KR102485265B1 - Method for increasing the content of Resistant starch - Google Patents

Method for increasing the content of Resistant starch Download PDF

Info

Publication number
KR102485265B1
KR102485265B1 KR1020200078949A KR20200078949A KR102485265B1 KR 102485265 B1 KR102485265 B1 KR 102485265B1 KR 1020200078949 A KR1020200078949 A KR 1020200078949A KR 20200078949 A KR20200078949 A KR 20200078949A KR 102485265 B1 KR102485265 B1 KR 102485265B1
Authority
KR
South Korea
Prior art keywords
rice
raw material
enzyme
starch
treated
Prior art date
Application number
KR1020200078949A
Other languages
Korean (ko)
Other versions
KR20220001087A (en
Inventor
장윤혁
이예은
Original Assignee
경희대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경희대학교 산학협력단 filed Critical 경희대학교 산학협력단
Priority to KR1020200078949A priority Critical patent/KR102485265B1/en
Publication of KR20220001087A publication Critical patent/KR20220001087A/en
Application granted granted Critical
Publication of KR102485265B1 publication Critical patent/KR102485265B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L7/00Cereal-derived products; Malt products; Preparation or treatment thereof
    • A23L7/10Cereal-derived products
    • A23L7/104Fermentation of farinaceous cereal or cereal material; Addition of enzymes or microorganisms
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/06Enzymes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/17Amino acids, peptides or proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2451Glucanases acting on alpha-1,6-glucosidic bonds
    • C12N9/2457Pullulanase (3.2.1.41)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01041Pullulanase (3.2.1.41)

Abstract

본 발명은 저항전분 함량이 증가된 원료미 제조방법 및 상기 방법으로 제조된 원료미에 관한 것이다.The present invention relates to a method for preparing raw material rice with increased resistance starch content and a raw material rice produced by the method.

Description

저항전분의 함량을 증가시키는 방법{Method for increasing the content of Resistant starch}Method for increasing the content of resistant starch {Method for increasing the content of resistant starch}

본 발명은 저항전분 함량이 증가된 원료미 제조방법 및 상기 방법으로 제조된 원료미에 관한 것이다.The present invention relates to a method for preparing raw material rice with increased resistance starch content and a raw material rice produced by the method.

탄수화물의 한 종류인 전분(Starch)은 인체의 소화기관에 의해 소화되는 양상에 따라 소화성 전분(Digestible Starch; DS)과 저항전분(Resistant Starch; RS)으로 나뉘며, 소화성 전분은 주로 위에서 소화 흡수되는 RDS(Rapidly Digestible Starch)와 소장까지 이동한 후에 천천히 소화 흡수되는 SDS(Slowly Digestible Starch)로 분류되며, 저항전분(RS)은 위나 소장에서 소화 흡수되지 않고 대장까지 도달하는 전분을 총칭한다.Starch, a type of carbohydrate, is divided into Digestible Starch (DS) and Resistant Starch (RS) according to the aspect of digestion by the human digestive system. It is classified into (Rapidly Digestible Starch) and SDS (Slowly Digestible Starch), which are slowly digested and absorbed after moving to the small intestine.

통상적으로 식품으로 사용되는 전분에는 소화성 전분과 저항전분을 일정 비율로 모두 포함하고 있으며, 저항전분은 혈중 콜레스테롤이나 지방질의 축적을 저하시켜 성인병을 예방하고, 혈당을 감소시키고, 세로토닌 및 멜라토닌의 분비를 촉진하며, 대장 내 세균에 의해 발효되어 단쇄지방산의 일종인 낙산염을 생성하여 암세포의 성장을 억제하는 효과가 있는 것으로 알려져 있다.Starch commonly used as food contains both digestible starch and resistant starch in a certain ratio. Resistant starch lowers the accumulation of cholesterol or lipid in the blood, prevents adult diseases, reduces blood sugar, and stimulates the secretion of serotonin and melatonin. It is known to have the effect of inhibiting the growth of cancer cells by producing butyrate, which is a kind of short-chain fatty acid, by fermentation by bacteria in the large intestine.

최근에는 고칼로리 섭취 및 운동 부족과 같은 식생활 패턴의 변화로 대사증후군의 심각성이 높아짐에 따라 식이섬유 등을 이용한 기능성 저칼로리 식품에 대한 요구가 높아지고 있으며, 이에 따라, 불용성 식이섬유로 분류되는 저항전분에 대한 관심이 더욱 높아지고 있는 추세이다.Recently, as the severity of metabolic syndrome has increased due to changes in dietary patterns such as high-calorie intake and lack of exercise, the demand for functional low-calorie foods using dietary fiber has increased. There is a growing trend of interest in

종래에는 저항전분을 얻거나 일반 전분의 저항전분 함량을 증가시키기 위하여, 염산(HCl) 등을 이용하여 산처리한 후 염기를 추가하여 중화하고 열처리하는 방식, 또는 전분과 설탕을 혼합한 후 특수한 세균(Neisseria Perflava)에 존재하는 아밀로수크라아제를 반응시키는 방식 등이 사용되었는데, 이러한 종래의 저항전분 획득 방식은 인체에 무해한 상태의 저항전분을 얻기 위해 고가의 정밀한 제조 설비가 필요할 뿐 아니라, 일부 재료의 수급이 난해하여 대량생산하기 어려운 문제점이 있다. Conventionally, in order to obtain resistant starch or increase the content of resistant starch of general starch, acid treatment using hydrochloric acid (HCl), etc., neutralization by adding a base and heat treatment, or mixing starch and sugar, then special bacteria A method of reacting amylosucrase present in (Neisseria Perflava) was used. This conventional method for obtaining resistant starch not only requires expensive and precise manufacturing facilities to obtain resistant starch harmless to the human body, but also some There is a problem in that it is difficult to mass-produce due to the difficult supply and demand of materials.

이에, 현재 옥수수, 고구마 등에서 추출한 전분에 효소를 처리하여 저항전분을 제조하는 연구가 진행된 바 있으나, 다양한 식품소재로의 활용 가능성을 넓히기 위해, 별도 추출 과정 필요없이 원물 자체의 저항전분의 함량을 증가시킬 수 있는 연구가 필요한 실정이다.Accordingly, studies have been conducted on manufacturing resistant starch by treating starch extracted from corn and sweet potato with enzymes, but in order to expand the possibility of using it as a variety of food materials, the content of resistant starch in the raw material itself is increased without the need for a separate extraction process. There is a need for research that can be done.

한국공개특허 제10-2003-0088365호Korean Patent Publication No. 10-2003-0088365

본 발명의 목적은 저항전분 함량이 증가된 원료미 제조방법을 제공하는 것이다.An object of the present invention is to provide a method for preparing raw rice with increased resistant starch content.

본 발명의 다른 목적은 상기 방법으로 제조된 원료미를 제공하는 것이다. Another object of the present invention is to provide a raw material rice prepared by the above method.

본 발명의 또 다른 목적은 상기 원료미를 포함하는 식품 조성물을 제공하는 것이다.Another object of the present invention is to provide a food composition comprising the raw material rice.

본 발명의 일 측면은 a) 원료미를 호화시킨 후 효소를 처리하는 단계; 및 b) 효소 처리 후 노화시키는 단계를 포함하는, 저항전분 함량이 증가된 원료미 제조방법에 관한 것이다.One aspect of the present invention is a) processing an enzyme after gelatinizing the raw material rice; and b) aging after enzymatic treatment.

본 발명에서 저항전분은 전분 중에서도 인체 내에서 소화효소에 의해 소화되지 않는 전분 및 전분유도체를 일컫는다. 전분이란 직선상의 아밀로오스와 분지상의 아밀로펙틴 두 가지 유형의 다당체(polysaccharide) 분자로 구성된 입자형태를 포함하는 것으로, 소화율에 따라 빨리 소화되는 전분(RDS, rapidly digestive starch), 천천히 소화되는 전분(SDS, slowly digestive starch) 및 소화되지 않는 저항전분(RS, resistant starch)으로 구분되며, 저항전분은 특성에 따라 RS1-RS5로 구분된다.In the present invention, resistant starch refers to starch and starch derivatives that are not digested by digestive enzymes in the human body among starches. Starch is a granular form composed of two types of polysaccharide molecules: linear amylose and branched amylopectin. It is divided into slowly digestive starch) and resistant starch (RS, resistant starch), which are classified according to their characteristics as RS1-RS5.

일반적으로, RS1은 효소의 접근이 어려운 전분, RS2는 생전분으로 B형의 결정형을 가진 감자, 녹색 바나나와 고아밀로오스 옥수수전분이 속한다. RS3는 호화된 전분이 저장 중에 노화된 전분 또는 노화아밀로오스, RS4는 화학적인 변성에 의해 효소작용이 어려운 전분이며, 최근 RS5로 알려진 아밀로오스-지질 복합체는 가열 중에 전분의 아밀로오스 나선 구조 내부에 지방의 소수성기가 포접되어 형성된 복합체로 효소작용이 어려운 전분 등을 포함한다.In general, RS1 is a starch that is difficult to access to enzymes, and RS2 is a raw starch that has a type B crystalline form, such as potatoes, green bananas, and high amylose corn starch. RS3 is starch or aged amylose in which gelatinized starch is aged during storage, RS4 is a starch that is difficult to enzymatically react due to chemical modification, and an amylose-lipid complex recently known as RS5 is a hydrophobic group of fat inside the amylose helical structure of starch during heating. It is a complex formed by inclusion of , and includes starch, etc., which are difficult to enzymatically react with.

상기 저항전분은 소장 내에서의 소화 및 흡수에 대해 내성을 나타내며, 대장으로 넘어가서 대장 미생물총(colonic microflora)에 의해 단쇄형 지방산 및 가스로 발효될 수 있다. 대장에서 단쇄형 지방산으로 발효되기까지 체내에서 이용되지 않으므로, 다른 전분보다 감소된 칼로리 수치를 가질 수 있다. 또한, 혈액 글루코오스 및 인슐린 조절성을 향상시킴으로서 체중 유지 및 감소에 도움을 줄 수 있다.The resistant starch is resistant to digestion and absorption in the small intestine, and can be passed to the large intestine and fermented into short-chain fatty acids and gases by the colonic microflora. Since it is not used in the body until it is fermented into short-chain fatty acids in the large intestine, it may have a lower calorie value than other starches. In addition, by improving blood glucose and insulin control, it can help maintain and reduce body weight.

이에 본 발명에서는 원료미에 함유되어 있는 저항전분의 함량을 증가시킴으로써 체중 감량 및 식이조절에 효과적인 원료미를 제조하는 방법을 제공하고자 한다. Accordingly, the present invention is intended to provide a method for producing raw rice that is effective for weight loss and dietary control by increasing the content of resistant starch contained in raw rice.

본 발명에서, 상기 '원료미'는 밥, 떡, 막걸리 등의 주류, 가공식품 등 식품으로서 활용되거나 가공되는 것의 원료가 되는 쌀을 의미한다. 상기 활용 또는 가공 형태는 제한되지 않으며, 원료가 되는 쌀의 종류 역시 제한되지 않는다.In the present invention, the 'raw material rice' refers to rice that is used as a raw material for things to be utilized or processed as alcoholic beverages such as rice, rice cakes and makgeolli, and processed foods. The utilization or processing form is not limited, and the type of rice as a raw material is also not limited.

구체적으로, 상기 원료미는 백미, 흑미, 현미, 발아현미, 멥쌀, 찰보리쌀 및 이의 혼합물로 이루어진 군에서 선택된 것일 수 있다. 보다 구체적으로 상기 원료미는 멥쌀일 수 있다.Specifically, the raw rice may be selected from the group consisting of white rice, black rice, brown rice, germinated brown rice, non-glutinous rice, glutinous barley rice, and mixtures thereof. More specifically, the raw material rice may be non-glutinous rice.

또한 구체적으로, 상기 원료미는 분쇄된 가루 형태를 포함할 수 있다. 예컨대 원료미를 분쇄하여 제조된 멥쌀가루, 현미가루 등의 쌀가루를 모두 포함한다.Also specifically, the raw material rice may include a pulverized powder form. For example, it includes all rice flour such as non-glutinous rice flour and brown rice flour prepared by grinding raw rice.

상기 효소는 아밀로펙틴의 α-1, 6 결합을 가수분해시켜, 짧은 사슬 아밀로오스(short chain amylose)를 생성할 수 있는 효소를 포함한다. 구체적으로, 상기 효소는 플루라나아제(pullulanase)일 수 있다. 보다 구체적으로 상기 플루라나아제는 프로모자임 D2 (promozyme D2)일 수 있다.The enzyme includes an enzyme capable of hydrolyzing α-1, 6 bonds of amylopectin to produce short chain amylose. Specifically, the enzyme may be pullulanase. More specifically, the fluranase may be promozyme D2.

본 발명의 일 실시예에서는 원료미를 분쇄한 가루를 호화시킨 후, 상온에서 다시 냉각시키고 플루라나아제 효소를 처리하였으며, 이후 노화 과정을 거쳐 저항전분 함량이 증가된 원료미를 제조하였다.In one embodiment of the present invention, after gelatinizing the powder of pulverized raw rice, it was cooled again at room temperature, treated with pullulanase enzyme, and then subjected to an aging process to prepare raw rice with increased resistant starch content.

온도가 높아짐에 따라 전분 입자가 팽창하고 결정형 구조가 파괴되는 현상을 '호화'라 하며, 상기 '노화'는 온도가 낮아짐에 따라 호화로 인해 용해된 전분 분자들이 재배열 되고 일부 결정형 구조를 회복하는 것을 의미한다. 종래 전분의 '호화' 및 '노화' 과정으로 인해 곡류 등의 식품의 품질을 떨어뜨리는 것으로 알려져 있으나, 본 발명에서는 호화시킨 후 효소를 처리하고, 이후 노화시키는 단계를 통해 저항전분의 함량이 증가되며, 나아가 프리바이오틱 효과 등 기능성까지 향상시킬 수 있음을 확인하였다.As the temperature increases, the phenomenon in which starch particles expand and the crystalline structure is destroyed is called 'gelatinization'. means that Conventionally, it is known that the quality of foods such as grains is reduced due to the 'gelatinization' and 'aging' processes of starch, but in the present invention, the content of resistant starch is increased through the step of gelatinization, enzyme treatment, and subsequent aging, In addition, it was confirmed that functionalities such as prebiotic effects could be improved.

구체적으로, 상기 효소 처리 농도는 100 PUN/g 내지 500 PUN/g인 것일 수 있다. 본 발명 일 실시예에서는 효소 처리 농도가 증가할수록 결정화도가 높아짐을 확인하였으며(표 2), 필요에 따라 효소 처리 농도를 변경 적용함으로써 원료미의 결정화도를 변형하여 활용할 수 있다.Specifically, the enzyme treatment concentration may be 100 PUN/g to 500 PUN/g. In one embodiment of the present invention, it was confirmed that the crystallinity increased as the enzyme treatment concentration increased (Table 2), and the crystallinity of the raw rice may be modified and utilized by changing the enzyme treatment concentration as necessary.

또한 구체적으로, 상기 노화 과정은 20 시간 내지 30 시간 진행되는 것일 수 있다.Also specifically, the aging process may be performed for 20 hours to 30 hours.

본 발명의 일 실시예에서는 상기 방법으로 제조된 원료미의 구조 변화를 확인하기 위해 X-선 분석, ATR/FT-IR 분석을 수행한 결과, 효소를 처리하지 않은 원료미의 구조와 상이함을 확인하였다(도 1 및 도 2). 또한 원료미의 표면을 관찰한 결과에서도 단백질에 의해 거칠고 불규칙한 표면이 효소 처리에 따라 매끄럽고 여러 개의 스트립 층을 이루는 것을 확인하였다(도 3). 상기 결과는 플루라나아제 효소 처리가 원료미 결정형 구조에 영향을 준다는 것을 시사한다.In one embodiment of the present invention, as a result of performing X-ray analysis and ATR/FT-IR analysis to confirm the structural change of the raw rice raw material prepared by the above method, it was found that the structure was different from that of the raw rice raw material not treated with enzymes. It was confirmed (Figs. 1 and 2). In addition, as a result of observing the surface of raw rice, it was confirmed that the rough and irregular surface caused by protein became smooth and formed several strip layers according to enzyme treatment (FIG. 3). The above results suggest that treatment with pullulanase affects the crystalline structure of the raw material.

본 발명의 일 실시예에서는 효소 처리한 원료미의 아밀로오스 함량을 측정한 결과, 아밀로오스 함량이 현저하게 증가하였으며, 특히 효소의 농도가 높을수록 아밀로오스 함량 또한 증가함을 확인하였다(표 3).In one embodiment of the present invention, as a result of measuring the amylose content of the enzyme-treated raw rice, it was confirmed that the amylose content significantly increased, and in particular, the higher the enzyme concentration, the higher the amylose content (Table 3).

본 발명의 일 실시예에서는 효소 처리한 원료미의 저항전분의 함량이 증가되었는지 여부를 확인하기 위해 소화흡수율을 측정한 결과, 빨리 소화되는 전분(RDS)의 함량은 감소하고, 저항전분(RS)의 함량은 현저하게 증가됨을 확인하였다(표 4).In one embodiment of the present invention, as a result of measuring the digestion and absorption rate to determine whether the content of resistant starch in the enzyme-treated raw rice was increased, the content of rapidly digestible starch (RDS) decreased, and the content of resistant starch (RS) It was confirmed that the content of was significantly increased (Table 4).

상기 결과는 효소 처리에 의해 생성된 단쇄 아밀로오스(short chain amylose)가 저항전분 함량 증가에 영향을 준 것임을 시사한다.The above results suggest that the short chain amylose produced by the enzyme treatment has an effect on the increase in the resistant starch content.

또한, 상기 방법은 원료미의 프리바이오틱 활성을 증가시킬 수 있다.In addition, the method can increase the prebiotic activity of raw rice.

본 발명에서, “프리바이오틱(prebiotic)”은 장내 유익한 박테리아의 생장을 돕는 난소화성 성분으로서, 프로바이오틱스(probiotics)의 영양원이 되어 장내 환경을 개선하는데 도움을 주는 물질을 의미한다. In the present invention, "prebiotic" is an indigestible component that helps the growth of beneficial bacteria in the intestine, and means a substance that helps to improve the intestinal environment by becoming a nutrient source for probiotics.

본 발명의 일 실시예에서 프리바이오틱 활성을 확인하기 위해 장내 유익균인 LactobacillusBifidobacteria의 증식능을 확인한 결과, 효소를 처리한 원료미에서 상기 유익균의 증식능이 현저하게 증가함을 확인하였다(표 5).In one embodiment of the present invention, as a result of confirming the proliferative ability of intestinal beneficial bacteria, Lactobacillus and Bifidobacteria , to confirm the prebiotic activity, it was confirmed that the proliferative ability of the beneficial bacteria significantly increased in the raw material rice treated with the enzyme (Table 5). .

본 발명의 다른 일 측면은 상기 방법으로 제조된 저항전분 함량이 증가된 원료미에 관한 것이다.Another aspect of the present invention relates to the raw material rice with increased resistance starch content prepared by the above method.

상기 원료미는 백미, 흑미, 현미, 발아현미, 멥쌀, 찰보리쌀 및 이의 혼합물로 이루어진 군에서 선택되는 것일 수 있으며, 구체적으로 상기 원료미는 멥쌀일 수 있다. 또한, 상기 원료미는 분쇄된 가루 형태를 포함한다. 예컨대 멥쌀가루 등을 포함한다.The raw material rice may be selected from the group consisting of white rice, black rice, brown rice, germinated brown rice, non-glutinous rice, glutinous barley rice, and mixtures thereof, and specifically, the raw material rice may be non-glutinous rice. In addition, the raw material rice includes a pulverized powder form. Examples include non-glutinous rice flour and the like.

상기 '저항전분' 및 '효소'에 관한 설명은 전술한 바와 동일하다.Descriptions of the 'resistant starch' and 'enzyme' are the same as described above.

본 발명의 일 실시예에서는 플루라나아제 효소를 원료미에 처리하여 구조 변화를 확인하기 위해 X-선 분석, ATR/FT-IR 분석을 수행한 결과, 효소를 미처리한 원료미의 구조와 상이함을 확인하였다(도 1 및 도 2).In one embodiment of the present invention, X-ray analysis and ATR/FT-IR analysis were performed to confirm the structural change by treating the raw material rice with pullulanase enzyme. It was confirmed (Figs. 1 and 2).

구체적으로, 상기 원료미는 X-선 분석기로 측정한 피크는 5.79, 17.10, 19.55 및 24.3°이고, ATR/FT-IR 로 측정한 피크는 995, 1,045 및 1,022 cm-1의 값을 가지는 것일 수 있다.Specifically, the raw rice may have peaks of 5.79, 17.10, 19.55 and 24.3 ° as measured by an X-ray analyzer, and peaks of 995, 1,045 and 1,022 cm -1 as measured by ATR/FT-IR. .

본 발명의 일 실시예에서는 효소 처리한 원료미의 아밀로오스 함량을 측정한 결과, 아밀로오스 함량이 현저하게 증가하였으며 특히 효소 처리시 농도가 높을수록 아밀로오스 함량 또한 증가함을 확인하였다(표 3). In one embodiment of the present invention, as a result of measuring the amylose content of the enzyme-treated raw rice, it was confirmed that the amylose content significantly increased, and in particular, the higher the concentration, the higher the amylose content during enzyme treatment (Table 3).

구체적으로, 상기 원료미의 함량은 30% 내지 40%인 것일 수 있다.Specifically, the content of the raw rice may be 30% to 40%.

상기 저항전분의 함량이 향상된 원료미는 소장에서 흡수되는 포도당의 양을 감소시킬 수 있어, 체중조절 및 체중유지 목적으로 활용될 수 있다.The raw material rice with an improved content of resistant starch can reduce the amount of glucose absorbed in the small intestine, so it can be used for weight control and weight maintenance purposes.

또한 구체적으로, 상기 원료미는 프리바이오틱 활성이 증가된 것일 수 있다.Also, specifically, the raw material rice may have increased prebiotic activity.

상기 “프리바이오틱”은 전술한 바와 동일하다.The “prebiotic” is the same as described above.

본 발명의 일 실시예에서 프리바이오틱 활성을 확인하기 위해, 장내 유익균인 LactobacillusBifidobacteria의 증식능을 확인한 결과, 효소를 처리한 원료미에서 상기 유익균의 증식능이 현저하게 증가함을 확인하였다(표 5).In one embodiment of the present invention, in order to confirm the prebiotic activity, the proliferative ability of Lactobacillus and Bifidobacteria , which are beneficial bacteria in the intestine, was confirmed. ).

상기 결과는 본 발명의 플루라나아제를 처리한 원료미는 저항전분 함량이 우수할 뿐 아니라, 프리바이오틱 활성 또한 우수함을 시사한다.The above results suggest that the raw material rice treated with pullulanase of the present invention not only has excellent resistant starch content, but also has excellent prebiotic activity.

본 발명의 또 다른 일 측면은, 상기 원료미를 포함하는 식품 조성물에 관한 것이다.Another aspect of the present invention relates to a food composition comprising the raw material rice.

상기 원료미에 관한 설명은 전술한 바와 동일하다.Description of the raw material rice is the same as described above.

본 발명의 원료미를 첨가할 수 있는 식품은 낙농제품, 각종 스프, 음료수, 차, 건강기능성 보조식품 등이 있다.Foods to which the raw material rice of the present invention can be added include dairy products, various soups, beverages, tea, health functional supplements, and the like.

상기 식품의 종류는 구체적으로 건강기능식품일 수 있다. 상기 건강기능 식품은 여러 가지 영양제, 비타민, 광물(전해질), 합성 풍미제 및 천연 풍미제 등의 풍미제, 착색제 및 증진제(치즈, 초콜릿 등), 펙트산 및 그의 염, 유기산, 보호성 콜로이드 점증제, pH 조절제, 안정화제, 보존제, 글리세린, 알코올, 탄산음료에 사용되는 탄산화제 등을 함유할 수 있다. 이러한 성분은 단독으로 또는 조합으로 사용될 수 있으며, 이러한 첨가제의 비율은 조성물 전체 중량당 0.001 내지 50 중량부의 범위에서 선택되는 것이 일반적이다.The type of food may be specifically health functional food. The health functional food includes various nutrients, vitamins, minerals (electrolytes), flavors such as synthetic flavors and natural flavors, colorants and enhancers (cheese, chocolate, etc.), pectic acid and its salts, organic acids, protective colloidal thickeners agents, pH adjusting agents, stabilizers, preservatives, glycerin, alcohol, carbonating agents used in carbonated beverages, and the like. These components may be used alone or in combination, and the proportion of these additives is generally selected from the range of 0.001 to 50 parts by weight per total weight of the composition.

상기 건강기능식품은 식품의 생체 조절 기능을 강조한 식품으로 물리적, 생화학적, 생물공학적인 방법을 이용하여 특정 목적에 작용 및 발현하도록 부가가치를 부여한 식품이다. 이러한 건강기능 식품의 성분은 생체 방어와 신체 리듬의 조절, 질환의 방지 및 회복에 관계하는 신체 조절 기능을 생체에 대하여 충분히 발휘하도록 설계하여 가공하게 되며, 식품으로 허용 가능한 식품 보조 첨가제, 감미료 또는 기능성 원료를 함유할 수 있다. The health functional food is a food that emphasizes the bioregulatory function of food, and is a food that has added value to act and express for a specific purpose using physical, biochemical, and bioengineering methods. The ingredients of these health functional foods are designed and processed to sufficiently exert the body's control functions related to body defense and regulation of body rhythm, prevention and recovery of diseases, and are food additives, sweeteners or functional foods acceptable as food. may contain raw materials.

상기 건강기능식품은 정제, 과립, 분말, 캅셀, 액상의 용액 및 환으로 이루어진 군에서 선택된 어느 하나의 제형일 수 있으나, 이에 제한되지 않는다. 구체적으로 상기 정제 형태의 건강기능식품은 상기 원료미를 포함하는 조성물, 부형제, 결합제, 붕해제 및 다른 첨가제 혼합물을 통상의 방법으로 과립화한 다음, 활택제 등을 넣어 압축 성형하거나, 상기 혼합물을 직접 압축 성형하여 제조할 수 있다. 또한, 상기 정제 형태의 건강기능식품은 필요에 따라 고미제 등을 함유할 수 있으며, 필요에 따라 적당한 제피제로 제피할 수도 있다. The health functional food may be any one formulation selected from the group consisting of tablets, granules, powders, capsules, liquid solutions and pills, but is not limited thereto. Specifically, the health functional food in the form of a tablet is obtained by granulating a mixture of the composition, excipient, binder, disintegrant, and other additives including the raw material rice in a conventional manner, and then compression molding by adding a lubricant or the like, or It can be produced by direct compression molding. In addition, the health functional food in the form of a tablet may contain a bitter agent, etc., if necessary, and may be coated with an appropriate coating agent, if necessary.

상기 캅셀 형태의 건강기능식품 중 경질캅셀제는 통상의 경질캅셀에 원료미를 포함하는 조성물 및 부형제 등의 첨가제와의 혼합물 또는 그의 입상물 또는 제피한 입상물을 충진하여 제조할 수 있다. 연질캅셀제는 원료미를 포함하는 조성물 및 부형제 등의 첨가제와의 혼합물을 젤라틴 등 캅셀기제에 충진하여 제조할 수 있다. 상기 연질캅셀제는 필요에 따라 글리세린 또는 솔비톨 등의 가소제, 착색제, 보존제 등을 함유할 수 있다. Among the health functional foods in the form of capsules, hard capsules can be prepared by filling conventional hard capsules with a mixture of a composition containing raw material rice and additives such as excipients, or a granular material or coated granular material thereof. Soft capsules can be prepared by filling a mixture of a composition containing raw material rice with additives such as excipients into a capsule base such as gelatin. The soft capsule may contain a plasticizer such as glycerin or sorbitol, a colorant, and a preservative, if necessary.

상기 환 형태의 건강기능식품은 원료미를 포함하는 조성물, 부형제, 결합제, 붕해제 등의 혼합물을 적당한 방법으로 성형하여 조제할 수 있으며, 필요에 따라 백당이나 다른 적당한 제피제로 제피를, 또는 전분, 탈크 또는 적당한 물질로 환의를 입힐 수도 있다. The health functional food in the form of a ring can be prepared by molding a mixture of a composition containing raw rice, an excipient, a binder, a disintegrant, etc. in an appropriate way, and if necessary, a shell with sucrose or other suitable coating agent, or starch, It is also possible to coat the ring with talc or a suitable material.

상기 과립 형태의 건강기능식품은 원료미를 포함하는 조성물, 부형제, 결합제, 붕해제 등의 혼합물을 적당한 방법으로 입상으로 제조할 수 있으며, 필요에 따라 착향제, 고미제 등을 함유할 수 있다. The health functional food in the form of a granule may be prepared in a granular form by a suitable method of a mixture of a composition including raw rice, excipients, binders, disintegrants, etc., and may contain flavoring agents, bittering agents, etc., if necessary.

상기 부형제, 결합제, 붕해제, 활택제, 고미제, 착향제 등에 대한 용어 정의는 당업계에 공지된 것으로 그 기능 등의 동일 내지 유사한 것들을 포함할 수 있다. Definitions of terms for the excipients, binders, disintegrants, lubricants, bitter agents, flavoring agents, and the like are known in the art and may include the same or similar functions.

또한, 상기 식품의 종류는 식품 첨가제일 수 있으며, 상기 식품 첨가제는 식품의 제조, 가공, 또는 보존을 위해 식품에 첨가, 혼합, 침윤 기타의 방법에 의해 사용되는 물질을 의미한다. 상기 식품 첨가제는 천연물과 합성품이 있으며, 기능과 용도에 따라 분류할 수 있다. 현재 한국에 식품첨가물로 허가되어 있는 품목은 화학적 합성품 370여종, 천연첨가물 50여종이며, 주로 용도에 따라 보존료, 살균제, 산화방지제, 착색료, 발색제, 표백제, 조미료, 감미료, 착향료, 팽창제, 강화제, 개량제, 유화제, 증점제(호료) 및 안정제, 피막제, 껌 기초제, 소포제, 용제, 이형제, 방충제, 품질개량제와 기타 식품제조용 첨가제 등으로 분류되어 쓰이고 있다.In addition, the type of food may be a food additive, and the food additive refers to a material used by adding, mixing, infiltrating, or other methods to food for manufacturing, processing, or preservation of food. The food additives include natural products and synthetic products, and can be classified according to functions and uses. Currently, 370 kinds of chemical synthetic products and 50 kinds of natural additives are permitted as food additives in Korea. They are mainly preservatives, fungicides, antioxidants, coloring agents, coloring agents, bleaching agents, seasonings, sweeteners, flavoring agents, expanding agents, reinforcing agents, and improvers depending on the use. , emulsifier, thickener (thickener) and stabilizer, coating agent, gum base agent, antifoaming agent, solvent, release agent, insect repellent, quality improver and other additives for food manufacturing.

상기 식품첨가제의 형태는 분말, 과립, 정제, 캡슐 또는 액상 형태를 포함할 수 있으며 구체적으로는 캡슐의 형태일 수 있으나, 상기 형태에 제한되는 것은 아니다.The form of the food additive may include a powder, granule, tablet, capsule or liquid form, and specifically may be in the form of a capsule, but is not limited to the form.

본 발명의 원료미를 포함하는 식품 조성물로 사용할 경우, 상기 원료미를 그대로 첨가하거나 다른 식품 또는 식품 성분과 함께 사용하고, 통상적인 방법에 따라 적절하게 사용할 수 있다. 상기 원료미의 혼합량은 그의 사용 목적(예방, 건강 또는 개선, 치료적 처치)에 따라 적합하게 결정될 수 있다. When used as a food composition containing the raw rice raw material of the present invention, the raw rice raw material may be added as it is or used together with other foods or food ingredients, and may be appropriately used according to a conventional method. The mixing amount of the raw rice may be appropriately determined according to the purpose of use (prevention, health or improvement, therapeutic treatment).

본 발명은 원료미 본 형태를 그대로 유지하면서 저항전분의 함량을 현저하게 증가시킬 수 있는 방법으로서, 상기 방법에 의해 제조된 원료미는 칼로리가 낮을 뿐 아니라 프리바이오틱 활성이 우수하여 다양한 식품 소재로 활용도가 높다.The present invention is a method for remarkably increasing the content of resistant starch while maintaining the original shape of raw rice, wherein the raw rice prepared by the method has low calories and excellent prebiotic activity, so it can be used as a variety of food ingredients. is high

본 발명의 효과는 상기한 효과로 한정되는 것은 아니며, 본 발명의 상세한 설명 또는 청구범위에 기재된 발명의 구성으로부터 추론 가능한 모든 효과를 포함하는 것으로 이해되어야한다. The effects of the present invention are not limited to the above effects, and should be understood to include all effects that can be inferred from the detailed description of the present invention or the configuration of the invention described in the claims.

도 1은 농도별 효소 처리한 멥쌀가루의 XRD 구조 분석 결과를 나타낸 것이다.
도 2는 농도별 효소 처리한 멥쌀가루의 ATR/FT-IR 구조 분석 결과를 나타낸 것이다.
도 3은 농도별 효소 처리한 멥쌀가루의 HR FE-SEM 표면 구조 분석 결과를 나타낸 것이다.
도 4는 농도별 효소 처리한 멥쌀가루의 호화액 입자형태를 분석한 결과를 나타낸 것이다.
1 shows the results of XRD structural analysis of non-glutinous rice flour treated with enzymes for each concentration.
Figure 2 shows the results of ATR / FT-IR structural analysis of non-glutinous rice flour treated with enzymes for each concentration.
Figure 3 shows the results of HR FE-SEM surface structure analysis of nonglutinous rice flour treated with enzymes for each concentration.
Figure 4 shows the results of analyzing the particle shape of gelatinized liquid of nonglutinous rice flour treated with enzymes for each concentration.

이하, 첨부된 도면을 참고하여 본 발명의 실시예에 관하여 상세히 서술하나, 하기 실시예에 의해 본 발명이 제한되지 아니함은 자명하다.Hereinafter, the embodiments of the present invention will be described in detail with reference to the accompanying drawings, but it is obvious that the present invention is not limited by the following examples.

실시예 1. 효소 처리 멥쌀가루Example 1. Enzyme-treated non-glutinous rice flour

멥쌀가루의 수분 함량을 낮추기 위하여 45℃ 오븐에서 건조시켰다. In order to lower the moisture content of nonglutinous rice flour, it was dried in an oven at 45 ° C.

0.1 M 아세트산 나트륨 용액을 빙하 아세트산(glacial acetic acid)을 사용하여 pH 5.2로 조절하여 0.1 M 아세트산 나트륨 완충액(sodium acetate buffer)를 제조한 후 건조시킨 멥쌀가루 7%(w/w)를 첨가하여 분산시켰다. 이후, 분산액을 100℃에서 1시간 동안 호화시키고, 상온에서 냉각시켜 55℃에 도달할 때 100, 300, 500 PUN/g 농도로 각각 효소 처리를 하였다. 이때 효소는 식품첨가물로 허용된 플루라나아제(Pullulanase)의 상업 효소인 Promozyme D2를 이용하였다.0.1 M sodium acetate solution is adjusted to pH 5.2 using glacial acetic acid to prepare 0.1 M sodium acetate buffer, and then 7% (w/w) of dried non-glutinous rice flour is added to disperse made it Thereafter, the dispersion was gelatinized at 100°C for 1 hour, cooled at room temperature, and enzymatically treated at concentrations of 100, 300, and 500 PUN/g, respectively, when it reached 55°C. At this time, Promozyme D2, a commercial enzyme of Pullulanase, which is allowed as a food additive, was used as the enzyme.

12시간 동안 효소 반응을 하고, 100℃에서 10 분간 효소 반응을 정지시켰다. 이후25℃까지 냉각시키고, 인큐베이터에서 24시간 동안 노화과정을 진행하였다. 노화과정이 끝난 후 3,500 rpm에서 10분간 원심분리를 하였으며, 침전물인 효소 처리 멥쌀가루를 수득하여 45℃의 오븐에서 일정한 수분(5~10%)에 도달할 때까지 7시간 가량 건조한 후 180 mesh 표준규격체망을 통과시켜 냉동보관 하였다.The enzyme reaction was performed for 12 hours, and the enzyme reaction was stopped for 10 minutes at 100°C. After cooling to 25 ℃, aging process was carried out for 24 hours in an incubator. After the aging process was completed, centrifugation was performed at 3,500 rpm for 10 minutes, and enzymatically treated non-glutinous rice flour, which is the precipitate, was obtained and dried in an oven at 45 ° C for 7 hours until a certain moisture content (5-10%) was reached, and then 180 mesh standard It was stored frozen after passing through a standard sieve.

처리된 효소의 농도에 따라 100 EM_RF, 300 EM_RF, 500 EM_RF로 각각 명명하였다.100 EM_RF, 300 EM_RF, and 500 EM_RF were respectively named according to the concentration of the treated enzyme.

비교예 1. 멥쌀가루Comparative Example 1. Non-glutinous rice flour

멥쌀가루를 실시예 1과 동일하게 45℃ 오븐에서 건조시킨 후, 냉동보관 하였다.Nonglutinous rice flour was dried in an oven at 45 ° C in the same manner as in Example 1, and then stored frozen.

실험예 1. 멥쌀가루의 성분분석 Experimental Example 1. Component Analysis of Nonglutinous Rice Flour

본 발명에서 사용된 멥쌀가루의 일반성분인 수분, 조단백, 조지방, 조회분의 함량을 AOAC(1995)의 방법(AOAC. 1995. Official methods analysis. 15th ed. Association of Official Analytical Chemists, Washington, DC, USA. P 69-90. 참고)으로 분석하였다. 성분분석 결과는 아래 표 1에 나타내었다.The content of moisture, crude protein, crude fat, and crude ash, which are general components of the nonglutinous rice flour used in the present invention, was determined by the method of AOAC (1995. Official methods analysis. 15th ed. Association of Official Analytical Chemists, Washington, DC, USA. P 69-90. Reference). The component analysis results are shown in Table 1 below.

성분ingredient 함량(%)content(%) 성분ingredient 함량(%)content(%) 수분moisture 11.11%11.11% 조회분views 0.39%0.39% 조단백crude protein 7.02%7.02% 조지방crude fat 0.47%0.47% 아밀로오스amylose 10.70%10.70% 아밀로펙틴amylopectin 89.30%89.30%

실험예 2. 효소 처리 멥쌀가루의 구조적 특성 분석Experimental Example 2. Structural Characteristic Analysis of Enzyme-treated Nonglutinous Rice Flour

2-1. 효소 처리 멥쌀가루의 XRD 구조분석 2-1. XRD structural analysis of enzyme-treated nonglutinous rice flour

효소 처리 멥쌀가루의 결정화도를 X-선 분석기(D8 Advance Bruker, Germany)를 이용하여 측정하였으며 기기 조건은 회전각도(2θ) 3°부터 50°까지 회절 시켜 회절 각도에 따른 피크의 위치로부터 결정형을 분석하였다. The crystallinity of enzyme-treated nonglutinous rice flour was measured using an X-ray analyzer (D8 Advance Bruker, Germany), and the instrument conditions were diffracted from a rotation angle (2θ) of 3° to 50° to analyze the crystalline form from the position of the peak according to the diffraction angle did

곡류전분은 A형, 과일(fruit)·줄기(stem) 전분은 B형, 고구마 전분은 A형과 B형의 혼합형인 C형의 패턴을 나타내었으며, 호화된 경우 V형의 패턴을 나타내는 것이다.Grain starch showed a type A pattern, fruit/stem starch showed a type B pattern, and sweet potato starch showed a type C pattern, which is a mixture of A and B types, and a V type pattern when gelatinized.

그 결과, 멥쌀가루에 플루라나아제 효소를 처리함에 따라, α-1, 6 결합을 분해하여 짧은 사슬 아밀로오스를 생성하고, 생성된 아밀로오스는 노화 시 수소결합을 통해 새로운 결정구조를 형성시킴을 확인하였다. 구체적으로, 멥쌀가루(RF)의 경우 A형의 패턴을 나타내는 5.13, 18.06, 23.07°에서의 피크가 관찰되었으며, 100, 300, 500 PUN/g 농도의 효소를 각각 처리한 멥쌀가루의 경우, B형의 패턴을 나타내는 5.79, 17.10, 24.3° 부근에서 피크가 관찰되었을 뿐만 아니라, V형의 패턴을 나타내는 19.55° 부근에서도 피크가 관찰되었다(도 1). As a result, it was confirmed that as nonglutinous rice flour was treated with pullulanase enzyme, α-1, 6 bonds were broken down to produce short-chain amylose, and the resulting amylose formed a new crystal structure through hydrogen bonding during aging. . Specifically, in the case of nonglutinous rice flour (RF), peaks at 5.13, 18.06, and 23.07° showing an A-type pattern were observed, and in the case of nonglutinous rice flour treated with enzymes at concentrations of 100, 300, and 500 PUN/g, B Peaks were observed at around 5.79, 17.10, and 24.3° representing a V-shaped pattern, as well as peaks at around 19.55° representing a V-shaped pattern (FIG. 1).

상기 결과를 통해, 플루라나아제 효소 처리는 멥쌀가루의 결정형 구조에 영향을 주며, 구체적으로 플루라나아제 첨가 농도가 증가할수록 결정형이 A형에서 B+V 형으로 변화시킴을 확인하였다.Through the above results, it was confirmed that the enzyme treatment with pullulanase affects the crystal structure of nonglutinous rice flour, and specifically, as the concentration of pullulanase increases, the crystal form changes from form A to form B+V.

2-2. 효소 처리 멥쌀가루 농도별 ATR FT-IR 구조분석 2-2. ATR FT-IR structural analysis by concentration of enzyme-treated nonglutinous rice flour

효소 처리 멥쌀가루의 결정구조 및 무정형 피크를 ATR/Fourier transform infrared spectrophotometer(Frontier, Perkin-Elmer Co. Ltd., UK) 를 이용하여 4,000 내지 500 cm-1 범위에서 측정하였다. The crystal structure and amorphous peak of the enzyme-treated nonglutinous rice flour were measured in the range of 4,000 to 500 cm -1 using an ATR/Fourier transform infrared spectrophotometer (Frontier, Perkin-Elmer Co. Ltd., UK).

일반적으로 전분의 구조 변화는 1,045, 1,022, 995 cm-1에서 나타나는 밴드(band) 강도(intensity)에 영향을 미치는데, 특히 1,045 cm-1 및 1,022 cm-1에서의 밴드(band)는 각각 전분의 결정형 영역과 무정형 영역을 나타내므로, 밴드 강도의 비율인 995 cm-1/1,022 cm-1 혹은 1,045 cm-1/1,022 cm-1 값은 전분의 구조를 표현하는 지표로 이용될 수 있다. 따라서, 상기 1,045, 1,022, 995 cm-1 영역의 구조 및 995 cm-1/1,022 cm-1의 비율 값을 확인하였다. In general, changes in the structure of starch affect the intensity of bands at 1,045, 1,022, and 995 cm -1 . In particular, the bands at 1,045 cm -1 and 1,022 cm -1 are starch Since it represents the crystalline region and the amorphous region of , the band intensity ratio of 995 cm -1 / 1,022 cm -1 or 1,045 cm - 1/1,022 cm -1 can be used as an index for expressing the structure of starch. Therefore, the structure of the 1,045, 1,022, and 995 cm -1 regions and the ratio value of 995 cm -1 / 1,022 cm -1 were confirmed.

그 결과, 멥쌀가루(RF) 및 효소 처리 멥쌀가루 모두 3,291, 2,926, 1,241 cm-1 영역에서 동일한 피크가 나타남을 확인하였으며, 각각의 피크는 poly-OH의 신축진동(stretching vibration), C-H의 신축진동(stretching vibration), O-H의 굽힘진동(bending vibration)에 의해 나타나는 것이다. 한편, 멥쌀가루(RF)와 달리 효소 처리 멥쌀가루(100 EM_RF, 300 EM_RF, 500 EM_RF)에서 결정형 영역에 해당하는 1,047 cm-1 및 무정형 영역에 해당하는 1,022 cm-1에서 밴드가 나타남을 확인하였다. 전분의 결정화도를 나타내는 995 cm-1/1,022 cm-1의 비율을 확인한 결과, 100 EM_RF에서 1.10이 나타나고, 300 EM_RF에서 1.12가 나타나고, 500 EM_RF에서 1.16이 나타남을 확인하였다(도 2 및 표 2). As a result, it was confirmed that the same peaks appeared in the regions of 3,291, 2,926, and 1,241 cm -1 for both non-glutinous rice flour (RF) and enzyme-treated non-glutinous rice flour, and each peak was a stretching vibration of poly-OH, stretching of CH It is manifested by stretching vibration and bending vibration of OH. On the other hand, unlike nonglutinous rice flour (RF), it was confirmed that bands appeared at 1,047 cm -1 corresponding to the crystalline region and 1,022 cm -1 corresponding to the amorphous region in the enzyme-treated nonglutinous rice flour (100 EM_RF, 300 EM_RF, 500 EM_RF) . As a result of checking the ratio of 995 cm -1 / 1,022 cm -1 representing the crystallinity of starch, it was confirmed that 1.10 appeared at 100 EM_RF, 1.12 appeared at 300 EM_RF, and 1.16 appeared at 500 EM_RF (FIG. 2 and Table 2) .

플루라나아제 농도Fluranase concentration
(PUN/g flour)(PUN/g flour)
R995/1022R995/1022
100100 1.101.10 300300 1.121.12 500500 1.161.16

상기와 같은 결과는 플루라나아제 효소 처리 농도가 증가할수록 멥쌀가루의 결정화도가 높아짐을 시사한다.The above results suggest that the crystallinity of nonglutinous rice flour increases as the concentration of pullulanase enzyme treatment increases.

2-3. 효소 처리 멥쌀가루의 HR FE-SEM 표면 구조분석 2-3. HR FE-SEM surface structure analysis of enzyme-treated nonglutinous rice flour

효소 처리 멥쌀가루의 표면구조는 주사 전자 현미경 (HR FE-SEM, MERLIN, Carl Zeiss, Jena, Germany)을 이용하여 시료의 형태를 관찰하고 촬영하였다. The surface structure of the enzyme-treated nonglutinous rice flour was observed and photographed using a scanning electron microscope (HR FE-SEM, MERLIN, Carl Zeiss, Jena, Germany).

그 결과, 멥쌀가루의 표면은 단백질로 인해 거칠고 불규칙한 다각형의 형태를 띠고 있는 반면, 효소 처리 멥쌀가루의 표면은 효소 처리로 인해 매끄럽고 여러 개의 스트립 층으로 이루어진 것을 확인하였다(도 3).As a result, it was confirmed that the surface of the nonglutinous rice flour had a rough and irregular polygonal shape due to the protein, whereas the surface of the enzyme-treated nonglutinous rice flour was smooth and consisted of several strip layers due to the enzyme treatment (FIG. 3).

2-4. 효소 처리 멥쌀가루의 호화액의 입자형태 분석 2-4. Analysis of particle morphology of gelatinized liquid of enzymatically treated nonglutinous rice flour

멥쌀가루 및 효소 처리 멥쌀가루의 호화액 입자형태를 분석하기 위해, 효소 처리 멥쌀가루를 1%(w/w) 분산액으로 제조하여 실온에서 30 분 교반한 뒤, 95℃에서 1 시간 교반하여 1% 호화액을 제조하였다.In order to analyze the particle morphology of gelatinized liquid of nonglutinous rice flour and enzyme-treated nonglutinous rice flour, enzyme-treated nonglutinous rice flour was prepared as a 1% (w/w) dispersion, stirred at room temperature for 30 minutes, and then stirred at 95 ° C for 1 hour to obtain 1% A gelatinization liquid was prepared.

호화액은 50%로 희석한 Lugol 용액(1 g I2, 2 g KI/300 mL H2O)으로 염색한 후 광학현미경(Eclipse Ci-S, Nikon Co., Tokyo, Japan)을 이용하여 200배의 배율로 관찰하였으며 멥쌀가루 호화액의 입자형태를 분석하였다.The gelatinization solution was stained with 50% diluted Lugol's solution (1 g I2, 2 g KI/300 mL H 2 O) and then magnified 200 times using an optical microscope (Eclipse Ci-S, Nikon Co., Tokyo, Japan). It was observed at a magnification of , and the particle shape of the gelatinized liquid of nonglutinous rice flour was analyzed.

그 결과, 멥쌀가루(RF)는 호화되어 입자형태가 사라졌으나, 효소 처리 멥쌀가루(100 EM_RF, 300 EM_RF, 500 EM_RF)의 경우 입자의 형태가 유지되고, 입자의 파괴가 거의 일어나지 않음을 확인하였다(도 4).As a result, the nonglutinous rice flour (RF) was gelatinized and the particle shape disappeared, but in the case of enzyme-treated nonglutinous rice flour (100 EM_RF, 300 EM_RF, 500 EM_RF), the particle shape was maintained and it was confirmed that the particle destruction hardly occurred. (Fig. 4).

상기 결과를 통해, 플루라나아제 효소가 원료미 내 함유된 전분의 아밀로펙틴의 α-1, 6 결합을 절단하여 단쇄 아밀로오스(short chain amylose)를 생성시키고, 생성된 아밀로오스는 노화 과정을 통해 수산기(hydroxyl group)에 서로 결합함으로써 결정형 구조가 상이해지고, 결정화도가 높아짐을 확인하였다.Through the above results, the pullulanase enzyme cuts the α-1, 6 bonds of amylopectin of starch contained in raw rice to produce short chain amylose, and the produced amylose has hydroxyl groups (hydroxyl) through the aging process. group), it was confirmed that the crystal structure was different and the crystallinity was increased.

실험예 3. 효소 처리 멥쌀가루의 이화학적 특성 분석Experimental Example 3. Analysis of physicochemical properties of enzyme-treated nonglutinous rice flour

멥쌀가루 및 효소 처리 멥쌀가루의 아밀로오스 함량을 측정하기 위해, 시료 50 mg과 에탄올 0.5 mL, 1 N NaOH 5 mL를 넣고 혼합한 후 25℃ 인큐베이터에서 24시간 동안 방치하였다. 이후 증류수로 50 mL 정용한 것을 시료로 하였고, 페놀프탈레인 3방울을 지시약으로 하여 시료 2.5 mL에 증류수 20 mL를 넣고 0.1 N HCl로 핑크색이 사라질 때까지 적정하였다. 이후 요오드 용액 1 mL를 넣고 증류수를 이용하여 50 mL로 정용한 후 590 nm에서 흡광도를 측정하였다.In order to measure the amylose content of nonglutinous rice flour and enzyme-treated nonglutinous rice flour, 50 mg of the sample, 0.5 mL of ethanol, and 5 mL of 1 N NaOH were mixed and left in a 25 ° C incubator for 24 hours. Thereafter, 50 mL of distilled water was used as a sample, and 20 mL of distilled water was added to 2.5 mL of the sample using 3 drops of phenolphthalein as an indicator and titrated with 0.1 N HCl until the pink color disappeared. Thereafter, 1 mL of an iodine solution was added and diluted to 50 mL using distilled water, and the absorbance was measured at 590 nm.

그 결과, 멥쌀가루(RF) 보다 효소 처리 멥쌀가루에서 아밀로오스 함량이 유의적으로 높은 것을 확인하였다. 특히, 멥쌀가루에서 플루라나아제를 500 PUN/g 가루(flour)의 농도로 처리한 샘플에서 아밀로오스 함량이 약 37.23%로 가장 높게 나타나는 것을 확인하였다(표 3). As a result, it was confirmed that the amylose content was significantly higher in enzyme-treated nonglutinous rice flour than in nonglutinous rice flour (RF). In particular, it was confirmed that the amylose content was the highest at about 37.23% in the nonglutinous rice flour sample treated with pullulanase at a concentration of 500 PUN/g flour (Table 3).

플루라나아제 농도Fluranase concentration
(PUN(PUN 1)One) /g flour)/g flour
아밀로오스 함량(%)Amylose content (%) 팽윤력swelling power
00 10.70 ± 0.04 c2) 10.70 ± 0.04 c2) 14.07 ± 0.30 a 14.07 ± 0.30 a 100100 32.51 ± 0.39 b 32.51 ± 0.39b 3.86 ± 0.05 b 3.86 ± 0.05b 300300 35.89 ± 3.22 ab 35.89 ± 3.22ab 3.74 ± 0.91 b 3.74 ± 0.91b 500500 37.23 ± 0.55 a 37.23 ± 0.55 a 3.31 ± 0.01 b 3.31 ± 0.01b

1) 플루라나아제 단위 1) Fluranase unit

2) 같은 열 내 상이한 문자를 가진 값들은 크게 다름(p<0.05) 2) Values with different letters in the same column are significantly different (p<0.05)

상기 결과를 통해, 효소 처리한 멥쌀 가루의 경우 효소 처리를 하지 않은 멥쌀 가루와 비교하여 아밀로오스 함량이 현저하게 증가됨을 확인하였다.Through the above results, it was confirmed that the enzyme-treated nonglutinous rice flour significantly increased the amylose content compared to the non-glutinous rice flour treated with the enzyme.

실험예 4. 효소 처리 멥쌀가루의 소화흡수율 분석Experimental Example 4. Analysis of digestion and absorption rate of enzyme-treated nonglutinous rice flour

먼저 효소 용액을 제조하였다. 돼지 췌장 판 크레아틴(Pancreatin from porcine pancreas) 2 g을 증류수 24 mL에 넣고 10분간 교반한 다음 1,500 g에서 10분간 원심분리 시킨 후 상층액 20 mL를 아밀로 글루코시다제 0.4 mL 및 증류수 3.6 mL와 혼합하여 제조하였다. 효소 용액은 37°C에서 10분 동안 보관하여 평형에 이르게 하여, 효소 용액을 제조하였다.First, an enzyme solution was prepared. 2 g of porcine pancreas was added to 24 mL of distilled water, stirred for 10 minutes, centrifuged at 1,500 g for 10 minutes, and 20 mL of the supernatant was mixed with 0.4 mL of amyloglucosidase and 3.6 mL of distilled water. It was manufactured. Enzyme solutions were prepared by storing them at 37 °C for 10 min to equilibrate.

멥쌀가루 및 효소 처리 멥쌀가루 30 mg과 마이크로마그네틱바를 2 mL 마이크로튜브(microtube)에 넣고 아세트산 나트륨 완충액(0.1 M, pH 5.2) 0.75 mL를 넣어 혼합시킨 다음 10분 동안 37°C에서 보관하였다. 제조한 효소 용액 0.75 mL를 멥쌀가루 및 효소 처리 멥쌀가루가 들어 있는 마이크로튜브에 넣고 37°C의 진탕 항온수조(shaking water bath)에서 20분 및 120분간 반응시킨 다음, 10분 동안 끓는 물에 넣어 효소 반응을 정지시켰다. 이를 마이크로 원심분리기에서 5,000 g로 10분간 원심분리한 다음 전분으로부터 가수분해된 상층액의 글루코스 양을 DNS 방법을 이용하여 측정하였다.Non-glutinous rice flour and enzyme-treated 30 mg of non-glutinous rice flour and a micromagnetic bar were placed in a 2 mL microtube, mixed with 0.75 mL of sodium acetate buffer (0.1 M, pH 5.2), and stored at 37 °C for 10 minutes. 0.75 mL of the prepared enzyme solution was put into a microtube containing nonglutinous rice flour and enzyme-treated nonglutinous rice flour, and reacted in a shaking water bath at 37 °C for 20 and 120 minutes, then put in boiling water for 10 minutes. The enzymatic reaction was stopped. It was centrifuged for 10 minutes at 5,000 g in a microcentrifuge, and then the amount of glucose in the supernatant hydrolyzed from starch was measured using the DNS method.

이후, 20분 이내 소화되는 전분을 RDS(rapidly digestible starch, 급속히 소화되는 전분), 20분과 120분 사이에 소화되는 전분을 SDS(slowly digestible starch, 천천히 소화되는 전분), 120분 이후에도 소화되지 않는 전분을 RS(resistant starch, 저항전분)으로 분류하였다.Then, starch digested within 20 minutes is RDS (rapidly digestible starch), starch digested between 20 and 120 minutes is SDS (slowly digestible starch), and starch not digested after 120 minutes was classified as RS (resistant starch).

그 결과, 효소 처리 멥쌀가루 제조 시 첨가하는 플루라나아제 농도가 0에서 100, 300, 500 PUN/g flour로 증가함에 따라 RS 함량은 13.33%에서 각각 26.17, 30.25, 32.92%로 유의적으로 증가하였다(표 4).As a result, as the concentration of pullulanase added in the production of enzyme-treated nonglutinous rice flour increased from 0 to 100, 300, and 500 PUN/g flour, the RS content significantly increased from 13.33% to 26.17, 30.25, and 32.92%, respectively. (Table 4).

플루라나아제 농도Fluranase concentration
(PUN(PUN 1)One) /g flour)/g flour
RDS(%)RDS(%) SDS(%)SDS (%) RS(%)RS(%)
00 74.50

Figure 112020066544887-pat00001
Figure 112020066544887-pat00002
2.12 a2) 74.50
Figure 112020066544887-pat00001
Figure 112020066544887-pat00002
2.12 a2) 12.17
Figure 112020066544887-pat00003
Figure 112020066544887-pat00004
2.36
12.17
Figure 112020066544887-pat00003
Figure 112020066544887-pat00004
2.36
13.33
Figure 112020066544887-pat00005
Figure 112020066544887-pat00006
0.24 d
13.33
Figure 112020066544887-pat00005
Figure 112020066544887-pat00006
0.24 d
100100 73.83
Figure 112020066544887-pat00007
Figure 112020066544887-pat00008
1.18 a
73.83
Figure 112020066544887-pat00007
Figure 112020066544887-pat00008
1.18a
N.D 3) ND 3) 26.17
Figure 112020066544887-pat00009
Figure 112020066544887-pat00010
1.18 c
26.17
Figure 112020066544887-pat00009
Figure 112020066544887-pat00010
1.18c
300300 69.75
Figure 112020066544887-pat00011
Figure 112020066544887-pat00012
0.59 b
69.75
Figure 112020066544887-pat00011
Figure 112020066544887-pat00012
0.59b
N.DN.D. 30.25
Figure 112020066544887-pat00013
Figure 112020066544887-pat00014
0.59 b
30.25
Figure 112020066544887-pat00013
Figure 112020066544887-pat00014
0.59b
500500 67.08
Figure 112020066544887-pat00015
Figure 112020066544887-pat00016
0.35 b
67.08
Figure 112020066544887-pat00015
Figure 112020066544887-pat00016
0.35b
N.DN.D. 32.92
Figure 112020066544887-pat00017
Figure 112020066544887-pat00018
0.35 a
32.92
Figure 112020066544887-pat00017
Figure 112020066544887-pat00018
0.35 a

1) 플루라나아제 단위 1) Fluranase unit

2) 같은 열 내 상이한 문자를 가진 값들은 크게 다름(p<0.05) 2) Values with different letters in the same column are significantly different (p<0.05)

3) N.D. 감지되지 않음(Not detected) 3) ND Not detected

상기 결과는 멥쌀가루의 효소 처리에 의해 저항전분 함량이 증가함을 보여주며, 앞선 실험 결과들과 함께 비추어 보건대, 효소 가수분해에 의해 증가된 아밀로오스 분자들이 저항전분의 함량 증가에 영향을 줌을 시사한다.The above results show that the content of resistant starch increases by enzymatic treatment of non-glutinous rice flour, and in light of the previous experimental results, the increased amylose molecules by enzymatic hydrolysis suggest that the increase in the content of resistant starch affects. do.

즉, 아밀로오스가 노화과정 동안 수소결합을 형성하면서 이중나선(double helix) 구조를 형성하게 되고, 이렇게 형성된 이중나선 구조의α-1, 4 글루코시드 결합에는 α-아밀라제 등과 같은 소화 효소가 작용할 수 없어, 전분의 소화가 억제되는, 저항전분의 함량이 증가되는 것이다.In other words, amylose forms a double helix structure while forming hydrogen bonds during the aging process, and digestive enzymes such as α-amylase cannot act on the α-1, 4 glucosidic bonds of the double helix structure thus formed. , the content of resistant starch, which suppresses the digestion of starch, is increased.

실험예 5. 효소 처리 멥쌀가루의 프리바이오틱 활성 분석Experimental Example 5. Analysis of prebiotic activity of enzyme-treated nonglutinous rice flour

In-vitro 발효는 한국미생물보존센터로부터 분양받은 Lactobacillus rhamnosus ATCC 7469, Bifidobacterium longum ATCC 15705을 이용하여 진행하였다. In-vitro 발효를 위해 L. rhamnosus, B. longum 10 uL를 각각 MRS 배지 및 Reinforced Clostridial Media(RCM) 배지에 접종하여 37℃에서 24시간, 48시간 동안 전배양하였다. 이후 멸균된 테스트 튜브에 발효 배지 9 mL와 시료 0.1 g 또는 0.5 g을 넣고 106의 전배양균 1 mL를 접종하여 37℃에서 24시간 동안 발효시켰다. In-vitro fermentation was carried out using Lactobacillus rhamnosus ATCC 7469 and Bifidobacterium longum ATCC 15705 purchased from the Korea Microbial Conservation Center. For in-vitro fermentation, 10 uL of L. rhamnosus and B. longum were inoculated into MRS medium and Reinforced Clostridial Media (RCM) medium, respectively, and pre-cultured at 37°C for 24 hours and 48 hours. Thereafter, 9 mL of the fermentation medium and 0.1 g or 0.5 g of the sample were placed in a sterilized test tube, and 1 mL of the pre-culture of 10 6 was inoculated and fermented at 37° C. for 24 hours.

In-vitro 발효 후 시료의 프리바이오틱 활성 측정을 위해 시료 1% 또는 5%(w/v)을 포함하는 발효 배지 100 uL를 MRS agar 배지(L. rhamnosus) 및 RCM agar 배지(B. longum)에 도말하였다. 도말한 고체 배지를 혐기성 jar(Mitsubishi Gas Chemical, Tokyo, Japan)에 AnaeroGenTM 2.5 L gas pack(Thermo Fisher)와 함께 넣어 혐기성 환경을 만든 다음 37℃에서 24시간 동안 배양시킨 후 형성된 콜로니 수를 계수하였다(표 5). After in-vitro fermentation, 100 uL of fermentation medium containing 1% or 5% (w / v) of the sample was mixed with MRS agar medium ( L. rhamnosus ) and RCM agar medium ( B. longum ) to measure the prebiotic activity of the sample. smeared on The smeared solid medium was put in an anaerobic jar (Mitsubishi Gas Chemical, Tokyo, Japan) together with AnaeroGenTM 2.5 L gas pack (Thermo Fisher) to create an anaerobic environment, and then incubated at 37 ° C for 24 hours, and the number of colonies formed was counted ( Table 5).

플루라나아제 농도Fluranase concentration
(PUN(PUN 1)One) /g flour)/g flour
Lactobacillus rhamnosus Lactobacillus rhamnosus
ATCC 7469ATCC 7469
Bifidobacterium longumBifidobacterium longum
ATCC 15705ATCC 15705
총 생존 가능 수 (log CFU/mL)Total viable count (log CFU/mL) 이눌린(Inulin)Inulin 8.598

Figure 112020066544887-pat00019
Figure 112020066544887-pat00020
0.555 c2) 8.598
Figure 112020066544887-pat00019
Figure 112020066544887-pat00020
0.555 c2) 8.155
Figure 112020066544887-pat00021
Figure 112020066544887-pat00022
0.219 c
8.155
Figure 112020066544887-pat00021
Figure 112020066544887-pat00022
0.219 c
100100 8.729
Figure 112020066544887-pat00023
Figure 112020066544887-pat00024
0.163 bc
8.729
Figure 112020066544887-pat00023
Figure 112020066544887-pat00024
0.163 BC
8.640
Figure 112020066544887-pat00025
Figure 112020066544887-pat00026
0.268 b
8.640
Figure 112020066544887-pat00025
Figure 112020066544887-pat00026
0.268b
300300 9.029
Figure 112020066544887-pat00027
Figure 112020066544887-pat00028
0.047 ab
9.029
Figure 112020066544887-pat00027
Figure 112020066544887-pat00028
0.047ab
8.914
Figure 112020066544887-pat00029
Figure 112020066544887-pat00030
0.099 a
8.914
Figure 112020066544887-pat00029
Figure 112020066544887-pat00030
0.099 a
500500 9.202
Figure 112020066544887-pat00031
Figure 112020066544887-pat00032
0.048 a
9.202
Figure 112020066544887-pat00031
Figure 112020066544887-pat00032
0.048 a
9.102
Figure 112020066544887-pat00033
Figure 112020066544887-pat00034
0.099 a
9.102
Figure 112020066544887-pat00033
Figure 112020066544887-pat00034
0.099 a

1) 플루라나아제 단위 1) Fluranase unit

2) 같은 열 내 상이한 문자를 가진 값들은 크게 다름(p<0.05) 2) Values with different letters in the same column are significantly different (p<0.05)

그 결과, 장내 미생물인 Lactobacillus rhamnosus ATCC 7469의 경우, 시판 프리바이오틱스인 이눌린 (8.598 log CFU/mL)보다 500 PUN/g flour 플루라나아제를 처리한 멥쌀가루에서 유의적으로 더 높은 Lactobacillus 증식능(9.202 log CFU/mL)이 나타남을 확인하였다.As a result, in the case of Lactobacillus rhamnosus ATCC 7469, an intestinal microorganism, significantly higher Lactobacillus proliferation ability (9.202 log CFU/mL) was confirmed.

Bifidobacterium longum ATCC 15705의 경우, 모든 효소 처리 멥쌀가루는 inulin(8.155 log CFU/mL)보다 유의적으로 더 높은 Bifidobacteria 증식능을 나타냈다. 특히, 300 또는 500 PUN/g flour 플루라나아제를 처리한 멥쌀가루의 경우 유의적으로 가장 높은 Bifidobacteria 증식능 (9.102 log CFU/mL)을 나타냄을 확인하였다. In the case of Bifidobacterium longum ATCC 15705, all enzyme-treated nonglutinous rice flours showed a significantly higher Bifidobacteria proliferation ability than inulin (8.155 log CFU/mL). In particular, it was confirmed that the nonglutinous rice flour treated with 300 or 500 PUN/g flour fluranase showed the significantly highest Bifidobacteria proliferation ability (9.102 log CFU/mL).

상기 결과를 통해, 플루라나아제를 처리한 멥쌀가루가 장내 유익균 증식에 효과적이며, 이를 통해 프리바이오틱 활성이 우수함을 확인하였다.Through the above results, it was confirmed that the nonglutinous rice flour treated with pullulanase was effective in the growth of beneficial bacteria in the intestine, and through this, the prebiotic activity was excellent.

실험예 6. 효소 처리 멥쌀가루의 단쇄지방산(short chain fatty acids, SCFAs) 함량 분석Experimental Example 6. Short chain fatty acids (SCFAs) content analysis of enzyme-treated nonglutinous rice flour

In-vitro 발효한 시료를 3,500 rpm에서 15분간 원심분리하여 얻은 상층액을 Gas chromatograph(G3440B, Agilent Technologies, Palo Alto, CA, USA)를 이용하여 SCFAs를 분석하였다. The supernatant obtained by centrifuging the in vitro fermented sample at 3,500 rpm for 15 minutes was analyzed for SCFAs using a Gas chromatograph (G3440B, Agilent Technologies, Palo Alto, CA, USA).

먼저, 2 mL 마이크로튜브에 시료의 발효 배지 상층액 0.5 mL, 1 M 인산0.2 mL, NaCl 0.4 g을 넣어 혼합한 다음 에틸 에테르(ethyl ether) 0.5 mL를 첨가하여 10,000 G에서 3분간 원심분리 하였다. 원심분리 후 상층액 1 uL를 전면 입구(front inlet)에 주입하여 SCFAs 함량을 측정하였다(표 6).First, 0.5 mL of the fermentation medium supernatant of the sample, 0.2 mL of 1 M phosphoric acid, and 0.4 g of NaCl were mixed in a 2 mL microtube, and then 0.5 mL of ethyl ether was added and centrifuged at 10,000 G for 3 minutes. After centrifugation, 1 uL of the supernatant was injected into the front inlet to measure the SCFAs content (Table 6).

플루라나아제 농도Fluranase concentration
(PUN1)/g flour)(PUN 1) /g flour
아세트산acetic acid
(mM)(mM)
프로피온산 (mM)Propionic acid (mM) 부티르산 (mM)Butyric acid (mM) 총 SCFAsTotal SCFAs
(mM)(mM)
Lactobacillus rhamnosus ATCC 7469 Lactobacillus rhamnosus ATCC 7469 이눌린(Inulin)Inulin 70.77

Figure 112022015680930-pat00035
Figure 112022015680930-pat00036
2.31 d2) 70.77
Figure 112022015680930-pat00035
Figure 112022015680930-pat00036
2.31 d2) 10.08
Figure 112022015680930-pat00037
Figure 112022015680930-pat00038
0.01 a
10.08
Figure 112022015680930-pat00037
Figure 112022015680930-pat00038
0.01 a
1.77
Figure 112022015680930-pat00039
Figure 112022015680930-pat00040
0.01 a
1.77
Figure 112022015680930-pat00039
Figure 112022015680930-pat00040
0.01a
82.62
Figure 112022015680930-pat00041
Figure 112022015680930-pat00042
1.88 c
82.62
Figure 112022015680930-pat00041
Figure 112022015680930-pat00042
1.88 c
00 71.60
Figure 112022015680930-pat00043
Figure 112022015680930-pat00044
1.10 c
71.60
Figure 112022015680930-pat00043
Figure 112022015680930-pat00044
1.10c
10.12
Figure 112022015680930-pat00045
Figure 112022015680930-pat00046
0.01 a
10.12
Figure 112022015680930-pat00045
Figure 112022015680930-pat00046
0.01a
1.75
Figure 112022015680930-pat00047
Figure 112022015680930-pat00048
0.00 a
1.75
Figure 112022015680930-pat00047
Figure 112022015680930-pat00048
0.00 a
83.46
Figure 112022015680930-pat00049
Figure 112022015680930-pat00050
1.00 c
83.46
Figure 112022015680930-pat00049
Figure 112022015680930-pat00050
1.00c
100100 81.39
Figure 112022015680930-pat00051
Figure 112022015680930-pat00052
4.64 b
81.39
Figure 112022015680930-pat00051
Figure 112022015680930-pat00052
4.64b
10.09
Figure 112022015680930-pat00053
Figure 112022015680930-pat00054
0.01 a
10.09
Figure 112022015680930-pat00053
Figure 112022015680930-pat00054
0.01a
1.77
Figure 112022015680930-pat00055
Figure 112022015680930-pat00056
0.03 a
1.77
Figure 112022015680930-pat00055
Figure 112022015680930-pat00056
0.03 a
93.25
Figure 112022015680930-pat00057
Figure 112022015680930-pat00058
4.65 b
93.25
Figure 112022015680930-pat00057
Figure 112022015680930-pat00058
4.65b
300300 90.72
Figure 112022015680930-pat00059
Figure 112022015680930-pat00060
3.63 a
90.72
Figure 112022015680930-pat00059
Figure 112022015680930-pat00060
3.63 a
10.11
Figure 112022015680930-pat00061
Figure 112022015680930-pat00062
0.00 a
10.11
Figure 112022015680930-pat00061
Figure 112022015680930-pat00062
0.00 a
1.75
Figure 112022015680930-pat00063
Figure 112022015680930-pat00064
0.00 a
1.75
Figure 112022015680930-pat00063
Figure 112022015680930-pat00064
0.00 a
102.58
Figure 112022015680930-pat00065
Figure 112022015680930-pat00066
3.62 a
102.58
Figure 112022015680930-pat00065
Figure 112022015680930-pat00066
3.62 a
500500 92.56
Figure 112022015680930-pat00067
Figure 112022015680930-pat00068
0.56 a
92.56
Figure 112022015680930-pat00067
Figure 112022015680930-pat00068
0.56 a
10.09
Figure 112022015680930-pat00069
Figure 112022015680930-pat00070
0.02 a
10.09
Figure 112022015680930-pat00069
Figure 112022015680930-pat00070
0.02 a
1.76
Figure 112022015680930-pat00071
Figure 112022015680930-pat00072
0.01 a
1.76
Figure 112022015680930-pat00071
Figure 112022015680930-pat00072
0.01a
104.41
Figure 112022015680930-pat00073
Figure 112022015680930-pat00074
0.55 a
104.41
Figure 112022015680930-pat00073
Figure 112022015680930-pat00074
0.55 a
Bifidobacterium longum ATCC 15705 Bifidobacterium longum ATCC 15705 이눌린(Inulin)Inulin 37.56
Figure 112022015680930-pat00075
Figure 112022015680930-pat00076
3.10 d
37.56
Figure 112022015680930-pat00075
Figure 112022015680930-pat00076
3.10d
10.08
Figure 112022015680930-pat00077
Figure 112022015680930-pat00078
0.00 b
10.08
Figure 112022015680930-pat00077
Figure 112022015680930-pat00078
0.00b
1.77
Figure 112022015680930-pat00079
Figure 112022015680930-pat00080
0.04 ab
1.77
Figure 112022015680930-pat00079
Figure 112022015680930-pat00080
0.04ab
49.41
Figure 112022015680930-pat00081
Figure 112022015680930-pat00082
3.14 d
49.41
Figure 112022015680930-pat00081
Figure 112022015680930-pat00082
3.14d
00 41.52
Figure 112022015680930-pat00083
Figure 112022015680930-pat00084
0.30 c
41.52
Figure 112022015680930-pat00083
Figure 112022015680930-pat00084
0.30 c
10.11
Figure 112022015680930-pat00085
Figure 112022015680930-pat00086
0.02 a
10.11
Figure 112022015680930-pat00085
Figure 112022015680930-pat00086
0.02 a
1.82
Figure 112022015680930-pat00087
Figure 112022015680930-pat00088
0.01 a
1.82
Figure 112022015680930-pat00087
Figure 112022015680930-pat00088
0.01a
53.44
Figure 112022015680930-pat00089
Figure 112022015680930-pat00090
0.29 c
53.44
Figure 112022015680930-pat00089
Figure 112022015680930-pat00090
0.29 c
100100 63.49
Figure 112022015680930-pat00091
Figure 112022015680930-pat00092
0.38 a
63.49
Figure 112022015680930-pat00091
Figure 112022015680930-pat00092
0.38 a
10.09
Figure 112022015680930-pat00093
Figure 112022015680930-pat00094
0.00 ab
10.09
Figure 112022015680930-pat00093
Figure 112022015680930-pat00094
0.00 ab
1.74
Figure 112022015680930-pat00095
Figure 112022015680930-pat00096
0.00 b
1.74
Figure 112022015680930-pat00095
Figure 112022015680930-pat00096
0.00b
75.32
Figure 112022015680930-pat00097
Figure 112022015680930-pat00098
0.38 a
75.32
Figure 112022015680930-pat00097
Figure 112022015680930-pat00098
0.38 a
300300 55.86
Figure 112022015680930-pat00099
Figure 112022015680930-pat00100
0.62 b
55.86
Figure 112022015680930-pat00099
Figure 112022015680930-pat00100
0.62b
10.09
Figure 112022015680930-pat00101
Figure 112022015680930-pat00102
0.00 ab
10.09
Figure 112022015680930-pat00101
Figure 112022015680930-pat00102
0.00 ab
1.74
Figure 112022015680930-pat00103
Figure 112022015680930-pat00104
0.00 b
1.74
Figure 112022015680930-pat00103
Figure 112022015680930-pat00104
0.00b
67.69
Figure 112022015680930-pat00105
Figure 112022015680930-pat00106
0.62 b
67.69
Figure 112022015680930-pat00105
Figure 112022015680930-pat00106
0.62b
500500 60.45
Figure 112022015680930-pat00107
Figure 112022015680930-pat00108
0.00 a
60.45
Figure 112022015680930-pat00107
Figure 112022015680930-pat00108
0.00 a
10.09
Figure 112022015680930-pat00109
Figure 112022015680930-pat00110
0.00 ab
10.09
Figure 112022015680930-pat00109
Figure 112022015680930-pat00110
0.00 ab
1.74
Figure 112022015680930-pat00111
Figure 112022015680930-pat00112
0.00 b
1.74
Figure 112022015680930-pat00111
Figure 112022015680930-pat00112
0.00b
72.28
Figure 112022015680930-pat00113
Figure 112022015680930-pat00114
0.00 a
72.28
Figure 112022015680930-pat00113
Figure 112022015680930-pat00114
0.00 a

1) 플루라나아제 단위 1) Fluranase unit

2) 같은 열 내 상이한 문자를 가진 값들은 크게 다름(p<0.05) 2) Values with different letters in the same column are significantly different (p<0.05)

그 결과, 시판 프리바이오틱스인 이눌린 보다 효소 처리 멥쌀가루를 프리바이오틱스로 이용했을 때 유의적으로 더 많은 SCFAs가 생성되었다. As a result, significantly more SCFAs were produced when enzyme-treated nonglutinous rice flour was used as a prebiotic than inulin, a commercially available prebiotic.

특히, 500 PUN/g flour 플루라나아제를 처리한 멥쌀가루의 경우, L. rhamnosus의 프리바이오틱스로 작용하여 104.41 mM의 총 SCFAs를 생성하였고, B. longum에서는 72.28 mM의 총 SCFAs를 생성하였다.In particular, in the case of non-glutinous rice flour treated with 500 PUN/g flour pullulanase, 104.41 mM of total SCFAs were produced by acting as a prebiotic for L. rhamnosus , and 72.28 mM of total SCFAs were produced for B. longum .

상기 결과는, 효소 처리 멥쌀가루의 프리바이오틱 활성능이 우수하여, 다양한 프리바이틱용 조성물로 활용할 수 있음을 시사한다.The above results suggest that the enzyme-treated nonglutinous rice flour has excellent prebiotic activity and can be used as various prebiotic compositions.

Claims (15)

a) 원료미를 호화시킨 후 효소를 처리하는 단계; 및
b) 효소 처리 후 노화시키는 단계를 포함하는, 저항전분 함량이 증가된 원료미 제조방법에 있어서,
상기 원료미는 멥쌀이고,
상기 효소는 100 PUN/g 내지 500 PUN/g 농도의 플루라나아제(pullulanase)이고,
상기 효소 처리는 10 시간 내지 15 시간 동안 진행하는 것이고,
상기 노화 과정은 20 시간 내지 30 시간 진행하는 것인, 제조방법.
a) processing enzymes after gelatinizing raw rice; and
b) In the method for producing raw material rice with increased resistant starch content, comprising the step of aging after enzyme treatment,
The raw material rice is non-glutinous rice,
The enzyme is pullulanase at a concentration of 100 PUN / g to 500 PUN / g,
The enzymatic treatment proceeds for 10 to 15 hours,
The aging process is to proceed for 20 hours to 30 hours, manufacturing method.
삭제delete 제1항에 있어서,
상기 원료미는 분쇄된 가루 형태를 포함하는 것인, 제조방법.
According to claim 1,
The raw material rice is a manufacturing method comprising a pulverized powder form.
삭제delete 삭제delete 삭제delete 삭제delete 제1항 또는 제3항에 있어서,
상기 방법은 원료미의 프리바이오틱 활성을 증가시키는 것인, 제조방법.
According to claim 1 or 3,
The method is to increase the prebiotic activity of the raw material rice, the manufacturing method.
제1항의 방법으로 제조된 저항전분 함량이 증가된 원료미에 있어서,
상기 원료미는 멥쌀인 것인, 원료미
In the raw material rice with increased resistant starch content prepared by the method of claim 1,
The raw material rice is non-glutinous rice, raw material rice
삭제delete 제9항에 있어서,
상기 원료미는 분쇄된 가루 형태를 포함하는 것인, 원료미.
According to claim 9,
The raw material rice is to include a pulverized powder form, the raw material rice.
제9항에 있어서,
상기 원료미는 X-선 분석기로 측정한 피크는 5.79, 17.10, 19.55 및 24.3°이고,
ATR/FT-IR로 측정한 피크는 995, 1,045 및 1,022 cm-1의 값을 가지는 것인, 원료미.
According to claim 9,
The raw rice has peaks measured by an X-ray analyzer at 5.79, 17.10, 19.55 and 24.3 °,
Peaks measured by ATR/FT-IR have values of 995, 1,045 and 1,022 cm -1 , raw material rice.
제9항에 있어서,
상기 원료미의 아밀로오스 함량은 30% 내지 40%인 것인, 원료미.
According to claim 9,
The raw material rice has an amylose content of 30% to 40%.
제9항에 있어서,
상기 원료미는 프리바이오틱 활성이 증가된 것인, 원료미.
According to claim 9,
The raw material rice is one in which the prebiotic activity is increased.
제9항 및 제11항 내지 제14항 중 어느 한 항의 원료미를 포함하는 식품 조성물.A food composition comprising the raw material rice according to any one of claims 9 and 11 to 14.
KR1020200078949A 2020-06-29 2020-06-29 Method for increasing the content of Resistant starch KR102485265B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200078949A KR102485265B1 (en) 2020-06-29 2020-06-29 Method for increasing the content of Resistant starch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200078949A KR102485265B1 (en) 2020-06-29 2020-06-29 Method for increasing the content of Resistant starch

Publications (2)

Publication Number Publication Date
KR20220001087A KR20220001087A (en) 2022-01-05
KR102485265B1 true KR102485265B1 (en) 2023-01-05

Family

ID=79348805

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200078949A KR102485265B1 (en) 2020-06-29 2020-06-29 Method for increasing the content of Resistant starch

Country Status (1)

Country Link
KR (1) KR102485265B1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7081261B2 (en) 2002-05-14 2006-07-25 National Starch And Chemical Investment Holding Corporation Resistant starch prepared by isoamylase debranching of low amylose starch
US20080286410A1 (en) * 2007-03-06 2008-11-20 Richmond Patricia A Production of Resistant Starch Product
KR101945827B1 (en) * 2017-06-24 2019-04-29 주식회사 바이오라이젠 Manufacturing process and characteristics for parboiled brown rice with high contents of resistant starch and enhanced eating quality and shelf life
KR20200038233A (en) * 2020-04-03 2020-04-10 이현주 Cooked rice with enhanced resistant starch content and reduced carbohydrate content and reduced calorie and method for manufacturing the same

Also Published As

Publication number Publication date
KR20220001087A (en) 2022-01-05

Similar Documents

Publication Publication Date Title
Sangeetha et al. Recent trends in the microbial production, analysis and application of fructooligosaccharides
KR101103287B1 (en) Method for producing fermentation product using natural products and food or medicine comprising fermentation product produced by the method
JP2002533107A (en) Α-Amylase resistant starch for food and drug production
KR20080026039A (en) Probiotic/non-probiotic combinations
Yang et al. Carbohydrate-based functional ingredients derived from starch: Current status and future prospects
Cardoso et al. Novel and emerging prebiotics: Advances and opportunities
KR101437608B1 (en) Grain Syrup Comprising Rice Ipguk and Method for Preparing the Same
Lyu et al. A systematic review of highland barley: Ingredients, health functions and applications
Nobre et al. Fructooligosaccharides production and the health benefits of prebiotics
Fan et al. The properties and preparation of functional starch: a review
KR20180018182A (en) Method for preparing prebiotics korean rice noodle having improved resistance of starch for lowering blood glucose using high amylose
KR102485265B1 (en) Method for increasing the content of Resistant starch
KR101288363B1 (en) Functional five-coloured instant cup Tteokbokki Containing Dietary Fiber and Salicornia herbacea and a method of manufacturing the same
JP7082066B2 (en) High molecular weight glucan with slow digestion rate
Gupta et al. Xylooligosaccharides and their anticancer potential: an update
KR101728153B1 (en) Method for manufacturing red pepper paste using water-soluble dietary fiber and red pepper paste manufactured by the same
Bayomy et al. Formation of resistant starch and cracker products from leftover rice in Saudi Arabia
JP4790996B2 (en) Method for producing functional material from brewing by-products and functional material obtained thereby
KR102485266B1 (en) Garcinia extract treatment esterized non-glutinous rice flour and manufacturing method thereof
KR102411709B1 (en) Manufacturing method of isomalto-oligosaccharide using rice powder
KR101524736B1 (en) Manufacturing method of Furikake using laver and Furikake using laver manufactured by the same
KR20220063761A (en) Esterized non-glutinous rice flour and manufacturing method thereof
Pierezan et al. Recent Advances on Emerging Carbohydrates‐Based Prebiotics and its Potential Food Sources: Marine Algae, Seaweeds, Tropical Fruits, and Agri‐Food Wastes
KR20210098586A (en) Manufacturing method of synbiotics comprising isomalto-oligosaccharide made from rice powder
Zhang et al. Research advances of modification and nutrition properties of food carbohydrates, volume I

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant