KR102482828B1 - Nano-hybrid-based renewable air filter and manufacturing method of the same - Google Patents

Nano-hybrid-based renewable air filter and manufacturing method of the same Download PDF

Info

Publication number
KR102482828B1
KR102482828B1 KR1020210187962A KR20210187962A KR102482828B1 KR 102482828 B1 KR102482828 B1 KR 102482828B1 KR 1020210187962 A KR1020210187962 A KR 1020210187962A KR 20210187962 A KR20210187962 A KR 20210187962A KR 102482828 B1 KR102482828 B1 KR 102482828B1
Authority
KR
South Korea
Prior art keywords
air filter
glass fiber
manufacturing
filter
impregnated
Prior art date
Application number
KR1020210187962A
Other languages
Korean (ko)
Inventor
김남조
김성연
Original Assignee
한국캠브리지필터 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국캠브리지필터 주식회사 filed Critical 한국캠브리지필터 주식회사
Priority to KR1020210187962A priority Critical patent/KR102482828B1/en
Application granted granted Critical
Publication of KR102482828B1 publication Critical patent/KR102482828B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2003Glass or glassy material
    • B01D39/2017Glass or glassy material the material being filamentary or fibrous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/66Regeneration of the filtering material or filter elements inside the filter
    • B01D46/785Regeneration of the filtering material or filter elements inside the filter by electrical means, e.g. for the generation of electrostatic forces in order to reject particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/04Additives and treatments of the filtering material
    • B01D2239/0464Impregnants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/10Filtering material manufacturing

Abstract

The present invention relates to a nanohybrid-based recyclable air filter and a manufacturing method thereof. The present invention relates to technology for manufacturing an air filter by growing a carbon nanostructure using glass-fiber as a support, and specifically, to a nanohybrid-based recyclable air filter which can be recycled by heat by applying electricity so that the filter can be easily reused, and a manufacturing method thereof.

Description

나노하이브리드 기반의 재생 가능한 에어필터 및 그 제조방법{Nano-hybrid-based renewable air filter and manufacturing method of the same}Nano-hybrid-based renewable air filter and manufacturing method of the same

본 발명은 나노하이브리드 기반의 재생 가능한 에어필터 및 그 제조방법에 관한 것이다.The present invention relates to a nanohybrid-based renewable air filter and a manufacturing method thereof.

부연하면, 유리섬유(Glass-fiber)를 지지체로 하여 탄소나노구조체를 성장시켜 에어필터를 제조하는 기술로서, 전기를 부여하여 열 재생시킬 수 있어서 필터의 용이한 재사용이 가능하도록 하는, 나노하이브리드 기반의 재생 가능한 에어필터 및 그 제조방법에 관한 것이다.In other words, it is a technology for manufacturing an air filter by growing a carbon nanostructure using glass-fiber as a support, and it is a nanohybrid-based technology that can regenerate heat by applying electricity so that the filter can be easily reused. It relates to a regenerable air filter and a manufacturing method thereof.

에어필터는 공기 중의 먼지를 제거하기 위한 장치로 사용된다.An air filter is used as a device for removing dust in the air.

이러한 에어필터는 기술이 발전됨에 따라 다양한 형태와 소재로서 개발되고 있고, 나아가서는 기능적인 면 역시 개선되고 있다.As technology develops, these air filters are developed in various shapes and materials, and furthermore, their functional aspects are also improved.

또한, 필터는 통과되는 공기 중의 먼지를 흡착하여 제거하여 공기를 여과시키는 것이기 때문에, 사용누적에 따른 장치의 차압을 발생시키기도 하므로, 기능적인 면의 일예로서 저차압을 목적으로 개발되기도 하며, 기능 개선을 위하여 다양한 소재를 적용하고 있는 추세이다.In addition, since the filter adsorbs and removes dust in the air passing through to filter the air, it also generates a differential pressure of the device according to the accumulation of use, so it is developed for the purpose of low differential pressure as an example of a functional aspect, improving the function It is a trend that various materials are applied for this purpose.

또한, 에어필터와 같은 필터류는 사용누적에 따라 주기적으로 교체가 이루어지지 않으면 다량의 이물질이 흡착되어 누적됨으로 인해 필터 고유의 기능을 수행하지 못하도록 한다.In addition, if filters such as air filters are not periodically replaced according to accumulated use, a large amount of foreign substances are adsorbed and accumulated, preventing the filter from performing its own function.

근래에는 이러한 문제점을 극복하려는 일환으로 재사용 가능하도록 하는 필터의 개발도 이루어지고 있다.Recently, as part of an attempt to overcome these problems, a filter capable of being reused has also been developed.

관련된 기술로서, 등록특허공보 제10-1623015호에는 재사용 효율이 높은 필터 시스템이 기재되어 있다.As a related technology, Patent Registration No. 10-1623015 discloses a filter system with high reuse efficiency.

상기 기술은, 재사용 효율이 높은 필터시스템에 관한 것으로, 오염된 공기가 유입되는 유입구와, 공기가 정화되어 나가는 배출구가 마련되어 있는 필터하우징과 상기 필터하우징의 내부에 마련되어 오염물질을 걸러주는 헤파필터, 공기의 유입방향을 기준으로, 상기 헤파필터에 앞서 마련되어 오염물질을 우선적으로 걸러주는 프리필터, 상기 프리필터와 상기 헤파필터 사이에 마련되어 절연시켜주는 인슐레이터, 공기의 유입방향을 기준으로, 상기 프리필터에 앞서 마련되고, 상기 필터하우징의 내측면에 마련되어 음파를 출력하는 제 1 음파출력기, 상기 제 1 음파출력기의 반대측면에 마련되어 음파를 출력하는 제 2 음파출력기, 상기 필터하우징 내부의 공기 유입구측에 마련되어 먼지입자를 대전시키는 대전부를 포함하여 구성된다.The technology relates to a filter system with high reusability, and includes a filter housing provided with an inlet through which contaminated air is introduced and an outlet through which the air is purified, and a HEPA filter provided inside the filter housing to filter out contaminants, Based on the air inflow direction, a pre-filter provided prior to the HEPA filter to preferentially filter out contaminants, an insulator provided between the pre-filter and the HEPA filter to insulate, and a pre-filter based on the air inflow direction Prior to the above, a first sound wave output device provided on an inner surface of the filter housing and outputting sound waves, a second sound wave output device provided on a side opposite to the first sound wave output device and outputting sound waves, and a sound wave output device provided on the air inlet side of the filter housing It is configured to include a charging unit provided and charging the dust particles.

또한, 유리섬유를 소재로 하는 에어필터에 관련하여, 등록특허공보 제10-0388107호에는 에어필터가 기재되어 있다.In addition, in relation to an air filter made of glass fiber, an air filter is described in Patent Registration No. 10-0388107.

상기 기술은, 부유하는 입자형태의 물질을 포집하는 에어필터에 있어서, 반도체장치의 제조시에 문제로 되는 유기물이나 무기물을 발생시키지 않도록 하는 것을 과제로 한다.[0003] The above technology aims to prevent generation of organic or inorganic substances that cause problems in the manufacture of semiconductor devices in an air filter that collects floating particulate matter.

이를 위하여, 에어필터의 섬유를 결합하는 바인더로서, 친수성모노머와 소수성모노머의 공중합체가 물에 분산되어 있는 폴리머 디스퍼젼을 주성분으로 하는 것을 사용한다. 상기 공중합체의 중합개시제로서, 유기과산화물을 사용한다.To this end, as a binder binding the fibers of the air filter, a polymer dispersion in which a copolymer of a hydrophilic monomer and a hydrophobic monomer is dispersed in water is used as a main component. As a polymerization initiator for the copolymer, an organic peroxide is used.

이러한 기술을 토대로 본 출원인은, 저차압 목적을 달성하면서, 에어필터의 재사용이 가능하도록 하고, 나아가 이러한 기능을 가능하도록 하는 소재를 이용하여 개발된 에어필터를 제안하고자 한다.Based on this technology, the present applicant intends to propose an air filter developed using a material capable of reusing the air filter while achieving the purpose of low differential pressure, and further enabling such a function.

등록특허공보 제10-1623015호(2016.05.20. 공고)Registered Patent Publication No. 10-1623015 (Announced on May 20, 2016) 등록특허공보 제10-0388107호(2003.06.18. 공고)Registered Patent Publication No. 10-0388107 (Announced on June 18, 2003)

본 발명의 목적은, 유리섬유(Glass-fiber)를 지지체로 하여 탄소나노구조체를 성장시켜 에어필터를 제조하는 기술로서, 전기를 부여하여 열 재생시킬 수 있어서 필터의 용이한 재사용이 가능하도록 하는, 나노하이브리드 기반의 재생 가능한 에어필터 및 그 제조방법을 제공하는데 있다.An object of the present invention is a technology for manufacturing an air filter by growing a carbon nanostructure using glass-fiber as a support, which enables easy reuse of the filter by applying electricity to heat recovery, It is to provide a nanohybrid-based regenerable air filter and a manufacturing method thereof.

상술된 목적을 달성하기 위하여 안출된 것으로 본 발명에 따른 유리섬유지지체에 탄소나노구조체를 성장시킨 에어필터는 전기 공급에 기반하여 열 재생되는 것을 특징으로 한다.An air filter in which carbon nanostructures are grown on a glass fiber support according to the present invention, which has been devised to achieve the above object, is characterized in that it is heat-regenerated based on electricity supply.

본 발명의 제조방법은, 유리섬유 시트를 금속촉매입자 분산액에 함침시키는 유리섬유 시트 함침단계; 상기 유리섬유 함침 단계가 종료되어 획득된 유리섬유를 건조하는 함침층 건조단계; 건조된 유리섬유를 반응장치 내에 위치시킨 후, 400~800℃의 온도범위에서 가열하며 탄소 소스를 공급하여 화학적 기상증착으로 유리섬유상에 탄소나노구조체를 성장하도록 하는 함침층 열처리단계; 및 상기 함침층 열처리단계에서 획득된 여재를 이용하여 에어필터를 제조하는 에어필터 획득단계;를 포함하여 이루어지며, 또한 유리섬유 분말을 금속촉매입자 분산액에 함침시키는 유리섬유 분말 함침단계; 상기 유리섬유 분말 함침단계가 종료되어 획득된 유리섬유를 건조하는 함침층 건조단계; 건조된 유리섬유를 반응장치 내에 위치시킨 후, 400~800℃의 온도범위에서 가열하며 탄소 소스를 공급하여 화학적 기상증착으로 유리섬유상에 탄소나노구조체를 성장하도록 하는 함침층 열처리단계; 탄소나노구조체가 성장된 유리섬유 분말을 시트화 하는 시트화단계; 및 상기 시트화단계에서 획득된 여재를 이용하여 에어필터를 제조하는 에어필터 획득단계;를 포함하여 이루어지는 것을 특징으로 한다.The manufacturing method of the present invention includes a glass fiber sheet impregnation step of impregnating a glass fiber sheet with a metal catalyst particle dispersion; an impregnation layer drying step of drying the glass fibers obtained after the glass fiber impregnation step is completed; An impregnated layer heat treatment step of placing the dried glass fibers in a reactor, heating them in a temperature range of 400 to 800° C. and supplying a carbon source to grow carbon nanostructures on the glass fibers by chemical vapor deposition; and an air filter obtaining step of manufacturing an air filter using the filter medium obtained in the heat treatment of the impregnated layer; and a glass fiber powder impregnation step of impregnating the glass fiber powder into the metal catalyst particle dispersion; an impregnation layer drying step of drying the glass fibers obtained after the glass fiber powder impregnation step is completed; An impregnated layer heat treatment step of placing the dried glass fibers in a reactor, heating them in a temperature range of 400 to 800° C. and supplying a carbon source to grow carbon nanostructures on the glass fibers by chemical vapor deposition; A sheeting step of sheeting the glass fiber powder on which the carbon nanostructures are grown; and an air filter acquisition step of manufacturing an air filter using the filter medium obtained in the sheeting step.

본 발명에 따른 나노하이브리드 기반의 재생 가능한 에어필터 및 그 제조방법에 의하면, 유리섬유(Glass-fiber)를 지지체로 하여 탄소나노구조체를 성장시켜 에어필터를 제조하는 기술을 제공할 수 있고,According to the nanohybrid-based renewable air filter and manufacturing method thereof according to the present invention, it is possible to provide a technology for manufacturing an air filter by growing a carbon nanostructure using glass-fiber as a support,

나아가, 전기를 부여하여 열 재생시킬 수 있어서 필터의 용이한 재사용이 가능하도록 하는 나노하이브리드 기반의 재생 가능한 에어필터를 제공할 수 있다.Furthermore, it is possible to provide a regenerable air filter based on a nanohybrid that can be regenerated by heat by applying electricity so that the filter can be easily reused.

도 1는 유리섬유 시트를 사용할 때의 본 발명에 따른 나노하이브리드 기반의 재생 가능한 에어필터 및 그 제조방법을 흐름도로 나타낸 것이다.
도 2는 유리섬유 분말을 사용할 때의 본 발명에 따른 나노하이브리드 기반의 재생 가능한 에어필터 및 그 제조방법을 흐름도로 나타낸 것이다.
1 is a flowchart showing a nanohybrid-based regenerable air filter and a manufacturing method thereof according to the present invention when a glass fiber sheet is used.
2 is a flowchart showing a nanohybrid-based regenerable air filter and a manufacturing method thereof according to the present invention when using glass fiber powder.

본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 안 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.Terms or words used in this specification and claims should not be construed as being limited to their usual or dictionary meanings, and the inventors may appropriately define the concept of terms in order to best explain their invention. It should be interpreted as a meaning and concept consistent with the technical idea of the present invention based on the principle that there is.

따라서 본 명세서에 기재된 실시 예와 도면에 도시된 구성은 본 발명의 가장 바람직한 실시 예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원 시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형 예들이 있을 수 있음을 이해하여야 한다.Therefore, since the embodiments described in this specification and the configurations shown in the drawings are only the most preferred embodiments of the present invention and do not represent all of the technical spirit of the present invention, various equivalents that can replace them at the time of the present application It should be understood that there may be variations and examples.

이하, 도면을 참조하여 설명하기에 앞서, 본 발명의 요지를 드러내기 위해서 필요하지 않은 사항 즉 통상의 지식을 가진 당업자가 자명하게 부가할 수 있는 공지 구성에 대해서는 도시하지 않거나, 구체적으로 기술하지 않았음을 밝혀둔다.Hereinafter, prior to description with reference to the drawings, matters that are not necessary to reveal the subject matter of the present invention, that is, known configurations that can be added obviously by those skilled in the art, are not shown or specifically described. reveal the sound

본 발명은 나노하이브리드 기반의 재생 가능한 에어필터 및 그 제조방법에 관한 것이다.The present invention relates to a nanohybrid-based renewable air filter and a manufacturing method thereof.

특히, 유리섬유(Glass-fiber)를 지지체로 하여 탄소나노구조체를 성장시켜 에어필터를 제조하는 기술로서, 전기를 부여하여 열 재생시킬 수 있어서 필터의 용이한 재사용이 가능하도록 하는, 나노하이브리드 기반의 재생 가능한 에어필터 및 그 제조방법에 관한 것이다.In particular, as a technology for manufacturing an air filter by growing a carbon nanostructure using glass-fiber as a support, it is possible to regenerate heat by applying electricity, so that the filter can be easily reused. It relates to a renewable air filter and a manufacturing method thereof.

도 1는 유리섬유 시트를 사용할 때의 본 발명에 따른 나노하이브리드 기반의 재생 가능한 에어필터 및 그 제조방법을 흐름도로 나타낸 것이고, 도 2는 유리섬유 분말을 사용할 때의 본 발명에 따른 나노하이브리드 기반의 재생 가능한 에어필터 및 그 제조방법을 흐름도로 나타낸 것이다.1 is a flow chart showing a nanohybrid-based renewable air filter and a manufacturing method thereof according to the present invention when a glass fiber sheet is used, and FIG. 2 is a nanohybrid-based air filter according to the present invention when glass fiber powder is used. A renewable air filter and its manufacturing method are shown in a flowchart.

이러한 본 발명에 따른 나노하이브리드 기반의 재생 가능한 에어필터 및 그 제조방법은, 첨부된 도면의 도 1과 같이 유리섬유 시트를 지지체로 사용하여 금속촉매 분산액에 담지하고 건조하고, 건조 된 유리섬유에 탄소 소스 공급과 동시에 열처리하여, 지지체인 유리섬유 상에 탄소나노구조체가 성장되도록 여재를 획득한 후, 상기 여재를 통상의 방법을 이용하여 필터로 제작하는 과정을 가진다. As shown in FIG. 1 of the accompanying drawings, the nanohybrid-based renewable air filter and method of manufacturing the same according to the present invention use a glass fiber sheet as a support, carry it in a metal catalyst dispersion, dry it, and dry the glass fiber with carbon. Heat treatment is performed at the same time as supplying the source to obtain a filter medium so that the carbon nanostructure is grown on the glass fiber as a support, and then the filter medium is fabricated into a filter using a conventional method.

도 2의 경우는 유리섬유 분말을 지지체로 사용함에 따라 시트화 단계가 필요하다.In the case of FIG. 2, a sheeting step is required as the glass fiber powder is used as a support.

1. 유리섬유 함침 단계1. Glass fiber impregnation step

유리섬유 함침 단계는, 1 도에서와 같이 유리섬유를 시트 지지체에 함침하기 위한 것이고, 2 도는 유리섬유 분말을 그 자체로 함침하는 것으로 유리섬유를 금속촉매 분산액에 함침시키는 단계이다.The glass fiber impregnation step is for impregnating the glass fiber into the sheet support as in FIG. 1, and in FIG. 2, the glass fiber powder itself is impregnated and the glass fiber is impregnated with the metal catalyst dispersion.

이때, 금속촉매 분산액은 페로센, 코발트센, 니켈센 등의 메탈로센 1종 이상을 에탄올에 분산하여 사용하나 주로 페로센-에탄올 분산액을 사용하고 농도 0.05~5.0 mol%인 것을 사용한다. 이러한 분산액에 지지체로 사용될 유리섬유를 함침시키는 것이며, 통상 6시간 동안 함침한다.At this time, the metal catalyst dispersion is used by dispersing one or more metallocenes such as ferrocene, cobaltene, and nickelcene in ethanol, but mainly ferrocene-ethanol dispersion is used, and a concentration of 0.05 to 5.0 mol% is used. This dispersion is impregnated with glass fibers to be used as a support, and is usually impregnated for 6 hours.

2. 함침층 건조 단계2. Impregnation layer drying step

함침층 건조 단계는, 상기 유리섬유 함침 단계가 종료되어 획득된 유리섬유에 건조기로 80~100℃의 온도범위에서 건조한다. 이와 같이 한정한 이유는 서서히 상온에서 건조할 수도 있으나 빠른 건조를 하여도 영향을 미치지 않고 에탄올 성분을 증발시키는 단계이다.In the step of drying the impregnated layer, the glass fibers obtained after the step of impregnating the glass fibers are dried at a temperature range of 80 to 100° C. with a dryer. The reason for this limitation is the step of evaporating the ethanol component without affecting it even if it is dried quickly, although it can be slowly dried at room temperature.

3. 함침층 열처리 단계3. Impregnated layer heat treatment step

함침층 열처리 단계는, 함침되어 건조된 유리섬유를 석영관로 내에 위치시킨 후, 400~800℃의 온도범위에서 간접적으로 가열하는 단계이다.The impregnated layer heat treatment step is a step of indirectly heating the impregnated and dried glass fibers in a temperature range of 400 to 800° C. after placing them in a quartz tube furnace.

즉, 석영재질을 가지는 관로(파이프)에 함침되어 건조된 유리섬유를 투입하고, 관로에 직접 열을 가해 열이 직접적으로 유리섬유에 영향을 주지 않도록 간접 가열하는 것으로서, 간접 가열은 2~4시간 사이 동안 이루어진다.That is, glass fibers impregnated and dried in a conduit (pipe) having a quartz material are put in, and heat is applied directly to the conduit to indirectly heat so that the heat does not directly affect the glass fibers. The indirect heating is 2 to 4 hours. takes place during

이때, 관로내에 수소, 아세틸렌, 아르곤 가스를 혼합하여 사용한다. 탄소 소스의 공급으로 인해 탄소나노구조체를 합성하고, 합성이 종료되면 탄소 소스의 공급을 중단하고 냉각하여 여재로서 획득하는 것이다.At this time, hydrogen, acetylene, and argon gas are mixed and used in the pipeline. A carbon nanostructure is synthesized due to the supply of the carbon source, and when the synthesis is completed, the supply of the carbon source is stopped and cooled to obtain a filter medium.

본 단계에 따른 함침 건조된 유리섬유의 간접 가열 단계는 상술된 유리섬유 함침 단계나 함침층 열처리 단계와 시계열적으로 영향 받지 않고 수행되도록 한다.The indirect heating step of the impregnated and dried glass fibers according to this step is performed without being affected in time-sequentially with the above-described glass fiber impregnation step or impregnated layer heat treatment step.

이러한 유리섬유 상에 탄소나노구조체가 성장함에 따라, 추후 제작되는 에어필터에 전기를 인가하였을 때, 전기에 기인한 열에 의해 이물질을 분해시켜 재사용이 가능하도록 한다.As the carbon nanostructures grow on these glass fibers, when electricity is applied to an air filter to be manufactured later, foreign substances are decomposed by heat caused by the electricity so that they can be reused.

4. 시트화 단계4. Sheeting step

탄소나노구조체가 성장한 유리섬유 분말을 슬러리하고 분사노즐로 여재를 형성하며, 감압탈수/건조/권취 과정을 거쳐 필터화 시킬 수 있는 시트를 획득하는 단계이다.This is a step of obtaining a filterable sheet through slurry of glass fiber powder on which carbon nanostructures have grown, forming a filter medium with a spray nozzle, and dehydrating under reduced pressure/drying/winding.

5. 에어필터 획득 단계5. Acquisition of air filter

에어필터 획득 단계는, 상기 탄소나노구조체 성장 단계를 통해 획득된 여재를 이용하여 통상의 방법으로 에어필터를 획득하는 단계이다.The step of obtaining an air filter is a step of obtaining an air filter in a conventional method using the filter medium obtained through the step of growing the carbon nanostructure.

다시 말하면, 유리섬유 지지체를 시트로 하여 함침한 경우는 생산성 및 균일성을 확보하기 어렵지만 제조단계를 간소화 할 수 있어 열처리단계 후 바로 에어필터를 획득할 수 있고, 유리섬유 지지체를 분말로 할 경우 열처리 후 시트화 단계를 거친 후 에어필터를 획득하도록 하여 비록 제조단계가 늘어나기는 하지만 품질의 균일성 확보 및 대량생산이 가능한 것으로 유리섬유의 지지체를 시트로 할 것인지 분말로 할 것인지에 따라 필요에 따른 적합한 에어필터를 획득할 수 있다. In other words, when the glass fiber support is impregnated as a sheet, it is difficult to secure productivity and uniformity, but the manufacturing step can be simplified, so that an air filter can be obtained immediately after the heat treatment step, and when the glass fiber support is made into a powder, heat treatment After going through the sheeting step, an air filter is obtained. Although the manufacturing step is increased, uniformity of quality and mass production are possible. Suitable air as needed depending on whether the glass fiber support is made into a sheet or powder. filter can be obtained.

상기에서 도면을 이용하여 서술한 것은, 본 발명의 주요 사항만을 서술한 것으로, 그 기술적 범위 내에서 다양한 설계가 가능한 만큼, 본 발명이 도면의 구성에 한정되는 것이 아님은 자명하다.What has been described using the drawings above is only the main points of the present invention, and it is obvious that the present invention is not limited to the configuration of the drawings as various designs are possible within the technical scope.

Claims (7)

삭제delete 유리섬유에 탄토나노구조체를 성장시킨 에어필터의 제조방법에 있어서,
상기 에어필터는 전기 공급에 기반하여 열 재생되는 것으로 유리섬유 분말을 페로센, 코발트센, 니켈센 등의 메탈로센 1종 이상을 에탄올에 분산하여 농도 0.05~5.0 mol%인 금속촉매입자 분산액에 함침시키는 유리섬유 분말 함침단계;
상기 유리섬유 함침 단계가 종료되어 획득된 유리섬유의 에탄올 성분을 증발시키기 위하여 80~100℃의 온도범위에서 건조기에서 건조하는 함침층 건조단계;
함침되어 건조된 유리섬유를 석영관로 내에 위치시킨 후, 관로내에 수소, 아세틸렌, 아르곤 가스를 혼합하여 사용하고, 400~800℃의 온도범위에서 간접적으로 가열하여 탄소 소스의 공급으로 인해 탄소나노구조체를 합성하며, 합성이 종료되면 탄소 소스의 공급을 중단하고 냉각하여 화학적 기상증착으로 유리섬유상에 탄소나노구조체를 성장하도록 하는 함침층 열처리단계;
유리섬유 분말을 사용하였을 때 필터화 시키기 위하여 수행하되, 탄소나노구조체가 성장한 유리섬유 분말을 슬러리하고 분사노즐로 여재를 형성하며, 감압탈수/건조/권취 과정을 거쳐 필터화 시킬 수 있는 시트를 획득하여 탄소나노구조체가 성장된 유리섬유 분말을 시트화 하는 시트화단계; 및
상기 시트화단계에서 획득된 여재를 이용하여 에어필터를 제조하는 에어필터 획득단계;를 포함하여 이루어지는 것을 특징으로 하는, 나노하이브리드 기반의 재생 가능한 에어필터 제조방법.
In the manufacturing method of an air filter in which tanto nanostructures are grown on glass fibers,
The air filter is heat-regenerated based on electricity supply, and glass fiber powder is dispersed in ethanol with one or more metallocenes such as ferrocene, cobaltene, and nickel, and impregnated with a metal catalyst particle dispersion having a concentration of 0.05 to 5.0 mol%. impregnating glass fiber powder;
Drying the impregnated layer in a dryer at a temperature range of 80 to 100 ° C. to evaporate the ethanol component of the glass fiber obtained after the glass fiber impregnation step is completed;
After placing the impregnated and dried glass fibers in a quartz tube furnace, hydrogen, acetylene, and argon gas are mixed and used in the tube furnace, and indirectly heated in the temperature range of 400 ~ 800 ° C to form carbon nanostructures by supplying a carbon source. synthesizing, and when the synthesis is completed, stopping supply of the carbon source and cooling the impregnated layer heat treatment step to grow the carbon nanostructure on the glass fiber by chemical vapor deposition;
When glass fiber powder is used, it is performed for filtering, but the glass fiber powder with carbon nanostructures is slurried, a filter medium is formed with a spray nozzle, and a filterable sheet is obtained through dehydration / drying / winding process under reduced pressure. a sheeting step of sheeting the glass fiber powder on which the carbon nanostructures are grown; and
An air filter acquisition step of manufacturing an air filter using the filter medium obtained in the sheeting step; characterized in that it comprises a nano-hybrid based renewable air filter manufacturing method.
삭제delete 삭제delete 삭제delete 삭제delete 청구항 2에 기재된 제조방법으로 제조된 나노하이브리드 기반의 재생 가능한 에어필터.

Renewable air filter based on nanohybrid manufactured by the manufacturing method according to claim 2.

KR1020210187962A 2021-12-27 2021-12-27 Nano-hybrid-based renewable air filter and manufacturing method of the same KR102482828B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210187962A KR102482828B1 (en) 2021-12-27 2021-12-27 Nano-hybrid-based renewable air filter and manufacturing method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210187962A KR102482828B1 (en) 2021-12-27 2021-12-27 Nano-hybrid-based renewable air filter and manufacturing method of the same

Publications (1)

Publication Number Publication Date
KR102482828B1 true KR102482828B1 (en) 2022-12-29

Family

ID=84539507

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210187962A KR102482828B1 (en) 2021-12-27 2021-12-27 Nano-hybrid-based renewable air filter and manufacturing method of the same

Country Status (1)

Country Link
KR (1) KR102482828B1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100388107B1 (en) 1998-12-22 2003-06-18 니혼 캠브리지 필터 가부시키가이샤 Air filter
US20070092431A1 (en) * 2005-06-28 2007-04-26 Resasco Daniel E Methods for growing and harvesting carbon nanotubes
KR100829001B1 (en) * 2006-12-07 2008-05-14 한국에너지기술연구원 The manufacturing method of reinforced composite using the method of synthesizing carbon nanowire directly on the glass fiber or the carbon fiber
KR20090037059A (en) * 2007-10-11 2009-04-15 한국에너지기술연구원 Synthesis method of carbon nanotubes using carbon material obtained by heat treatment of cellulose fiber as support, carbon - carbon nanotube filter using thereof
KR101623015B1 (en) 2014-06-03 2016-05-20 (주)에코에너지 기술연구소 The filter system for high-efficiency of reuse
WO2021178300A1 (en) * 2020-03-02 2021-09-10 Nanocomp Technologies, Inc. Carbon nanotube sheet for air or water purification

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100388107B1 (en) 1998-12-22 2003-06-18 니혼 캠브리지 필터 가부시키가이샤 Air filter
US20070092431A1 (en) * 2005-06-28 2007-04-26 Resasco Daniel E Methods for growing and harvesting carbon nanotubes
KR100829001B1 (en) * 2006-12-07 2008-05-14 한국에너지기술연구원 The manufacturing method of reinforced composite using the method of synthesizing carbon nanowire directly on the glass fiber or the carbon fiber
KR20090037059A (en) * 2007-10-11 2009-04-15 한국에너지기술연구원 Synthesis method of carbon nanotubes using carbon material obtained by heat treatment of cellulose fiber as support, carbon - carbon nanotube filter using thereof
KR101623015B1 (en) 2014-06-03 2016-05-20 (주)에코에너지 기술연구소 The filter system for high-efficiency of reuse
WO2021178300A1 (en) * 2020-03-02 2021-09-10 Nanocomp Technologies, Inc. Carbon nanotube sheet for air or water purification

Similar Documents

Publication Publication Date Title
JPH05503250A (en) Filters and means for their regeneration
RU2008109609A (en) WATER FILTERS AND METHODS INCLUDING ACTIVATED CARBON PARTICLES AND SURFACE CARBON NANOFIBERS
JP2009067674A (en) Method of manufacturing cellulose electrode supporting platinum nano-catalyst, cellulose electrode supporting platinum namo-catalyst, method of manufacturing cellulose electrode for fuel cell and cellulose fiber
CN106012107B (en) A kind of preparation method of carbon aerogels fiber
CN104428243A (en) Method for producing carbon material using catalyst, and carbon material
CN110129992A (en) A kind of fuel cell carbon fiber paper and preparation method thereof
Tofighy et al. Nickel ions removal from water by two different morphologies of induced CNTs in mullite pore channels as adsorptive membrane
KR102482828B1 (en) Nano-hybrid-based renewable air filter and manufacturing method of the same
Xing et al. Ultra-microporous cotton fiber-derived activated carbon by a facile one-step chemical activation strategy for efficient CO2 adsorption
Zhu et al. Simultaneous production of clean water and organic dye from dyeing wastewater by reusable lignin-derived porous carbon
CN110550618B (en) CVI/CVD process tail gas recovery device
Rezvani et al. Activated carbon surface modification by catalytic chemical vapor deposition of natural gas for enhancing adsorption of greenhouse gases
Yu et al. Facile fabrication of N/O co-doped activated carbon hollow fibers for hydrogen storage at atmospheric pressure
Saman et al. Enhanced elemental mercury removal by facile sulfurization of agrowaste chars
Kim et al. High surface area flexible zeolite fibers based on a core-shell structure by a polymer surface wet etching process
JP2007237170A (en) Method for manufacturing platinum catalyst carried on carbon nanotube in chemical vapor desposition method
Ren et al. The study on adsorption behavior of 2, 4-DCP in solution by biomass carbon modified with CTAB-KOH
Liu et al. Graphene oxide embedded polyvinylidene fluoride nanofiber membranes with biomimetic polar adsorption function for mask cartridge materials
CN109012591A (en) A kind of expanded graphite/carbonization poly-dopamine composite material and preparation method and the application as benzene gas adsorbent
Kim et al. Recycling of cotton clothing into activated carbon fibers
CN106824160B (en) The preparation method of activated carbon fiber film loading ZnO photochemical catalyst
CN108452638A (en) A kind of preparation method of hydrophobic molecule sieve runner
KR100974234B1 (en) Synthesis method of carbon nanotubes using carbon material obtained by heat treatment of cellulose fiber as support, carbon - carbon nanotube filter using thereof
KR101005115B1 (en) Carbonized cellulose fiber with the graphite-like surface nano-layer and synthesis method thereof
JP2007268441A (en) Adsorption sheet, adsorption element, and method for preparing the same

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant