 상단 제2 블록 상단 제3 블록의 순서로 제3 움직임 벡터 및 제4 움직임 벡터가 존재하는지 여부를 순차적으로 판단한다(단계 S630).
단계 S620을 통해 제2 공간적 후보 예측 그룹 가용성 정보를 1로 설정하지 못한 경우, 단계 S630을 통해 후보 예측 움직임 벡터를 산출할 수 있다. 만약 전술한 바와 같이 스케일링의 횟수가 제한되어 있고 제1 공간적 후보 예측 그룹에서 후보 예측 움직임 벡터를 산출하는데에 스케일링을 모두 수행하였다면, 단계 S630은 수행되지 않을 수 있다. 예를 들어, 단계 S610에서 스케일링 여부 표시 정보가 1로 표시되어 있는 경우, 단계 S630은 수행되지 않을 수 있다. 만약 단계 S630에서 스케일링이 가능하다면, 단계 S630에서는 상단 제1 블록에 제3 움직임 벡터가 존재하는지 여부를 판단하고, 상단 제1 블록에 제3 움직임 벡터가 존재하지 않는 경우 상단 제1 블록에 제4 움직임 벡터가 존재하는지 여부를 판단한다.
다음 절차로 상단 제2 블록에 제3 움직임 벡터가 존재하는지 여부를 판단하고, 상단 제2 블록에 제3 움직임 벡터가 존재하지 않는 경우 다음으로 상단 제2 블록에 제4 움직임 벡터가 존재하는지 여부를 판단한다.
다음 절차로 상단 제3 블록에 제3 움직임 벡터가 존재하는지 여부를 판단하고, 상단 제3 블록에 제3 움직임 벡터가 존재하지 않는 경우 다음으로 상단 제3 블록에 제4 움직임 벡터가 존재하는지 여부를 판단한다.
전술한 바와 같이 제3 움직임 벡터와 제4 움직임 벡터는 현재 예측 단위와 동일하지 않은 참조 픽쳐를 가리키므로 제3 움직임 벡터와 제4 움직임 벡터는 스케일링을 수행한 후 후보 예측 움직임 벡터 리스트에 포함될 수 있다.
단계 S630에서도 순차적인 판단 절차를 기초로 조건에 맞는 움직임 벡터가 존재하는 경우, 해당 움직임 벡터는 후보 예측 움직임 리스트에 포함될 수 있고, 제2 공간적 후보 예측 그룹 가용성 정보를 1로 설정될 수 있다.
단계 S620 및 단계 S630을 통해 설정된 제2 공간적 후보 예측 그룹 가용성 정보를 기초로 이전에 개시한 도 4의 단계 S410을 통해 제1 공간적 후보 예측 그룹에서 하나의 후보 예측 움직임 벡터를 산출할 수 있다.
단계 S620 및 단계 S630을 수행함에 있어서 산출된 후보 예측 움직임 벡터가 단계 S600 및 단계 S610을 통해 산출된 제1 공간적 후보 예측 그룹의 후보 예측 움직임 벡터와 동일한 경우, 산출된 후보 예측 움직임 벡터가 가용하지 않은 것으로 판단될 수 있다.
예를 들어, 단계 S620에서는 상단 제1 블록에 제1 움직임 벡터가 존재하는 경우에도 상단 제1 블록의 움직임 벡터가 단계 S600 및 단계 S610을 통해 산출된 제1 공간적 후보 예측 그룹의 후보 예측 움직임 벡터와 동일한 경우, 상단 제1 블록의 움직임 벡터는 후보 예측 움직임 벡터로 선택될 수 없다.
또 다른 실시예로 단계 S620 및 단계 S630에서 산출된 후보 예측 움직임 벡터가 단계 S600 및 단계 S610을 통해 산출된 제1 공간적 후보 예측 그룹의 후보 예측 움직임 벡터와 동일한지 여부를 판단하는 절차가 단계 S620 및 단계 S630에서 수행되지 않고, 이하 설명할 시간적 후보 예측 단위에서 움직임 벡터를 산출하는 단계 S640 절차를 수행한 후, 산출된 후보 예측 움직임 벡터 리스트에 포함된 제1 공간적 후보 예측 그룹의 후보 예측 움직임 벡터, 제2 공간적 후보 예측 그룹의 후보 예측 움직임 벡터, 시간적 후보 예측 단위의 후보 예측 움직임 벡터 중 동일한 후보 예측 움직임 벡터를 후보 예측 움직임 벡터 리스트에서 제거하는 동작으로 수행될 수도 있다.
시간적 후보 예측 단위에서 후보 예측 움직임 벡터가 존재하는지 여부를 판단한다 (단계 S640).
시간적 후보 예측 단위가 포함되는 콜 픽쳐(Colocated Picture)는 소정의 플래그 정보에 따라 현재 픽쳐의 참조 픽쳐 리스트 1의 첫번째 픽쳐 또는 현재 픽쳐의 참조 픽쳐 리스트 0의 첫번째 픽쳐가 될 수 있다. 두 개의 참조 픽쳐 리스트를 사용하는 시간적 후보 예측 단위는 소정의 플래그 정보에 따라 우선적으로 하나의 리스트에 존재하는 움직임 벡터만을 후보 예측 움직임 벡터로 사용할 수 있다. 현재 픽쳐와 현재 픽쳐의 참조 픽쳐 사이의 거리와 시간적 후보 예측 단위가 포함된 픽쳐와 시간적 후보 예측 단위의 참조 픽쳐 사이의 거리가 다른 경우, 시간적 후보 예측 단위에서 산출된 후보 예측 움직임 벡터에 스케일링을 수행할 수 있다.
시간적 후보 예측 단위에서 산출된 후보 예측 움직임 벡터가 산출될 수 있는 경우, 시간적 후보 예측 단위 가용성 정보를 1로 설정할 수 있다.
도 7 내지 도 9는 본 발명의 또 다른 실시예에 따른 후보 예측 움직임 벡터 리스트를 구성하는 방법을 나타낸 순서도이다.
도 7은 본 발명의 또 다른 실시예에 따른 제1 공간적 후보 예측 그룹에서 후보 예측 움직임 벡터를 산출하는 방법을 나타낸 순서도이다.
도 7을 참조하면, 좌측 제1 블록에 제1 움직임 벡터 또는 제2 움직임 벡터가 존재하는지 여부를 판단한다(단계 S700).
좌측 제1 블록에 제1 움직임 벡터 또는 제2 움직임 벡터가 존재하는 경우, 해당 벡터를 후보 예측 움직임 벡터로 후보 예측 움직임 벡터 리스트에 포함시키고 제1 공간적 후보 예측 그룹 가용성 정보를 1로 설정하고(단계 S705) 상단 제1 블록에 제1 움직임 벡터 또는 제2 움직임 벡터가 존재하는지 여부를 판단한다(단계 S740).
좌측 제1 블록에 제1 움직임 벡터 또는 제2 움직임 벡터가 존재하지 않는 경우, 좌측 제2 블록에 제1 움직임 벡터 또는 제2 움직임 벡터가 존재하는지 여부를 판단한다(단계 S710).
좌측 제2 블록에 제1 움직임 벡터 또는 제2 움직임 벡터가 존재하는 경우, 해당 벡터를 후보 예측 움직임 벡터로 후보 예측 움직임 벡터 리스트에 포함시키고 제1 공간적 후보 예측 그룹 가용성 정보를 1로 설정하고(단계 S705) 상단 제1 블록에 제1 움직임 벡터 또는 제2 움직임 벡터가 존재하는지 여부를 판단한다(단계 S740).
좌측 제2 블록에 제1 움직임 벡터 또는 제2 움직임 벡터가 존재하지 않는 경우, 좌측 제1 블록에 제3 움직임 벡터 또는 제4 움직임 벡터가 존재하는지 여부를 판단한다(단계 S720).
좌측 제1 블록에 제3 움직임 벡터 또는 제4 움직임 벡터가 존재하는 경우, 해당 벡터를 스케일링하여(스케일링 여부 표시 정보를 1로 표시) 후보 예측 움직임 벡터로 후보 예측 움직임 벡터 리스트에 포함시키고, 제1 공간적 후보 예측 그룹 가용성 정보를 1로 설정한다(단계 S725). 상단 제1 블록에 제1 움직임 벡터 또는 제2 움직임 벡터가 존재하는지 여부를 판단한다(단계 S740).
좌측 제1 블록에 제3 움직임 벡터 또는 제4 움직임 벡터가 존재하지 않는 경우, 좌측 제2 블록에 제3 움직임 벡터 또는 제4 움직임 벡터가 존재하는지 여부를 판단한다(단계 S730).
좌측 제2 블록에 제3 움직임 벡터 또는 제4 움직임 벡터가 존재하는 경우, 해당 벡터를 스케일링하여(스케일링 여부 표시 정보를 1로 표시) 후보 예측 움직임 벡터로 후보 예측 움직임 벡터 리스트에 포함시키고 제1 공간적 후보 예측 그룹 가용성 정보를 1로 설정한다(단계 S725). 상단 제1 블록에 제1 움직임 벡터 또는 제2 움직임 벡터가 존재하는지 여부를 판단한다(단계 S740).
도 8은 본 발명의 또 다른 실시예에 따른 제2 공간적 후보 예측 그룹에서 후보 예측 움직임 벡터(제1 움직임 벡터, 제2 움직임 벡터)를 산출하는 방법을 나타낸 순서도이다.
도 8을 참조하면, 상단 제1 블록에 제1 움직임 벡터 또는 제2 움직임 벡터가 존재하는지 여부를 판단한다(단계 S800).
상단 제1 블록에 제1 움직임 벡터 또는 제2 움직임 벡터가 존재하는 경우 해당 벡터를 후보 예측 벡터 리스트에 포함시키고 제2 공간적 후보 예측 그룹 가용성 정보를 1로 설정하고(단계 S815) 시간적 후보 예측 단위의 후보 예측 움직임 벡터가 존재하는지 여부를 판단한다(도 10의 단계 S1000).
상단 제1 블록에 제1 움직임 벡터 또는 제2 움직임 벡터가 존재하지 않는 경우, 상단 제2 블록에 제1 움직임 벡터 또는 제2 움직임 벡터가 존재하는지 여부를 판단한다(단계 S910).
상단 제2 블록에 제1 움직임 벡터 또는 제2 움직임 벡터가 존재하는 경우, 해당 벡터를 후보 예측 벡터 리스트에 포함시키고 제2 공간적 후보 예측 그룹 가용성 정보를 1로 설정하고(단계 S915) 시간적 후보 예측 단위의 후보 예측 움직임 벡터가 존재하는지 여부를 판단한다(도 10의 단계 S1000).
상단 제2 블록에 제1 움직임 벡터 또는 제2 움직임 벡터가 존재하지 않는 경우, 상단 제3 블록에 제1 움직임 벡터 또는 제2 움직임 벡터가 존재하는지 여부를 판단한다(단계 S820).
상단 제3 블록에 제1 움직임 벡터 또는 제2 움직임 벡터가 존재하는 경우 해당 벡터를 후보 예측 벡터 리스트에 포함시키고 제2 공간적 후보 예측 그룹 가용성 정보를 1로 설정하고(단계 S815) 시간적 후보 예측 단위의 후보 예측 움직임 벡터가 존재하는지 여부를 판단한다(도 10의 단계 S1000).
도 9는 본 발명의 또 다른 실시예에 따른 제2 공간적 후보 예측 그룹에서 후보 예측 움직임 벡터(제3 움직임 벡터, 제4 움직임 벡터)를 산출하는 방법을 나타낸 순서도이다.
도 9를 참조하면, 상단 제3 블록에 제1 움직임 벡터 또는 제2 움직임 벡터가 존재하지 않는 경우, 제1 공간적 후보 예측 그룹에서 스케일링을 수행했는지 여부를 판단한다(단계 S900). 제1 공간적 후보 예측 그룹에 스케일링을 수행한 경우, 제2 공간적 후보 예측 그룹에서 추가의 후보 예측 움직임 벡터를 산출하지 않고 시간적 후보 예측 단위의 후보 예측 움직임 벡터가 존재하는지 여부를 판단한다(단계 S1000). 제1 공간적 후보 예측 그룹에 스케일링을 수행한 경우, 상단 제1 블록에 제3 움직임 벡터 또는 제4 움직임 벡터가 존재하는지 여부를 판단한다(단계 S905).
즉, 스케일링의 횟수를 제한하여 후보 예측 움직임 벡터를 산출할 수 있다.
상단 제1 블록에 제3 움직임 벡터 또는 제4 움직임 벡터가 존재하는 경우, 해당 벡터를 스케일링하여 후보 예측 벡터 리스트에 포함시키고 제2 공간적 후보 예측 그룹 가용성 정보를 1로 설정하고(단계 S915) 시간적 후보 예측 단위의 후보 예측 움직임 벡터가 존재하는지 여부를 판단한다(도 10의 단계 S1000).
상단 제1 블록에 제3 움직임 벡터 또는 제4 움직임 벡터가 존재하지 않는 경우, 상단 제2 블록에 제3 움직임 벡터 또는 제4 움직임 벡터가 존재하는지 여부를 판단한다(단계 S910).
상단 제2 블록에 제3 움직임 벡터 또는 제4 움직임 벡터가 존재하는 경우 해당 벡터를 스케일링하여 후보 예측 벡터 리스트에 포함시키고 제2 공간적 후보 예측 그룹 가용성 정보를 1로 설정하고(단계 S915) 시간적 후보 예측 단위의 후보 예측 움직임 벡터가 존재하는지 여부를 판단한다(도 10의 단계 S1000).
상단 제2 블록에 제3 움직임 벡터 또는 제4 움직임 벡터가 존재하지 않고 제1 공간적 후보 예측 그룹에서 스케일링을 수행하지 않은 경우(스케일링 여부 표시 정보가 0인 경우), 상단 제3 블록에 제3 움직임 벡터 또는 제4 움직임 벡터가 존재하는지 여부를 판단한다(단계 S920).
상단 제3 블록에 제3 움직임 벡터 또는 제4 움직임 벡터가 존재하는 경우 해당 벡터를 스케일링하여 후보 예측 벡터 리스트에 포함시키고 제2 공간적 후보 예측 그룹 가용성 정보를 1로 설정하고(단계 S915) 시간적 후보 예측 단위의 후보 예측 움직임 벡터가 존재하는지 여부를 판단한다(도 10의 단계 S1000).
도 10은 본 발명의 또 다른 실시예에 따른 제2 공간적 후보 예측 그룹에서 후보 예측 움직임 벡터를 산출하는 방법을 나타낸 순서도이다.
도 10에서는 도 9와 달리, 제1 공간적 후보 예측 그룹에서 후보 예측 움직임 벡터가 산출되지 않은 경우, 제2 공간적 후보 예측 그룹에서 제1 움직임 벡터 또는 제2 움직임 벡터가 후보 예측 움직임 벡터로 산출되어도, 추가로 제2 공간적 후보 예측 그룹에서 제3 움직임 벡터 또는 제4 움직임 벡터가 존재하는지 여부를 판단해 해당 벡터를 후보 예측 움직임 벡터로 사용할 수 있다.
즉 도 8에서 제2 공간적 후보 예측 그룹에서 제1 움직임 벡터 또는 제2 움직임 벡터가 후보 예측 움직임 벡터로 산출된 경우(단계 S815), 제1 공간적 후보 예측 그룹 가용성 정보가 1인지 여부를 판단한다(단계 S900-1).
즉, 제2 공간적 후보 예측 그룹에서 제1 움직임 벡터 또는 제2 움직임 벡터가 후보 예측 움직임 벡터로 산출된 경우 제1 공간적 후보 예측 그룹 가용성 정보가 1로 설정된 경우, 제1 공간적 후보 예측 그룹 가용성 정보를 판단하여 제1 공간적 후보 예측 그룹에서 후보 예측 움직임 벡터가 산출되지 않았으면, 추가로 스캔을 수행하여 제2 공간적 예측 단위에서 제3 움직임 벡터 또는 제4 움직임 벡터가 존재하는지 여부를 산출할 수 있다. 이러한 스캔을 수행하기 위하여 단계 S815를 통해 설정된 제2 공간적 후보 예측 그룹 가용성 정보는 단계 S905-1, S910-1, S920-1을 통한 스캔을 수행하는 도중 해당 조건을 만족시키는 움직임 벡터가 산출될 때까지 0으로 설정될 수 있다.
만약, 제2 공간적 후보 예측 그룹에서 제1 움직임 벡터 또는 제2 움직임 벡터가 후보 예측 움직임 벡터로 산출지 않았다면(도 8의 단계 820), 바로 상단 제1 블록에 제3 움직임 벡터 또는 제4 움직임 벡터가 존재하는지 여부를 판단하는 단계 S905-1을 수행할 수 있다.
도 11은 본 발명의 또 다른 실시예에 따른 시간적 후보 예측 그룹에서 후보 예측 움직임 벡터를 산출하는 방법을 나타낸 순서도이다.
도 11을 참조하면 시간적 후보 예측 단위의 후보 예측 움직임 벡터가 존재하는지 여부를 판단한다(단계 S1000).
시간적 후보 예측 단위의 후보 예측 움직임 벡터가 존재하는 경우, 해당 벡터를 후보 예측 벡터 리스트에 포함시키고 시간적 후보 예측 단위 가용성 정보를 1로 설정한다(단계 S1010).
시간적 후보 예측 단위의 후보 예측 움직임 벡터의 경우, 현재 시간적 후보 예측 단위가 포함된 픽쳐와 시간적 후보 예측 단위가 참조하는 참조 픽쳐의 거리에 따라서 스케일링 여부를 달리 할 수 있다.
산출된 후보 예측 움직임 벡터 리스트에 포함된 후보 예측 움직임 벡터 중 동일한 벡터가 존재하는지 여부를 판단한다(단계 S1020).
시간적 후보 예측 움직임 벡터가 존재하지 않는 경우, 후보 예측 움직임 벡터가 후보 예측 움직임 벡터 리스트에 존재하지 않으면 영벡터를 후보 예측 움직임 벡터로 후보 예측 움직임 벡터 리스트에 추가한다(단계 S1040)
산출된 후보 예측 움직임 벡터 리스트에 포함된 후보 예측 움직임 벡터 중 동일한 벡터가 존재하는 경우, 우선 순위가 가장 높은 후보 예측 움직임 벡터를 제외하고 동일한 벡터를 후보 예측 움직임 벡터 리스트에서 제거한다(단계 S1030).
만약, 고정된 수의 후보 예측 움직임 벡터로 이루어진 후보 예측 움직임 벡터 리스트를 구현하는 경우, 아래의 단계가 추가적으로 수행될 수 있다.
후보 예측 움직임 벡터 리스트에 포함된 후보 예측 움직임 벡터 리스트의 개수가 일정수 이하이고 현재 후보 예측 움직임 벡터 리스트에 포함된 벡터 중 영벡터가 없는 경우, 추가의 영벡터를 후보 예측 움직임 벡터로 후보 예측 움직임 벡터 리스트에 포함한다(단계 S1050).
전술한 바와 같이 제2 공간적 후보 예측 그룹에서 후보 예측 움직임 벡터를 산출할 때에 제1 공간적 후보 예측 그룹에서 산출된 후보 예측 움직임 벡터와 동일한 벡터에 해당하는지 여부를 판단하는 절차가 제2 공간적 후보 예측 그룹에서 후보 예측 움직임 벡터를 산출하는 도 8 및 도 9에서 수행될 수 있다.
도 6 내지 도 10의 순서도에서 전술한 절차는 후보 예측 움직임 벡터를 산출하는 과정을 나타내는 것으로 반드시 동일한 순차적 적차로 이루어지지 않고, 평행적으로 수행될 또한, 본 발명의 실시에에서 전술한 후보 예측 움직임 벡터를 산출하기 위한 절차는 스케일링 횟수를 제한하고, 스케일링을 수행하는 벡터를 우선적으로 스캔 대상으로 삼는 방법의 하나의 실시예로써 제1 공간적 후보 예측 단위의 개수 및 위치, 제2 공간적 후보 예측 단위의 개수 및 위치, 시간적 후보 예측 단위의 위치는 변할 수 있고, 또한, 추가적인 벡터를 추가하는 단계 및 후보 예측 움직임 벡터의 개수를 임의로 제한하는 것도 변할 수 있다.
이상에서 설명한 영상 부호화 및 영상 복호화 방법은 도 1 및 도 2에서 전술한 각 영상 부호화기 및 영상 복호화기 장치의 각 구성부에서 구현될 수 있다.
이상 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.
100: 영상부호화기
200: 영상복호화기

Claims (10)

  1. 디코딩 장치에 의한 영상 디코딩에서 움직임 벡터 도출 방법에 있어서,
    제1 MVP 후보를 도출하되, 상기 제1 MVP 후보는 현재 블록의 좌하측 블록의 움직임 벡터 또는 상기 현재 블록의 좌측 블록의 움직임 벡터로부터 도출되고, 상기 좌하측 블록 및 상기 좌측 블록 중 상기 현재 블록의 움직임 벡터 예측을 위하여 가용한 블록이 존재할 때 도출되고,
    제2 MVP 후보를 도출하되, 상기 제1 MVP 후보는 상기 현재 블록의 우상측 블록의 움직임 벡터, 상기 현재 블록의 상측 블록의 움직임 벡터 또는 상기 현재 블록의 좌상측 블록의 움직임 벡터로부터 도출되고, 상기 우상측 블록, 상기 상측 블록 및 상기 좌상측 블록 중 상기 현재 블록의 움직임 벡터 예측을 위하여 가용한 블록이 존재할 때 도출되고,
    시간적(temporal) 주변 블록이 상기 현재 블록의 움직임 벡터 예측에 가용한지 여부에 대한 판단을 사용하여 상기 현재 블록의 상기 시간적 주변 블록으로부터 시간적 MVP 후보를 도출하는 단계;
    상기 제1 MVP 후보, 상기 제2 MVP 후보 또는 상기 시간적 MVP 후보 중 적어도 하나를 기반으로 MVP 후보 리스트를 구성하는 단계;
    상기 현재 블록에 대한 MVP를 결정하되, 상기 현재 블록의 상기 MVP는 상기 MVP 후보 리스트 내 MVP 후보들로부터 선택되는 단계; 및
    상기 현재 블록의 상기 MVP를 기반으로 상기 현재 블록의 움직임 벡터를 도출하는 단계를 포함하고,
    상기 제1 MVP 후보를 도출하는 단계는 상기 좌하측 블록 및 상기 좌측 블록 중 상기 현재 블록의 참조 픽처와 다른 참조 픽처를 갖는 가용한 블록의 움직임 벡터를 스케일링함으로써 상기 제1 MVP 후보를 도출하는 것을 포함하고,
    상기 제1 MVP 후보가 가용하면 상기 제2 MVP 후보를 도출할 때 스케일링은 허용되지 않는 것을 특징으로 하는 움직임 벡터 도출 방법.
  2. 제1항에 있어서,
    상기 제2 MVP 후보를 도출하는 단계에서, 상기 제2 MVP 후보는 스케일링 정보에 기초하여 도출되고,
    상기 스케일링 정보가 참(true)일 때, 상기 움직임 벡터를 위한 스케일링이 가용하지 않고,
    상기 스케일링 정보가 거짓(false)일 때, 상기 움직임 벡터를 위한 스케일링은 가용한 것을 특징으로 하는, 움직임 벡터 도출 방법.
  3. 제2항에 있어서,
    상기 스케일링 정보는 상기 제1 MVP 후보를 도출하는 단계에서 상기 움직임 벡터의 스케일링이 적용되었는 여부와 관련있고,
    움직임 벡터의 스케일링이 상기 제1 MVP 후보를 설정하는 단계에 적용되지 않으면 상기 스케일링 정보의 값은 거짓인 0이고, 상기 움직임 벡터의 스케일링이 상기 제1 MVP 후보를 체크하는 단계에 적용되면 상기 스케일링 정보의 값은 참인 1인 것을 특징으로 하는, 움직임 벡터 도출 방법.
  4. 제1항에 있어서,
    상기 제1 MVP 후보를 도출하는 단계와 상기 제2 MVP 후보를 도출하는 단계에서 움직임 벡터의 스케일링을 적용하는 최대 횟수는 1인 것을 특징으로 하는, 움직임 벡터 도출 방법.
  5. 인코딩 장치에 의한 영상 인코딩에서 움직임 벡터 도출 방법에 있어서,
    제1 MVP 후보를 도출하되, 상기 제1 MVP 후보는 현재 블록의 좌하측 블록의 움직임 벡터 또는 상기 현재 블록의 좌측 블록의 움직임 벡터로부터 도출되고, 상기 좌하측 블록 및 상기 좌측 블록 중 상기 현재 블록의 움직임 벡터 예측을 위하여 가용한 블록이 존재할 때 도출되고,
    제2 MVP 후보를 도출하되, 상기 제1 MVP 후보는 상기 현재 블록의 우상측 블록의 움직임 벡터, 상기 현재 블록의 상측 블록의 움직임 벡터 또는 상기 현재 블록의 좌상측 블록의 움직임 벡터로부터 도출되고, 상기 우상측 블록, 상기 상측 블록 및 상기 좌상측 블록 중 상기 현재 블록의 움직임 벡터 예측을 위하여 가용한 블록이 존재할 때 도출되고,
    시간적(temporal) 주변 블록이 상기 현재 블록의 움직임 벡터 예측에 가용한지 여부에 대한 판단을 사용하여 상기 현재 블록의 상기 시간적 주변 블록으로부터 시간적 MVP 후보를 도출하는 단계;
    상기 제1 MVP 후보, 상기 제2 MVP 후보 또는 상기 시간적 MVP 후보 중 적어도 하나를 기반으로 MVP 후보 리스트를 구성하는 단계;
    상기 현재 블록에 대한 MVP를 결정하되, 상기 현재 블록의 상기 MVP는 상기 MVP 후보 리스트 내 MVP 후보들로부터 선택되는 단계, 및
    상기 현재 블록의 상기 MVP를 기반으로 상기 현재 블록의 움직임 벡터를 도출하는 단계를 포함하고,
    상기 제1 MVP 후보를 도출하는 단계는 상기 좌하측 블록 및 상기 좌측 블록 중 상기 현재 블록의 참조 픽처와 다른 참조 픽처를 갖는 가용한 블록의 움직임 벡터를 스케일링함으로써 상기 제1 MVP 후보를 도출하는 것을 포함하고,
    상기 제1 MVP 후보가 가용하면 상기 제2 MVP 후보를 도출할 때 스케일링은 허용되지 않는 것을 특징으로 하는 움직임 벡터 도출 방법.
  6. 제5항에 있어서,
    상기 제2 MVP 후보를 도출하는 단계에서, 상기 제2 MVP 후보는 스케일링 정보에 기초하여 도출되고,
    상기 스케일링 정보가 참(true)일 때, 상기 움직임 벡터를 위한 스케일링이 가용하지 않고,
    상기 스케일링 정보가 거짓(false)일 때, 상기 움직임 벡터를 위한 스케일링은 가용한 것을 특징으로 하는, 움직임 벡터 도출 방법.
  7. 제6항에 있어서,
    상기 스케일링 정보는 상기 제1 MVP 후보를 도출하는 단계에서 상기 움직임 벡터의 스케일링이 적용되었는 여부와 관련있고,
    움직임 벡터의 스케일링이 상기 제1 MVP 후보를 설정하는 단계에 적용되지 않으면 상기 스케일링 정보의 값은 거짓인 0이고, 상기 움직임 벡터의 스케일링이 상기 제1 MVP 후보를 체크하는 단계에 적용되면 상기 스케일링 정보의 값은 참인 1인 것을 특징으로 하는, 움직임 벡터 도출 방법.
  8. 제5항에 있어서,
    상기 제1 MVP 후보를 도출하는 단계와 상기 제2 MVP 후보를 도출하는 단계에서 움직임 벡터의 스케일링을 적용하는 최대 횟수는 1인 것을 특징으로 하는, 움직임 벡터 도출 방법.
  9. 컴퓨터 판독 가능한 디지털 저장 매체로서, 특정 방법에 의하여 생성된 비트스트림을 저장하고, 상기 특정 방법은,
    제1 MVP 후보를 도출하되, 상기 제1 MVP 후보는 현재 블록의 좌하측 블록의 움직임 벡터 또는 상기 현재 블록의 좌측 블록의 움직임 벡터로부터 도출되고, 상기 좌하측 블록 및 상기 좌측 블록 중 상기 현재 블록의 움직임 벡터 예측을 위하여 가용한 블록이 존재할 때 도출되고,
    제2 MVP 후보를 도출하되, 상기 제1 MVP 후보는 상기 현재 블록의 우상측 블록의 움직임 벡터, 상기 현재 블록의 상측 블록의 움직임 벡터 또는 상기 현재 블록의 좌상측 블록의 움직임 벡터로부터 도출되고, 상기 우상측 블록, 상기 상측 블록 및 상기 좌상측 블록 중 상기 현재 블록의 움직임 벡터 예측을 위하여 가용한 블록이 존재할 때 도출되고,
    시간적(temporal) 주변 블록이 상기 현재 블록의 움직임 벡터 예측에 가용한지 여부에 대한 판단을 사용하여 상기 현재 블록의 상기 시간적 주변 블록으로부터 시간적 MVP 후보를 도출하는 단계;
    상기 제1 MVP 후보, 상기 제2 MVP 후보 또는 상기 시간적 MVP 후보 중 적어도 하나를 기반으로 MVP 후보 리스트를 구성하는 단계;
    상기 현재 블록에 대한 MVP를 결정하되, 상기 현재 블록의 상기 MVP는 상기 MVP 후보 리스트 내 MVP 후보들로부터 선택되는 단계;
    상기 현재 블록의 상기 MVP를 기반으로 상기 현재 블록의 움직임 벡터를 도출하는 단계, 및
    상기 현재 블록의 상기 움직임 벡터에 관한 정보를 포함하는 영상 정보를 인코딩하여 상기 비트스트림을 생성하는 단계를 포함하되,
    상기 제1 MVP 후보를 도출하는 단계는 상기 좌하측 블록 및 상기 좌측 블록 중 상기 현재 블록의 참조 픽처와 다른 참조 픽처를 갖는 가용한 블록의 움직임 벡터를 스케일링함으로써 상기 제1 MVP 후보를 도출하는 것을 포함하고,
    상기 제1 MVP 후보가 가용하면 상기 제2 MVP 후보를 도출할 때 스케일링은 허용되지 않는 것을 특징으로 하는 데이터 저장 매체.
  10. 영상 정보에 대한 데이터의 전송 방법에 있어서,
    현재 블록의 움직임 벡터에 관한 정보를 포함하는 영상 정보의 비트스트림을 획득하되, 상기 현재 블록의 상기 움직임 벡터에 관한 정보는, 제1 MVP 후보를 도출하되, 상기 제1 MVP 후보는 현재 블록의 좌하측 블록의 움직임 벡터 또는 상기 현재 블록의 좌측 블록의 움직임 벡터로부터 도출되고, 상기 좌하측 블록 및 상기 좌측 블록 중 상기 현재 블록의 움직임 벡터 예측을 위하여 가용한 블록이 존재할 때 도출되고, 제2 MVP 후보를 도출하되, 상기 제1 MVP 후보는 상기 현재 블록의 우상측 블록의 움직임 벡터, 상기 현재 블록의 상측 블록의 움직임 벡터 또는 상기 현재 블록의 좌상측 블록의 움직임 벡터로부터 도출되고, 상기 우상측 블록, 상기 상측 블록 및 상기 좌상측 블록 중 상기 현재 블록의 움직임 벡터 예측을 위하여 가용한 블록이 존재할 때 도출되고, 시간적(temporal) 주변 블록이 상기 현재 블록의 움직임 벡터 예측에 가용한지 여부에 대한 판단을 사용하여 상기 현재 블록의 상기 시간적 주변 블록으로부터 시간적 MVP 후보를 도출하는 단계; 상기 제1 MVP 후보, 상기 제2 MVP 후보 또는 상기 시간적 MVP 후보 중 적어도 하나를 기반으로 MVP 후보 리스트를 구성하는 단계; 상기 현재 블록에 대한 MVP를 결정하되, 상기 현재 블록의 상기 MVP는 상기 MVP 후보 리스트 내 MVP 후보들로부터 선택되는 단계; 상기 현재 블록의 상기 MVP를 기반으로 상기 현재 블록의 움직임 벡터를 도출하는 단계, 및 상기 현재 블록의 상기 움직임 벡터에 관한 정보를 포함하는 영상 정보를 인코딩하여 수행하여 생성되고,
    상기 현재 블록의 상기 움직임 벡터에 관한 정보를 포함하는 영상 정보의 비트스트림을 포함하는 상기 데이터를 전송하는 단계를 포함하고,
    상기 제1 MVP 후보를 도출하는 단계는 상기 좌하측 블록 및 상기 좌측 블록 중 상기 현재 블록의 참조 픽처와 다른 참조 픽처를 갖는 가용한 블록의 움직임 벡터를 스케일링함으로써 상기 제1 MVP 후보를 도출하는 것을 포함하고,
    상기 제1 MVP 후보가 가용하면 상기 제2 MVP 후보를 도출할 때 스케일링은 허용되지 않는 것을 특징으로 하는 전송 방법.
KR1020217030602A 2011-06-28 2011-11-23 움직임 벡터 리스트 설정 방법 및 이러한 방법을 사용하는 장치 KR102490375B1 (ko)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US201161501772P 2011-06-28 2011-06-28
US61/501,772 2011-06-28
US201161502833P 2011-06-29 2011-06-29
US201161502829P 2011-06-29 2011-06-29
US61/502,829 2011-06-29
US61/502,833 2011-06-29
KR1020207036376A KR102307005B1 (ko) 2011-06-28 2011-11-23 움직임 벡터 리스트 설정 방법 및 이러한 방법을 사용하는 장치
PCT/KR2011/009000 WO2013002461A1 (ko) 2011-06-28 2011-11-23 움직임 벡터 리스트 설정 방법 및 이러한 방법을 사용하는 장치

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020207036376A Division KR102307005B1 (ko) 2011-06-28 2011-11-23 움직임 벡터 리스트 설정 방법 및 이러한 방법을 사용하는 장치

Publications (2)

Publication Number Publication Date
KR20210119577A KR20210119577A (ko) 2021-10-05
KR102490375B1 true KR102490375B1 (ko) 2023-01-19

Family

ID=47424332

Family Applications (6)

Application Number Title Priority Date Filing Date
KR1020187013086A KR101968726B1 (ko) 2011-06-28 2011-11-23 움직임 벡터 리스트 설정 방법 및 이러한 방법을 사용하는 장치
KR1020217030602A KR102490375B1 (ko) 2011-06-28 2011-11-23 움직임 벡터 리스트 설정 방법 및 이러한 방법을 사용하는 장치
KR1020207036376A KR102307005B1 (ko) 2011-06-28 2011-11-23 움직임 벡터 리스트 설정 방법 및 이러한 방법을 사용하는 장치
KR1020197010067A KR102083012B1 (ko) 2011-06-28 2011-11-23 움직임 벡터 리스트 설정 방법 및 이러한 방법을 사용하는 장치
KR1020137033727A KR101857725B1 (ko) 2011-06-28 2011-11-23 움직임 벡터 리스트 설정 방법 및 이러한 방법을 사용하는 장치
KR1020207005223A KR102194295B1 (ko) 2011-06-28 2011-11-23 움직임 벡터 리스트 설정 방법 및 이러한 방법을 사용하는 장치

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020187013086A KR101968726B1 (ko) 2011-06-28 2011-11-23 움직임 벡터 리스트 설정 방법 및 이러한 방법을 사용하는 장치

Family Applications After (4)

Application Number Title Priority Date Filing Date
KR1020207036376A KR102307005B1 (ko) 2011-06-28 2011-11-23 움직임 벡터 리스트 설정 방법 및 이러한 방법을 사용하는 장치
KR1020197010067A KR102083012B1 (ko) 2011-06-28 2011-11-23 움직임 벡터 리스트 설정 방법 및 이러한 방법을 사용하는 장치
KR1020137033727A KR101857725B1 (ko) 2011-06-28 2011-11-23 움직임 벡터 리스트 설정 방법 및 이러한 방법을 사용하는 장치
KR1020207005223A KR102194295B1 (ko) 2011-06-28 2011-11-23 움직임 벡터 리스트 설정 방법 및 이러한 방법을 사용하는 장치

Country Status (14)

Country Link
US (4) US10491918B2 (ko)
EP (4) EP4164224B1 (ko)
KR (6) KR101968726B1 (ko)
CN (5) CN103748879B (ko)
CA (4) CA3182875A1 (ko)
DK (1) DK2728875T3 (ko)
ES (3) ES2883353T3 (ko)
FI (1) FI4164224T3 (ko)
HK (4) HK1255975A1 (ko)
HU (3) HUE044009T2 (ko)
PL (3) PL2728875T3 (ko)
PT (1) PT2728875T (ko)
SI (1) SI3481066T1 (ko)
WO (1) WO2013002461A1 (ko)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101279573B1 (ko) 2008-10-31 2013-06-27 에스케이텔레콤 주식회사 움직임 벡터 부호화 방법 및 장치와 그를 이용한 영상 부호화/복호화 방법 및 장치
US10104391B2 (en) 2010-10-01 2018-10-16 Dolby International Ab System for nested entropy encoding
US20120082228A1 (en) * 2010-10-01 2012-04-05 Yeping Su Nested entropy encoding
FI3985979T3 (fi) 2010-12-13 2024-04-23 Electronics & Telecommunications Res Inst Menetelmä vertailuyksikön määrittämiseksi
CN107071459B (zh) * 2010-12-14 2020-01-03 M&K控股株式会社 用于编码运动画面的设备
EP4164224B1 (en) * 2011-06-28 2024-04-10 LG Electronics Inc. Video decoding apparatus and video encoding apparatus
US20130107962A1 (en) * 2011-10-26 2013-05-02 Intellectual Discovery Co., Ltd. Scalable video coding method and apparatus using inter prediction mode
US9992512B2 (en) * 2014-10-06 2018-06-05 Mediatek Inc. Method and apparatus for motion vector predictor derivation
US11025934B2 (en) 2014-12-16 2021-06-01 Advanced Micro Devices, Inc. Methods and apparatus for decoding video using re-ordered motion vector buffer
EP4221202A1 (en) * 2015-06-05 2023-08-02 Dolby Laboratories Licensing Corporation Image encoding and decoding method and image decoding device
CN108293131B (zh) * 2015-11-20 2021-08-31 联发科技股份有限公司 基于优先级运动矢量预测子推导的方法及装置
CN111526360A (zh) 2016-02-06 2020-08-11 华为技术有限公司 图像编解码方法及装置
EP3410717A1 (en) * 2017-05-31 2018-12-05 Thomson Licensing Methods and apparatus for candidate list pruning
JP7088606B2 (ja) 2018-04-02 2022-06-21 エスゼット ディージェイアイ テクノロジー カンパニー リミテッド 動画処理方法、画像処理装置、プログラム、符号化デバイス、及び復号化デバイス
US10531090B1 (en) * 2018-07-02 2020-01-07 Tencent America LLC Method and apparatus for video coding
US11019357B2 (en) * 2018-08-07 2021-05-25 Qualcomm Incorporated Motion vector predictor list generation
JP2021536191A (ja) * 2018-09-07 2021-12-23 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America ビデオコーディング用システムおよび方法
US10958932B2 (en) 2018-09-12 2021-03-23 Qualcomm Incorporated Inter-prediction coding of video data using generated motion vector predictor list including non-adjacent blocks
CN111726617B (zh) * 2019-03-18 2024-03-15 华为技术有限公司 用于融合运动矢量差技术的优化方法、装置及编解码器
WO2020252422A1 (en) 2019-06-13 2020-12-17 Beijing Dajia Internet Information Technology Co., Ltd. Motion vector prediction for video coding
CN112995669B (zh) * 2021-04-27 2021-08-03 浙江华创视讯科技有限公司 一种帧间预测方法、装置、电子设备及存储介质

Family Cites Families (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2248361B (en) * 1990-09-28 1994-06-01 Sony Broadcast & Communication Motion dependent video signal processing
US6185340B1 (en) * 1997-02-18 2001-02-06 Thomson Licensing S.A Adaptive motion vector control
DE19855501C2 (de) * 1997-12-01 2003-12-11 Samsung Electronics Co Ltd Video-Kodier-/Dekodier-Verfahren, computerlesbares Medium sowie Video-Kodier-Dekodier-Vorrichtung
US6768775B1 (en) 1997-12-01 2004-07-27 Samsung Electronics Co., Ltd. Video CODEC method in error resilient mode and apparatus therefor
US6275536B1 (en) * 1999-06-23 2001-08-14 General Instrument Corporation Implementation architectures of a multi-channel MPEG video transcoder using multiple programmable processors
KR100441509B1 (ko) * 2002-02-25 2004-07-23 삼성전자주식회사 주사포맷변환장치 및 방법
KR101011849B1 (ko) * 2002-04-19 2011-01-31 파나소닉 주식회사 움직임 벡터 계산방법
JP4130783B2 (ja) * 2002-04-23 2008-08-06 松下電器産業株式会社 動きベクトル符号化方法および動きベクトル復号化方法
JP2004023458A (ja) * 2002-06-17 2004-01-22 Toshiba Corp 動画像符号化/復号化方法及び装置
KR100956910B1 (ko) * 2002-07-02 2010-05-11 파나소닉 주식회사 움직임 벡터 도출 방법, 동화상 부호화 방법, 및 동화상복호화 방법
KR100774296B1 (ko) * 2002-07-16 2007-11-08 삼성전자주식회사 움직임 벡터 부호화 방법, 복호화 방법 및 그 장치
KR100865034B1 (ko) * 2002-07-18 2008-10-23 엘지전자 주식회사 모션 벡터 예측 방법
KR100506864B1 (ko) * 2002-10-04 2005-08-05 엘지전자 주식회사 모션벡터 결정방법
KR100534207B1 (ko) 2002-12-09 2005-12-08 삼성전자주식회사 비디오 부호화기의 움직임 추정기 및 그 방법
US8064520B2 (en) * 2003-09-07 2011-11-22 Microsoft Corporation Advanced bi-directional predictive coding of interlaced video
US20060012719A1 (en) * 2004-07-12 2006-01-19 Nokia Corporation System and method for motion prediction in scalable video coding
CN101073265B (zh) * 2004-12-03 2012-08-22 汤姆森许可贸易公司 可缩放视频编码方法
KR100888963B1 (ko) * 2004-12-06 2009-03-17 엘지전자 주식회사 영상 신호의 스케일러블 인코딩 및 디코딩 방법
JP2008536451A (ja) * 2005-04-14 2008-09-04 トムソン ライセンシング 空間スケーラブルビデオ符号化及び復号化向けスライス適応型動きベクトル符号化のための方法及び装置
KR100896279B1 (ko) * 2005-04-15 2009-05-07 엘지전자 주식회사 영상 신호의 스케일러블 인코딩 및 디코딩 방법
KR101158439B1 (ko) * 2005-07-08 2012-07-13 엘지전자 주식회사 영상 신호의 코딩정보를 압축/해제하기 위해 모델링하는 방법
JP4879558B2 (ja) * 2005-11-02 2012-02-22 パナソニック株式会社 動きベクトル検出装置
CN1777289A (zh) * 2005-11-30 2006-05-24 天津大学 利用选择性预测加快运动估计的方法
KR100953646B1 (ko) * 2006-01-12 2010-04-21 엘지전자 주식회사 다시점 비디오의 처리 방법 및 장치
CN100576919C (zh) * 2006-08-08 2009-12-30 佳能株式会社 运动矢量检测设备及运动矢量检测方法
JP4763549B2 (ja) * 2006-08-18 2011-08-31 富士通セミコンダクター株式会社 フレーム間予測処理装置、画像符号化装置、及び画像復号化装置
CN101222627A (zh) * 2007-01-09 2008-07-16 华为技术有限公司 一种多视点视频编解码系统以及预测向量的方法和装置
KR101366241B1 (ko) * 2007-03-28 2014-02-21 삼성전자주식회사 영상 부호화, 복호화 방법 및 장치
JP2011501555A (ja) * 2007-10-16 2011-01-06 エルジー エレクトロニクス インコーポレイティド ビデオ信号処理方法及び装置
KR101505195B1 (ko) * 2008-02-20 2015-03-24 삼성전자주식회사 직접 모드 부호화 및 복호화 방법
EP2104356A1 (en) * 2008-03-18 2009-09-23 Deutsche Thomson OHG Method and device for generating an image data stream, method and device for reconstructing a current image from an image data stream, image data stream and storage medium carrying an image data stream
WO2009115901A2 (en) * 2008-03-19 2009-09-24 Nokia Corporation Combined motion vector and reference index prediction for video coding
CN101605256A (zh) * 2008-06-12 2009-12-16 华为技术有限公司 一种视频编解码的方法及装置
CN101686393B (zh) * 2008-09-28 2012-10-17 华为技术有限公司 应用于模板匹配的快速运动搜索方法及装置
KR101377527B1 (ko) * 2008-10-14 2014-03-25 에스케이 텔레콤주식회사 복수 개의 참조 픽처의 움직임 벡터 부호화/복호화 방법 및장치와 그를 이용한 영상 부호화/복호화 장치 및 방법
KR101279573B1 (ko) * 2008-10-31 2013-06-27 에스케이텔레콤 주식회사 움직임 벡터 부호화 방법 및 장치와 그를 이용한 영상 부호화/복호화 방법 및 장치
KR101007339B1 (ko) 2008-11-06 2011-01-14 주식회사 텔레칩스 의사난수 배열 생성 방식의 스크램블러 장치
CN101820547A (zh) * 2009-02-27 2010-09-01 源见科技(苏州)有限公司 帧间模式选择方法
CN101600108B (zh) * 2009-06-26 2011-02-02 北京工业大学 一种多视点视频编码中的运动和视差联合估计方法
US9060176B2 (en) * 2009-10-01 2015-06-16 Ntt Docomo, Inc. Motion vector prediction in video coding
TWI566586B (zh) * 2009-10-20 2017-01-11 湯姆生特許公司 一序列形象的現時區塊之寫碼方法和重建方法
US9036692B2 (en) * 2010-01-18 2015-05-19 Mediatek Inc. Motion prediction method
KR101768207B1 (ko) * 2010-01-19 2017-08-16 삼성전자주식회사 축소된 예측 움직임 벡터의 후보들에 기초해 움직임 벡터를 부호화, 복호화하는 방법 및 장치
EP2548372B1 (en) * 2010-03-16 2023-02-15 InterDigital Madison Patent Holdings, SAS Methods and apparatus for implicit adaptive motion vector predictor selection for video encoding and decoding
KR101752418B1 (ko) * 2010-04-09 2017-06-29 엘지전자 주식회사 비디오 신호 처리 방법 및 장치
US9300970B2 (en) * 2010-07-09 2016-03-29 Samsung Electronics Co., Ltd. Methods and apparatuses for encoding and decoding motion vector
US9124898B2 (en) 2010-07-12 2015-09-01 Mediatek Inc. Method and apparatus of temporal motion vector prediction
US8824558B2 (en) * 2010-11-23 2014-09-02 Mediatek Inc. Method and apparatus of spatial motion vector prediction
US8711940B2 (en) * 2010-11-29 2014-04-29 Mediatek Inc. Method and apparatus of motion vector prediction with extended motion vector predictor
US9049455B2 (en) * 2010-12-28 2015-06-02 Panasonic Intellectual Property Corporation Of America Image coding method of coding a current picture with prediction using one or both of a first reference picture list including a first current reference picture for a current block and a second reference picture list including a second current reference picture for the current block
US9635383B2 (en) * 2011-01-07 2017-04-25 Texas Instruments Incorporated Method, system and computer program product for computing a motion vector
US9247249B2 (en) * 2011-04-20 2016-01-26 Qualcomm Incorporated Motion vector prediction in video coding
US9282338B2 (en) * 2011-06-20 2016-03-08 Qualcomm Incorporated Unified merge mode and adaptive motion vector prediction mode candidates selection
EP3223523A1 (en) * 2011-06-24 2017-09-27 HFI Innovation Inc. Method and apparatus for removing redundancy in motion vector predictors
EP4164224B1 (en) 2011-06-28 2024-04-10 LG Electronics Inc. Video decoding apparatus and video encoding apparatus
CN103918267B (zh) * 2011-11-07 2017-05-17 寰发股份有限公司 推导缩放的运动向量的方法

Also Published As

Publication number Publication date
CN103748879A (zh) 2014-04-23
HUE044009T2 (hu) 2019-09-30
EP2728875A4 (en) 2014-12-24
SI3481066T1 (sl) 2021-10-29
US11743488B2 (en) 2023-08-29
KR101857725B1 (ko) 2018-05-14
CN108184124B (zh) 2022-01-11
PT2728875T (pt) 2019-03-19
KR102083012B1 (ko) 2020-02-28
PL3849192T3 (pl) 2023-06-19
KR20140043759A (ko) 2014-04-10
CN108174222B (zh) 2022-04-05
CA3182875A1 (en) 2013-01-03
US20140126643A1 (en) 2014-05-08
US20200092581A1 (en) 2020-03-19
US10491918B2 (en) 2019-11-26
KR20190040096A (ko) 2019-04-16
EP4164224A1 (en) 2023-04-12
CN108174222A (zh) 2018-06-15
CN103748879B (zh) 2018-03-06
CN108271029B (zh) 2022-02-08
ES2715613T3 (es) 2019-06-05
KR20200021563A (ko) 2020-02-28
US20210368201A1 (en) 2021-11-25
ES2940230T3 (es) 2023-05-04
EP4164224B1 (en) 2024-04-10
HK1255976A1 (zh) 2019-09-06
KR20200144157A (ko) 2020-12-28
KR102194295B1 (ko) 2020-12-22
FI4164224T3 (fi) 2024-05-07
HK1255975A1 (zh) 2019-09-06
EP3481066B1 (en) 2021-05-19
KR20210119577A (ko) 2021-10-05
KR101968726B1 (ko) 2019-04-12
CA2840381A1 (en) 2013-01-03
DK2728875T3 (en) 2019-04-08
KR102307005B1 (ko) 2021-09-30
EP3849192A1 (en) 2021-07-14
CA2840381C (en) 2019-01-08
CN108271030A (zh) 2018-07-10
PL2728875T3 (pl) 2019-06-28
WO2013002461A1 (ko) 2013-01-03
ES2883353T3 (es) 2021-12-07
HK1255974A1 (zh) 2019-09-06
CA3019973C (en) 2021-03-09
PL3481066T3 (pl) 2021-11-22
CA3108029C (en) 2023-01-31
HK1255977A1 (zh) 2019-09-06
EP3481066A1 (en) 2019-05-08
CN108184124A (zh) 2018-06-19
CA3108029A1 (en) 2013-01-03
KR20180053424A (ko) 2018-05-21
CA3019973A1 (en) 2013-01-03
EP2728875B1 (en) 2019-01-09
CN108271030B (zh) 2022-02-08
EP3849192B1 (en) 2023-01-11
CN108271029A (zh) 2018-07-10
EP2728875A1 (en) 2014-05-07
US20230362404A1 (en) 2023-11-09
HUE061470T2 (hu) 2023-07-28
US11128886B2 (en) 2021-09-21
HUE056547T2 (hu) 2022-02-28

Similar Documents

Publication Publication Date Title
KR102490375B1 (ko) 움직임 벡터 리스트 설정 방법 및 이러한 방법을 사용하는 장치
KR20140100462A (ko) 화면 간 예측 수행시 후보 블록 결정 방법 및 이러한 방법을 사용하는 장치
KR102551311B1 (ko) 비디오 신호 부호화/복호화 방법 및 장치, 그리고 비트스트림을 저장한 기록 매체
KR20130050898A (ko) 영상의 부호화 방법 및 장치, 그리고 영상의 복호화 방법 및 장치
KR102516137B1 (ko) 두 개의 후보 인트라 예측 모드를 이용한 화면 내 예측 모드의 부/복호화 방법 및 이러한 방법을 사용하는 장치
WO2012157826A1 (ko) 후보 예측 모드 리스트에서 유사 범위 벡터 제거 방법 및 이러한 방법을 사용하는 장치
KR20130139811A (ko) 화면 간 예측 수행시 후보 블록 결정 방법 및 이러한 방법을 사용하는 장치
KR20230092798A (ko) 영상 부호화/복호화 방법 및 장치
KR101348566B1 (ko) 화면 간 예측 수행시 후보 블록 결정 방법 및 이러한 방법을 사용하는 장치
KR20130139810A (ko) 화면 간 예측 수행시 후보 블록 결정 방법 및 이러한 방법을 사용하는 장치
KR20130139809A (ko) 화면 간 예측 수행시 후보 블록 결정 방법 및 이러한 방법을 사용하는 장치

Legal Events

Date Code Title Description
A107 Divisional application of patent
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant