KR102488158B1 - 질소 제거에 의한 lng 생산 - Google Patents

질소 제거에 의한 lng 생산 Download PDF

Info

Publication number
KR102488158B1
KR102488158B1 KR1020210030096A KR20210030096A KR102488158B1 KR 102488158 B1 KR102488158 B1 KR 102488158B1 KR 1020210030096 A KR1020210030096 A KR 1020210030096A KR 20210030096 A KR20210030096 A KR 20210030096A KR 102488158 B1 KR102488158 B1 KR 102488158B1
Authority
KR
South Korea
Prior art keywords
heat exchanger
stream
overhead
nitrogen
recycle stream
Prior art date
Application number
KR1020210030096A
Other languages
English (en)
Other versions
KR20210116269A (ko
Inventor
실바인 보바드
저스틴 데이비드 부코브스키
페이 첸
마크 줄리안 로버츠
Original Assignee
에어 프로덕츠 앤드 케미칼스, 인코오포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에어 프로덕츠 앤드 케미칼스, 인코오포레이티드 filed Critical 에어 프로덕츠 앤드 케미칼스, 인코오포레이티드
Publication of KR20210116269A publication Critical patent/KR20210116269A/ko
Application granted granted Critical
Publication of KR102488158B1 publication Critical patent/KR102488158B1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0209Natural gas or substitute natural gas
    • F25J3/0214Liquefied natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0235Heat exchange integration
    • F25J1/0237Heat exchange integration integrating refrigeration provided for liquefaction and purification/treatment of the gas to be liquefied, e.g. heavy hydrocarbon removal from natural gas
    • F25J1/0238Purification or treatment step is integrated within one refrigeration cycle only, i.e. the same or single refrigeration cycle provides feed gas cooling (if present) and overhead gas cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0257Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0012Primary atmospheric gases, e.g. air
    • F25J1/0015Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/004Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by flash gas recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0042Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by liquid expansion with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • F25J1/0055Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream originating from an incorporated cascade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0219Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle in combination with an internal quasi-closed refrigeration loop, e.g. using a deep flash recycle loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0235Heat exchange integration
    • F25J1/0237Heat exchange integration integrating refrigeration provided for liquefaction and purification/treatment of the gas to be liquefied, e.g. heavy hydrocarbon removal from natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • F25J1/0264Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0209Natural gas or substitute natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0233Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/028Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of noble gases
    • F25J3/029Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of noble gases of helium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/08Separating gaseous impurities from gases or gaseous mixtures or from liquefied gases or liquefied gaseous mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/02Processes or apparatus using separation by rectification in a single pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/40Features relating to the provision of boil-up in the bottom of a column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/72Refluxing the column with at least a part of the totally condensed overhead gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/74Refluxing the column with at least a part of the partially condensed overhead gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/76Refluxing the column with condensed overhead gas being cycled in a quasi-closed loop refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/06Splitting of the feed stream, e.g. for treating or cooling in different ways
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/42Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/60Natural gas or synthetic natural gas [SNG]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/04Recovery of liquid products
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/62Separating low boiling components, e.g. He, H2, N2, Air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/04Compressor cooling arrangement, e.g. inter- or after-stage cooling or condensate removal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/42Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/60Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being hydrocarbons or a mixture of hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/42Processes or apparatus involving steps for recycling of process streams the recycled stream being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/18External refrigeration with incorporated cascade loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/66Closed external refrigeration cycle with multi component refrigerant [MCR], e.g. mixture of hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration

Abstract

본 발명은 천연 가스 공급 스트림을 액화시키고 이로부터 질소를 제거하기 위한 방법 및 시스템에 관한 것이다.

Description

질소 제거에 의한 LNG 생산{LNG PRODUCTION WITH NITROGEN REMOVAL}
본 발명은 천연 가스 공급 스트림을 액화시키고 이로부터 질소를 제거하는 방법에 관한 것이다. 본 발명은 또한 천연 가스 공급 스트림을 액화시키고 그로부터 질소를 제거하기 위한 시스템(예를 들어, 천연 가스 액화 플랜트 또는 다른 형태의 처리 설비)에 관한 것이다.
천연 가스를 액화시키는 공정에서, 예를 들어 순도 및/또는 회수 요건으로 인해, 생성물(메탄) 손실을 최소화하면서 공급물 스트림으로부터 질소를 제거하는 것이 종종 바람직하거나 필요하다. 전형적인 상업용 액체 천연 가스(LNG) 제품 사양은 종종 질소 함량이 약 1% 이하인 요건을 포함하여, LNG가 탱크 전복에 대한 우려를 줄여서 저장될 수 있다.
전통적으로, LNG는 액화를 위한 동력을 제공하기 위해 냉매 압축기에 직접 연결된 가스 또는 증기 터빈을 사용하는 플랜트에서 생산되었다. 이 경우, 질소는 액화기로부터의 LNG를 저압에서 증기 및 액체 상으로 플래싱함으로써 생성물 LNG로부터 거부될 수 있어서, 질소가 풍부한 결과적인 증기는 증기 발생 또는 가스 터빈을 위한 연료로서 사용되고, 질소의 고갈된 결과적인 액체는 LNG 생성물 사양을 충족시킨다.
그러나, 보다 효율적인 가스 터빈의 사용 및 냉동 압축기를 구동하기 위한 전기 모터의 사용이 증가함에 따라, 보다 새로운 LNG 플랜트에 대한 연료 수요는 종종 매우 낮다. 이러한 상황에서, 천연 가스 공급물 중의 과량의 질소는 대기로 배출되거나, 그렇지 않으면 질소 생성물로서 사용되거나 배출되어야 한다. 배기되는 경우, 질소는 전형적으로 환경 문제 및/또는 메탄 회수 요건으로 인해 엄격한 순도 사양(예를 들어, > 95 몰%, 또는 > 99 몰%)을 충족시켜야 한다. 물론, 질소가 고순도 질소 생성물로서 사용되거나 배출되는 경우에도 마찬가지이다. 이러한 순도 요건은 분리 문제를 제기한다. 천연 가스 공급물에서 매우 높은 질소 농도 (전형적으로 10 mol% 초과, 일부 경우에 20 mol%까지 또는 심지어 그 초과)의 경우에, 전용 질소 거부 유닛 (NRU) 은 질소를 효율적으로 제거하고 순수한 (99 mol% 초과의) 질소 생성물을 생성하는 강력한 방법인 것으로 입증되었다. 그러나, 대부분의 경우, 천연 가스는 약 1 내지 10 몰%의 질소를 함유한다. 공급물 내의 질소 농도가 이 범위 내에 있을 때, NRU의 적용가능성은 추가 장비와 연관된 복잡성으로 인해 높은 자본 비용에 의해 방해된다.
US 특허 9,945,604는 비교적 낮은 질소 농도를 갖는 천연 가스 공급물로부터도 질소를 제거할 수 있는 간단하고 효율적인 공정을 개시한다. 이 문헌의 도 1에 개시된 공정에서, 천연 가스 공급 스트림은 증발하는 혼합 냉매에 대해 주 열교환기에서 냉각되고 액화되며, 수득한 LNG 스트림은 약 -240℉(-150℃)의 온도에서 주 열교환기를 빠져나간다. 그 후, LNG 스트림은 리보일러(reboiler) 열교환기에서 추가로 냉각되고, 리보일러 열교환기는 증류탑의 중간 위치에서 증류탑 내로 도입되고 질소 풍부 오버헤드 증기 및 질소 고갈된 바닥부 액체로 분리되기 전에 증류탑을 위한 비등을 위한 열을 제공한다. 바닥부 액체의 스트림은 질소 고갈 LNG 생성물로서 회수된다. 오버헤드 증기의 스트림은 오버헤드 열교환기에서 주위 온도 근처로 가온된 다음, 두 부분, 즉 대기로 배출되는 거부된 질소 스트림, 및 고압으로 압축된 다음 냉각되고 오버헤드 열 교환장치에서 응축되어 증류탑에 환류를 제공하는 재순환 스트림으로 분할된다. 오버헤드 열교환기의 냉각 곡선 및 이에 따른 공정의 효율을 개선하기 위해, 주 열교환기에서 사용되는 혼합 냉매의 일부가 또한 오버헤드 열교환기를 위한 냉각을 제공하는데 사용된다.
미국 특허 제9,816,754호의 도 10은, 오버헤드 질소가 증류탑으로 재순환되어 증류탑에 환류를 제공하고, 오버헤드 열교환기에 대한 추가의 냉각이 주 열교환기에서 사용되는 혼합 냉매의 일부에 의해 공급되는, 미국 특허 9,945,604의 도 1에 도시된 것과 유사한 배열을 도시한다. 미국 특허 제9,816,754호의 도 10과, 미국 특허제9,945,604호의 도 1 사이의 주요 차이점은, 미국 특허 제9,816,754 호의 도 10에서, 증류탑으로의 공급물이, 먼저 압축되고 주 교환기를 통해 재순환되는 LNG 저장 탱크로부터의 증발 가스 스트림으로부터 제공되며, 여기서 증류탑으로 이송되기 전에 응축된다는 점이다.
미국 특허 제9,816,754호의 도 3은 LNG 저장 탱크로부터의 증발 가스가 주 교환기에서 응축되고 증류탑에 환류를 제공하는데 사용되는 대안적인 공정을 도시한다. 이러한 배열은 증류탑으로부터의 오버헤드 스트림을 질소로 일부 농축시킬 수 있지만, 이러한 공정의 달성가능한 질소 순도는 환류 스트림이 보일 오프 가스(boil off gas) 스트림과 동일한 조성을 갖는다는 사실에 의해 제한된다. 이 증기는 탱크 내의 LNG와 평형을 이루며, 반드시 다량의 메탄을 함유할 것이다.
미국 특허 제9,816,754호의 도 10 및 미국 특허 9,945,604호의 구성이 고순도의 거부된 질소를 생성할 수 있지만, 이들 도면에 도시된 장치는 또한 오버헤드 열교환기에서 2-상 냉매 및 다중 냉매 스트림의 사용과 관련된 특정 설계 및 작동상의 어려움 및 복잡성을 나타낸다.
따라서, 간단하고 효율적인 방식으로, 질소 고갈된 LNG 제품을 생산하기 위해 천연 가스 공급 스트림으로부터 질소를 제거하고 이를 액화시킬 수 있는 방법 및 시스템에 대한 필요성이 당업계에 남아 있다.
요약
LNG 생성물이 소량의 질소(전형적으로 1% 이하의 질소)를 함유할 수 있고, 거부된 질소가 대기로 통기하거나 고순도 질소 생성물(전형적으로 99% 질소 또는 더 순수한 질소)로서 사용하기에 충분히 순수할 수 있도록, 질소 함유 천연 가스를 액화시키면서 동시에 간단하고 효율적인 방식으로 질소 함유 천연가스로부터 질소를 분리 및 제거하는 방법 및 시스템이 본 명세서에 개시된다. 상기 방법 및 시스템은 낮은 비용으로 LNG 생성물로부터 질소의 효율적인 거부(rejection)를 가능하게 하고, 특히 낮은 내부 또는 외부 연료 수요가 있는(그를 통해 질소가 거부될 수 있음) 플랜트에 유용하다.
본 발명에 따른 시스템들 및 방법들의 몇몇 바람직한 양태들이 아래에 요약된다.
양태 1: 천연 가스 공급 스트림을 액화시키고 이로부터 질소를 제거하는 방법으로서,
(a) 질소 함유 천연 가스 공급 스트림을 주 열교환기를 통해 통과시키고, 제1 냉매와의 간접 열교환을 통해 상기 주 열교환기에서, 상기 천연 가스 스트림을 냉각 및 액화시킴으로써, 제 1 LNG 스트림을 생성하는 단계;
(b) 상기 주 열교환기로부터 상기 제1 LNG 스트림을 회수하는 단계;
(c) 상기 제1 LNG 스트림을 팽창시키고, 상기 스트림을 증류탑으로 도입하는 단계로서, 상기 스트림은 부분적으로 기화되고, 질소 풍부 오버헤드 증기 및 질소 고갈 바닥부 액체로 분리되는 단계;
(d) 상기 증류탑으로부터 상기 질소 고갈된 바닥부 액체의 스트림을 회수하여 제2의 질소 고갈된 LNG 스트림을 형성하는 단계;
(e) 오버헤드 열교환기에서, 상기 질소 풍부 오버헤드 증기의 스트림을 가온하여 가온된 오버헤드 증기를 형성하는 단계;
(f) 상기 가온된 오버헤드 증기의 제1 부분으로부터 형성된 재순환 스트림을 압축, 냉각 및 액화, 과냉각 및 팽창시켜 액체 또는 2-상 재순환 스트림을 형성하고, 상기 액체 또는2-상 재순환 흐름을 상기 증류탑 내로 도입하여 상기 증류탑에 환류를 제공하는 단계;
(h) 상기 가온된 오버헤드 증기의 제2 부분으로부터 하나 이상의 질소 생성물 스트림 또는 벤트 스트림을 형성하는 단계를 포함하되;
단계 (f)에서, 상기 재순환 스트림의 적어도 일부는, 상기 천연 가스 공급 스트림과는 별도로, 상기 주 열교환기를 통해 상기 재순환 스트림의 상기 적어도 일부를 통과시킴으로써 상기 제1 냉매와의 간접 열교환을 통해 액화되고;
단계 (f)에서, 상기 재순환 스트림은 상기 재순환 스트림의 적어도 일부를 상기 오버헤드 열교환기를 통해 통과시킴으로써 상기 질소 풍부 오버헤드 증기와의 간접 열 교환을 통해 과냉각되고;
상기 오버헤드 열교환기는 상기 주 열교환기로부터 분리되고, 상기 오버헤드 열교환기를 위한 모든 냉각 듀티는 단계 (e)에서, 상기 질소 풍부 오버헤드 증기의 스트림의 가온에 의해 제공되는, 방법.
양태 2: 양태 1에 있어서, 상기 오버헤드 열교환기는 쉘 내에 수용되고 상기 열교환기의 튜브 측 및 쉘을 획정하는 하나 이상의 튜브 번들을 포함하는 코일 권선형 열교환기이고, 단계 (e)에서, 상기 질소 풍부 오버헤드 증기의 스트림은 상기 오버헤드 열교환기의 상기 쉘 측을 통과하고 상기 쉘 측에서 가온되고, 그리고 상기 단계 (f)에서, 상기 재순환 스트림은 상기 재순환 스트림의 적어도 일부를 상기 오버헤드 열교환기의 상기 튜브 측을 통과시킴으로써 과냉각되는, 방법.
양태 3: 양태 2에 있어서, 상기 오버헤드 열교환기는 상기 증류탑과 통합되고, 상기 하나 이상의 튜브 번들은 상기 증류탑의 최상부 내에 위치하고, 그리고 상기 오버헤드 열교환기의 쉘은 상기 증류탑 쉘의 상부를 형성하는, 방법.
양태 4: 양태 1 내지 3 중 어느 하나에 있어서, 상기 오버헤드 열교환기는 온열교환기 섹션 및 냉열교환기 섹션을 포함하고, 그리고 단계 (f)에서, 상기 재순환 스트림은 상기 재순환 스트림의 적어도 일부를 상기 냉열교환기 섹션을 통과시킴으로써 과냉각되는, 방법.
양태 5: 양태 4에 있어서, 단계 (f)에서, 상기 재순환 스트림의 일부 또는 전부는 상기 재순환 스트림의 상기 일부 또는 전부를 온열교환기 섹션을 통해 통과시킴으로써 냉각되는, 방법.
양태 6: 양태 4 또는 5에 있어서, 천연 가스 또는 제1 냉매의 하나 이상의 스트림은 상기 스트림 (들)을 상기 온열교환기 섹션을 통과시킴으로써 냉각되는, 방법.
양태 7: 양태 1 내지 6 중 어느 하나에 있어서, 단계 (f)에서, 모든 재순환 스트림은 상기 스트림을 주 열교환기를 통해 통과시킴으로써 상기 제1 냉매와의 간접 열교환을 통해 액화되어 액화되어 재순환 스트림을 형성하는, 방법.
양태 8: 양태 7에 있어서, 단계 (f)에서, 상기 재순환 스트림은 상기 액화된 재순환 스트림 모두를 상기 오버헤드 열교환기를 통해 통과시킴으로써 과냉각되는, 방법.
양태 9: 양태 7에 있어서, 단계 (f)에서, 상기 재순환 스트림은 상기 액화된 재순환 스트림의 제1 부분을 상기 오버헤드 열교환기를 통해 통과시켜 과냉각되어 과냉각된 부분을 형성하되, 상기 액화된 재순환 스트림의 제2 부분은 오버헤드 상기 열교환기를 우회한 후, 과냉각된 부분과 혼합되며, 그리고 상기 과냉각된 부분 및 제2 부분은 혼합되기 전 또는 후에 팽창되어, 상기 증류탑에 환류를 제공하는 상기 액체 또는 2-상 재순환 스트림을 형성하는, 방법.
양태 10: 양태 1 내지 6 중 어느 하나의 방법으로서, 단계 (f)에서, 상기 재순환 스트림의 제1 부분은 상기 재순환 스트림의 상기 제1 부분을 주 열교환기를 통해 통과시킴으로써 상기 제1 냉매와의 간접 열교환을 통해 액화되어 제1 액화 부분을 형성하고, 그리고 상기 재순환 흐름의 제2 부분은 오버헤드 상기 열교환기를 통해 통과됨으로써 액화 및 과냉각되어 제2 액화 및 과냉각 부분을 형성하고; 이어서 상기 제1 액화 부분 및 제2 액화 및 과냉각 부분이 혼합되고, 그리고 제1 액화 부분 및 2 액화 및 과냉각 부분은 혼합 전 또는 후에 팽창되어, 상기 증류탑에 환류를 제공하는 상기 액체 또는 2-상 재순환 스트림을 형성하는, 방법.
양태 11: 양태 1 내지 10 중 어느 하나에 있어서, 상기 제1 LNG 스트림은 단계 (c)에서, 상기 증류탑의 중간 위치에서 증류탑 내로 도입되는, 방법.
양태 12: 양태 11에 있어서, 상기 단계 (c)는 단계 (c)는 상기 제1 LNG 스트림을 증류탑 내로 도입하기 전에 리보일러 열교환기 내에서, 상기 제1 액화 천연 가스 스트림을 냉각시키는 단계를 추가로 포함하되,
상기 방법은 증류탑에 비등을 제공하기 위해, 상기 제1 LNG 스트림과의 간접 열교환을 통해, 리보일러 열교환기에서 질소 고갈된 바닥부 액체의 일부를 가온 및 기화시키는 단계를 추가로 포함하는, 방법.
양태 13: 양태 1 내지 12 중 어느 하나에 있어서, 단계 (b)에서, 상기 제1 LNG 스트림은 주 열교환기의 차가운 단부로부터 인출되고, 그리고 단계(f)에서, 상기 주 열교환기에서 액화되는 재순환 스트림의 적어도 일부는 상기 주 열교환기의 차가운 단부로부터 인출되는, 방법.
양태 14: 양태 1 내지 13 중 어느 하나에 있어서, 상기 제1 LNG 스트림은 약 -220 내지 250℉ (약 -140 내지 155℃)의 온도에서 주 열교환기로부터 인출되는, 방법.
양태 15: 양태 1 내지 14 중 어느 하나에 있어서, 단계 (f)에서, 상기 주 열교환기에서 액화되는 재순환 스트림의 적어도 일부는 약 -220 내지 -250℉ (약 140 내지 -155℃)의 온도에서 주 열교환기로부터 인출되는, 방법.
양태 16: 양태 1 내지 15 중 어느 하나에 있어서, 상기 질소 풍부 오버헤드 증기는 약 -300 내지 -320℉ (-185 내지 -195℃)의 온도에서 상기 오버헤드 열교환기의 차가운 단부에 들어가는, 방법.
양태 17: 양태 1 내지 16 중 어느 하나에 있어서, 상기 제1 냉매는 단계 (a)에서 주 열교환기에서 천연 가스 스트림을 액화시키고 단계 (f)에서 재순환 스트림의 적어도 일부를 액화시키기 위한 냉각 듀티를 제공하도록 상기 주 열교환기를 통과할 때 증발되는 냉매인, 방법.
양태 18: 양태 17에 있어서, 단계 (f)에서, 상기 재순환 스트림은, 주 열교환기 내부에서 액화되는 상기 재순환 스트림의 적어도 일부가 제1 냉매가 상기 주 열교환기 내에서 기화하기 시작하는 온도보다 0 내지 10℉ (0 내지 5℃) 높은 온도에서 액화를 종료하도록 하는 압력으로 압축되는, 방법.
양태 19: 천연 가스 공급 스트림을 액화시키고 이로부터 질소를 제거하기 위한 시스템으로서,
질소 함유 천연 가스 공급 스트림을 수용하기 위한 하나 이상의 통로를 포함하는 따뜻한 측 및 제1 냉매의 스트림을 수용하기 위해 하나 이상의 통로를 포함하는 차가운 측을 갖는 주 열교환기로서, 상기 따뜻한 측과 차가운 측은 상기 질소 함유 천연가스 공급 스트림이 따뜻한 측을 통과할 때 상기 차가운 측을 통과하는 상기 제1 냉매 스트림과의 간접 열 교환에 의해 냉각 및 액화되어 제1 LNG 스트림을 생성하도록 구성되는, 주 열교환기,
상기 제1 냉매의 냉각된 스트림을 주 열교환기의 차가운 측으로 공급하고 상기 제1 냉매 스트림의 가온된 스트림을 상기 주 열교환기 차가운 측으로부터 인출하기 위한 제1 냉매 회로;
상기 제1 LNG 스트림을 수용하고 팽창시키기 위해 상기 주 열교환기와 유체 유동 연통하는 팽창 장치,
상기 팽창 장치로부터 상기 제1 LNG 스트림을 수용하기 위해 상기 팽창 장치와 유체 유동 연통하는 증류탑으로서, 상기 제 1 LNG 스트림은 부분적으로 기화되고 상기 증류탑 내부에서 질소 풍부 오버헤드 증기 및 질소 고갈된 바닥부 액체로 분리되는, 상기 증류탑;
제2의 질소 고갈된 LNG 스트림을 형성하기 위해 상기 증류탑으로부터 상기 질소 고갈 바닥부 액체의 스트림을 인출하는 도관;
상기 질소 풍부 오버헤드 증기의 스트림을 수용하기 위한 하나 이상의 통로를 포함하는 차가운 측 및 하나 이상의 통로를 포함하는 따뜻한 측을 갖는 오버헤드 열교환기로서, 상기 따뜻한 측 및 차가운 측은, 상기 차가운 측을 통과하는 질소 풍부 오버헤드 증기가 상기 따뜻한 측을 통과하는 유체와의 간접 열교환에 의해 가온되어, 가온된 오버헤드 증기를 생성하도록 구성되는, 오버헤드 열교환기;
액체 또는 2-상 재순환 스트림을 형성하기 위해 상기 가온된 오버헤드 증기의 제1 부분으로부터 형성된 재순환 스트림을 압축, 냉각 및 액화, 과냉각 및 팽창시키고, 상기 증류탑에 환류를 제공하기 위해 상기 증류탑 내로 상기 액체 또는 2-상 재순환 스트림을 도입하기 위한 환류 회로;
상기 시스템으로부터 상기 가온된 오버헤드 증기의 제2 부분으로부터 형성된 하나 이상의 질소 생성물 스트림 또는 벤트 스트림을 인출하기 위한 하나 이상의 도관을 포함하되;
상기 환류 회로는, 상기 재순환 스트림의 적어도 일부를, 상기 천연 가스 공급 스트림과는 별도로, 상기 주 열교환기의 따뜻한 측의 하나 이상의 통로를 통해 통과시킴으로써, 상기 제1 냉매와의 간접 열 교환을 통해 상기 재순환 스트림을 액화시키도록 구성되고;
상기 환류 회로는 상기 재순환 스트림의 적어도 일부를 상기 오버헤드 열교환기의 따뜻한 측의 상기 통로 중 하나 이상을 통해 통과시킴으로써 상기 질소 풍부 오버헤드 증기와의 간접 열 교환을 통해 상기 재순환 스트림을 과냉각하도록 구성되고;
상기 오버헤드 열교환기는 상기 주 열교환기로부터 분리되고, 상기 시스템은, 상기 질소가 풍부 오버헤드 증기의 스트림이 상기 오버헤드 열교환기의 차가운 측을 통과하는 유일한 스트림이고, 따라서 상기 오버헤드 열교환기에 대한 모든 냉각 듀티를 제공하도록 구성되는, 시스템.
양태 20: 양태 19에 있어서, 상기 오버헤드 열교환기는 쉘 내에 수용되고 상기 열교환기의 튜브 측 및 쉘을 획정하는 하나 이상의 튜브 번들을 포함하는 코일 권선형 열교환기이고, 그리고 상기 쉘 측은 상기 열교환기의 차가운 측이고 상기 튜브 측은 열 교환장치의 따뜻한 측인, 시스템.
도 1은 천연 가스 스트림으로부터 질소를 액화 및 제거하기 위한, 본 발명에 따르지 않는, 비교 방법 및 시스템을 도시하는 개략적인 흐름 선도이다.
도 2는 본 발명의 일 실시예에 따른 천연 가스 스트림으로부터 질소를 액화 및 제거하기 위한 방법 및 시스템을 도시하는 개략적인 흐름 선도이다.
도 3은 본 발명의 다른 실시예에 따른 천연 가스 스트림으로부터 질소를 액화 및 제거하기 위한 방법 및 시스템을 도시하는 개략적인 흐름 선도이다.
도 4는 본 발명의 다른 실시예에 따른 천연 가스 스트림으로부터 질소를 액화 및 제거하기 위한 방법 및 시스템을 도시하는 개략적인 흐름 선도이다.
도 5는 조(crude) 헬륨 스트림의 추가적인 분리 및 회수를 가능하게 하는 도 2에 도시된 방법 및 시스템에 대한 변형을 도시하는 개략적인 흐름 선도.
상세한 설명
본원에 사용된 바와 같이, 달리 지시되지 않는 한, 부정관사는 명세서 및 특허청구범위에 기재된 본 발명의 실시양태에서 임의의 특징에 적용될 때 하나 이상을 의미한다. 부정관사의 사용은 이러한 제한이 구체적으로 언급되지 않는 한 단일 특징으로의 의미를 제한하지 않는다. 단수 또는 복수의 명사 또는 명사 어구는 특정 특정 특징 또는 특정 특정 특징을 나타내고, 사용되는 문맥에 따라 단수 또는 복수개의 의미를 가질 수 있다.
방법(예를 들어, (a), (b), 및 (c))의 인용된 단계들을 식별하기 위해 문자가 본 명세서에서 사용되는 경우, 이들 문자는 방법 단계를 지칭하는 것을 돕기 위해 단독으로 사용되고, 청구된 단계들이 수행되는 특정 순서를 지시하도록 의도되지 않으며, 그러한 순서가 구체적으로 인용되지 않는 한, 그러한 정도로만 그러하다.
달리 언급되지 않는 한, 본원에 언급된 임의의 및 모든 백분율은 몰%를 나타내는 것으로 이해되어야 한다. 달리 언급되지 않는 한, 본원에 언급된 임의의 및 모든 압력은 절대 압력(게이지 압력 + 대기압)을 나타내는 것으로 이해되어야 한다.
방법 또는 시스템의 인용된 특징들을 식별하기 위해 본 명세서에서 사용되는 경우, 용어들 "제1", "제2", "제3" 등은 문제의 특징들을 언급하고 구별하는 것을 돕기 위해 단독으로 사용되며, 이러한 순서가 구체적으로 인용되지 않는 한 그리고 단지 그러한 순서가 특정하게 인용되는 정도로 특징들의 임의의 특정 순서를 나타내도록 의도되지 않는다.
본 명세서에서 사용되는 바와 같이, 용어 "천연 가스 공급 스트림"은 또한 합성 및/또는 대체 천연 가스를 포함하는 가스 및 스트림뿐만 아니라, LNG 저장 탱크로부터의 보일-오프 가스(boil-off gas)를 포함하거나 이로 이루어진 스트림과 같은 재순환 천연 가스 스트림을 포함한다. 천연 가스의 주성분은 메탄이고, 천연 가스 공급 스트림은 전형적으로 적어도 85%, 보다 종종 적어도 90% 메탄이다. 자명한 바와 같이, "질소 함유 천연 가스 공급 스트림"은 또한 질소를 함유하는 천연 가스 스트림이며, 전형적으로 1 내지 10%의 질소 농도를 가질 것이다. 더 적은 양으로 공급 스트림에 존재할 수 있는 원료 또는 미정제 천연 가스의 다른 전형적인 성분은 다른 중질 탄화수소(에탄, 프로판, 부탄, 펜탄 등), 헬륨, 수소, 이산화탄소 및/또는 다른 산 가스, 및 수은을 포함한다. 그러나, 주 열교환기에서 통과하고 냉각되고 액화되는 천연 가스 공급 스트림은, 수분, 산성 가스, 수은 및/또는 더 무거운 탄화수소와 같은 임의의 (비교적) 높은 빙점 성분의 레벨을 주 열교환기에서의 냉동 또는 다른 작동 문제를 회피하기 위해 필요한 레벨까지 감소시키는 경우에 그리고 필요에 따라 전처리될 것이다.
본 명세서에서 사용되는 바와 같이, 달리 지시되지 않는 한, 스트림 또는 증기는, 스트림이나 증기 내의 질소의 농도가 질소 함유 천연 가스 공급 스트림 내의 질소의 농도보다 더 높다면, "질소-풍부"하다. 스트림 또는 증기 내의 질소의 농도가 질소 함유 천연 가스 공급 스트림 내의 질소 농도보다 낮으면, 스트림 또는 증기가 "질소-고갈"된다.
본 명세서에 사용되는 바와 같이, 용어 "간접 열 교환"은 2개의 유체 사이의 열 교환을 지칭하며, 여기서 2개의 유체는 일부 형태의 물리적 장벽에 의해 서로 분리되어 유지된다.
본 명세서에서 언급된 바와 같이, 용어 "열교환기"는 2개 이상의 스트림 사이에서 간접 열교환이 일어나는 임의의 장치 또는 시스템을 지칭한다. 달리 지시되지 않는 한, 열교환기는 직렬 및/또는 병렬로 배열된 하나 이상의 열교환기 섹션으로 구성될 수 있으며, 여기서 "열교환기 섹션"은 간접 열 교환이 2개 이상의 스트림 사이에서 일어나는 열교환기의 일부이다. 각각의 이러한 섹션은 그 자신의 하우징을 갖는 개별 유닛을 구성할 수 있지만, 동일한 섹션들이 공통 하우징을 공유하는 단일 열교환기 유닛으로 조합될 수 있다. 달리 표시되지 않는 한, 열교환기 유닛(들)은 쉘 및 튜브, 코일 권선, 또는 플레이트 및 핀 유형의 열교환기 유닛과 같은 임의의 적합한 유형일 수 있지만, 이에 제한되지 않는다.
본 명세서에 사용되는 바와 같이, 용어 "따뜻한(warm)" 및 "차가운(cold)"은 상대적인 용어이며, 달리 지시되지 않는 한 임의의 특정 온도 범위를 암시하고자 하는 것은 아니다.
본 명세서에서 사용되는 바와 같이, 열교환기 또는 열교환기 섹션의 "따뜻한 단부" 및 "차가운 단부"는 그 열교환기나 열교환기 섹션에 대해 (각각) 최고 및 최저 온도를 갖는 열교환기 혹은 열교환기의 단부를 지칭한다. 열교환기의 "중간 위치"는 따뜻한 단부와 차가운 단부 사이, 전형적으로 직렬인 2개의 열교환기 섹션 사이의 위치를 지칭한다.
본 명세서에서 사용되는 바와 같이, 열교환기 또는 열교환기 섹션의 "따뜻한 측"이라는 용어는 차가운 측을 통해 유동하는 유체와의 간접 열 교환에 의해 냉각될 유체의 스트림 또는 스트림들이 통과하는 측을 지칭한다. 따뜻한 측면은 유체의 단일 스트림을 수용하기 위해 열교환기 또는 열교환기 섹션을 통한 단일 통로, 또는 열 교환 또는 열교환기를 통과할 때 서로 분리되어 유지되는 동일하거나 상이한 유체의 다중 스트림을 수용하기 위한 열교환기 및 열교환기 섹션의 하나 이상의 통로를 형성할 수 있다. 유사하게, 열교환기 또는 열교환기 섹션의 "차가운 측"이라는 용어는, 따뜻한 측을 통해 유동하는 유체와의 간접 열 교환에 의해 가온될 유체의 스트림 또는 스트림들이 통과하는측을 지칭한다. 차가운 측은 마찬가지로 유체의 단일 스트림을 수용하기 위해 열교환기 또는 열교환기 섹션을 통한 단일 통로, 또는 열 교환부 또는 열교환기를 통과할 때 서로 분리되어 유지되는 유체의 다중 스트림을 수용하기 위한 열교환기 및 열교환기 섹션의 하나 이상의 통로를 형성할 수 있다.
본 명세서에 사용되는 바와 같이, 용어 "냉열교환기(cold heat exchanger) 섹션" 및 "온열교환기(warm heat exchanger) 섹션"은, 동일한 열교환기와 관련하여 사용될 때, 직렬로 배열되는 2개의 열교환기 섹션을 지칭하며, 냉열교환기 섹션은 열교환기의 차가운 단부에 더 가까운 섹션이고, 온열교환기 섹션은 열교환기 섹션의 따뜻한 단부에 더 근접한 섹션이다.
본 명세서에서 사용되는 바와 같이, 용어 "주 열교환기"는 상기 제1 LNG 스트림을 생성하기 위해 천연 가스 공급 스트림을 냉각 및 액화시키는 역할을 하는 열교환기를 지칭한다.
본 명세서에서 사용되는 바와 같이, 용어 "증기" 또는 "기화된"은 기상인 유체, 또는 초임계 유체와 관련하여 유체에 대한 임계점 밀도보다 작은 밀도를 갖는 유체를 지칭한다. 본 명세서에서 사용되는 바와 같이, 용어 "액체" 또는 "액화된"은 액체 상이거나, 초임계 유체와 관련하여 유체에 대한 임계점 밀도보다 큰 밀도를 갖는 유체를 지칭한다. 본원에서 사용되는 바와 같이, 용어 "2-상" 또는 "부분적으로 증발된"은 기상 및 액상 둘 모두를 포함하는 아임계 유체(특히 이의 스트림)를 지칭한다.
본원에서 사용되는 바와 같이, 용어 "액화"는 증기로부터 액체로의 유체 또는 유체의 스트림의 전환(전형적으로 냉각에 의한)을 지칭한다. 본 명세서에서 사용되는 바와 같이, 용어 "과냉각(subcooling)"은 이미 완전히 액화된 유체 또는 유체의 스트림의 추가 냉각을 지칭한다. 본 명세서에서 사용되는 바와 같이, 용어 "기화"는 유체 또는 유체 스트림을 액체로부터 증기로 (전형적으로 가온에 의한) 전환시키는 것을 지칭한다. 본 명세서에서 사용되는 바와 같이, 용어 "부분적으로 기화하는"은 유체의 스트림과 관련하여, 스트림 내의 유체의 일부를 액체로부터 증기로 전환하여 2-상 스트림을 생성하는 것을 지칭한다.
본 명세서에서 사용되는 바와 같이, 용어 "코일 권선형 열교환기"는 "쉘"로서 공지된 하우징 내에 봉입된 하나 이상의 튜브 번들을 포함하는, 당업계에 공지된 유형의 열교환기를 지칭하며, 여기서 각각의 튜브 번들은 그 자신의 쉘을 가질 수 있거나, 또는 2개 이상의 튜브 번들은 공통 쉘 케이싱을 공유할 수 있다 각각의 튜브 번들은 열교환기 섹션을 나타낼 수 있고, 번들의 튜브 측(번들 내의 튜브들의 내부)은 전형적으로 상기 섹션의 따뜻한 측을 나타내고 섹션을 통한 하나 이상의 통로를 규정하며, 그리고 번들의 쉘 측(쉘의 내부와 튜브들의 외부에 의해 규정되고 이들 사이의 공간)은 전형적으로는 상기 섹션의 냉면을 나타내고 상기 섹션을 통한 단일 통로를 규정한다. 코일 권선형 열교환기는 견고성, 안전성 및 열 전달 효율에 대해 공지된 열교환기의 컴팩트한 설계이며, 따라서 그 풋프린트(footprint)에 비해 매우 효율적인 수준의 열 교환을 제공하는 이점을 갖는다. 그러나, 쉘 측이 열교환기 섹션을 통한 단일 통로만을 규정하기 때문에, 상기 열교환기 섹션의 쉘 측(즉, 전형적으로 차가운 측)에서, 상기 냉매 스트림이 혼합되지 않고 각각의 코일 권선형 열교환기 섹션의 셸 측에 하나 초과의 냉매 스트림을 사용하는 것이 가능하지 않다.
본 명세서에서 사용되는 바와 같이, 용어 "증류탑(distillation column)"은 하나 이상의 분리 섹션을 포함하는 칼럼(또는 칼럼의 세트)을 지칭하며, 각각의 분리 섹션은 접촉을 증가시키고 따라서 칼럼 내부의 섹션을 통해 유동하는 상향 상승 증기와 하향 유동 액체 사이의 물질 전달을 향상시키는 하나 이상의(예를 들어, 패킹 및/또는 트레이와 같은 인서트를 포함하는) 분리 스테이지로 구성된다. 이러한 방식으로, (질소와 같은) 더 가벼운 성분의 농도는 오버헤드 증기에서 증가되고, (메탄과 같은) 보다 무거운 성분의 농도는 바닥부 액체에서 증가된다. 용어 "오버헤드 증기"는 칼럼의 최상부에 수집되는 증기를 지칭한다. 용어 "바닥부 액체"는 칼럼의 바닥부에 모이는 액체를 지칭한다. 칼럼의 "최상부"는 분리 섹션 위의 칼럼의 부분을 지칭한다. 칼럼의 "바닥부"는 분리 섹션 아래의 칼럼의 부분을 지칭한다. 칼럼의 "중간 위치"는 칼럼의 최상부와 바닥부 사이의 위치, 전형적으로 직렬인 2개의 분리 섹션 사이의 위치를 지칭한다. 용어 "환류"는 칼럼의 최상부로부터 하향 유동 액체의 공급원을 지칭한다. 용어 "보일업(boilup)"은 칼럼의 바닥부로부터 상향 상승하는 증기의 공급원을 지칭한다.
본원에서 사용되는 바와 같이, 용어 "오버헤드 열교환기"는 증류탑 오버헤드 증기로부터 냉기를 회수하는 열교환기를 지칭하고, 용어 "리보일러 열교환기(reboiler heat exchanger)"는, 증류탑 바닥부 액체의 일부를 가온 및 증발시켜 증류탑에 비등을 제공하는 열교환기를 지칭한다.
본 명세서에 사용되는 바와 같이, 용어 "냉동 회로"는 냉각된 냉매를 열교환기 또는 열교환기 섹션의 차가운 측에 공급하고, 상기 열 교환부 또는 열 교환부에 냉각 듀티를 제공하기 위해 열 교환체 또는 열 전환부의 차가운 측으로부터 가온된 냉매를 회수하는 데 필요한 구성요소들의 집합을 지칭한다. 또한, 열교환기로 재공급하기 위해 냉각된 냉매를 재생하도록 상기 가온된 냉매를 압축, 냉각 및 팽창시킴으로써 상기 가온되는 냉매의 적어도 일부를 재순환시키는데 필요한 구성요소들을 포함할 수 있다. 따라서, 냉매 회로는 전형적으로 하나 이상의 압축기, 애프터쿨러, 팽창 장치 및 관련 도관을 포함할 수 있다.
본 명세서에서 사용되는 바와 같이, 용어 "팽창 장치"는 유체의 압력을 팽창시키고 이에 의해 낮추기에 적합한 임의의 장치 또는 장치들의 집합을 지칭한다. 유체를 팽창시키기 위한 적합한 유형의 팽창 장치는, 유체가 일팽창되어 유체의 압력 및 온도를 낮추는 터빈; 및 유체가 스로틀링되어 주울-톰슨(Joule-Thomson) 팽창을 통해 유체의 압력과 온도를 낮추는 주울-톰슨 밸브(J-T 밸브로도 알려져 있음)를 포함하지만, 이에 한정되지 않는다.
본 명세서에서 사용되는 바와 같이, 용어 "유체 유동 통신"은, 언급된 스트림(들)이 문제의 장치들 또는 구성요소들에 의해 전송 및 수신될 수 있는 방식으로 문제의 장치들 및 구성요소들이 서로 연결되는 것을 나타낸다. 장치 또는 부품은 예를 들어 해당 스트림(들)을 전달하기 위한 적합한 튜브, 통로 또는 다른 형태의 도관에 의해 연결될 수 있고, 이들은 또한 이들을 분리할 수 있는 시스템의 다른 부품을 통해, 예를 들어 하나 이상의 밸브, 게이트 또는 유체 유동을 선택적으로 제한하거나 지시할 수 있는 다른 장치를 통해 함께 결합될 수 있다.
단지 예로서, 본 발명의 비교 장치 및 다양한 예시적인 실시예가 이제 도 1 내지 도 4를 참조하여 설명될 것이다. 이들 도면에서, 특징이 이전 도면의 특징과 공통인 경우, 그 특징에는 100의 증분만큼 증가된 동일한 참조 번호가 할당되었다. 예를 들어, 도 1의 특징부가 참조 번호 110을 가지면, 도 2의 동일한 특징부는 참조 번호 210을 가질 것이고, 도 3은 참조 번호 310을 가질 것이다.
이제 도 1을 참조하면, 본 발명에 따르지 않는, 비교 장치에 따른 천연가스 액화 방법 및 시스템이 도시되어 있다. 도 1은 US 특허 9,945,604의 도 1에 개시된 것과 유사한 천연 가스 스트림으로부터 질소를 액화 및 제거하기 위한 방법 및 시스템을 도시한다.
질소 함유 천연 가스 공급 스트림(100)은 주 열교환기(102)의 따뜻한 측(warm side)을 통과하고 냉각되고 액화되어, 제1 LNG 스트림(104)을 생성하고, 천연 가스 공급물 스트림은 주 열교환기를 통해 유동하는 혼합 냉매와 간접 열 교환을 통해 냉각되고 그리고 액화되고, 주 열 열교환기(102A)의 차가운 측(cold side)에서 가온되고 기화된다. 도 1에 도시된 배열에서, 주 열교환기(102)는 3개의 튜브 번들 형태의 3개의 열교환기 섹션, 즉 따뜻한 섹션/튜브 번들(102A), 중간 섹션/ 튜브 번들(102B) 및 차가운 섹션/관 번들(102C)을 포함하는 코일 권선형 열교환기이며, 이들 모두는 단일 쉘 내에 포함되며, 천연 가스 공급 스트림은 주 열교환기의 튜브 측을 통해 유동하고 주 열교환기의 튜브 측에서 냉각 및 액화되고, 제1 냉매는 주 열교환기에 의해 유동하며 주 열교환기의 쉘 측에서 가온된다. 그러나, 대안적인 배열에서, 열교환기는 더 많거나 더 적은 튜브 번들을 가질 수 있고, 또는 튜브 번들은 적합한 튜빙을 통해 상호연결된 별개의 쉘에 포함될 수 있다. 마찬가지로, 또 다른 배열에서, 예를 들어 상이한 유형의 쉘 및 튜브 열교환기 또는 플레이트 및 핀 열교환기와 같은 다른 유형의 열교환기가 사용될 수 있고, 이러한 열교환기는 임의의 수의 열교환기 섹션을 포함할 수 있다
주 열교환기(102)에 냉각을 제공하는데 사용되는 도 1에 도시된 혼합 냉매 사이클은 대체로 종래의 단일 혼합 냉매(SMR) 사이클이며, 따라서 단지 간략하게 설명될 것이다. 주 열교환기(102)의 따뜻한 단부를 빠져나가는 따뜻한 혼합 냉매(151)는 압축기(152)에서 압축되고, 애프터쿨러(153)에서 냉각되고, 상 분리기(154)에서 액체 스트림(155) 및 증기 스트림으로 분리된다. 증기 스트림은 압축기(156)에서 추가로 압축되고, 애프터쿨러(157)에서 냉각되고, 상 분리기(158)에서 액체 스트림(159) 및 증기 스트림(160)으로 분리된다. 모든 애프터쿨러들은 통상적으로 예를 들어 공기 또는 물과 같은 주위 온도 유체를 냉각제로서 사용한다.
액체 스트림(155, 159)은 J-T 밸브를 통해 압력이 감소되기 전에 주 열교환기(102)의 따뜻한 섹션(102A)의 튜브 측을 통해 통과되고 과냉각되며, 결합되어 차가운 냉매 스트림(161)을 형성하며, 이는 따뜻한 섹션으로 냉각을 제공하도록 기화되고 가온되는 따뜻한 섹션 (102A)의 쉘 측을 통해 통과한다. 증기 스트림(160)은 주 열교환기(102)의 따뜻한 섹션(102A)의 튜브 측을 통해 통과되고 냉각되고 부분적으로 액화되고, 그 후 상 분리기(162)에서 증기 스트림(164) 및 액체 스트림(163)으로 분리된다. 액체 스트림(163)은 J-T 밸브를 통해 압력이 감소되기 전에 주 열교환기(102)의 중간 섹션(102B)의 튜브 측을 통해 통과되어 과냉각되어 차가운 냉매 스트림(155)을 형성하고, 차가운 냉매 스트림은 중간 및 따뜻한 섹션(102B, 102A)의 쉘 측을 통해 통과하고, 여기서 상기 섹션에 냉각을 제공하도록 기화 및 가온된다(따뜻한 섹션(102A)에 있는 쉘 측에서의 혼합은 스트림(161)으로부터의 냉매와 함께). 증기 스트림(164)은 주 열교환기(102)의 중간(102B) 및 차가운(102C) 섹션을 통과하고 액화되고 과냉각되며, 주 열교환기를 통해 차가운 냉매 스트림(166)으로서 배출되며, 그 대부분은 J-T 밸브를 통해 팽창되어 차가운 냉매 스트림을 제공하며, 차가운 냉매 스트림은 차가운, 중간 및 따뜻한 섹션(102C, 102B, 102A)의 쉘 측면을 통과하고, 여기서 증기화되고 가온되어 상기 섹션에 냉각을 제공한다(중간 섹션(102B)은 쉘 측면에서 스트림(165)으로부터의 냉매와 혼합되고, 따뜻한 섹션 (102A)은 추가로 쉘 측면에서 스트림(161)으로부터의 냉매와 혼합된다).
도 1에 도시된 혼합 냉매 사이클은 미국 특허 제9,945,604호의 도 1에서 도시되고 이와 관련하여 설명된 것과 동일하므로, 상기 혼합 냉매 사이클의 작동에 관한 추가의 상세한 설명은 후자의 문헌에서 찾을 수 있으며, 그 내용은 그 전체가 본 명세서에 포함된다.
제1 LNG 스트림(104)은 약 -240℉(-150℃)의 온도에서 주 열교환기의 차가운 단부를 빠져나간다. 제1 LNG 스트림(104)은 리보일러 열교환기(106)의 따뜻한 측면을 통과함으로써 추가로 냉각되고, 2개의 분리 섹션 사이에서 칼럼의 중간 위치에서 증류탑(110) 내로 도입되기 전에 J-T 밸브(108)를 통과함으로써 팽창된다. 증류탑 내부에서, 제1 LNG 스트림은 부분적으로 기화되고, 질소 부화 오버헤드 증기 및 질소 고갈 바닥부 액체로 분리된다. 바닥부 액체의 스트림(141)은 리보일러 열교환기(106)의 차가운 측을 통과하며, 여기서 증류탑(110)을 위한 비등을 제공하기 위해 제1 LNG 스트림(104)과의 간접 열교환을 통해 가온되고 적어도 부분적으로 기화된다. 바닥부 액체의 다른 스트림 (132) 은 증류탑의 바닥부로부터 인출되어, 질소 고갈 LNG 생성물로서 직접 취해질 수 있거나 또는 먼저 LNG 저장 탱크 (도시되지 않음) 에 저장될 수 있는 제 2 질소 고갈된 LNG 스트림을 형성한다.
증류탑(110)에 대한 환류는 질소 풍부 오버헤드 증기의 일부를 재순환 및 응축(액화)시킴으로써 제공된다. 오버헤드 증기(112)의 스트림은 오버헤드 열교환기(114)의 차가운 측을 통과함으로써 주위 온도 근처로 가온되고, 이어서 두 부분으로 분할된다. 제1 부분은 증류탑에 환류를 제공하는데 사용되는 재순환 스트림(118, 133, 130)을 형성하는 반면, 제2 부분은 대기로 배출되는 질소 배출 스트림(116)을 형성한다. 재순환 스트림(118)은 압축기(120)에서 고압으로 압축되고 애프터쿨러에서 냉각되며, 압축된 스트림(133)은 이후 오버헤드 열교환기(114)의 따뜻한 측면을 통과하며, 여기서 J-T 밸브(143)에서 팽창되기 전에 스트림(122)과의 간접 열 교환을 통해 냉각되고, 액화되고, 과냉각되어 액체 또는 2-상 재순환 스트림(130)을 형성하며, 이는 환류를 제공하기 위해 증류탑의 최상부로 도입된다.
오버헤드 열교환기(114) 내의 냉각 곡선 및 그에 따른 공정의 효율을 개선하기 위해, 주 열교환기(102)에 사용되는 혼합 냉매는 오버헤드 열교환기(114)에 추가적인 냉각을 제공하는데 또한 사용된다. 보다 구체적으로, 차가운 냉매 스트림(166)의 소량 부분(전형적으로 20% 미만)은 스트림(122)으로서 인출되고, 2-상 혼합 냉매 스트림(128)을 형성하는 JT 밸브(124)를 통해 압력이 감소된다. 이어서, 이 스트림(128)은 오버헤드 열교환기(114)의 따뜻한 측을 통과하고, 고온으로 되고 부분적으로 증발되어, 오버헤드 열 교환(114)에서 재순환 스트림(133)의 냉각 및 액화를 위한 추가의 냉각 듀티를 제공하며, 그 결과 고온으로 되며 부분적으로 증발된 혼합 냉매 스트림(126)은 중간 및 따뜻한 섹션(102B, 102A)의 쉘측을 통과하는 차가운 냉매 스트림(165)과 조합됨으로써 주 열교환기로 복귀된다.
전술한 바와 같이, 도 1은 미국 특허 제9,945,604호에 도시된 것과 유사한 천연 가스 스트림으로부터 질소를 액화 및 제거하기 위한 방법 및 시스템을 도시하고 있지만, 제1도의 오버헤드 열교환기(114)는 미국 특허 공개 제9,945,604호에 도시되어 있는 것과 특정 면에서 상이하다. 특히, 도 1의 오버헤드 열교환기(114)는 3개의 열교환기 섹션, 즉 차가운, 중간 및 따뜻한 섹션(114A, 114B, 114C)을 포함하며, 주 열교환기(166)로부터의 혼합 냉매 스트림(128)은 오버헤드 열교환기의 중간 섹션(114B)을 통해서만 통과되고 이 중간 섹션(114B)에서 가열된다. 그 이유는 증류탑(110)으로부터의 오버헤드 증기 스트림(112)이 혼합된 냉매 스트림(228)보다 상당히 더 차가울 것이기 때문이다. 따라서, 냉열교환기 섹션(114A)에서 재순환 스트림(133)을 과냉각하기 위한 냉각 듀티를 제공하기 위해 오버헤드 증기 스트림(112)만을 사용하는 것이 더 효율적이다.
이제 도 2를 참조하면, 본 발명의 일 실시예에 따른 천연 가스 스트림으로부터 질소를 액화 및 제거하기 위한 방법 및 시스템이 도시되어 있다.
질소 함유 천연 가스 공급 스트림(200, 201)은 주 열교환기(236)의 따뜻한 측을 통과하고 냉각되고 액화되어, 제1 LNG 스트림(204)을 생성하고, 천연 가스 공급물 스트림은 주 열교환기의 차가운 측을 통해 유동하는 제1 냉매(도시되지 않음)와의 간접 열교환을 통해 냉각되고 액체화된다. 질소 함유 천연 가스 공급 스트림(200)은 전형적으로 주위 온도이고, 전형적으로 약 600 내지 1200 psia(40 내지 80 bara)의 압력과 같은 고압이고, 필요한 경우, 주 열교환기(236)에서 동결 또는 다른 작동 문제를 피하기 위해 필요한 수준까지 공급 스트림 중 임의의 (상대적으로) 높은 빙점 성분, 예컨대 수분, 산성 가스, 수은 및/또는 더 무거운 탄화수소의 수준을 감소시키기 위해 전처리될 것이다(도시되지 않음). 대안적으로 또는 추가적으로, 중질 성분 제거 단계(도시되지 않음)는, 예를 들어, 공급 스트림으로부터 LPG 성분 및 방출 가능한 펜탄 및 중질 성분을 제거하기 위해, 주 열교환기의 중간 위치에서 수행될 수 있으며, 질소 함유 천연 가스 공급 스트림(201)은 주 열교환기(236)의 중간 위치로부터 인출되고, 중질 성분의 제거 단계가 수행되며, 중질 성분이 고갈된 결과적인 공급 스트림은 주 열교환기의 중간 위치로 복귀되어 공급 스트림의 냉각 및 액화를 완료하여 제1 LNG 스트림(204)을 형성한다.
원한다면, 질소 함유 천연 가스 공급 스트림(200)을 주 열교환기(236) 내로 도입하기 전에, 일반적으로 유동의 약 5%인 질소 함유 자연 가스 공급 스트림의 소량 부분이 주 열교환기를 우회하는 천연 가스 스트림(203)으로서 인출될 수 있다. 또 다른 대안에서, 질소 함유 천연 가스 공급 스트림(200, 201)의 소량의, 다시 약 5%의 흐름이 냉각되지만 아직 액화되지 않거나 완전히 액화된 천연 가스 스트림(즉, 증기 또는 2-상 스트림)(203A)으로서 주 열교환기의 중간 위치로부터 회수될 수 있으며, 상기 스트림은 전형적으로 주위 온도와 -70℉ 사이(주위 온도와 -55℃ 사이)의 온도에서 회수된다.
주 열교환기(236) 및 상기 열교환기에 사용되는 제1 냉매는 천연 가스 스트림을 냉각 및 액화시키기에 적합한 임의의 유형일 수 있다. 예를 들어, 주 열교환기는 하나 이상의 열교환기 섹션을 포함하는 코일 권선형 열교환기일 수 있고, 제1 냉매는 도 1을 참조하여 전술된 SMR 사이클에서 순환하는 혼합 냉매와 같은 기화 냉매일 수 있다. 그러나, 마찬가지로, 다른 유형의 열교환기 및/또는 다른 유형의 냉매가 사용될 수 있으며, 많은 적합한 유형의 열교환기와 냉매가 당업계에 공지되어 있다. 예를 들어, 주 열교환기는 대안적으로 다른 유형의 쉘 및 튜브 열교환기 및/또는 플레이트 및 핀 열교환기를 포함할 수 있고, 냉매는 (질소, 메탄 또는 에탄을 사용하는 역 브레이튼 사이클과 같은) 기체 팽창 사이클에서 순환하는 기체 냉매일 수 있거나, 또는 이중 혼합 냉매(DMR) 사이클, 프로판, 암모니아 또는 HFC 예비 냉각 혼합 냉매 사이클, 또는 캐스케이드 사이클에서 순환하는 기화 냉매일 수도 있다.
제1 LNG 스트림(204)은 전형적으로 주 열교환기(236)에서 냉각되어, 전형적으로 약 -220℉ 내지 -250℉(-140 내지 -155℃), 보다 바람직하게는 약 220℃ 내지 240℉(-140~-150℃)의 온도에서 주 열교환기를 빠져나간다.
제1 LNG 스트림(204)은 리보일러 열교환기(206)의 따뜻한 측면을 통과함으로써 추가로 냉각되고, 2개의 분리 섹션 사이에서 칼럼의 중간 위치에서 증류탑(210) 내로 도입되기 전에 J-T 밸브(208)를 통과하고 이를 가로질러 플래시됨으로써 팽창된다. 증류탑 내부에서, 제1 LNG 스트림은 부분적으로 기화되고, 질소 부화 오버헤드 증기 및 질소 고갈 바닥부 액체로 분리된다. 바닥부 액체의 스트림(241)은 리보일러 열교환기(206)의 차가운 측을 통과하며, 여기서 증류탑(210)을 위한 비등을 제공하기 위해 제1 LNG 스트림(204)과의 간접 열 교환을 통해 가온되고 적어도 부분적으로 기화된다. 바닥부 액체의 다른 스트림(232)은 증류탑의 바닥부로부터 인출되어, 질소 고갈 LNG 생성물로서 직접 취해질 수 있거나 또는 먼저 LNG 저장 탱크 (도시되지 않음) 에 저장될 수 있는 제 2 질소 고갈된 LNG 스트림을 형성한다. 스트림(232)은 전형적으로 1% 이하, 바람직하게는 0.5% 이하의 질소 함량을 갖는다.
제1 LNG 스트림(204)을 증류탑(210) 내로 도입하기 전에 제1 액화 천연 가스(202)를 팽창시키기 위해 J-T 밸브(208)를 사용하는 대신에, 예를 들어 액체 터빈과 같은 다른 형태의 팽창 장치가 동일하게 사용될 수 있다.
리보일러 열교환기(206)는 코일 권선형, 쉘 및 튜브 또는 플레이트 및 핀 열교환기와 같은 임의의 적합한 유형의 열교환기일 수 있다. 도 2에서 증류탑으로부터 분리된 것으로 도시되어 있지만, 리보일러 열교환기는 대신에 증류탑의 바닥부와 통합될 수 있다.
또 다른 대안적인 장치(도시되지 않음)에서, 리보일러 열교환기의 사용 및 증류탑에서의 스트리핑 섹션(제1 LNG 스트림의 도입 지점 아래의 증류탑의 분리 섹션)의 사용은 모두 생략될 수 있으며, 증류탑은 단지 정류 섹션만을 포함한다(제2 LNG 스트림의 유입 지점 위의 증류탑에 분리 섹션). 이러한 배열에서, 제1 LNG 스트림(204)은 팽창되기 전에 증류탑 내로 도입되지 않을 것이고, 칼럼의 바닥부에서 증류탑(210) 내로 도입될 것이고, 바닥부 액체 모두는 제2 질소 고갈된 LNG 스트림과 같이 회수될 것이다. 그러나, 이는 도 2에 도시된 장치로 달성되는 것보다 제2 질소 고갈 LNG 스트림(232)에서 질소의 더 높은 농도를 초래할 것이다.
증류탑(210)의 최상부에 모이는 질소 풍부 오버헤드 증기는 주로 질소이고, 전형적으로 1% 미만, 바람직하게는 0.1% 미만의 메탄 함량을 가지며, 전형적으로 약 -300 내지 -320℉(-185 내지 -195℃), 바람직하게는 약 -310℉(-190℃)의 온도를 갖는 이슬점이다. 질소 풍부 오버헤드 증기의 스트림(212)은 증류탑(210)의 최상부로부터 회수되고, 오버헤드 열교환기(214)의 차가운 측을 통과함으로써 주위 온도 근처로 가온되어 가온된 오버헤드 증기를 형성한다. 도 2에 도시된 배열에서, 오버헤드 열교환기(214)는 차가운 섹션(214A) 및 따뜻한 섹션(114B)을 포함하는 2개의 열교환기 섹션을 갖고, 질소 풍부 오버헤드 증기 스트림(212)은 오버헤드 열교환기(214)의 차가운 단부 내로 도입되고, 차가운 섹션 (214A)을 통과하고 차가운 섹션 내에서 가온되고, 따뜻한 섹션 (214B)을 통과하고 따뜻한 섹션 내에서 더 가온되고 오버헤드 열 전환 장치(114)의 따뜻한 단부로부터 인출된다. 차가운 섹션(214A)에서, 질소 풍부 오버헤드 증기 스트림(212)은, 이하에서 보다 상세히 설명되는 바와 같이, 재순환 스트림(234)의 적어도 일부와의 간접 열 교환을 통해 가온된다. 따뜻한 섹션(214B)에서, 저압 질소 가스는 냉각되기를 원하는 적합한 온도의 임의의 공정 스트림과의 간접 열 교환을 통해 가온된다. 예를 들어, 도 2에 도시된 바와 같이, 천연 가스 스트림(203 및/또는 203A)(전술됨)과 같은 천연 가스 스트림의 하나 이상의 스트림은 오버헤드 열교환기의 따뜻한 섹션(214B)의 따뜻한 측을 통과함으로써 냉각 및 액화될 수 있고, 그 후 결과적인 액화 천연 가스 스트림(들)(205)은 증류탑(210) 내로 도입되기 전에 제1 LNG 스트림(204)과 조합된다. 대안적으로 또는 추가적으로, 그리고 또한 도 2에 도시된 바와 같이, 제1 냉매의 스트림(203B)은 주 열교환기(236)에서의 사용을 위해 복귀되는 제1 냉매(205A)의 냉각된 스트림을 형성하도록 오버헤드 열교환기의 따뜻한 섹션(214B)의 따뜻한 측을 통과함으로써 냉각될 수 있다. 예를 들어, 제1 냉매가 도 1을 참조하여 전술한 바와 같이 SMR 사이클에서 순환되는 혼합 냉매인 경우, 오버헤드 열교환기의 따뜻한 섹션(214B)에 공급되는 제1 냉매의 스트림(203B)은 도 1의 스트림(160)의 일부로부터 취해진 주위 온도의 혼합 냉매 증기 스트림일 수 있고, 오버헤드 열교환기의 따뜻한 섹션(214B)으로부터 인출되는 제1 냉매(205A)의 냉각된 스트림은 팽창되어, 주 열교환기의 차가운 단부에서 주 열교환기의 쉘측으로 도입되는 차가운 냉매 스트림(165)과 조합되거나, 주 열교환기의 중간 섹션의 차가운 단부에서 주 열교환기의 쉘측 내로 도입되는 차가운 냉매의 스트림과 조합될 수 있다.
오버헤드 열교환기(214)는 코일 권선형, 쉘 및 튜브 또는 플레이트 및 핀 열교환기와 같은 임의의 적합한 유형의 열교환기일 수 있지만, 바람직하게는 코일 권선형 의 열교환기다. 도 2는 오버헤드 교환기(214)의 두 섹션을 단일 유닛으로서 내부에 포함되는 것으로 도시하지만, 따뜻한 섹션과 콜드 섹션은 각각 그 자신의 하우징을 갖는 개별 유닛에 동일하게 위치될 수 있다. 마찬가지로, 도 2에서 증류탑으로부터 분리된 것으로 도시되어 있지만, 오버헤드 열교환기(214)는 도 4에 도시된 실시예를 참조하여 아래에서 추가로 설명되는 바와 같이, 대신에 증류탑의 최상부와 통합된 바람직한 배열이다.
오버헤드 열교환기로부터 인출되는 데워진 오버헤드 증기는, 데워된 오버헤드 증기의 제1 부분이 냉각 및 액화되고, 과냉각되고, 팽창되고, 증류탑 내로 도입됨으로써 증류탑에 환류를 제공하는 데 사용되는 재순환 스트림(218, 233, 234, 239, 237, 230)을 형성하고, 데웨팅된 오버헤드 증기 중 제2 부분이 하나 이상의 질소 생성물 또는 벤트 스트림(250, 238, 216)을 형성함으로써 분할된다. 하기 추가 논의로부터 자명한 바와 같이, 재순환 스트림 (가온 오버헤드 증기의 제1 부분)으로부터 질소 생성물/벤트 스트림 (난온 오버헤드 증기 제2 부분)의 상기 분할은 다양한 상이한 위치에서 일어날 수 있으며, 단 상기 질소 생성물 및 벤트 스트림 모두는 상기 재순환 스트림이 증류탑으로 도입되어 증류탑에 환류를 제공하기 전에 분할되어 재순환 스트림으로부터 제거된다.
보다 구체적으로, 가온된 오버헤드 증기의 제1 부분은 재순환 스트림(218)을 형성하고, 이는 압축기(220)에서 고압, 전형적으로 500 psia(35 bara 초과) 초과로 압축되고 (전형적으로 주위 냉각수 또는 공기를 사용하여) 애프터쿨러(221)에서 냉각된다. 압축기(220)는 주변 인터쿨러를 갖는 다중 스테이지를 포함할 수 있다. 이어서, 압축되고 냉각된 재순환 스트림(233)은, 재순환 스트림을 주 열교환기 내부의 천연 가스 공급 스트림으로부터 분리되게 유지하기 위해, 천연 가스 공급물 스트림(201)이 통과하는 통로 또는 통로들로부터 분리된 주 열교환기의 따뜻한 측 내의 하나 이상의 통로를 통해 주 열교환기(236)의 따뜻한 측을 통과한다. 재순환 스트림이 주 열교환기(236)의 따뜻한 측면을 통과함에 따라, 재순환 스트림은 제1 냉매와의 간접 열 교환을 통해 냉각 및 액화되고, 제1 LNG 스트림(204)의 온도에 가까운 온도, 즉 전형적으로 약 -220℉ 내지 -250℉(-140 내지 -155℃), 바람직하게는 약 -220℉ 내지 240℉(-140 내지 -150℃)의 온도, 가장 바람직하게는 약 -230℉ 내지-240℉ (-145 내지 -150 ℃)에서 재순환 스트림(234)으로서 주 열교환기를 빠져나간다. 이 온도에서 상기 재순환 스트림은 완전히 액체이다(또는 스트림이 초임계인 경우, 액체 유사 밀도, 즉 그의 임계점 밀도보다 큰 밀도를 갖는다). 재순환 스트림(234)은 이후 열교환기의 중간 위치(냉간 섹션과 온간 섹션 사이)에서 오버헤드 열교환기(214) 내로 도입되고, 상기 섹션의 차가운 측을 통과하는 질소 풍부 오버헤드 증기(212)와의 간접 열 교환을 통해, 열교환기 중 차가운 측 섹션(214A)의 따뜻한 측부를 통과하고 따뜻한 측부에서 과냉각된다. 오버헤드 열교환기(214)의 차가운 단부를 빠져나가는 과냉각된 재순환 스트림(239)은 전형적으로 약 -280 내지 290℉(-175 내지 -180℃)의 온도이고, 이어서 예를 들어 J-T 밸브(243)를 통과하고 이를 가로질러 플래시됨으로써 팽창되어 액체 또는 2-상 재순환 스트림 (230)을 형성하고, 이는 오버헤드 증류탑(210) 내로 도입되어 칼럼에 역류를 제공한다.
선택적으로, 모든 재순환 스트림(234)을 오버헤드 열교환기(234)를 통해 통과시키는 대신에, 재순환 스트림 중 제1 부분만이 오버헤드 열교환기(234)를 통해 통과되어 과냉각된 스트림(239)을 형성하고, 재순환 스트림의 제2 부분은 오버헤드 상기 열교환기를 우회 스트림(227)으로서 우회한다. 스트림(239 및 237)은 이어서 팽창 및 혼합되어 최상부 증류탑(210)으로 도입되는 액체 또는 2-상 재순환 스트림(330)을 형성할 수 있다(여기서, 도 2에 도시된 바와 같이, 스트림(239 및 237)은 예를 들어 혼합되기 전에 별도의 J-T 밸브를 통과함으로써 별도로 팽창될 수 있거나, 또는 여기서 스트림(139 및 237)은 먼저 혼합된 후 팽창될 수 있다). 이러한 배열은, 과냉각된 스트림(239)이 오버헤드 열교환기(214)의 214A의 차가운 섹션에서, 모든 재순환 스트림이 상기 열교환기를 통과하는 경우보다 더 차가운 온도로 냉각될 수 있게 하며(열교환기를 통해 유동하는 재순환 스트림이 더 적을 것이고 과냉각을 필요로 하기 때문임), 이는 오버헤드 열 열교환기(214)의 차가운 단부를 빠져나가는 스트림(239)의 온도가 오버헤드 열교환기(214)의 차가운 단부에 들어가는 질소 풍부 오버헤드 증기(212)의 온도와 더 가깝게 매칭될 수 있고, 따라서 열교환기(114)의 차가운 단부에서 열 응력을 감소시킨다는 것을 의미한다. 또한, 액체 질소 생성물 스트림(238)이 과냉각된 스트림(229)으로부터 분할되어야 하는 경우(아래에 추가로 설명되는 바와 같이) 유익할 수 있는데, 이는 이 액체 질소 생성물의 저장을 용이하게 하는 더 차가운 온도에서 액체 질소 생성물을 이용할 수 있기 때문이다. 그러나, 이는 상기 바이패스 스트림의 사용 및 작동을 요구함으로써 공정을 복잡하게 한다. 우회 스트림(237)의 사용으로 과냉각 스트림(239)이 더 차가운 온도에서 이용가능하기 때문에, 이러한 대안적인 배열은 우회가 사용되지 않는 배열에 비해 액체 또는 2-상 재순환 스트림(330)의 온도를 변화시키지 않지만, 이러한 스트림은 이후 액체 또는 2-상 재순환 스트림을 형성하기 위해 우회 스트림 (237)과 혼합됨으로써 다소 가온된다.
전술한 바와 같이, 가온된 오버헤드 증기의 제2 부분은 천연 가스 액화 시스템으로부터 인출되는 하나 이상의 질소 생성물 또는 벤트 스트림(250, 238, 216)을 형성하고, 이들 스트림은 다양한 상이한 위치에서 시스템으로부터 인출될 수 있다. 예를 들어, 오버헤드 증기의 일부는 압축기 (220)에서 재순환 스트림의 압축 전에 재순환 스트림 (218)을 형성하는 오버헤드 증기의 일부로부터 분할되는 질소 배출 스트림 (216)을 형성할 수 있고, 상기 질소 배출 스트림은 이후 대기로 배출된다. 대안적으로 또는 추가적으로, 오버헤드 증기의 일부는, 재순환 스트림이 압축기(220)에서 압축된 후 및 재순환 스트림이 주 열교환기(236)로 도입되고 냉각 및 액화되기 전에, 재순환 스트림(233)을 형성하는 오버헤드 증기의 일부로부터 분할되는 고압 기체 질소 생성물 스트림(250)을 형성할 수 있다. 대안적으로 또는 추가적으로, 오버헤드 증기의 일부는, 재순환 스트림이 오버헤드 열교환기(214)의 차가운 섹션(214A)에서 과냉각된 후 및 재순환 스트림이 팽창되어 증류탑(210)으로 도입되기 전에, 재순환 스트림(230)을 형성하는 오버헤드 증기의 일부로부터 분할되는 액체 질소 생성물 스트림(238)을 형성할 수 있다.
바람직한 실시양태에서, 증류탑에 환류를 제공하는 재순환 스트림(218, 233, 234, 239, 237, 230)을 형성하는 제1 부분과 하나 이상의 질소 생성물 또는 벤트 스트림(250, 238, 216)을 형성하는, 제2 부분 사이의 가온된 오버헤드 증기의 분할은, 제1 부분이 오버헤드 열교환기(214)를 빠져나가는 가온된 오버헤드 증기의 총 유동의 약 75%이고 제2 부분이 오버헤드 열교환기(214)를 빠져나가는 승온된 오버헤드 증기의 총 유동 중 약 25%이도록 한다.
도 2에 도시된 방법 및 시스템은 도 1에 도시된 비교 장치에 비해 여러 이점을 제공한다.
도 1에 도시된 배열과 같이, 도 2에 도시된 방법 및 시스템은 매우 고순도의 질소 벤트 스트림(216)(및/또는 매우 고순도 질소 생성물 스트림(250, 238))의 생성을 허용하고, 여기서 질소 순도는 증류탑에서 환류 유량 및 분리 스테이지의 수에 의해서만 제한되는 한편, 동시에 매우 낮은 질소 함량을 갖는 LNG 생성물(232)을 생성한다. 도 1에 도시된 배열과 같이, 도 2에 도시된 방법 및 시스템은 또한 증류탑에 환류를 제공하기 위해 증류탑으로부터 가온된 오버헤드 증기를 액화하기 위한 냉각 듀티의 적어도 일부를 제공하도록 주 열교환기에 사용되는 냉매를 사용하며, 이에 의해 (오버헤드 증기 자체로부터 추출된 단지 냉각만이 이러한 냉각 듀티를 제공하도록 사용되는 공정과 비교하여) 공정의 효율을 향상시킨다.
그러나, 도 1에 도시된 장치는 2-상 혼합 냉매 스트림(128, 126)의 오버헤드 열교환기로의 및 오버헤드 열교환기로부터의 이송을 필요로 하며, 이는 배관의 설계를 복잡하게 하고 슬러깅으로 인해 바람직하지 않은 불안정한 작동을 야기할 수 있지만, 도 2에 도시된 장치에서, 2-상 냉매 스트림은 상기 열교환기에 냉각 듀티를 제공하기 위해 오버헤드 열교환기로 이송되거나 이송되도록 요구되지 않는다.
마찬가지로, 도 1에 도시된 장치는 오버헤드 열교환기의 차가운 측에서 2-상 냉매의 사용을 필요로 하며, 이는 액상 및 기상이 균일하게 분포되는 것을 보장하기 위해 특별한 설계 특징을 필요로 할 수 있다. 예를 들어, 오버헤드 열교환기가 플레이트-핀(plate-fin) 교환기인 경우, 모든 통로에 걸쳐 상을 균일하게 분포시키기 위해 분리기 및 주입 튜브와 같은 특별한 장치가 제공되어야 한다. 이러한 장치들의 사용은 비용을 증가시킨다. 또한, 2-상 유동은 낮은 유량에서 불안정하게 되어, 상들의 분리가 일어나 큰 내부 온도 구배 및 교환기에 대한 잠재적인 손상을 초래할 수 있다. 도 2에 도시된 배열에서, 2-상 냉매는 오버헤드 열교환기의 차가운 측에 사용되지 않으므로, 이러한 문제가 방지된다.
도 1에 도시된 장치는 또한 3개의 열교환기 섹션을 갖는 오버헤드 열교환기의 사용을 필요로 하지만, 도 2의 방법 및 시스템에서 단지 2개의 열 교환 섹션만이 요구되어, 오버헤드 열교환기의 비용 및 복잡성을 감소시킨다.
도 1에 도시된 장치의 다른 단점은 오버헤드 증기 스트림(112) 및 혼합 냉매 스트림(128) 모두가 오버헤드 열교환기(114)의 차가운 측을 통과하면서 서로 분리되어 유지될 것을 필요로 한다는 것이며, 이는 결국 2개 이상의 개별 통로로 이루어진 차가운 측을 갖는 열교환기의 사용을 필요로 한다. 이는 도 1에서 가공 열교환기로서 코일 권선형 열교환기의 사용을 실질적으로 배제한다. 도 1의 오버헤드 열교환기(114)로서 코일 권선형 열교환기를 사용하기 위해서는, 코일 권선형 열교환기가 정상과 반대 방식으로 사용되는 것을 필요로 할 것이며, 쉘 측은 열교환기의 따뜻한 측으로서 사용되고, 증류탑에 환류를 제공하기 위해 냉각, 액화 및 과냉각될 고압 재순환 스트림을 수용하고, 튜브 측(다수의 통로를 포함함)은 저압 오버헤드 증기 스트림(112) 및 혼합 냉매 스트림(128)을 수용한다. 이러한 설계는 차가운 스트림(112, 128)의 낮은 이용 가능한 압력 강하 및 관 다발 내의 통로에 전형적인 비교적 높은 저항을 고려하면 어려울 것이다. 반대로, 도 2의 방법 및 시스템은, 질소 풍부 오버헤드 증기 스트림(212)이 오버헤드 열교환기(214)에 모든 냉각 듀티를 제공하고 저 저항 쉘 측을 통해 그 자체로 통과될 수 있기 때문에, 코일-울드 열교환기가 오버헤드 열교환기(214)로서 사용될 수 있게 한다. 이는 코일 권선형 열교환기가 천연 가스 액화 단부 플래시 가스 열 교환 응용에 대해 효율적이고, 신뢰성 있고, 강건한 것으로 증명되었기 때문에 유리하다.
이제 도 3을 참조하면, 본 발명의 대안적인 실시예에 따라 천연 가스 스트림으로부터 질소를 액화 및 제거하기 위한 방법 및 시스템이 도시되어 있다. 도 3의 방법 및 시스템은 주로 재순환 스트림이 냉각, 액화 및 과냉각되는 방식에 대해서만 도 2에 도시된 배열과 상이하며, 도 3으로부터의 차이만이 아래에 설명될 것이다.
보다 구체적으로, 애프터쿨러(321)로부터의 압축되고 냉각된 재순환 스트림(333)은 이 경우에 오버헤드 열교환기(314)의 온열교환기 섹션(314B)의 따뜻한 측을 통과하고 따뜻한 측에서 냉각된다. 따뜻한 섹션을 빠져나가는 냉각된 재순환 스트림은 전형적으로 여전히 전부 또는 대부분 증기인(또는 증기형 밀도, 즉 스트림이 초임계인 경우, 그 임계점 밀도보다 작은 밀도를 갖는) 온도이고, 전형적으로 약 -180℉(-115 ℃)의 온도에서 온열교환기 섹션(314B)의 차가운 단부를 빠져나간다. 이어서, 온부를 빠져나가는 냉각된 재순환 스트림은 제1 부분, 스트림(340) 및 제2 부분 스트림(345)으로 분할된다. 전형적으로, 냉각된 재순환 스트림의 분할은 스트림의 약 50%가 스트림(340)을 형성하고 스트림의 약 50 %가 스트림 (345)을 형성하도록 할 수 있다.
제1 부분, 즉 스트림(340)은 그 후 주 열교환기(336)의 따뜻한 측면을 통과하고, 여기서 제1 부분은 제1 냉매와의 간접 열교환을 통해 냉각 및 액화되어 제1 액화 부분, 즉 스트림(342)을 형성한다. 보다 구체적으로, 스트림(340)은 천연 가스 공급 스트림(301)이 통과하는 통로 또는 통로들과는 별개인 주 열교환기의 따뜻한 측 내의 하나 이상의 통로를 통해 주 열교환기의 차가운 측을 통과한다. 스트림(340)은 특히 주 열교환기(336)의 중간 위치로 도입될 수 있다. 예를 들어, 주 열교환기(336)가 도 1에 도시된 바와 같은 코일 권선형 열교환기인 경우, 스트림(340)은 중간(102B)과 차가운(102C) 번들 사이의 중간 위치에서 도입될 수 있고 차가운 번들(102C)의 튜브 측을 통과하여 냉각 및 액화될 수 있다. 이는 상기 제1 LNG 스트림(304)의 온도에 가까운 온도, 즉 전형적으로 약 -220℉ 내지 -250℉(-140 내지 -155℃), 바람직하게는 약 -220℉ 내지 240℉(-140℃ 내지 -150 ℃) 및 가장 바람직하게는 약 -230℉ 내지 -240℉(-145℃ 내지 -150℃)의 온도에서 액화 스트림(342)으로서 주 열교환기의 차가운 단부를 빠져나가며, 완전히 액체이고(또는 액체 유사 밀도, 즉 스트림이 초임계인 경우 그의 임계점 밀도보다 큰 밀도를 갖는다).
제2 부분인 스트림(345)은 오버헤드 열교환기(314)의 차가운 섹션(314A)의 따뜻한 측 내로 도입되어 이를 통과하며, 여기서 제2 부분은 상기 섹션의 차가운 측을 통과하는 질소 풍부 오버헤드 증기(312)와의 간접 열 교환을 통해 액화되고 과냉각되어 제2 액화되고 과냉된 부분, 스트림(339)을 형성한다. 스트림(339)은 전형적으로 오버헤드 열교환기(314)의 차가운 단부로 들어가는 질소 풍부 오버헤드 증기(312)의 온도에 가까운 온도에서 오버헤드 열교환기(334)의 차가운 단부를 빠져나간다.
스트림(339, 342)은 이어서 팽창 및 혼합되어 액체 또는 2-상 재순환 스트림(303)을 형성하고, 이는 최상부 증류탑(310)으로 도입되어 증류탑에 환류를 제공한다(여기서, 도 3에 도시된 바와 같이, 스트림(339, 342)은 예를 들어 혼합되기 전에 별도의 J-T 밸브를 통과함으로써 별도로 팽창될 수 있거나, 또는 여기서 스트림(339, 342)은 먼저 혼합된 후 팽창될 수도 있다).
선택적으로, 하나 이상의 추가 공정 스트림은 압축 및 냉각된 재순환 스트림(333)에 추가하여(그리고 별도로) 오버헤드 열교환기(314)의 따뜻한 섹션(314B)의 따뜻한 측을 통과하고 가온될 수 있다. 예를 들어, 그리고 도 2와 관련하여 논의된 바와 같이, 천연 가스 스트림(303 및/또는 303A)과 같은 천연 가스의 하나 이상의 스트림, 및/ 또는 제1 냉매(330B)의 하나 이상의 스트림은 따뜻한 섹션(314B)에서 추가로 냉각될 수 있다. 그러나, 도 2에 도시된 장치와 비교하여, 도 3에 도시된 방법 및 시스템에서, 상기 추가의 공정 스트림의 유량은 훨씬 낮을 것이며, 도3에서 따뜻한 섹션(314B)에서의 따뜻한 스트림 듀티는 재순환 스트림(333)에 의해 주로 제공되며, 추가의 공정 스트림은 따뜻한 섹션 (314A)의 열 부하를 밸런싱하기 위해 사용된다. 따라서, 예를 들어, 천연 가스 스트림(303)이 따뜻한 섹션(314B)을 통과하는 경우, 도 3에 도시된 배열에서, 스트림(330)의 유량은 전형적으로 천연 가스 공급 스트림(300)의 총 유량의 1% 미만일 것이다.
도 3의 장치가 도 2의 장치에 비해 갖는 하나의 잠재적인 이점은 오버헤드 열교환기 내부의 질소 풍부 오버헤드 증기 스트림(312)의 잠재적인 오염이 회피 및 완화하기 더 쉽다는 것이다. 오버헤드 열교환기를 통한 임의의 추가의 공정 스트림(303, 303A, 302B)의 흐름은 따뜻한 섹션(314B)에서의 누출이 검출되면 정지될 수 있다. 이 경우, 그리고 필요하다면, 따뜻한 단부 온도 차이 및 결과적인 열 응력을 최소화하기 위해, 따뜻한 섹션(314B)의 열 부하의 균형은, 바이패스 라인을 통해 차가운 센셔션(313A)과 따뜻한 섹션(334B) 사이의 오버헤드 열교환기(314)의 차가운 측으로부터 질소 풍부 오버헤드 증기의 부분(392)을 인출함으로써 달성될 수 있고, 이로써 상기 부분(392)이 우회하여 온열교환기(314)의 따뜻한 섹션(314B)에서 더 가열되지 않도록 한다.
이제 도 4를 참조하면, 본 발명의 다른 실시예에 따른 천연가스 스트림으로부터 질소를 액화 및 제거하기 위한 방법 및 시스템이 도시되어 있다. 도 4에 도시된 배열은 도 2에 도시된 실시양태의 바람직한 변형을 나타내며, 여기서 오버헤드 열교환기(414)는 증류탑의 최상부와 통합된다. 이러한 변형은 도 3에 도시된 실시예에 동일하게 적용될 수 있다.
보다 구체적으로, 도 4에 도시된 배열에서, 오버헤드 열교환기(414)는 증류탑(410)의 최상부(440)와 통합된 코일 권선형 열교환기며, 오버헤드 열의 차가운 및 따뜻한 섹션은 각각 차가운 튜브 번들(414A) 및 따뜻한 튜브 번들 (414B)을 포함하고, 차가운 튜브 다발(414A)과 따뜻한 튜브 다발 (414B)은 증류탑의 최상부 (440) 내에 위치하고, 오버헤드 열교환기의 쉘은 증류탑 쉘의 최상부 부분을 형성한다.
그 다음, 오버헤드 열교환기(414)의 차가운 단부 아래의 증류탑(410)의 최상부(440)에서 수집되는 질소 풍부 오버헤드 증기의 스트림(412)은(증류탑 쉘의 최상부를 또한 형성하는) 오버헤드 열 교환기(414)의 쉘 측을 통과하고, 상기 논의된 바와 같이 제1 및 제2 부분으로 분할되는 가온된 오버헤드 증기로서 오버헤드 열 교환기(414)의 따뜻한 단부(및 증류 칼럼(410)의 최상부)를 빠져나가는, 차가운 튜브 번들(414A) 및 가온 튜브 번들(414B)의 튜브 측면을 통과하는 스트림과의 간접 열 교환을 통해 주위 온도 근처로 가온된다: 제1 부분은 냉각되고 액화, 과냉각, 팽창되고 (오버헤드 열 교환부(414)의 차가운 단부의 아래) 증류탑(410)의 최상부(440)에 도입됨으로써 증류탑으로 환류를 제공하는데 사용되는 재순환 스트림(418, 433, 434, 439, 430)을 형성하고; 제2 부분은 하나 이상의 질소 생성물 스트림(438) 또는 벤트 스트림(416)을 형성한다.
도 4에 도시된 배열의 이점은 질소 풍부 오버헤드 증기 스트림(212)을 전달하기 위해 칼럼(210)과 교환기(214) 사이의 도 2 배열에서 요구되는 상호연결 배관 및 노즐이 관련된 압력 강하와 함께 제거된다는 것이다. 질소 풍부 오버헤드 증기 스트림(212)은 저압이며, 따라서 도 2의 배열에서 매우 큰 보어 극저온 파이프를 필요로 한다. 도 4의 배열에서, 질소 풍부 오버헤드 증기 스트림(412)은 쉘의 전체 직경을 사용하여 증류탑(410)/오버헤드 열교환기(414) 쉘을 통해 유동한다. 오버헤드 열교환기의 냉열교환기 섹션과 온열교환기 섹션 사이의 임의의 저압 배관도 마찬가지로 제거되고, 질소 풍부 오버헤드 증기는 튜브 번들(414A, 414B) 사이의 쉘에서 위로 유동한다. 도 4에 도시된 이러한 배열은 또한 시스템의 플롯 공간을 최소화하며, 다시 견고한 코일 권선형 교환기를 이용하여, 과도 동작으로부터 초래되는 열 응력으로 인한 손상 가능성을 최소화한다.
이제 도 5를 참조하면, 조 헬륨 스트림의 추가적인 분리 및 회수를 허용하는 도 2의 방법 및 시스템에 대한 선택적인 변형이 도시되어 있으며, 이러한 변형은 도 3 및 도 4에 도시된 실시예에 동일하게 적용될 수 있다.
보다 구체적으로, 도 5에 도시된 변형에서, 오버헤드 열교환기(214)의 차가운 단부를 빠져나가는 과냉각된 재순환 스트림(239)은 소량의 헬륨을 함유하고, 팽창되고 증류탑(210)의 최상부로 직접 도입되는 대신에, 예를 들어 J-T 밸브(570)를 통해 플래시됨으로써 약 20 내지 120 psia(1.4 내지 8.3 bara)의 중간 압력으로 팽창되어, 스트림에 함유된 미량 헬륨의 약 90 내지 95%를 함유하는 소량의 증기를 스트림에 형성한다. 결과적인 스트림은 드럼(572)에서 분리되고, 헬륨 함유 증기(574)는 냉각되고 열교환기(576)에서 약 -315 ℉(-190 ℃)의 온도로 부분적으로 응축되고, 그 후 드럼( 578)을 사용하여 액체 질소 스트림(580) 및 미정제 헬륨 스트림(582)으로 분리된다. 스트림(582)은 약 80%의 헬륨 함량을 갖는다. 액체 질소 스트림(580)은, 예를 들어 J-T 밸브(584)를 가로질러 1 내지 10 psig(0.07-0.7 barg)의 압력으로 플래시(flash)됨으로써 팽창되고, 이어서 열교환기(576)에서 기화되어, 배기되기 전에 스트림(574)을 냉각시키기 위한 냉각을 제공한다. 조질 헬륨 스트림(582)은 생성물로서 저장되거나 추가의 정제를 위해 헬륨 정제 유닛으로 보내지기 전에 냉각을 제공하는 열교환기(576)에서 가온된다. 드럼(572)으로부터의 액체는 회수되고 팽창되어 액체 또는 2-상 재순환 스트림(230)을 형성하고, 이는 증류탑(210)의 최상부로 도입되어 칼럼에 환류를 제공한다.
실시예
표 1은 도 2의 실시예에 따른 본 발명의 시뮬레이션된 예로부터의 스트림 데이터를 도시한다. 이 시뮬레이션된 예에서, 압축기(220)는 3756 hp의 총 전력 소비를 갖는 4개의 스테이지이다.
Figure 112021027021155-pat00001
본 발명은 바람직한 실시예를 참조하여 전술한 상세한 설명에 제한되지 않으며, 다음의 청구항에 정의된 바와 같은 본 발명의 사상 또는 범위를 벗어나지 않고 다양한 수정 및 변형이 이루어질 수 있다는 것을 알 수 있을 것이다.

Claims (20)

  1. 천연 가스 공급 스트림을 액화시키고 이로부터 질소를 제거하는 방법으로서,
    (a) 질소 함유 천연 가스 공급 스트림을 주 열교환기를 통해 통과시키고, 상기 주 열교환기에서 제1 냉매와의 간접 열교환을 통해 상기 천연 가스 스트림을 냉각 및 액화시킴으로써, 제1 LNG 스트림을 생성하는 단계;
    (b) 상기 주 열교환기로부터 상기 제1 LNG 스트림을 회수하는 단계;
    (c) 상기 제1 LNG 스트림을 팽창시키고, 상기 스트림을 증류탑으로 도입하는 단계로서, 상기 증류탑에서 상기 스트림은 부분적으로 기화되고, 질소 풍부 오버헤드 증기 및 질소 고갈 바닥부 액체로 분리되는, 단계;
    (d) 상기 증류탑으로부터 상기 질소 고갈 바닥부 액체의 스트림을 회수하여 제2의 질소 고갈 LNG 스트림을 형성하는 단계;
    (e) 오버헤드 열교환기에서, 상기 질소 풍부 오버헤드 증기의 스트림을 가온하여 가온된 오버헤드 증기를 형성하는 단계;
    (f) 상기 가온된 오버헤드 증기의 제1 부분으로부터 형성된 재순환 스트림을 압축, 냉각 및 액화, 과냉각 및 팽창시켜 액체 또는 2-상 재순환 스트림을 형성하고, 상기 액체 또는 2-상 재순환 스트림을 상기 증류탑 내로 도입하여 상기 증류탑에 환류를 제공하는 단계;
    (h) 상기 가온된 오버헤드 증기의 제2 부분으로부터 하나 이상의 질소 생성물 스트림 또는 벤트 스트림을 형성하는 단계
    를 포함하고,
    단계 (f)에서, 상기 재순환 스트림의 적어도 일부는, 상기 천연 가스 공급 스트림과는 별도로, 상기 주 열교환기를 통해 상기 재순환 스트림의 상기 적어도 일부를 통과시킴으로써 상기 제1 냉매와의 간접 열교환을 통해 액화되고;
    단계 (f)에서, 상기 재순환 스트림은 상기 재순환 스트림의 적어도 일부를 상기 오버헤드 열교환기를 통해 통과시킴으로써 상기 질소 풍부 오버헤드 증기와의 간접 열 교환을 통해 과냉각되고;
    상기 오버헤드 열교환기는 상기 주 열교환기로부터 분리되고, 상기 오버헤드 열교환기를 위한 모든 냉각 듀티는 단계 (e)에서, 상기 질소 풍부 오버헤드 증기의 스트림의 가온에 의해 제공되는, 방법.
  2. 제1항에 있어서, 상기 오버헤드 열교환기는, 쉘 내에 수용되고 상기 열교환기의 튜브 측 및 쉘을 획정하는 하나 이상의 튜브 번들을 포함하는 코일 권선형 열교환기이고, 단계 (e)에서, 상기 질소 풍부 오버헤드 증기의 스트림은 상기 오버헤드 열교환기의 상기 쉘 측을 통과하고 상기 쉘 측에서 가온되고, 그리고 상기 단계 (f)에서, 상기 재순환 스트림은 상기 재순환 스트림의 적어도 일부를 상기 오버헤드 열교환기의 상기 튜브 측을 통과시킴으로써 과냉각되는, 방법.
  3. 제2항에 있어서, 상기 오버헤드 열교환기는 상기 증류탑과 통합되고, 상기 하나 이상의 튜브 번들은 상기 증류탑의 최상부 내에 위치하고, 그리고 상기 오버헤드 열교환기의 쉘은 상기 증류탑 쉘의 상부를 형성하는, 방법.
  4. 제1항에 있어서, 상기 오버헤드 열교환기는 온열교환기 섹션 및 냉열교환기 섹션을 포함하고, 그리고 단계 (f)에서, 상기 재순환 스트림은 상기 재순환 스트림의 적어도 일부를 상기 냉열교환기 섹션을 통과시킴으로써 과냉각되는, 방법.
  5. 제4항에 있어서, 단계 (f)에서, 상기 재순환 스트림의 일부 또는 전부는 상기 재순환 스트림의 상기 일부 또는 전부를 상기 온열교환기 섹션을 통해 통과시킴으로써 냉각되는, 방법.
  6. 제4항에 있어서, 천연 가스 또는 제1 냉매의 하나 이상의 스트림은 상기 스트림(들)을 상기 온열교환기 섹션을 통과시킴으로써 냉각되는, 방법.
  7. 제1항에 있어서, 단계 (f)에서, 모든 재순환 스트림은 상기 스트림을 상기 주 열교환기를 통해 통과시킴으로써 상기 제1 냉매와의 간접 열교환을 통해 액화되어 액화된 재순환 스트림을 형성하는, 방법.
  8. 제7항에 있어서, 단계 (f)에서, 상기 재순환 스트림은 상기 액화된 재순환 스트림 모두를 상기 오버헤드 열교환기를 통해 통과시킴으로써 과냉각되는, 방법.
  9. 제7항에 있어서, 단계 (f)에서, 상기 재순환 스트림은 상기 액화된 재순환 스트림의 제1 부분을 상기 오버헤드 열교환기를 통해 통과시킴으로써 과냉각되어 과냉각된 부분을 형성하되, 상기 액화된 재순환 스트림의 제2 부분은 상기 오버헤드 열교환기를 우회한 후, 상기 과냉각된 부분과 혼합되며, 그리고 상기 과냉각된 부분 및 제2 부분은 혼합되기 전 또는 후에 팽창되어, 상기 증류탑에 환류를 제공하는 상기 액체 또는 2-상 재순환 스트림을 형성하는, 방법.
  10. 제1항에 있어서, 단계 (f)에서, 상기 재순환 스트림의 제1 부분은 상기 재순환 스트림의 상기 제1 부분을 상기 주 열교환기를 통해 통과시킴으로써 상기 제1 냉매와의 간접 열교환을 통해 액화되어 제1 액화 부분을 형성하고, 그리고 상기 재순환 스트림의 제2 부분은 상기 오버헤드 열교환기를 통해 통과됨으로써 액화 및 과냉각되어 제2 액화 및 과냉각 부분을 형성하고, 이어서 상기 제1 액화 부분과 제2 액화 및 과냉각 부분이 혼합되고, 그리고 상기 제1 액화 부분과 제2 액화 및 과냉각 부분은 혼합 전 또는 후에 팽창되어, 상기 증류탑에 환류를 제공하는 상기 액체 또는 2-상 재순환 스트림을 형성하는, 방법.
  11. 제1항에 있어서, 상기 제1 LNG 스트림은 단계 (c)에서, 상기 증류탑의 중간 위치에서 증류탑 내로 도입되는, 방법.
  12. 제11항에 있어서, 단계 (c)는 상기 제1 LNG 스트림을 상기 증류탑 내로 도입하기 전에 리보일러 열교환기 내에서, 상기 제1 LNG 스트림을 냉각시키는 단계를 추가로 포함하고,
    상기 방법은 상기 증류탑에 비등을 제공하기 위해, 상기 제1 LNG 스트림과의 간접 열교환을 통해, 상기 리보일러 열교환기에서 상기 질소 고갈 바닥부 액체의 일부를 가온 및 기화시키는 단계를 추가로 포함하는, 방법.
  13. 제1항에 있어서, 단계 (b)에서, 상기 제1 LNG 스트림은 상기 주 열교환기의 차가운 단부로부터 인출되고, 그리고 단계(f)에서, 상기 주 열교환기에서 액화되는 재순환 스트림의 적어도 일부는 상기 주 열교환기의 차가운 단부로부터 인출되는, 방법.
  14. 제1항에 있어서, 단계 (b)에서, 상기 제1 LNG 스트림은 -220 내지 -250℉ (-140 내지 -155℃)의 온도에서 상기 주 열교환기로부터 인출되는, 방법.
  15. 제1항에 있어서, 단계 (f)에서, 상기 주 열교환기에서 액화되는 재순환 스트림의 적어도 일부는 -220 내지 -250℉ (-140 내지 -155℃)의 온도에서 상기 주 열교환기로부터 인출되는, 방법.
  16. 제1항에 있어서, 상기 질소 풍부 오버헤드 증기는 -300 내지 -320℉ (-185 내지 -195℃)의 온도에서 상기 오버헤드 열교환기의 차가운 단부에 들어가는, 방법.
  17. 제1항에 있어서, 상기 제1 냉매는 단계 (a)에서 상기 주 열교환기에서 상기 천연 가스 스트림을 액화시키고 단계 (f)에서 상기 주 열교환기에서 상기 재순환 스트림의 적어도 일부를 액화시키기 위한 냉각 듀티를 제공하도록 상기 주 열교환기를 통과할 때 증발되는 냉매인, 방법.
  18. 제17항에 있어서, 단계 (f)에서, 상기 재순환 스트림은, 상기 주 열교환기 내부에서 액화되는 상기 재순환 스트림의 적어도 일부가, 상기 제1 냉매가 상기 주 열교환기 내에서 기화하기 시작하는 온도보다 0 내지 10℉ (0 내지 5℃) 높은 온도에서 액화를 종료하도록 하는 압력으로 압축되는, 방법.
  19. 천연 가스 공급 스트림을 액화시키고 이로부터 질소를 제거하기 위한 시스템에 있어서,
    질소 함유 천연 가스 공급 스트림을 수용하기 위한 하나 이상의 통로를 포함하는 따뜻한 측 및 제1 냉매의 스트림을 수용하기 위해 하나 이상의 통로를 포함하는 차가운 측을 갖는 주 열교환기로서, 상기 따뜻한 측과 차가운 측은, 상기 질소 함유 천연 가스 공급 스트림이 상기 따뜻한 측을 통과할 때 상기 차가운 측을 통과하는 상기 제1 냉매의 스트림과의 간접 열 교환에 의해 냉각 및 액화되어 제1 LNG 스트림을 생성하도록 구성되는, 주 열교환기;
    상기 제1 냉매의 냉각된 스트림을 상기 주 열교환기의 차가운 측으로 공급하고 상기 제1 냉매 스트림의 가온된 스트림을 상기 주 열교환기의 차가운 측으로부터 인출하기 위한 제1 냉매 회로;
    상기 제1 LNG 스트림을 수용하고 팽창시키기 위해 상기 주 열교환기와 유체 유동 연통하는 팽창 장치,
    상기 팽창 장치로부터 상기 제1 LNG 스트림을 수용하기 위해 상기 팽창 장치와 유체 유동 연통하는 증류탑으로서, 상기 제1 LNG 스트림은 부분적으로 기화되고 상기 증류탑 내부에서 질소 풍부 오버헤드 증기 및 질소 고갈 바닥부 액체로 분리되는, 증류탑;
    제2의 질소 고갈 LNG 스트림을 형성하기 위해 상기 증류탑으로부터 상기 질소 고갈 바닥부 액체의 스트림을 인출하는 도관;
    상기 질소 풍부 오버헤드 증기의 스트림을 수용하기 위한 하나 이상의 통로를 포함하는 차가운 측 및 하나 이상의 통로를 포함하는 따뜻한 측을 갖는 오버헤드 열교환기로서, 상기 따뜻한 측 및 차가운 측은, 상기 차가운 측을 통과하는 질소 풍부 오버헤드 증기가 상기 따뜻한 측을 통과하는 유체와의 간접 열교환에 의해 가온되어, 가온된 오버헤드 증기를 생성하도록 구성되는, 오버헤드 열교환기;
    액체 또는 2-상 재순환 스트림을 형성하기 위해 상기 가온된 오버헤드 증기의 제1 부분으로부터 형성된 재순환 스트림을 압축, 냉각 및 액화, 과냉각 및 팽창시키고, 상기 증류탑에 환류를 제공하기 위해 상기 증류탑 내로 상기 액체 또는 2-상 재순환 스트림을 도입하기 위한 환류 회로;
    상기 가온된 오버헤드 증기의 제2 부분으로부터 형성된 하나 이상의 질소 생성물 스트림 또는 벤트 스트림을 상기 시스템으로부터 인출하기 위한 하나 이상의 도관
    을 포함하고,
    상기 환류 회로는, 상기 재순환 스트림의 적어도 일부를, 상기 천연 가스 공급 스트림과는 별도로, 상기 주 열교환기의 따뜻한 측의 하나 이상의 통로를 통해 통과시킴으로써, 상기 제1 냉매와의 간접 열 교환을 통해 상기 재순환 스트림의 상기 적어도 일부를 액화시키도록 구성되고;
    상기 환류 회로는 상기 재순환 스트림의 적어도 일부를 상기 오버헤드 열교환기의 따뜻한 측의 상기 통로 중 하나 이상을 통해 통과시킴으로써 상기 질소 풍부 오버헤드 증기와의 간접 열 교환을 통해 상기 재순환 스트림을 과냉각하도록 구성되고;
    상기 오버헤드 열교환기는 상기 주 열교환기로부터 분리되고, 상기 시스템은, 상기 질소 풍부 오버헤드 증기의 스트림이 상기 오버헤드 열교환기의 차가운 측을 통과하는 유일한 스트림이어서 상기 오버헤드 열교환기에 대한 모든 냉각 듀티를 제공하도록 구성되는, 시스템.
  20. 제19항에 있어서, 상기 오버헤드 열교환기는, 쉘 내에 수용되고 상기 열교환기의 튜브 측 및 쉘을 획정하는 하나 이상의 튜브 번들을 포함하는 코일 권선형 열교환기이고, 상기 쉘 측은 상기 열교환기의 차가운 측이며, 상기 튜브 측은 상기 열교환기의 따뜻한 측인, 시스템.
KR1020210030096A 2020-03-13 2021-03-08 질소 제거에 의한 lng 생산 KR102488158B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/818,168 US11674749B2 (en) 2020-03-13 2020-03-13 LNG production with nitrogen removal
US16/818,168 2020-03-13

Publications (2)

Publication Number Publication Date
KR20210116269A KR20210116269A (ko) 2021-09-27
KR102488158B1 true KR102488158B1 (ko) 2023-01-12

Family

ID=74871324

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210030096A KR102488158B1 (ko) 2020-03-13 2021-03-08 질소 제거에 의한 lng 생산

Country Status (9)

Country Link
US (1) US11674749B2 (ko)
EP (1) EP3879213A1 (ko)
JP (1) JP7179890B2 (ko)
KR (1) KR102488158B1 (ko)
CN (2) CN113390230B (ko)
AU (1) AU2021201501B2 (ko)
CA (1) CA3107871C (ko)
MY (1) MY197289A (ko)
RU (1) RU2764820C1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11674749B2 (en) * 2020-03-13 2023-06-13 Air Products And Chemicals, Inc. LNG production with nitrogen removal
US20230003444A1 (en) * 2021-06-28 2023-01-05 Air Products And Chemicals, Inc. Producing LNG from Methane Containing Synthetic Gas
CN115127304B (zh) * 2022-06-30 2023-11-17 四川帝雷蒙科技有限公司 一种可提升氦气纯度的bog再液化回收系统及方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1293232A (zh) * 1999-10-15 2001-05-02 余庆发 液化天然气的生产方法
US20110226009A1 (en) * 2008-10-07 2011-09-22 Henri Paradowski Process for producing liquid and gaseous nitrogen streams, a gaseous stream which is rich in helium and a denitrided stream of hydrocarbons and associated installation

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4415345A (en) * 1982-03-26 1983-11-15 Union Carbide Corporation Process to separate nitrogen from natural gas
FR2682964B1 (fr) * 1991-10-23 1994-08-05 Elf Aquitaine Procede de deazotation d'un melange liquefie d'hydrocarbures consistant principalement en methane.
GB2298034B (en) * 1995-02-10 1998-06-24 Air Prod & Chem Dual column process to remove nitrogen from natural gas
MY114649A (en) * 1998-10-22 2002-11-30 Exxon Production Research Co A process for separating a multi-component pressurized feed stream using distillation
US6978638B2 (en) * 2003-05-22 2005-12-27 Air Products And Chemicals, Inc. Nitrogen rejection from condensed natural gas
GB2455462B (en) * 2009-03-25 2010-01-06 Costain Oil Gas & Process Ltd Process and apparatus for separation of hydrocarbons and nitrogen
GB2462555B (en) * 2009-11-30 2011-04-13 Costain Oil Gas & Process Ltd Process and apparatus for separation of Nitrogen from LNG
JP5679201B2 (ja) 2011-08-08 2015-03-04 エア・ウォーター株式会社 ボイルオフガス中の窒素除去方法およびそれに用いる窒素除去装置
US9816754B2 (en) * 2014-04-24 2017-11-14 Air Products And Chemicals, Inc. Integrated nitrogen removal in the production of liquefied natural gas using dedicated reinjection circuit
US9945604B2 (en) * 2014-04-24 2018-04-17 Air Products And Chemicals, Inc. Integrated nitrogen removal in the production of liquefied natural gas using refrigerated heat pump
DE102014010103A1 (de) 2014-07-08 2016-01-14 Linde Aktiengesellschaft Verfahren zur LNG-Gewinnung aus N2-reichen Gasen
US20160216030A1 (en) * 2015-01-23 2016-07-28 Air Products And Chemicals, Inc. Separation of Heavy Hydrocarbons and NGLs from Natural Gas in Integration with Liquefaction of Natural Gas
US9863697B2 (en) 2015-04-24 2018-01-09 Air Products And Chemicals, Inc. Integrated methane refrigeration system for liquefying natural gas
CN105462640B (zh) 2015-12-03 2018-06-29 合肥通用机械研究院 一种深冷烃物料脱氮塔顶冷凝装置
CN108369061B (zh) * 2015-12-14 2020-05-22 埃克森美孚上游研究公司 使用液化氮从液化天然气中分离氮的方法和系统
EP3382307A1 (en) * 2017-03-31 2018-10-03 Linde Aktiengesellschaft Nitrogen recovery apparatus and method of recovering nitrogen
US10982898B2 (en) * 2018-05-11 2021-04-20 Air Products And Chemicals, Inc. Modularized LNG separation device and flash gas heat exchanger
US11674749B2 (en) * 2020-03-13 2023-06-13 Air Products And Chemicals, Inc. LNG production with nitrogen removal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1293232A (zh) * 1999-10-15 2001-05-02 余庆发 液化天然气的生产方法
US20110226009A1 (en) * 2008-10-07 2011-09-22 Henri Paradowski Process for producing liquid and gaseous nitrogen streams, a gaseous stream which is rich in helium and a denitrided stream of hydrocarbons and associated installation

Also Published As

Publication number Publication date
AU2021201501A1 (en) 2021-09-30
EP3879213A1 (en) 2021-09-15
CN113390230A (zh) 2021-09-14
CN214892165U (zh) 2021-11-26
RU2764820C1 (ru) 2022-01-21
CN113390230B (zh) 2023-03-28
US20210285721A1 (en) 2021-09-16
AU2021201501B2 (en) 2023-03-30
CA3107871C (en) 2023-09-19
JP2021148422A (ja) 2021-09-27
KR20210116269A (ko) 2021-09-27
US11674749B2 (en) 2023-06-13
MY197289A (en) 2023-06-09
CA3107871A1 (en) 2021-09-13
JP7179890B2 (ja) 2022-11-29

Similar Documents

Publication Publication Date Title
US10767922B2 (en) Integrated nitrogen removal in the production of liquefied natural gas using intermediate feed gas separation
CA2887252C (en) Integrated nitrogen removal in the production of liquefied natural gas using refrigerated heat pump
CA2887150C (en) Integrated nitrogen removal in the production of liquefied natural gas using dedicated reinjection circuit
KR102488158B1 (ko) 질소 제거에 의한 lng 생산
CA3040865C (en) Method and system for cooling a hydrocarbon stream using a gas phase refrigerant
KR20230002074A (ko) 메탄 함유 합성 가스로부터의 lng 생성

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant